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1 Proof for Proposition 34

We first prove the following:5

F(A0) = log |AT
0MA0|+ log |AT

0 (M+U)−1A0| (A1)

≤ log |AT
0MA0|+ log |AT

0M
−1A0| (A2)

= 0, (A3)

where the inequality (A2) is because M > 0 and U ≥ 0, and hence (M +U)−1 ≤ M−1 and6

AT
0 (M + U)−1A0 ≤ AT

0M
−1A0. To show the equality (A3), we need to apply Lemma 2 in7

the Appendix of (Cook et al., 2013): |ATMA| = |M| × |AT
0M

−1A0| for any M > 0 and8

any orthogonal basis (A,A0) ∈ Rp×p. Therefore, in (A2), log |AT
0MA0|+log |AT

0M
−1A0| =9

log |AT
0MA0|+ log |ATMA| − log |M|, which equals to zero because span(A) is a reducing10

subspace of M.11

Turning to the second part of the proposition, we decompose U = uuT , where u has full12

column rank, and decompose (I + uTM−1u)−1 = bbT . Let C = (AT
0M

−1A0)
−1. Then13

using the Woodbury identity for matrix inverses (i.e. (D+XEXT )−1 = D−1 +D−1X(E−1 +14
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XTD−1X)−1XTD−1 for square and invertible matrices D and E) and a common determinant15

identity (i.e. |D+XEXT | = |D| · |E| · |E−1 +XTD−1X|) we have16

log |AT
0 (M+U)−1A0| = log |AT

0 (M+ uuT )−1A0|

= log |AT
0M

−1A0 −AT
0M

−1ubbTuTM−1A0|

= log |AT
0M

−1A0|+ log |I− bTuTM−1A0CAT
0M

−1ub|.

Since span(A0) is a reducing subspace of M, AT
0M

−1A0 = (AT
0MA0)

−1 and thus17

log |AT
0 (M+U)−1A0| = − log |AT

0MA0|+ log |I− bTuTM−1A0CAT
0M

−1ub|.

It follows that F (A0) = 0 if and only if bTuTM−1A0 = 0. Since b has full column rank, this18

holds if and only if span(M−1u) ⊆ span(A). Since span(A) reduces M, this holds if and19

only if span(u) ⊆ span(A).20

To prove EM(U) = AEATMA(A
TUA), we first need to establish span(ATUA) ⊆ span(ATMA)21

(cf. Definition 2). Since span(U) ⊆ span(M), there is a matrix B so that U = MB. Thus22

span(ATUA) = span(ATU) = span(ATMB) ⊆ span(ATM) = span(ATMA).

We next let E1 = EATMA(A
TUA) when used as a subscript. The conclusion can be deducted23

from the following quantities:24

M = PAMPA +QAMQA

= A(ATMA)AT +QAMQA

= A(PE1A
TMAPE1 +QE1A

TMAQE1)A
T +QAMQA

= APE1A
TMAPE1A

T + (AQE1A
T +QA)M(AQE1A

T +QA),

where the final equation holds because AQE1A
TMQA = AQE1(A

TMA0)A0 = 0 and be-25

cause APE1A
T and (AQE1A

T+QA) are orthogonal projections. It follows that span(APE1A
T ) =26

AEATMA(A
TUA) is a reducing subspace of M that contains span(U). The envelope equality27

EM(U) = AEATMA(A
TUA) follows from the minimality of EATMA(A

TUA).28
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2 Proof for Proposition 4 and Proposition 529

We first establish the results in Proposition 5 about ũ. Recall that ũ is the number of eigen-30

vectors from the decomposition M =
∑p

i=1 λiviv
T
i used in Step 1 of Algorithm 2 that are not31

orthogonal to span(U) and that, from Proposition 1, EM(U) =
∑q

j=1PjU for q projections32

Pj , j = 1, . . . , q, onto the distinct (and unique) eigenspaces of M. For these eigenspaces, if33

span(Pj) ⊆ EM(U) for some j = 1, . . . , q, then the associated eigenvectors will be guaranteed34

to intersect with span(U) because of the minimality of the envelope. If span(Pj) ⊆ E⊥M(U)35

for some j = 1, . . . , q, then the associated eigenvectors will be orthogonal to span(U). Thus36

for the first part of Proposition 5, if all eigenspaces are contained in either EM(U) or E⊥M(U),37

then u = ũ and equals to the sum of the dimensions of eigenspaces that are contained in38

EM(U). However, if some eigenspace span(Pj) intersect with both EM(U) and E⊥M(U), then39

by EM(U) =
∑q

j=1PjU we have PjU ⊆ EM(U) and PjU⊥ ⊆ E⊥M(U). Since any vector in40

the eigenspace span(Pj) is a eigenvector for M, therefore different eigen-decomposition leads41

to different number ũ. Depending on the particular eigen-decomposition, ũ can be any integer42

from u to u +K, where K is the sum of the dimensions of all such eigenspaces that intersect43

with both the envelope and the orthogonal completion of the envelope.44

To prove Proposition 4, we let I denote the index set of the ũ eigenvectors that are not45

orthogonal to span(U), and let I0 denote the remaining indices in {1, . . . , p}. Then we have46

vi ∩ EM(U) 6= 0 and vT
i Uvi > 0 for i ∈ I and vi ∈ E⊥M(U) for i ∈ I0. Now we finally turn to47

the function F(vi). From Proposition 3, we know that F(vi) = 0 for i ∈ I0. For i ∈ I, let PE48

and QE denote the projection onto EM(U) and E⊥M(U), respectively. Then it is straightforward49

to see that,50

(M+U)−1 = {PE(M+U)PE +QEMQE}−1 = PE(M+U)−1PE +QEM
−1QE . (A1)

Because vT
i Uvi > 0 for i ∈ I we have vT

i (M + U)−1vi < vT
i M

−1vi, and thus fi < 051

for i ∈ I. Ordering f1, . . . , fp monotonically, we have f(p) ≤ . . . ≤ f(p−ũ+1) < f(p−ũ) =52

. . . = f(1) = 0. For d ≥ ũ, span(A0) is a subset of E⊥M(U) and thus F(A0) = 0 from equation53
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(A1). By construction, both span(A) and span(A0) are always reducing subspaces of M. Thus54

applying Proposition 3, we have AEATMA(A
TUA) = EM(U) for d ≥ u.55

3 Proof for Proposition 656

Because the objective function F(A0) is a smooth and differentiable function in M and U,57

it follows that Fn(Â0) = F(Â0) + Op(n
−1/2). To see this treat Fn(Â0) = log |ÂT

0 M̂Â0| +58

log |ÂT
0 (M̂+Û)−1Â0| = f(M̂, Û, Â0) as a function of M̂, Û and Â0. Then we have F(Â0) =59

f(M,U, Â0). The partial derivatives of f(M,U, Â0) with respect to M and U can be com-60

puted (not shown here) and are bounded because ∂ log |X|/∂X = X−1 for symmetric positive61

definite matrix X and the components (ÂT
0MÂ0)

−1, (ÂT
0 M̂Â0)

−1, (ÂT
0 (M̂ + Û)−1Â0)

−1
62

and (ÂT
0 (M+U)−1Â0)

−1 are bounded with probability 1. Since f(M,U, Â0) is smooth and63

differentiable with respect to its first two arguments, M̂ −M = Op(n
−1/2) and Û − U =64

Op(n
−1/2), it follows by a Taylor expansion that f(M̂, Û, Â0) − f(M,U, Â0) = Op(n

−1/2).65

From the
√
n-consistency of eigenvectors, we have ÂT

0MÂ0 = AT
0MA0 + Op(n

−1/2) and66

ÂT
0 (M+U)−1Â0 = AT

0 (M+U)−1A0+Op(n
−1/2). Therefore, F(Â0) = F(A0)+Op(n

−1/2).67

4 Additional numerical results for Section 4.268

In Section 4.2, we analyzed the meat protein data set following the previous studies in Cook69

et al. (2013) and Cook and Zhang (2016). Recall that in Section 4.2, we used the protein per-70

centage of n = 103 meat samples as the univariate response variable Yi ∈ R1, i = 1, . . . , n,71

and use corresponding p = 50 spectral measurements from near-infrared transmittance at every72

fourth wavelength between 850nm and 1050nm as the predictor Xi ∈ Rp. We then randomly73

split the data into a testing sample and a training sample in a 1:4 ratio and recorded the pre-74

diction mean squared errors (PMSE) and repeated this procedure 100 times. Figure 4.1 sum-75

marized the averaged prediction mean squared errors (PMSE) for the four estimators (ECD,76

1D, ECS-ECD, and ECS-1D). The ECD algorithm was proven again to be the most reliable77
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Figure A1: Meat Protein Data: prediction mean squares error comparison of ECD and 1D
algorithms when u = 2. The left panel summarized all the 100 PMSE for each of the four
estimators; the right panel is the zoomed-in view of the left panel, that is after deleting the 5
outliers of the 1D algorithm’s PMSE.

one, while the performances of both the ECS-1D and the ECS-ECD estimators are very similar78

to that of the ECD algorithm. For u = 2, we have observed a big difference between the 1D79

and the ECD algorithm. Since both algorithms are under the same sequential 1D framework of80

(Cook and Zhang, 2016) and are trying to optimize the same objective function, we further ex-81

amined their differences more carefully. In Figure A1, we have the side-by-side boxplot of the82

100 PMSE for all the four estimators. The means of the PMSE over the 100 data sets for each83

estimators are: 2.15 (ECD); 4.79 (1D); 2.16 (ECS-ECD); 2.19 (ECS-1D), while the medians84

are: 2.13 (ECD), 3.53 (1D), 2.13 (ECS-ECD), 2.17 (ECS-ECD).85
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