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Subsampling for General Statistics under Long Range Dependence

with application to change point analysis
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Supplementary Material

This document contains additional material. Generalizations of the robust, self-normalized

change point test by Betken (2016) for data with ties or with multiple change points are pre-

sented in Section and S1 amd S2. The technical lemmas given in Section S3 are needed for the

proof of Theorem 1 in Section S4.

S1 A Modified Change Point Test for Data with Ties

If the distribution of Xi = G(ξi) is not continuous, there is a positive

probability that Xi = Xj for some i 6= j, so there might be ties in the

sample. We propose to use the following test statistic based on the modified

ranks R̃i =
∑n

j=1(1{Xj<Xi} + 1
2
1{Xj=Xi}):

T̃n(τ1, τ2) := max
k∈{bnτ1c,...,bnτ2c}

∣∣∣∑k
i=1 R̃i − k

n

∑n
i=1 R̃i

∣∣∣{
1
n

∑k
t=1 S̃

2
t (1, k) + 1

n

∑n
t=k+1 S̃

2
t (k + 1, n)

}1/2
,

where

S̃t(j, k) =
t∑

h=j

(
R̃h −

1

k − j + 1

k∑
i=j

R̃i

)
.

To be able to apply subsampling, we need T̃n to converge in distribution,

which we will show now:
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Lemma 1. Let (ξn)n∈N be a stationary sequence of centered standard Gaus-

sian variables with covariance function γ(k) = k−DLγ(k) for a D ∈ (0, 1)

and a slowly varying function Lγ. Let Xi = G(ξi) for a function G, piece-

wise monotone on finitely many pieces. Then T̃n(τ1, τ2) ⇒ T for some

random variable T .

Proof. Let h(x, y) = 1{G(x)<G(y)}+
1
2
1{G(x)=G(y)}− 1

2
. We define the modified

Wilcoxon process (W̃n(λ))λ∈[0,1] by

W̃n(λ) :=
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

h(ξi, ξj)

with dn =
√

Var(
∑n

i=1 ξi). From Theorem 2.2 in Dehling, Rooch and

Wendler (2017), we have the weak convergence of this process W̃n to the

limit process W with

W (λ) = −(1− λ)Z(λ)
∫
ϕ(x)dh̃(x)− λ(Z(1)− Z(λ))

∫ ( ∫
ϕ(y)dh(x, y)(y)

)
ϕ(x)dx.

Here, Z is a fractional Brownian motion, ϕ is the density function of the

standard normal distribution and h̃(x) = E[h(x, ξi)]. Following the proof

of Theorem 1 in Betken (2016), we can express T̃n as a function of W̃n:

Tn(τ1, τ2)

= supτ1≤λ≤τ2
|W̃n(λ)|{ ∫ λ

0 (W̃n(t)− cn(t)
cn(λ)

W̃n(λ))2dt+
∫ 1
λ (W̃n(t)− 1−cn(t)

1−cn(λ)
W̃n(λ))2dt

}1/2 .

Note that cn(λ) converges to λ uniformly, so we have the asymptotic equiv-

alence

Tn(τ1, τ2)

≈ sup
τ1≤λ≤τ2

∣∣∣W̃n(λ)
∣∣∣{ ∫ λ

0
(W̃n(t)− t

λ
W̃n(λ))2dt+

∫ 1

λ
(W̃n(t)− 1−t

1−λW̃n(λ))2dt
}1/2

.



Supplement: Subsampling under Long Range Dependence 3

By the continuous mapping theorem, we get

Tn(τ1, τ2)

⇒ sup
τ1≤λ≤τ2

|W (λ)|{ ∫ λ
0

(W (t)− t
λ
W (λ))2dt+

∫ 1

λ
(W (t)− 1−t

1−λW (λ))2dt
}1/2

=: T.

S2 A Test for Multiple Change Points

For testing the alternative hypothesis of two change points, we suggest to

use the test statistic Tn(τ1, τ2, ε) = sup(k1,k2)∈Ωn(τ1,τ2,ε) |Gn(k1, k2)|. Some

calculations yield

Gn(k1, k2)

=
|W̃n(λ1,λ2)|{

λ1∫
0

(
W̃n(r,λ2)− r

λ1
W̃n(λ1,λ2)

)2
dr+

λ2∫
λ1

(
W̃n(r,λ2)− λ2−r

λ2−λ1
W̃n(λ1,λ2)

)2
dr

} 1
2

+
|W ∗n(λ2,λ1)|{

λ2∫
λ1

(
W ∗n(r,λ1)− r−λ1

λ2−λ1
W ∗n(λ2,λ1)

)2
dr+

1∫
λ2

(
W ∗n(r,λ1)− 1−r

1−λ2
W ∗n(λ2,λ1)

)2
dr

} 1
2

+ oP (1),

where

W̃n(λ, τ) := Wn(λ, λ)−Wn(λ, τ), W ∗
n(λ, τ) := Wn(λ, λ)−Wn(τ, λ)

with

Wn(λ, τ) =

bnλc∑
i=1

n∑
j=bnτc+1

(
1{Xi≤Xj} −

1

2

)
, 0 ≤ λ ≤ τ ≤ 1.
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Define d2
n := Var(

∑n
j=1Hr(ξj)), where Hr denotes the r-th order Hermite

polynomial and r designates the Hermite rank of the class of functions{
1{G(ξi)≤x} − F (x), x ∈ R

}
. It can be shown that 1

ndn
Wn(λ, τ) converges in

distribution to

{(1− τ)Zr(λ)− λ(Zr(1)− Zr(τ))} 1

r!

∫
Jr(x)dF (x), 0 ≤ λ ≤ τ ≤ 1,

where Zr is an r-th order Hermite process with Hurst parameter H :=

max{1− rD
2
, 1

2
} and where Jr(x) = E

(
Hr(ξi)1{G(ξi)≤x}

)
.

As a result, under the hypothesis the limiting distribution of Tn(τ1, τ2, ε)

is given by T (r, τ1, τ2, ε) = supτ1≤λ<τ≤τ2, τ−λ≥εGr(λ, τ) with

Gr(λ, τ)

=

∣∣Zr(λ)− λ
τ
Zr(τ)

∣∣{
λ∫
0

(
Zr(t)− t

λ
Zr(λ)

)2
dt+

τ∫
λ

(
Zr(t)− t−λ

τ−λZr(τ)− τ−t
τ−λZr(λ)

)2
dt

} 1
2

+
|Zr(τ)− 1−τ

1−λZr(λ)− τ−λ
1−λZr(1)|{

τ∫
λ

(
Zr(t)−τ−tτ−λZr(λ)−t−λ

τ−λZr(τ)
)2
dt+

1∫
τ

(
Zr(t)−1−t

1−τ Zr(τ)−t−τ
1−τ Zr(1)

)2
dt

} 1
2
.

S3 Auxiliary Results

Assumption 2. Xn = G(ξn) for a measurable function G and a stationary,

Gaussian process (ξn)n∈N with covariance function

γ(k) := Cov(ξ1, ξ1+k) = k−DLγ(k)

such that the following conditions hold:

1. D ∈ (0, 1] and Lγ is a slowly varying function with

max
k̃∈{k+1,...,k+2l′−1}

∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ K

l′

k
min {Lγ(k), 1}
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for a constant K <∞ and all l′ ∈ {lk, . . . , k}.

2. (ξn)n∈N has a spectral density f with f(x) = |x|D−1Lf (x) for a slowly

varying function Lf bounded away from 0 on [0, π] such that

limx→0 Lf (x) ∈ (0,∞] exists.

Lemma 2. Under Assumption 2, there is a constant KD < ∞, such that

for all x1, . . . , xl ∈ R with Var(
∑l

i=1 xiξi) = 1

l∑
i=1

x2
i ≤ KD.

Proof. Recall that we can rewrite the covariances as

γ(k) =

∫ π

−π
eikλ f(λ)dλ

and that the spectral density f can be written as f(λ) = Lf (|λ|)|λ|D−1.

By our assumptions Lf (x) ≥ Cmin for a constant Cmin > 0, so that we can

conclude that

1 =Var
( l∑
i=1

xiξi

)
=

∑
1≤j,k≤l

xjxkγ(j − k)

=
∑

1≤j,k≤l
xjxk

∫ π
−π ei(j−k)λ f(λ)dλ =

∑
1≤j,k≤l

xjxk
∫ π
−π ei(j−k)λ Lf (|λ|)|λ|D−1dλ

=2
∫ π

0

∑
1≤j,k≤l

xjxk ei(j−k)λ Lf (λ)λD−1dλ = 2
∫ π

0

∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2Lf (λ)λD−1dλ

≥2Cminπ
D−1

∫ π

0

∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2dλ.

We rewrite the integrand as∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2 =

∑
1≤j,k≤l

xjxk e−ijλ eikλ =
l∑

j=1

x2
j +

∑
j 6=k

xjxk e−i(j−k)λ
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=
l∑

j=1

x2
j +

∑
j<k

xjxk
(
e−i(j−k)λ + e−i(k−j)λ

)
=

l∑
j=1

x2
j + 2

∑
j<k

xjxk cos((k − j)λ)

=
∑

1≤j,k≤l

xjxk cos((k − j)λ).

As a result, we have∫ π

0

∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2dλ =

∫ π

0

∑
1≤j,k≤l

xjxk cos((k − j)λ)dλ

=
∑

1≤j,k≤l

xjxk

∫ π

0

cos((k − j)λ)dλ

=
l∑

j=1

x2
j

∫ π

0

cos(0)dλ+
∑
j 6=k

xjxk

∫ π

0

cos((k − j)λ)dλ

= π
l∑

j=1

x2
j .

All in all, this yields

1 = Var

(
l∑

i=1

xiξi

)
≥ 2Cminπ

D−1

∫ π

0

∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2dλ = 2Cminπ

D

l∑
j=1

x2
j .

Therefore, the statement of the lemma holds with KD = 1/(2Cminπ
D).

Lemma 3. Under Assumption 2, there are constants K ′D <∞ and l0 ∈ N

such that ∣∣∣∣ l∑
i=1

xi

∣∣∣∣ ≤ K ′Dl
D/2

for all l ≥ l0 and x1, . . . , xl ∈ R with Var
(∑l

i=1 xiξi

)
= 1.
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Proof. The statement of the proof is equivalent to the existence of a constant

C > 0, such that for all x1, . . . , xl ∈ R with
∑l

i=1 xi = 1, we have

Var

(
l∑

i=1

xiξi

)
≥ Cl−D.

Let x?1, . . . , x
?
l ∈ R with

∑l
i=1 x

?
i = 1 be the values that minimize

Var
(∑l

i=1 x
?
i ξi

)
. Then µ̂ξ(ξ1, . . . , ξn) :=

∑l
i=1 x

?
i ξi is the best linear unbi-

ased estimator for µ := E(ξ1). For a process (ζn)n∈N with spectral density

fζ(x) = 1
2π
|1− eix|D−1, we have

Var (µ̂ζ(ζ1, . . . , ζn)) ≥ C1l
−D

for a constant C1 > 0 by a Corollary of Theorem 5.1 in Adenstedt (1974).

We rewrite the spectral density fζ of (ζn)n∈N with the help of the spectral

density f of (ξn)n∈N as

fζ(x) = f(x)
|1− eix|D−1

2π|x|D−1Lf (x)
.

Note that the function g with g(x) =
|1−eix|D−1

2π|x|D−1Lf (x)
is bounded, as we assumed

that Lf is bounded away from 0. Hence, we have

Var (µ̂ξ(ξ1, . . . , ξn)) ≥ 1

g(0)
Var (µ̂ζ(ζ1, . . . , ζn)) ≥ Cl−D

for all l ≥ l0 by Lemma 4.4 in Adenstedt (1974).

The next Lemma deals with the ρ-mixing coefficient, which is defined

in the following way: Let A,B be two σ-fields. Then

ρ(A,B) := sup corr(X, Y ),

where the supremum is taken over all A-measurable random variables X

and B-measurable random variables Y . For details we recommend the book

of Bradley (2007).
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Lemma 4. Under Assumption 2, there are constants C1, C2 <∞ such that

ρ(k, l) := ρ
(
σ(ξi, 1 ≤ i ≤ l), σ(ξj, k + l + 1 ≤ j ≤ k + 2l)

)
≤ C1 (k/l)−D Lγ(k) + C2l

2k−D−1 max{Lγ(k), 1}

for all k ∈ N and all l ∈ {lk, . . . , k}.

Proof. Kolmogorov and Rozanov (1960) proved that there exist real num-

bers a1, . . . , al, b1, . . . , bl such that

ρ
(
σ(ξi, 1 ≤ i ≤ l), σ(ξj, k+l+1 ≤ j ≤ k+2l)

)
= Cov

( l∑
i=1

aiξi,

l∑
j=1

bjξk+l+j

)
and Var

(∑l
i=1 aiξi

)
= Var

(∑l
j=1 bjξk+l+j

)
= 1. The triangular inequality

yields∣∣∣∣Cov
( l∑
i=1

aiξi,
l∑

j=1

bjξk+l+j

)∣∣∣∣
≤
∣∣∣ l∑
i=1

ai

l∑
j=1

bj

∣∣∣ |γ(k)|+
l∑

i=1

l∑
j=1

|ai||bj| |γ(k)− γ(k + l + j − i)| .

We will treat the two summands on the right hand side separately. For the

first term, it follows by Lemma 3 that∣∣∣ l∑
i=1

ai

l∑
j=1

bj

∣∣∣ |γ(k)| =
∣∣∣ l∑
i=1

ai

∣∣∣∣∣∣ l∑
j=1

bj

∣∣∣ |γ(k)| ≤ K ′2d l
DLγ(k)k−D.

Before we deal with the second summand, we observe that by Hölder’s

inequality and Lemma 2

l∑
i=1

|ai| ≤

√√√√l

l∑
i=1

a2
i ≤

√
KD

√
l and

l∑
j=1

|bj| ≤

√√√√l

l∑
j=1

b2
j ≤

√
KD

√
l.

Due to Assumption 2

sup
|k−k̃|≤2l−1

∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ K

l

k
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for some constant K. Consequently, for all k̃ ∈ {k + 1, . . . , k + 2l − 1}∣∣∣γ(k)− γ(k̃)
∣∣∣ ≤ Lγ(k)

∣∣∣k−D − k̃−D∣∣∣+ |Lγ(k)− Lγ(k̃)|k̃−D

≤ Lγ(k)
(
k−D − (k + 2l − 1)−D

)
+ |Lγ(k)− Lγ(k̃)|k−D

≤ Cdk
−D−1lLγ(k) +K

l

k
k−D max{Lγ(k), 1}

≤ C3k
−D−1lmax{Lγ(k), 1}

for some constants Cd, C3. Combining this with the bounds for
∑l

i=1 |ai|,∑l
j=1 |bj|, we finally arrive at

l∑
i=1

|ai|
l∑

j=1

|bj| |γ(k)− γ(k + l + j − i)| ≤ KDl max
k̃∈{k+1,...,k+2l−1}

∣∣∣γ(k)− γ(k̃)
∣∣∣

= KDC3k
−D−1l2 max{Lγ(k), 1}.

S4 Proof of the Main Result

Before we give the proof of our main theorem, let us recall our assumptions

on the test statistic and the block length:

Assumption 1. (Xn)n∈N is a stochastic process and (Tn)n∈N is a sequence

of statistics such that Tn ⇒ T in distribution as n → ∞ for a random

variable T with distribution function FT .

Assumption 3. Let (ln)n∈N be a non-decreasing sequence of integers such

that l = ln →∞ as n→∞ and ln = O
(
n(1+D)/2−ε) for some ε > 0.

Proof of Theorem 1. Let t be a point of continuity of FT . In order to sim-

plify notation, we write N = n − l + 1 and Tl,i = Tl(Xi, . . . , Xi+l−1). The
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triangular inequality yields

|F̂l,n(t)− FTn(t)| ≤ |F̂l,n(t)− FT (t)|+ |FT (t)− FTn(t)|.

The second term on the right-hand side of the above inequality converges

to zero because of Assumption 1. As L2-convergence implies stochastic

convergence, it suffices to show that E(|F̂l,n(t)− FT (t)|2) −→ 0 in order to

prove that the first term converges to zero, as well. We have

E
(
|F̂l,n(t)− FT (t)|2

)
= E

(
F̂ 2
l,n(t)

)
−
(

E F̂l,n(t)
)2

+ (FT (t))2 − 2FT (t) E F̂l,n(t) +
(

E F̂l,n(t)
)2

= Var(F̂l,n(t)) +
∣∣∣E F̂l,n(t)− FT (t)

∣∣∣2 .
Furthermore, stationarity of the process (Xn)n∈N and Assumption 1 imply

E F̂l,n(t) =
1

N

N∑
i=1

E
(

1{Tl,i≤t}
)

= P (Tl,1 ≤ t) = FTl(t)
l→∞−−−→ FT (t).

It remains to show that Var(F̂l,n(t)) −→ 0. Again, it follows by stationarity

of (Xn)n∈N that

Var
(
F̂l,n(t)

)
=

1

N
Var

(
1{Tl,1≤t}

)
+

2

N2

N∑
i=2

(N − i+ 1)Cov
(

1{Tl,1≤t}, 1{Tl,i≤t}
)

≤ 2

N

N∑
i=1

∣∣∣Cov
(

1{Tl,1≤t}, 1{Tl,i≤t}
)∣∣∣ .

Recall that by Assumption 3, we have l ≤ Cln
(1+D)/2−ε for some constants

Cl and ε > 0. For n large enough such that l < 1
2
bn1−ε/2c, we split the sum

of covariances into two parts:

1

N

N∑
i=1

∣∣∣Cov
(

1{Tl,1≤t}, 1{Tl,i≤t}
)∣∣∣
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=
1

N

bn1−ε/2c∑
i=1

∣∣∣Cov
(

1{Tl,1≤t}, 1{Tl,i≤t}
)∣∣∣

+
1

N

N∑
i=bn1−ε/2c+1

∣∣∣Cov
(

1{Tl,1≤t}, 1{Tl,i≤t}
)∣∣∣

≤ bn
1−ε/2c
N

+
1

N

N∑
k=bn1−ε/2c+1

ρ(σ(Xi, 1 ≤ i ≤ l), σ(Xj, k ≤ j ≤ k + l − 1))

≤ bn
1−ε/2c
N

+
1

N

N−l−1∑
k=bn1−ε/2c−l

ρ(k, l),

where

ρ(k, l) := ρ
(
σ(Xi, 1 ≤ i ≤ l), σ(Xj, k + l + 1 ≤ j ≤ k + 2l)

)
.

Obviously, the first summand converges to zero by Assumption 3. For the

second summand note that as a consequence of Potter’s Theorem (Theo-

rem 1.5.6 in the book of Bingham, Goldie and Teugels (1987)), there is a

constant CL such that Lγ(k) ≤ CLk
Dε/2 for all k ∈ N. This together with

Lemma 4 yields

1

N

N−l−1∑
k=bn1−ε/2c−l

ρ(k, l)

≤ CLC1
lD

N

N−l−1∑
k=bn1−ε/2c/2

k−DkDε/2 + CLC2
l2

N

N−l−1∑
k=bn1−ε/2c/2

k−D−1kDε/2

≤ CLC1C
D
l 2D(1−ε/2)nD(((1+D)/2−ε)−(1−ε/2)+ε/2(1−ε/2))

+ CLC2C
2
l 21+D(1−ε/2)n((1+D−2ε)−(D+1)(1−ε/2)+(1−ε/2)Dε/2)

≤ C
(
n−D((1−D)/2+ε2/4) + n−ε(

3
2
−D+Dε/4)

)
n→∞−−−→ 0

for some constant C < ∞. Thus, we have proved that Var(F̂l,n(t)) → 0 as

n→∞ and that the first conjecture of Theorem 1 holds.
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The second assertion of Theorem 1 follows from FTn(t) − F̂l,n(t) →

0 in probability by the usual Glivenko-Cantelli argument for the uniform

convergence of empirical distribution functions; see for example section 20

in the book of Billingsley (1995).
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