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Proof of Lemma 2.2 We prove the case where p = 1 to illustrate. Multi-

variate analogy follows through exactly the same arguments with notations

replaced by their multivariate counterparts. First note that

Ei[Kh̃i
(Xix)] =

∫
K(t)f(x+ h̃it)dt ≡ f(x) + bi(x),

uniformly in i = 1, 2, · · · , where bi(x) =
1
2
f (2)(x)h̃2

i +O(h3
i ). Write vi(x) =

Kh̃i
(Xix) − E[Kh̃i

(Xix)] and we have E{vi(x)}2 = h̃−1
i f(x)R2(K) + O(h̃i)

again uniformly in i = 1, 2, · · · . Therefore,

E{|f̃n(x|h̃n)− f(x)|2} =
1

n2

( n∑
i=1

bi(x)
)2

+
1

n2

n∑
i=1

E{v2i (x)}

=
25c4

36
{f (2)(x)}2n−4α +

5

6c
f(x)R2(K)nα−1 + o(n−4α + nα−1)
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where the last equality followed from the following facts

n∑
i=1

bi(x) =
c2

2
f (2)(x)

n∑
i=1

i−2α(1 + o(1))

=
c2

2
f (2)(x)n1−2α

∫ 1

0

t−2αdt(1 + o(1)) =
c2f (2)(x)

2(1− 2α)
n1−2α(1 + o(1)),

n∑
i=1

E{v2i (x)} ∝ c−1

n∑
i=1

iα = c−1n1+α

∫ 1

0

tαdt(1 + o(1)) =
1

c(1 + α)
n1+α(1 + o(1)).

Therefore, to minimize the asymptotic MSE, we must have

α = 1/5, c = (0.3)1/5[f(x)R2(K)/{f (2)(x)}2]1/5.

The proof is complete. �

Proof of Lemma 2.3 Write cb = 1
2
c2f (2)(x) and cv = c−pR2(K)f(x).

Therefore,

N∑
n=1

E{|f̃n(x)|h̃n)− f(x)|2} =
N∑

n=1

1

n2

{ n∑
i=1

bi

}2

+
N∑

n=1

n−2

n∑
i=1

E{vi}2

where

n∑
i=1

bi = cb

n∑
i=1

i−2α,
n∑

i=1

E{vi}2 = cv

n∑
i=1

ipα.
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We again only prove the case where p = 1. First note that

n∑
i=1

n2α−1

i2α
∈
[ ∫ 1+1/n

2/n

x−2αdx,

∫ 1

1/n

x−2αdx
]
=

1

1− 2α

[(
1 +

1

n

)1−2α

−
( 2
n

)1−2α

, 1−
( 1
n

)1−2α]
,

N∑
n=1

1

n1+2α

(
1 +

1

n

)1−2α

∈
[ ∫ N+1

2

x−2(1 + x)1−2αdx,

∫ N

1

x−2(1 + x)1−2αdx
]
,

N∑
n=1

1

n1+2α

( 2
n

)1−2α

∈ 22−2α × [3/4, 1],
N∑

n=1

1

n1+2α

( 1
n

)1−2α

∈ [1/2, 1],

N∑
n=1

1

n1+2α
∈
[ ∫ N+1

2

x−1−2αdx,

∫ N

1

x−1−2αdx
]
∈ 1

2α

[
2−2α − (N + 1)−2α, 1−N−2α

]
.

As N → ∞,

N∑
n=1

n−1−2α
(
1− 1/n

)1−2α

∈
[ 1

2α

(1
2

)2α

− 1,
1

2α
− 1

2

]
,

whence

N∑
n=1

1

n2

n∑
i=1

bi =
( 1

2α
− 1

)
(1 + o(1)), (S0.1)

N∑
n=1

n−2
{ n∑

i=1

bi

}2

=
c2b

(1− 2α)2(1− 4α)
N1−4α(1 + o(1)). (S0.2)

Similarly,

n∑
i=1

iα/n1+α ∈
[ ∫ 1

1/n

xαdx,

∫ (n+1)/n

2/n

xαdx
]

=
1

1 + α

[
1−

( 1
n

)1+α

,
(
1 +

1

n

)1+α

−
( 2
n

)1+α]
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and

N∑
n=1

nα−1 ∝ α−1Nα
[
1−

( 2

N

)α]
;

N∑
n=1

nα−1
( 1
n

)1+α

∈ (1/2, 1),

N∑
n=1

nα−1
(
1 +

1

n

)1+α

=
N∑

n=1

n−2(n+ 1)1+α ∈
[ N∑

n=1

nα−1,

N∑
n=1

(n+ 1)α−1
]
,

N∑
n=1

nα−1/Nα ∈
[ ∫ 1+1/N

1/N

xα−1dx,

∫ 1

0

xα−1dx
]
→ α−1 (N → ∞).

Therefore,

N∑
n=1

n−2

n∑
i=1

E{vi}2 =
cv

α(α + 1)
Nα(1 + o(1)). (S0.3)

Combining (S0.1)-(S0.3), we see that (S0.1) will be negligible compared to

the other two, with n0/N → 0, whence the α which maximizes the sum of

these three terms, also maximizes the sum of (S0.2) and (S0.3). Therefore,

in general, the leading term of MSE(N,α, c) is given by

c2b
(1− 2α)2(1− 4α)

N−4α +
cv

pα(pα+ 1)
Npα−1.

Although the coefficients also vary with α, this does not change the fact that

provided that N is large enough, the α which minimizes the above quantity

is 1/(p + 4). As for the optimal value for c, note that the c minimizes the

above quantity for any given value of α is given by

(R2(K)f(x)(1− 2α)2(1− 4α)p

pα(pα+ 1)[tr{Hf (x)}]2
)1/(p+4)

.

The proof is thus complete by setting α = 1/(p+ 4). �
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Proof of Lemma 2.4 Define

bn = n2α−1

n∑
i=1

i−2α(1− θi)
2, vn = n−1−pα

n∑
i=1

ipα(1− θi)
−1.

The online estimator with bandwidth h̃i = c(1− θi)i
−α then has its AMSE

given by

c4

4
{f (2)((x)))}2n−4αb2n + c−pf(x)R2(K)npα−1vn,

which, with c chosen optimally, turns out to be

p+ 4

4
p−p/(4+p)[f(x)R2(K)]4/(4+p){f (2)((x)))}2p/(p+4)v4/(4+p)

n b2p/(p+4)
n .

Therefore, its relative efficiency against the off-line estimator is given by

lim
n

v4/(4+p)
n b2p/(p+4)

n .

This together with the facts that

n∑
i=1

i−2α(1− θi(a))
2 =

n∑
i=1

i−2α(1 + o(1)),
n∑

i=1

ipα(1− θi(a))
−1 =

n∑
i=1

ipα(1 + o(1)),

means that the relative efficiency is identical to that suggested by Lemma

2.2. �

Proof of Lemma 2.5 First note that by the definition of wN,n, we easily

see that

f̃N(x|h̃N , βN) =
N∑

n=1

wN,nKh̃n
(Xn − x);
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the AMSE of f̃N(x|h̃NβN) is easily seen to be as required. The rest of the

proof then follows from the following two corollaries: Corollary S0.1 and

Corollary S0.2, and the fact that if nβn → 0, then for any a > 0,

∑
βn ≤ a

∑
n−1 ∝ a logN,

so that na exp(−
N∑

n=1

βn) → ∞, for any a > 0. �

Corollary S0.1. Depending on the speed at which βn converges to 0, as

n → ∞,

(A) nβn → b for some b > 0: SN ≈ b
(b−2α)

N−2α;

(B) nβn → ∞ : SN ∝ N−2α;

(C) nβn → 0 : SN ∝ exp
[
−

( N∑
n=1

βn

)
(1 + o(1))

]
.

Proof of Corollary S0.1 What follows from (2.3) and the definition of

Sn is that

SN+1 = (1− βN+1)SN + (N + 1)−2αβN+1. (S0.4)

Divide either side by a factor of (N + 1)−2α:

(N + 1)2αSN+1 = (1− βN+1)N
2αSN

(N + 1)2α

N2α
+ βN+1. (S0.5)

Take the limits of either side and suppose n2αSn → s, where s could be 0,

finite, or ∞:

s ≈ s(1− βN+1)(1 +N−1)2α + βN+1,
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from which it can be inferred that s(βN+1−2αN−1) ≈ βN+1. Three possible

scenarios depending on the speed at which βn → 0 :

(A) nβn → ∞ : in this case s = 1, i.e. Sn ≈ n−2α;

(B) nβn → b for some b > 0 in this case s = b/(b−2α), i.e. Sn ≈ b
(b−2α)

n−2α;

(C) nβn → 0 : in this case SN ∝ exp
[
−

( N∑
n=1

βn

)
(1 + o(1))

]
.

The proof of case (C) is as follows. First note that Sn is decreasing, i.e.

Sn > Sn+1, which together with (S0.4) means that Sn > n−2α. In fact,

Snn
2α ↑ ∞, for if it is bounded, then it must have a limit, say s ≥ 1 which

together with (S0.5):

(N + 1)2αSN+1 = N2αSN(1− βN+1 +
2α

N + 1
) + βN+1.

where since βn = o(n−1), we approximately have

(N + 1)2αSN+1 > N2αSN(1 +
α

N + 1
) > N2αSN +

α

N + 1
,

which could only imply that Snn
2α ↑ ∞. Now rewrite (S0.4) as

SN+1 − SN

SN

= −βN+1 + βN+1
1

(N + 1)2αSN

= −βN+1(1 + o(1)). (S0.6)

Expressed in the form of differential equations

d(logSN) = −βN+1(1 + o(1)) ⇒ SN = C exp
[
−

( N∑
n=1

βn

)
(1 + o(1))

]
;

for some C > 0; the proof of case (C) is thus complete. �
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Corollary S0.2. Depending on the rate of βn converging to 0,

(A) nβn → b: in this case what holds in general is that (βn+1 − βn)/βn =

n−1, so that

S̃N =
b2

(2b+ pα− 1)
Npα−1(1 + o(1));

(B) nβn → ∞, (βN − βN+1)/βN+1 = o(βN): S̃n ∝ npαβn;

(C) nβn → ∞, (βN − βN+1)/(βN+1βN) = b for some b > 0: S̃n ∝ npαβn;

(D) nβn → 0: S̃N ∝ exp
[(

− 2
N∑

n=1

βn

)
(1 + o(1)

]
.

Proof of Corollary S0.2 What follows from (2.3) and the definition

of S̃n is that

S̃N+1 = (1− βN+1)
2S̃N + (N + 1)αβ2

N+1.

Divide either side by a factor of (N +1)αβN+1 and suppose n−αS̃n/βn → s,

where s again could be 0, finite, or ∞:

s ≈ (1− βN+1)
2s

NαβN

(N + 1)αβN+1

+ βN+1

⇒ s(2βN+1 + αN−1 − βN − βN+1

βN+1

) ≈ βN+1;

Proof of cases (A), (B) and (C) thus follows.

For case (D), first note that S̃n ≤ nα and since βn = o(n−1), we have
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n1−αS̃n ↑ ∞, which could be inferred from the following

S̃N+1

(N + 1)α−1
=

S̃N

Nα−1
(1− βN+1)

2 Nα−1

(N + 1)α−1
+ (N + 1)β2

N+1

=
S̃N

Nα−1
(1 +

1− α

2N
) + o(N−1).

Therefore, similar to (S0.6) we have

S̃N+1 − S̃N

S̃N

= −2βN+1 + β2
N+1 +

Nβ2
N+1

N1−αS̃N

= −2βN+1(1 + o(1));

the proof of case (D) is thus complete. �

Proof of Lemma 2.6 The derivation of optimal βn is as follows. First

note that the asymptotically equivalent problem is as follows:

min
w(.),c

c4

4

{∫ 1

0

w(x)x−2/(p+4)dx
}2

+ c−1

∫ 1

0

w(x)2x1/(p+4)dx (S0.7)

subject to c > 0, w(.) ≥ 0 and
∫ 1

0
w(x)dx = 1. Yet we also need to ensure

that w(.) could be realized via the sequential updating procedure associated

with the ONLINE estimator with weighting series {βi, i ≥ 1}, i.e.

βi

n∏
k=i+1

(1− βk) =
1

n
w(i/n), i = 1, 2, · · · , n

A sufficient and necessary condition is that w(.) meets this requirement: for

any a, b, x ∈ R, w(ax)/w(bx) is a function of a and b only. Alternatively,

we have w(ax) = g(a)g(x) for all a, x ∈ R and some function g(.). Since

this means w(x) = [g(x1/n)]n for any x > 0 and positive integer n, we know
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immediately that g(1) = 1 and thus w(ax) = w(a)w(x) and w(1) = 1.

Furthermore

∂w(ax)

∂a
= xw′(ax) = w(x)w′(a);

with a = 1, this translates into w(x) = aw′(x)x for some constant a, whence

∂
(
logw(x)

)
= ax−1 ⇒ w(x) = cxa

for some c. In this case, the function to minimize in (S0.7) turns out to be

min
a,c

[c4
4

(∫ 1

0

xa−2/(p+4)dx
)2

+ c−1

∫ 1

0

x2a+1/(p+4)dx
]
(a+ 1)2. (S0.8)

For any given a > 0, the optimal c = {p(a+(p+2)/(p+4))/2}1/(p+4); plug

this into (S0.8) and it equates the following

min
a

(a+ 1)p+4

{a+ (p+ 2)/(p+ 4)}p+2
,

which is again minimized when a = 0. �

Proof of Lemma 3.3 The following results in matrix theory will be used:

suppose an → 0, A and B are two fixed matrices of the same dimension

and A−1 exists, then

(A+ anB)−1 = A−1 − anA
−1BA−1 +O(a2n).
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First, it is easy to establish that

S̃n(x) = f(x)Ip+1 +
cn−α

1− α

 0 ∇f(x)

∇⊤f(x) 0

+Op(n
−2α + n(α−1)/2)

[S̃n(x)]
−1 = f−1(x)Ip+1 −

cn−α

(1− α)f 2(x)

 0 ∇f(x)

∇⊤f(x) 0

+Op(n
−2α + n(α−1)/2).

Secondly, based on the local Taylor expansion of m(.) around x

Yi = εi + X̃⊤
in(x)mi(x) +

1

2
X⊤

ixHm(x)Xix +O(h3
i ), mi(x) = [m(x), hi∇⊤m(x)]⊤,

we have

S̃n(x), Y ) =
1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)X̃

⊤
in(x)mi(x) +

1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)εi

+
1

2n

n∑
i=1

Kh̃i
(Xix)X̃in(x)X

⊤
ixHm(x)Xix +O(n−3α)

=
1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)X̃

⊤
in(x)mi(x) +

1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)εi

+
c2n−2αf(x)

2(1− 2α)

[tr{Hm(x)}

0

]
+ o(n−2α) +Op(n

−1/2).

Observing that

mi(x) =

1 0

0 hiIp


 m(x)

∇m(x)

 ,
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we further have

[S̃n(x)]
−1 1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)X̃

⊤
in(x)

1 0

0 0


 m(x)

∇m(x)

 =

m(x)

0

 ,

1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)X̃

⊤
in(x)

0 0

0 hiIp



= f(x)

0 0

0 Ip
∑n

i=1 hi/n

+

0 ∇⊤f(x)
∑n

i=1 h
2
i /n

0 0

+Op(n
−3α + n−1/2),

1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)X̃

⊤
in(x)

0 0

0 hiIp


 m(x)

∇m(x)



= f(x)

 0

cn−α

1−α
∇⊤m(x)

+

 c2n−2α

1−2α
∇⊤m(x)∇f(x)

0

+Op(n
−3α + n−1/2),

[S̃n(x)]
−1 1

n

n∑
i=1

Kh̃i
(Xix)X̃in(x)X̃

⊤
in(x)

0 0

0 hiIp


 m(x)

∇m(x)



=

 0

cn−α

1−α
∇⊤m(x)

+
c2α2n−2α

(1− 2α)(1− α)2

∇⊤m(x)∇f(x)/f(x)

0

+Op(n
−3α + n−1/2).
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Therefore,

m̃n(x) = [S̃n(x)]
−1S̃n(x, Y ) =

 m(x)

cn−α

1−α
∇⊤m(x)

+
c2α2n−2α

(1− 2α)(1− α)2

∇⊤m(x)∇f(x)/f(x)

0



+
c2n−2α

2(1− 2α)

[tr{Hm(x)}

0

]
+

1

nfx

n∑
i=1

Kh̃i
(Xix)X̃in(x)εi +Op(n

−3α + n−1/2).

Proof of Lemma 4.1. If Ui is near u0, we apply the following local Taylor

expansion concerning function gk(.):

gk(Ui) = gk(u0) + g
(1)
k (u0)Ui0 +

1

2
g
(2)
k (u0)U

2
i0 +O(|Ui0|3), Ui0 = Ui − u0.

The proof of (4.18) is done similarly to Fan and Zhang (1999).

1

n

n∑
i=1

Khn(Ui0)XiYi =
1

n

n∑
i=1

Khn(Ui0)Xiεi +
1

n

n∑
i=1

Khn(Ui0)XiX
⊤
i g(u0)

+
1

n

n∑
i=1

Khn(Ui0)Ui0XiX
⊤
i g

(1)(u0) +
1

2n

n∑
i=1

Khn(Ui0)U
2
i0XiX

⊤
i g

(2)(u0),

1

n

n∑
i=1

Khn(Ui0)XiXi = (ν.f)(u0) +
1

2
(ν.f)(2)(u)h2

n +Op(h
4
n + (nhn)

−1/2)

+Op(h
3
n + (nhn)

−1/2).

Then (4.18) follows by considering the ratio of these two terms. Similarly,
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from its definition in (4.17), we have

g̃n(u0) = g(u0) +
[ n∑

i=1

Kh̃i
(Ui0)XiX

⊤
i

]−1
n∑

i=1

Kh̃i
(Ui0)Ui0XiX

⊤
i g

(1)(u0)

+
[
2

n∑
i=1

Kh̃i
(Ui0)XiX

⊤
i

]−1
n∑

i=1

Kh̃i
(Ui0)U

2
i0XiX

⊤
i g

(2)(u0)(S0.9)

+
[ n∑

i=1

Kh̃i
(Ui0)XiX

⊤
i

]−1
n∑

i=1

Kh̃i
(Ui0)Xiεi +O(n−3/5).

For the ‘inverse matrix’,

1

n

n∑
i=1

Kh̃i
(Ui0)XiX

⊤
i = (ν.f)(u0) + (ν.f)(2)(u0)

1

2n

n∑
i=1

h̃2
i

+O(n−1

n∑
i=1

h̃3
i ) +Op

(
n−1(

n∑
i=1

h̃−1
i )1/2

)
.

The proof is thus complete when plugging this into (S0.9). �

Proof of Lemma 4.2 Again with hn = O(n−1/5), we have standard

results such as

Σn = (ν.f)(u0)⊗ I2 + hn(ν.f)
(1)(u0)⊗ Ĩ2 +O(h2

n)

Sn = Σngn(u0) +
1

2n

n∑
i=1

Kh̃i
(Ui0)U

2
i0Xn,i(u0)X

⊤
i g

(2)(u0)

+
1

n

n∑
i=1

Kh̃i
(Ui0)Xn,i(u0)εi +Op(n

−1/2),
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where I2 is the 2× 2 identity matrix, Ĩ2 =

 0 1

1 0

. Consequently,

ĝn(u0) = gn(u0) + Σ−1
n

1

n

n∑
i=1

Kh̃i
(Ui0)Xn,i(u0)εi

+Σ−1
n

1

2n

n∑
i=1

Kh̃i
(Ui0)Xn,i(u0)U

2
i0X

⊤
i g

(2)(u0) +Op(n
−1/2).

(4.22) thus follows from facts

Iq,2qΣ
−1
n = [(ν.f)(u0)]

−1 ⊗ [1, 0] +O(hn);(
[(ν.f)(u0)]

−1 ⊗ [1, 0]
)
Xn,i(u0) = [(ν.f)(u0)]

−1Xi.

The proof is complete. �

Proof of Lemma 4.3 We will repeatedly refer to he following properties

of Kronecker product: when the order of matrices permit the indicated

operations,

(A⊗B)(C ⊗D) = (AC)⊗ (BD); (A⊗B)−1 = A−1 ⊗B−1; (A⊗B)⊤ = A⊤ ⊗B⊤.

Write g̃n(u0) ≡ (nΣ̃n)
−1(nS̃n), i.e.

Σ̃n =
1

n

n∑
i=1

Kh̃i
(Ui0)X̃n,i(u0)X̃

⊤
n,i(u0); S̃n =

1

n

n∑
i=1

Kh̃i
(Ui0)X̃n,i(u0)Yi
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We start with the inverse matrix.

X̃n,i(u0)X̃
⊤
n,i(u0) = (XiX

⊤
i )⊗


 1

Ui0/h̃i

 [1, Ui0/h̃i]

 ,

E(Σ̃n) = (ν.f)(u0)⊗ I2 + h̃i(ν.f)
(1)(u0)⊗ Ĩ2 +O(h̃2

i ), (S0.10)

Var[(Σ̃n)ij] = O(h̃−1
i ), (S0.11)

where the O(.) terms are all uniform in i ≥ 1. Therefore,

Σ̃n = (ν.f)(u0)⊗ I2 + (ν.f)(1)(u0)⊗ Ĩ2

×(
1

n

n∑
i=1

h̃i)
5c

4
n−1/5 +O(

1

n

n∑
i=1

h̃2
i+)n−2/5 +O

(
n−1(

n∑
i=1

h̃−1
i )

)
n−2/5,

Σ̃−1
n = [(ν.f)(u0)]

−1 ⊗ I2 (S0.12)

−5c

4
n−1/5

(
[(ν.f)]−1(u0)[(ν.f)

(1)(u0)][(ν.f)]
−1(u0)

)
⊗ Ĩ2 +O(n−2/5).

Next, based on expansion like

Yi =

q∑
k=1

(
gk(u0) + g

(1)
k (u0)Ui0 +

1

2
g
(2)
k (u0)U

2
i0

)
xik +O(|Ui0|3) + εi

= X̃⊤
n,i(u0)g̃i(u0) +

1

2

q∑
k=0

g
(2)
k (u0)U

2
i0xik +O(|Ui0|3) + εi,

where recall that gi(u0) = [g1(u0), hig
(1)
1 (u0), · · · , gq(u0), hig

(1)
q (u0)]

⊤, we

have

S̃n =
1

n

n∑
i=1

[Kh̃i
(Ui0)X̃n,i(u0)X̃

⊤
n,i(u0)g̃i(u0)] +

1

n

n∑
i=1

Kh̃i
(Ui0)X̃n,i(u0)εi

+
1

2n

n∑
i=1

Kh̃i
(Ui0)U

2
i0X̃n,i(u0)X

⊤
i g

(2)(u0) +O(n−1(
n∑

i=1

h̃2
i )

1/2).
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Seeing that

g̃i(u0) =

Iq+1 ⊗

1 0

0 h̃i


 g̃(u0),

we have

X̃n,i(u0)X̃
⊤
n,i(u0)g̃i(u0) = (XiX

⊤
i )⊗


 1

Ui0/h̃i

 [1, Ui0/h̃i]

1 0

0 h̃i


 g̃(u0)

= (XiX
⊤
i )⊗

 1 Ui0

Ui0/h̃i U2
i0/h̃i

 g̃(u0) (S0.13)

= (XiX
⊤
i )⊗

 1 0

Ui0/h̃i 0

 g̃(u0) + (XiX
⊤
i )⊗

0 Ui0

0 U2
i0/h̃i

 g̃(u0),

with the first matrix having vectors of zeros as its even-numbered columns,

while the second having vectors of zeros as its odd-numbered columns. For

the first matrix, it follows from the definition of Σn that

(Σ̃n)
−1 1

n

n∑
i=1

Kh̃i
(Ui0)(XiX

⊤
i )⊗

 1 0

Ui0/h̃i 0

 g̃(u0) = g(u0)⊗

1
0

 .(S0.14)

The dealing of the second matrix is more complicated. First we claim

that its (non-zero) entries of the matrix are all of order op(n
−1/2): for any

i, j = 1, · · · , q,

1

n

n∑
i=1

Kh̃i
(Ui0)xikxijUi0 = Op(n

−3/5),
1

n

n∑
i=1

Kh̃i
(Ui0)xikxijU

2
i0/h̃i = Op(n

−3/5).
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As for their expectations,

1

n

n∑
i=1

E
(
Kh̃i

(Ui0)xikxijUi0

)
= (ν.f)

(1)
kj (u0)

1

n

n∑
i=1

h̃2
i (
5c2

3
n−2/5) +O(n−4/5),

1

n

n∑
i=1

E
(
Kh̃i

(Ui0)xikxijU
2
i0/h̃i

)
= (ν.f)kj(u0)

1

n

n∑
i=1

h̃i(
5c

4
n−1/5) +O(n−3/5).

Therefore,

1

n

n∑
i=1

(XiX
⊤
i )⊗

0 Ui0

0 U2
i0/h̃i

 =
5c

4
n−1/5(ν.f)(u0)⊗

0 0

0 1



+
5c2

3
n−2/5(ν.f)(1)(u0)⊗

0 1

0 0

+ op(n
−1/2),

Σ̃−1
n

1

n

n∑
i=1

(XiX
⊤
i )⊗

0 Ui0

0 U2
i0/h̃i

 =
5c

4
n−1/5Iq+1 ⊗

0 0

0 1

+ op(n
−1/2)

+
5c2

3
n−2/5

(
[(ν.f)(u0)]

−1(ν.f)(1)(u0)
)
⊗

0 1

0 0



−25c2

16
n−2/5

(
[(ν.f)(u0)]

−1[(ν.f)(1)(u0)]
)
⊗

0 1

0 0



=
5c

4
n−1/5Iq+1 ⊗

0 0

0 1

+ op(n
−1/2)] (S0.15)

+
5c2

48
n−2/5

(
[(ν.f)(u0)]

−1[(ν.f)(1)(u0)]
)
⊗

0 1

0 0

 .
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Since

Iq+1 ⊗

0 0

0 1

 g̃(u0) = g(1)(u0)⊗

0
1

 , (S0.16)

(
[(ν.f)(u0)]

−1(ν.f)(1)(u0)
)
⊗

0 1

0 0

 g̃(u0)

=
(
[(ν.f)(u0)]

−1(ν.f)(1)(u0)g
(1)(u0)

)
⊗

1
0

 ,(S0.17)

combining (S0.13), (S0.13), (S0.14), (S0.15), (S0.16 ) and(S0.17), we have

(Σ̃n)
−1 1

n

n∑
i=1

[Kh̃i
(Ui0)X̃n,i(u0)X̃

⊤
n,i(u0)gi(u0)] (S0.18)

= g(u0)⊗

1
0

+
5c

4
g(1)(u0)⊗

0
1

+ op(n
−1/2)

+
5c2

48
n−2/5

(
[(ν.f)(u0)]

−1[(ν.f)(1)(u0)]g
(1)(u0)

)
⊗

1
0

 .

For the second term in (S0.13), since it is easy to verify that its variance of

order o(n−8/5), thus we only need to consider its expectation.

E
(
Kh̃i

(Ui0)U
2
i0X̃n,i(u0)X

⊤
i g

(2)(u0)
)
= h̃2

i [(ν.g
(2).f)(u0)]⊗

1
0



+h̃3
i [(ν.f)

(1).g(2)](u0)⊗

 0

µ4(K)

+O(h̃4
i ).
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Therefore,

1

2n

n∑
i=1

Kh̃i
(Ui0)U

2
i0X̃n,i(u0)X

⊤
i g

(2)(u0)

=
5c2

6
n−2/5[(ν.g(2).f)(u0)]⊗

1
0

+
5c3

4
n−3/5[(ν.f)(1).g(2)](u0)⊗

 0

µ4(K)

+Op(n
−4/5),

and consequently

(Σ̃n)
−1 1

2n

n∑
i=1

Kh̃i
(Ui0)U

2
i0X̃n,i(u0)X

⊤
i g

(2)(u0) (S0.19)

=
5c2

6
n−2/5g(2)(u0)⊗

1
0

+
5c3

4
n−3/5

(
[(ν.f)−1(u0)][(ν.f)

(1).g(2)](u0)
)
⊗

 0

µ4(K)



−25c3

24
n−3/5

(
[(ν.f)]−1(u0)[(ν.f)

(1)(u0)]g
(2)(u0)

)
⊗

µ4(K)

0

+Op(n
−4/5);

(4.24) thus follows from (S0.13), (S0.18) and (S0.19). �


