
Statistica Sinica: Supplement

Supplementary Materials: Multiclass Sparse Discriminant Analysis

Qing Maia, Yi Yangb and Hui Zouc

a Department of Statistics, Florida State University, U.S.A.

b Department of Mathematics and Statistics, McGill University, Canada

c School of Statistics, University of Minnesota, U.S.A.

Supplementary Material

Section S1 contains the connections between our method and Fisher’s discriminant analysis, and Section S2 contains all

the technical proofs.

S1 Connections with Fisher’s discriminant analysis

For simplicity, in this subsection we denote η as the discriminant directions defined by

Fisher’s discriminant analysis in (??), and θ as the discriminant directions defined by

Bayes rule. Our method gives a sparse estimate of θ. In this section, we discuss the

connection between θ and η, and hence the connection between our method and Fisher’s

discriminant analysis. We first comment on the advantage of directly estimating θ rather

than estimating η. Then we discuss how to estimate η once θ̂ is available.

There are two advantages of estimating θ rather than η. Firstly, estimating θ allows
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for simultaneous estimation of all the discriminant directions. Note that (??) requires

that ηT
kΣηl = 0 for any l < k. This requirement almost necessarily leads to a sequential

optimization problem, which is indeed the case for sparse optimal scoring and `1 penalized

Fisher’s discriminant analysis. In our proposal, the discriminant direction θk is determined

by the covariance matrix and the mean vectors µk within Class k, but is not related to θl

for any l 6= k. Hence, our proposal can simultaneously estimate all the directions by

solving a convex problem. Secondly, it is easy to study the theoretical properties if we

focus on θ. On the population level, θ can be written out in explicit forms and hence it is

easy to calculate the difference between θ and θ̂ in the theoretical studies. Since η do not

have closed-form solutions even when we know all the parameters, it is relatively harder

to study its theoretical properties.

Moreover, if one is specifically interested in the discriminant directions η, it is very

easy to obtain a sparse estimate of them once we have a sparse estimate of θ. For conve-

nience, for any positive integer m, denote 0m as an m-dimensional vector with all entries

being 0, 1m as an m-dimensional vector with all entries being 1, and Im as the m × m

identity matrix. The following lemma provides an approach to estimating η once θ̂ is

available. The proof is relegated to Section A.2.

Lemma 1. The discriminant directions η contain all the right eigenvectors of θ0ΠδT
0

corresponding to positive eigenvalues, where θ0 = (0p,θ), Π = IK − 1
K

1K1T
K , and

δ0 = (µ1 − µ̄, . . . ,µK − µ̄) with µ̄ =
∑K

k=1 πkµk.
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Therefore, once we have obtained a sparse estimate of θ, we can estimate η as follows.

Without loss of generality write θ̂ = (θ̂T

D̂, 0)T, where D̂ = {j : θ̂·j 6= 0}. Then θ̂0 =

(0, θ̂). On the other hand, set δ̂0 = (µ̂1− ˆ̄µ, . . . , µ̂K − ˆ̄µ) where µ̂k are sample estimates

and ˆ̄µ =
∑K

k=1 π̂kµ̂k. It follows that θ̂0Πδ̂0 = ((θ̂0,D̂Πδ̂T

0,D̂)T, 0)T. Consequently, we can

perform eigen-decomposition on θ̂0,D̂Πδ̂T

0,D̂ to obtain η̂D̂. Because D̂ is a small subset of

the original dataset, this decomposition will be computationally efficient. Then η̂ would

be (η̂T

D̂, 0)T.

S2 Technical Proofs

Proof of Proposition ??. We first show (??).

For a vector θ ∈ Rp, define

LMSDA(θ, λ) =
1

2
θTΣ̂θ − (µ̂2 − µ̂1)

Tθ + λ‖θ‖1, (S2.1)

LROAD(θ, λ) = θTΣ̂θ + λ‖θ‖1 (S2.2)

Set θ̃ = c0(λ)−1θ̂MSDA(λ). Since θ̃T(µ̂2 − µ1) = 1, it suffices to check that, for any

θ̃′ such that (θ̃′)T(µ̂2−µ1) = 1, we have LROAD(θ̃, 2λ
|c0(λ)|) ≤ LROAD(θ̃′, 2λ

|c0(λ)|). Now for

any such θ̃′,

LMSDA(c0(λ)θ̃′, λ) = c0(λ)2LROAD(θ̃′,
2λ

|c0(λ)|
)− c0(λ) (S2.3)

Similarly,

LMSDA(c0(λ)θ̃, λ) = c0(λ)2LROAD(θ̃,
2λ

|c0(λ)|
)− c0(λ). (S2.4)
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Since LMSDA(c0(λ)θ̃, λ) ≤ LMSDA(c0(λ)θ̃′, λ), we have (??).

On the other hand, by Theorem 1 in Mai and Zou (2013b), we have

θ̂DSDA(λ) = c1(λ)θ̂ROAD(
λ

n|c1(λ)|
) (S2.5)

Therefore,

θ̂ROAD(
2λ

|c0(λ)|
) = θ̂ROAD

(
(
2n|c1(λ)|λ
|c0(λ)|

)/(n|c1(λ)|)
)

(S2.6)

=

(
c1(

2n|c1(λ)|λ
|c0(λ)|

)

)−1
θ̂DSDA

(
2n|c1(λ)|λ
|c0(λ)|

)
(S2.7)

= (c1(aλ))−1θ̂DSDA(aλ) (S2.8)

Combine (S2.8) with (??) and we have (??).

Proof of Lemma ??. We start with simplifying the first part of our objective function,

1
2
θT
k Σ̂θk − (µ̂k − µ̂1)

Tθk.

First, note that

1

2
θT

k Σ̂θk =
1

2

p∑
l,m=1

θklθkmσ̂lm (S2.9)

=
1

2
θ2kjσ̂jj +

1

2

∑
l 6=j

θklθkjσ̂lj +
1

2

∑
m6=j

θkjθkmσ̂jm +
1

2

∑
l 6=j,m6=j

θklθkmσ̂lm (S2.10)

(S2.11)

Because σ̂lj = σ̂jl, we have
∑

l 6=j θklθkjσ̂lj =
∑

m 6=j θkjθkmσ̂jm. It follows that

1

2
θT

k Σ̂θk =
1

2
θ2kjσ̂jj +

∑
l 6=j

θkjθklσ̂lj +
1

2

∑
l 6=j,m6=j

θklθkmσ̂lm (S2.12)
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Then recall that δ̂k = µ̂k − µ̂1. We have

(µ̂k − µ̂1)
Tθk =

p∑
l=1

δkl θkl = δkj θkj +
∑
l 6=j

δkl θkl (S2.13)

Combine (S2.12) and (S2.13) and we have

1

2
θT

k Σ̂θk − (µ̂k − µ̂1)
Tθk (S2.14)

=
1

2
θ2kjσ̂jj +

∑
l 6=j

θkjθklσ̂lj +
1

2

∑
l 6=j,m6=j

θklθkmσ̂lm − δkj θkj −
∑
l 6=j

δkl θkl (S2.15)

=
1

2
θ2kjσ̂jj + (

∑
l 6=j

σ̂l,jθkl − δ̂kj )θkj +
1

2

∑
m6=j,l 6=j

θklθkmσ̂lm −
∑
l 6=j

δ̂kl θkl (S2.16)

Note that the last two terms does not involve θ.j . Therefore, given {θ.j′ , j′ 6= j}, the

solution of θ.j is defined as

arg min
θ2,j ,...,θK,j

K∑
k=2

{1

2
θ2kjσ̂jj + (

∑
l 6=j

σ̂ljθkl − δ̂kj )θkj}+ λ‖θ.j‖,

which is equivalent to (??). It is easy to get (??) from (??) (Yuan and Lin, 2006).

Proof of Lemma ??. We start with the first conclusion. If all elements in ΣD,DC are equal

to 0, then we must have Σj,DΣ−1D,Dtk,D = 0 and hence maxj∈Dc{
∑K

k=2(Σj,DΣ−1D,Dtk,D)2}1/2 =

0. It follows that Condition (C0) holds.

For the second conclusion, note that, when σij = ρ|i−j| and D = {1, . . . , d}, for j ∈ DC ,

we have Σj,D = ρj−dΣd,D. Consequently,

Σj,DΣ−1D,D = ρj−d(0d−1, 1).
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Hence,
K∑
k=2

(Σj,DΣ−1D,Dtk,D)2 = ρ2(j−d)
K∑
k=2

t2kd = ρ2(j−d) < 1

which implies Condition (C0).

For the third conclusion, note that, if Σ is compound symmetry, then we can write ΣD,D =

(1− ρ)Id + ρ1d1
T
d . Straightforward calculation verifies that

Σ−1D,D =
1

1− ρ
Id −

ρ

[1 + (d− 1)ρ](1− ρ)
1d1

T

d .

Consequently, for any j ∈ DC ,

Σj,DΣ−1D,D = a1T

d

where a =
ρ

1− ρ
(1− dρ

1 + (d− 1)ρ
). Therefore, by Cauchy-Schwarz inequality, we have

K∑
k=2

(Σj,DΣ−1D,Dtk,D)2 = a2
K∑
k=2

(1T

dtk,D)2 ≤ a2
K∑
k=2

{(1T

d1d)(t
T

k,DtT

k,D)}

= a2d
K∑
k=2

∑
j∈D

t2kj = a2d
∑
j∈D

K∑
k=2

t2kj = a2d2

where we use the fact
∑K

k=2 t
2
kj = 1 for any j ∈ D. Hence,

{
K∑
k=2

(Σj,DΣ−1D,Dtk,D)2}1/2 = ad =
dρ

1− ρ
(1− dρ

1 + (d− 1)ρ
) =

dρ

1 + (d− 1)ρ
< 1

and we have the desired conclusion.

In what follows we use C to denote a generic constant for convenience.

Now we define an oracle “estimator" that relies on the knowledge of D for a specific
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tuning parameter λ:

θ̂oracle
D = arg min

θ2,D,...,θK,D

K∑
k=2

{1

2
θT

k,DΣ̂D,Dθk,D − (µ̂k,D − µ̂1,D)Tθk,D}+ λ
∑
j∈D

‖θ.j‖.

(S2.17)

The proof of Theorem ?? is based on a series of technical lemmas. For convenience,

in what follows we simply write θBayes as θ. This convention shall not be confused with

the generic θ in an objective function.

Lemma 2. Define θ̂oracle
D (λ) as in (S2.17). Then θ̂k = (θ̂oracle

k,D , 0), k = 2, . . . , K is the

solution to (??) if

max
j∈Dc

[
K∑
k=2

{(Σ̂DC ,Dθ̂
(oracle)
k,D )j − (µ̂kj − µ̂1j)}2]1/2 < λ. (S2.18)

Proof of Lemma 2. The proof is completed by checking that θ̂k = (θ̂oracle
k,D (λ), 0) satisfies

the KKT condition of (??).

Lemma 3. For each k, ΣDC ,DΣ−1D,D(µk,D − µ1,D) = µk,DC − µ1,DC .

Proof of Lemma 3. For each k, we have θk,DC = 0. By definition, θDC = (Σ−1(µk −

µ1))DC . Then by block inversion, we have that

θk,DC = −(ΣDC ,DC−ΣDC ,DΣD,DΣD,DC)−1(ΣDC ,DΣ−1D,D(µk,D−µ1,D)−(µk,DC−µ1,DC)),

and the conclusion follows.

Proposition 1. Under Condition (C1), there exists a constant ε0 such that for any 0 < ε ≤
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ε0 we have

pr{|(µ̂kj − µ̂1j)− (µkj − µ1j)| ≥ ε} ≤ C exp(−Cnε
2

K
) + C exp(−Cn

K2
),(S2.19)

k = 2, . . . , K, j = 1, . . . , p;

pr(|σ̂ij − σij| ≥ ε) ≤ C exp(−Cnε
2

K
) + C exp(−Cn

K2
), i, j = 1, . . . , p. (S2.20)

Proof of Proposition 1. We first show (S2.19). We start with the fact that, conditional on

Y, µ̂kj ∼ N(µkj,
σjj
nk

). Therefore, for any s > 0, we have

pr(µ̂kj − µkj ≥ ε | Y ) = pr(es(µ̂kj−µkj) ≥ esε | Y ) ≤ e−sεE
{
es(µ̂kj−µkj) | Y

}
= e

−sε+
σjjs

2

2nk

Let s =
nkε

σjj
and we have

pr(µ̂kj − µkj ≥ ε | Y ) ≤ exp(−nkε
2

2σjj
) ≤ exp(−Cnkε2),

where the last inequality follows from the assumption that σjj are bounded from above.

Repeat these steps for µkj − µ̂kj and we have

pr(µ̂kj − µkj ≤ −ε | Y ) ≤ exp(−Cnkε2)

Hence,

pr(|µ̂kj − µkj| ≥ ε | Y ) ≤ C exp(−Cnkε2)

It follows that

pr(|µ̂kj − µkj| ≥ ε) (S2.21)

≤ E(pr(|µ̂kj − µkj| ≥ ε | Y )) ≤ E(C exp(−Cnkε2)) (S2.22)
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= E
{
C exp(−Cnkε2)1(nk > πkn/2)

}
+E

{
C exp(−Cnkε2)1(nk < πkn/2)

}
(S2.23)

For the first term, note that, if nk > πkn/2, we must have

C exp(−Cnkε2) ≤ C exp(−Cπknε2) ≤ C exp(−Cnε
2

K
),

where the last inequality follows from Condition (C1). Hence,

E
{
C exp(−Cnkε2)1(nk > πkn/2)

}
≤ C exp(−Cnε

2

K
). (S2.24)

For the second term, note that

E
{
C exp(−Cnkε2)1(nk < πkn/2)

}
≤ Cpr(nk < πkn/2)),

Define W i = 1(Y i = k). Then W i ∼ Bernoulli(πk) and nk =
∑n

i=1W
i. By Hoeffding’s

inequality we have that

pr(nk < πkn/2)) = pr(| 1
n

n∑
i=1

W i − E(W i)| > πk/2) (S2.25)

≤ C exp(−Cnπ2
k) ≤ C exp(−C n

K2
), (S2.26)

where the last inequality again follows from Condition (C1). Combine (S2.23),(S2.24)

and (S2.26), and we have the desired conclusion.

A similar inequality holds for µ̂1j , and (S2.19) follows.

For (S2.20), note that

σ̂ij =
1

n−K

K∑
k=1

∑
Ym=k

(Xm
i − µ̂ki)(Xm

j − µ̂kj)
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=
1

n−K

K∑
k=1

∑
Ym=k

(Xm
i − µmi )(Xm

j − µmj ) +
1

n−K

K∑
k=1

nk(µ̂ki − µki)(µ̂kj − µkj)

= σ̂
(0)
ij +

1

n−K

K∑
k=1

nk(µ̂ki − µki)(µ̂kj − µkj).

Now by Chernoff bound, pr(|σ̂(0)
ij −σij| ≥ ε) ≤ C exp(−Cnε2). Combining this fact with

(S2.19), we have the desired result.

Now we consider two events depending on a small ε > 0:

A(ε) = {|σ̂ij − σij| <
ε

d
for any i = 1, · · · , p and j ∈ D},

B(ε) = {|(µ̂kj − µ̂1j)− (µkj − µ1j)| <
ε

d
for any k and j}.

By simple union bounds, we can derive Lemma 4 and Lemma 5.

Lemma 4. There exist a constant ε0 such that for any ε ≤ ε0 we have

1. pr(A(ε)) ≥ 1− Cpd exp(−Cn ε2

Kd2
)− CK exp(−Cn

K2
);

2. pr(B(ε)) ≥ 1− Cp(K − 1) exp(−C nε2

d2K
)− CK exp(−Cn

K2
);

3. pr(A(ε) ∩B(ε)) ≥ 1− γ(ε), where

γ(ε) = Cpd exp(−Cnε
2

d2
) + Cp(K − 1) exp(−Cnε

2

K
) + 2CK exp(−Cn

K2
).

Lemma 5. Assume that both A(ε) and B(ε) have occurred. We have the following con-
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clusions:

‖Σ̂D,D −ΣD,D‖∞ < ε;

‖Σ̂DC ,D −ΣDC ,D‖∞ < ε;

‖(µ̂k − µ̂1)− (µk − µ1)‖∞ < ε;

‖(µ̂k,D − µ̂1,D)− (µk,D − µ1,D)‖1 < ε.

Lemma 6. If both A(ε) and B(ε) have occurred for ε <
1

ϕ
, we have

‖Σ̂−1D,D −Σ−1D,D‖1 < εϕ2(1− ϕε)−1,

‖Σ̂DC ,D(Σ̂D,D)−1 −ΣDC ,D(ΣD,D)−1‖∞ <
ϕε

1− ϕε
.

Proof of Lemma 6 . Let η1 = ‖Σ̂D,D − ΣD,D‖∞, η2 = ‖Σ̂DC ,D − ΣDC ,D‖∞ and η3 =

‖(Σ̂D,D)−1 − (ΣD,D)−1‖∞. First we have

η3 ≤ ‖(Σ̂D,D)−1‖∞ × ‖(Σ̂D,D −ΣD,D)‖∞ × ‖(ΣD,D)−1‖∞ = (ϕ+ η3)ϕη1.

On the other hand,

‖Σ̂DC ,D(Σ̂D,D)−1 −ΣDC ,D(ΣD,D)−1‖∞ ≤ ‖Σ̂DC ,D −ΣDC ,D‖∞ × ‖(Σ̂D,D)−1 − (ΣD,D)−1‖∞

+‖Σ̂DC ,D −ΣDC ,D‖∞ × ‖(ΣD,D)−1‖∞

+‖ΣDC ,D‖∞ × ‖(Σ̂D,D)−1 − (ΣD,D)−1‖∞

≤ η2η3 + η2ϕ+ ϕη3.
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By ϕη1 < 1 we have η3 ≤ ϕ2η1(1− ϕη1)−1 and hence

‖Σ̂DC ,D(Σ̂D,D)−1 −ΣDC ,D(ΣD,D)−1‖∞ <
ϕε

1− ϕε
.

Lemma 7. Define

θ̂0
k,D = Σ̂−1D,D(µ̂k,D − µ̂1,D). (S2.27)

Then ‖θ̂0
k,D − θk,D‖1 ≤

ϕε(1 + ϕ∆)

1− ϕε
.

Proof of Lemma 7. By definition, we have

‖Σ̂−1D,D(µ̂k,D − µ̂1,D)−Σ−1D,D(µk,D − µ1,D)‖1

≤ ‖Σ̂−1D,D −Σ−1D,D‖1‖(µ̂k,D − µ̂1,D)− (µk,D − µ1,D)‖1

+‖Σ−1D,D‖1‖(µ̂k,D − µ̂1,D)− (µk,D − µ1,D)‖1 + ‖Σ̂−1D,D −Σ−1D,D‖1‖µk,D − µ1,D‖1

≤ ϕε(1 + ϕ∆)

1− ϕε
.

Lemma 8. If A(ε) and B(ε) have occurred for ε < min{ 1
2ϕ
,

λ

1 + ϕ∆
}, then for all k

‖θ̂(oracle)
k,D (λ)− θk,D‖∞ ≤ 4λϕ.

Proof of Lemma 8. Observe θ̂oracle
k = Σ̂−1D,D(µ̂k,D − µ̂1,D)− λΣ̂−1D,Dt̂k,D. Therefore,

‖θ̂oracle
k,D − θk,D‖∞

≤ ‖θ̂0
k,D − θk,D‖∞ + λ‖Σ̂−1D,D −Σ−1D,D‖1‖t̂k,D‖∞ + λ‖Σ−1D,D‖1‖t̂k,D‖∞
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where θ̂0
k,D is defined as in (S2.27). Now ‖t̂k,D‖∞ ≤ 1 and we have

‖θ̂oracle
k,D − θk,D‖∞ ≤

ϕε(1 + ϕ∆) + λϕ

1− ϕε
< 4ϕλ.

Lemma 9. For a sets of real numbers {a1, . . . , aN}, if
∑N

i=1 a
2
i ≤ κ2 < 1, then

∑N
i=1(ai+

b)2 < 1 as long as b <
1− κ√
N

.

Proof. By the Cauchy-Schwartz inequality, we have that

N∑
i=1

(ai + b)2 =
N∑
i=1

a2i + 2
N∑
i=1

aib+Nb2 (S2.28)

≤
N∑
i=1

a2i + 2

√√√√(
N∑
i=1

a2i ) ·Nb2 +Nb2 (S2.29)

≤ κ2 + 2κ
√
Nb2 +Nb2 (S2.30)

which is less than 1 when b <
1− κ√
N

.

We are ready to complete the proof of Theorem ??.

Proof of Theorem ??. We first consider the first conclusion. For any λ < θmin

8ϕ
and ε <

min{ 1
2ϕ
,

λ

1 + ϕ∆
}, consider the event A(ε) ∩ B(ε). By Lemmas 2, 4 & 8 it suffices to

verify (S2.18).
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For any j ∈ Dc, by Lemma 3 we have

|(Σ̂DC ,Dθ̂
(oracle)
k,D )j − (µ̂kj − µ̂1j)|

≤ |(Σ̂DC ,Dθ̂
(oracle)
k,D )j − (ΣDC ,Dθk,D)j|+ |(µ̂kj − µ̂1j)− (µkj − µ1j)|

≤ |(Σ̂DC ,Dθ̂
(oracle)
k,D )j − (ΣDC ,Dθk,D)j|+ ε

≤ |(Σ̂DC ,Dθ̂
(0)
k,D)j − (ΣDC ,Dθk,D)j|+ ε+ λ|(Σ̂DC ,DΣ̂−1D,Dt̂k,D)j|

|(Σ̂DC ,Dθ̂
(oracle)
k,D )j − (ΣDC ,Dθk,D)j|+ ε

≤ ‖(Σ̂DC ,D)j − (ΣDC ,D)j‖1‖θ̂0
k,D − θk,D‖∞ + ‖θk,D‖∞‖(Σ̂DC ,D)j − (ΣDC ,D)j‖1

+‖(ΣDC ,D)j‖1‖θ̂0
k,D − θk,D‖∞ + ε

≤ Cε. (S2.31)

|(Σ̂DC ,DΣ̂−1D,Dt̂k,D)j − (ΣDC ,DΣ−1D,Dtk,D)j|

≤ ‖Σ̂DC ,DΣ̂−1D,D −ΣDC ,DΣ−1D,D‖∞‖t̂k,D − tk,D‖∞

+‖ΣDC ,DΣ−1D,D‖∞‖t̂k,D − tk,D‖∞ + ‖Σ̂DC ,DΣ̂−1D,D −ΣDC ,DΣ−1D,D‖∞|(tk,D)j|

|t̂kj − tkj| = | θ̂kj‖θ.j‖ − θkj‖θ̂.j‖
‖θ.j‖‖θ̂.j‖

|

≤ |θ̂kj − θkj|‖θ.j‖+ θmax‖θ.j − θ̂.j‖
‖θ.j‖‖θ̂.j‖

≤ Cϕ

θmin

√
(K − 1)

λ.
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Therefore,

λ|(Σ̂DC ,DΣ̂−1D,Dt̂k,D)j|

≤ λ|(ΣDC ,DΣ−1D,Dtk,D)j|+ λ(
Cϕε

1− ϕε
+ η∗

Cϕλ

θmin

√
K − 1

) (S2.32)

≤ λ|(ΣDC ,DΣ−1D,Dtk,D)j|+ Cλ2 (S2.33)

Under condition (C0), it follows from (S2.31) and (S2.33) that

|(Σ̂DC ,Dθ̂
(oracle)
k,D )j − (µ̂kj − µ̂1j)| ≤ λ|(ΣDC ,DΣ−1D,Dtk,D)j|+ Cλ2 (S2.34)

Combine condition (C0) with Lemma 9, we have that, there exists a generic constant

M > 0, such that when λ < M(1 − κ), (S2.18) is true. Therefore, the first conclusion is

true.

Under conditions (C2)–(C4), the second conclusion directly follows from the first

conclusion.

Lemma 10. Under the conditions in Theorem ??, under A(ε) ∩B(ε), we have that

‖θ̂k‖1 ≤ K(∆ +
ϕε(1 + ϕ∆)

1− ϕε
).

Proof. Under the conditions in Theorem ??, we have that, under A(ε) ∩ B(ε), θ̂k =

(θ̂oracle
k,D , 0). It follows that

K∑
k=2

{1

2
(θ̂oracle

k,D )TΣ̂D,Dθ̂
oracle
k,D − (µ̂k − µ̂1)

Tθ̂oracle
k,D }+ λ

p∑
j=1

√√√√ K∑
k=2

(θ̂oraclekj )2

≤
K∑
k=2

{1

2
(θ̂0

k,D)TΣ̂D,Dθ̂
0
k,D − (µ̂k − µ̂1)

Tθ̂0
k,D}+ λ

p∑
j=1

√√√√ K∑
k=2

(θ̂0kj)
2
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while by the definition of θ̂0
k,D, we must have

1

2
(θ̂oracle

k,D )TΣ̂D,Dθ̂
oracle
k,D − (µ̂k − µ̂1)

Tθ̂oracle
k,D ≥ 1

2
(θ̂0

k,D)TΣ̂D,Dθ̂
0
k,D − (µ̂k − µ̂1)

Tθ̂0
k,D

Hence,

p∑
j=1

√√√√ K∑
k=2

(θ̂oraclekj )2 <

p∑
j=1

√√√√ K∑
k=2

(θ̂0kj)
2 ≤

K∑
k=2

‖θ̂0
k‖1 ≤ K∆ +K

ϕε(1 + ϕ∆)

1− ϕε

where the last inequality follows from Lemma 6. Finally, note that ‖θ̂k‖1 ≤
∑p

j=1

√∑K
k=2(θ̂

oracle
kj )2

and we have the desired conclusion.

Proof of Theorem ??. We first show the first conclusion. Define Ŷ (θ2, . . . ,θK) as the pre-

diction by the Bayes rule and Ŷ (θ̂2, . . . , θ̂K) as the prediction by the estimated classifica-

tion rule. Also define lk = (X−µk + µ1

2
)Tθk+log(πk/π1) and l̂k = (X− µ̂k + µ̂1

2
)Tθ̂k+

log(π̂k/π̂1).

Define C(ε) = {|π̂k − πk| ≤ min{mink πk/2, ε}}. By the Bernstein inequality we

have that Pr(C(ε)) ≤ C exp(−Cn/K2).

Assume that the event A(ε) ∩ B(ε) ∩ C(ε) for ε < min{ 1

2ϕ
,

λ

1 + ϕ∆
} has happened.

By Lemma 4, we have

Pr(A(ε)∩B(ε)∩C(ε)) ≥ 1−Cpd exp(−Cn ε2

Kd2
)−CK exp(−C n

K2
)−Cp(K−1) exp(−Cn ε

2

K
)

(S2.35)

For any ε0 > 0,

Rn −R ≤ Pr(Ŷ (θ2, . . . ,θK) 6= Ŷ (θ̂2, . . . , θ̂K))
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≤ 1− Pr(|l̂k − lk| < ε0/2, |lk − lk′| > ε0, for any k, k′)

≤ Pr(|l̂k − lk| ≥ ε0/2 for some k) + Pr(|lk − lk′| ≤ ε0 for some k, k′).

Now, for X in each class, lk−lk′ is normal with variance (θk−θk′)TΣ(θk−θk′′). Therefore,

Pr(|lk − lk′| ≤ ε0 for some k, k′) ≤
∑
k′′

Pr(|lk − lk′| ≤ ε0 | Y = k
′′
)πk′′

≤
∑
k,k′ ,k′′

πk′′
Cε0

{(θk − θk′)TΣ(θk − θk′)}1/2

≤ CK2ε0.

On the other hand, conditional on training data, l̂k − lk is normal with mean

u(k, k′) = µT

k′(θ̂k − θk)−
(µ̂1 + µ̂k)

Tθ̂k
2

+
(µ1 + µk)

Tθk
2

+ log π̂k/π̂1 − log πk/π1

and variance (θ̂k − θk)
TΣ(θ̂k − θk) within class k′. By Markov’s inequality, we have

Pr(|l̂k − lk| ≥ ε0/2 for some k) =
∑
k′

πk′ Pr(|l̂k − lk| ≥ ε0/2 | Y = k′)

≤ CE{maxk(θ̂k − θk)
TΣ(θ̂k − θk)

(ε0 − u(k, k′))2
}.

Moreover, under the event A(ε) ∩B(ε) ∩ C(ε), by Lemma 10,

max
k

(θ̂k − θk)
TΣ(θ̂k − θk) ≤ max

k
‖θ̂k − θk‖1‖Σ‖∞‖θ̂k − θk‖∞

≤ max
k

(‖θ̂k‖1 + ‖θk‖1)‖Σ‖∞‖θ̂k − θk‖∞ ≤ Cλ

|u(k, k′)| ≤ |µT

k′(θ̂k − θk)|+
1

2
|{(µ̂1 + µ̂k)− (µ1 + µk)}T(θ̂k − θk)|

+
1

2
|{(µ̂1 + µ̂k)− (µ1 + µk)}Tθk|+

1

2
|(µ1 + µk)

T(θ̂k − θk)|
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+| log π̂k/π̂1 − log πk/π1|

≤ C1λ

Hence, pick ε0 = M2λ
1/3 such that ε0 ≥ C1λ/2, for C1 in (S2.36). Then Pr(|l̂k − lk| ≥

ε0/2 for some k) ≤ Cλ1/3. It follows that |Rn − R| ≤ M1λ
1/3 for some positive constant

M1.

Under Conditions (C2)–(C4), the second conclusion is a direct consequence of the

first conclusion.

We need the result in the following proposition to show Lemma 2. A slightly different

version of the proposition has been presented in Fukunaga (1990) (Pages 446-450), but we

include the proof here for completeness.

Proposition 2. The solution to (??) consists of all the right eigenvectors of Σ−1Σb corre-

sponding to positive eigenvalues.

Proof. For any ηk, set uk = Σ1/2ηk. It follows that solving (??) is equivalent to finding

(u∗1, . . . ,u
∗
K−1) = arg max

uk
uT

kΣ
−1/2δ0δ

T

0Σ−1/2uk, s.t. uT
kuk = 1 and uT

kul = 0 for any l < k.

(S2.36)

and then setting ηk = Σ−1/2u∗k. It is easy to see that u∗1, . . . , u
∗
K−1 are the eigenvectors

corresponding to positive eigenvalues of Σ−1/2δ0δ
T
0Σ−1/2. By Proposition 3, let A =

Σ−1/2δ0δ
T
0 , and B = Σ−1/2 and we have that η consists of all the eigenvectors of Σ−1δ0δ

T
0

corresponding to positive eigenvalues.
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Proposition 3. (Mardia et al. (1979), Page 468, Theorem A.6.2) For two matrices A and

B, if x is a non-trivial eigenvector of AB for a nonzero eigenvalue, then y = Bx is a

non-trivial eigenvector of BA.

Proof of Lemma 1. Set δ̃ = (0p, δ) and δ0 = (µ1 − µ̄, . . . ,µK − µ̄). Note that δ1K =∑K
k=2µk−(K−1)µ1 = K(µ̄−µ1). Therefore, δ0 = δ̃− 1

K
δ̃1K1T

K = δ̃(IK− 1
K

1K1T
K) =

δ̃Π.

Then, since θ0 = Σ−1δ̃, we have θ0Π = Σ−1δ0 and θ0ΠδT
0 = Σ−1δ0δ

T
0 . By

Proposition 2, we have the desired conclusion.
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