VARIABLE SELECTION IN SPARSE REGRESSION

WITH QUADRATIC MEASUREMENTS

Jun Fan¹, Lingchen Kong¹, Liqun Wang² and Naihua Xiu¹

¹Beijing Jiaotong University and ²University of Manitoba

Supplementary Material

The supplementary file covers technical lemmas and proofs.

S1 Proofs of Theorem 1 and 2

Without loss of generality, in the following we let $\Gamma^* = \{1, \dots, s\}$ and $\beta^* = (\beta_1^{*T}, 0^T)^T$. Correspondingly, we partition Z_i and x_i as

$$Z_{i} = \begin{pmatrix} Z_{i}^{11} & Z_{i}^{12} \\ \\ Z_{i}^{21} & Z_{i}^{22} \end{pmatrix} \text{ and } x_{i} = (x_{i}^{1T}, x_{i}^{2T})^{T},$$

where Z_i^{11} is an $s \times s$ symmetric matrix and Z_i^{22} is a $(p-s) \times (p-s)$ symmetric matrix. For convenience, we also denote

$$\tilde{L}_n(\beta_1) := \sum_{i=1}^n (y_i - \beta_1^T Z_i^{11} \beta_1 - x_i^{1T} \beta_1)^2 + \lambda_n \|\beta_1\|_q^q$$
$$+ 3\sqrt{(\sigma^2 + 1)/c_i}$$

and $C_1 = 2\overline{c} + 3\sqrt{(\sigma^2 + 1)/c_1}$.

We first prove some lemmas.

Lemma S1.1. Let $\{w_n\}$ be a sequence of real numbers and assume that $\{b_n\}$ and $\{B_n\}$ are two sequences of positive numbers tending to infinity. If

$$B_n \ge \sum_{i=1}^n w_i^2$$
 and $\frac{b_n}{\sqrt{B_n}} \max_{1 \le i \le n} |w_i| \to 0$,

then, for any $\tau > 0$,

$$\limsup_{n \to \infty} b_n^{-2} \log \mathbb{P}\Big(|\sum_{i=1}^n w_i \varepsilon_i| > b_n \sqrt{B_n} \tau \Big) \le -\frac{\tau^2}{2\sigma^2},$$

or

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} w_i \varepsilon_i\right| > b_n \sqrt{B_n} \tau\right) \le \exp\left(-\frac{b_n^2 \tau^2}{2\sigma^2} + o(b_n^2)\right).$$

Proof. Based on the similar method proof to that of Lemma 3.2 in Fan, Yan and Xiu (2014), it is easy to show it and so is omitted. \Box

Lemma S1.2. Assume that Conditions 1-2 and 4 hold. Let $\{a_n\}$ be a sequence of positive numbers satisfying (3.8) and (3.9). Then for any $\tau > 0$,

$$\mathbb{P}\Big(\frac{1}{a_n\sqrt{n}}\sup_{u\in S}\|\sum_{i=1}^n (Z_i^{11}u + x_i^1)\varepsilon_i\| > \tau\Big) \le \exp\Big(-\frac{a_n^2\tau^2}{2c_2\sigma^2} + o(a_n^2)\Big).$$

Proof. Let $A = \{v \in \mathbb{R}^s : ||v|| \le 1\}$ and denote $r_n = 1/n$. Then by Lemma 14.27 in Bühlmann and Van De Geer (2011), we have

$$A \subseteq \bigcup_{j=1}^{m_n} B(v_j, r_n),$$

where $m_n = (1+2n)^s$ and $B(u_j, r_n) = \{v \in \mathbb{R}^s : ||v - v_j|| \le r_n, v_j \in A\}$ for $j = 1, \dots, m_n$. By the similar method to the proof the second result of Lemma 5.1 in Fan, Yan and Xiu (2014), we use Lemma S1.1 with $B_n = nc_2$ and $b_n = a_n$ to obtain that for any $\tau_1 > 0$ and $\epsilon_1 \in (0, \tau_1/2)$,

$$\mathbb{P}\left(\frac{1}{a_n\sqrt{n}}\|\sum_{i=1}^n (Z_i^{11}u + x_i^1)\varepsilon_i\| > \tau_1\right) \le m_n \exp\left(-\frac{a_n^2(\tau_1 - \epsilon_1)^2}{2c_2\sigma^2} + o(a_n^2)\right) \le 1.1)$$

Further, denote $r'_n = C_1 \sqrt{s}/n$. Again, by Lemma 14.27 of Bühlmann and van de Geer (2011), we have

$$S \subseteq \bigcup_{j=1}^{m_n} B(u_j, r'_n),$$

where $B(u_j, r'_n) = \{ u \in \mathbb{R}^s : ||u - u_j|| \le r'_n, u_j \in S \}$ for $j = 1, \dots, m_n$. Analog to (S1.1) we obtain that for any $\epsilon \in (0, \tau/2)$ and $\epsilon_1 \in (0, (\tau - \epsilon)/2)$,

$$\mathbb{P}\Big(\frac{1}{a_n\sqrt{n}}\sup_{u\in S}\|\sum_{i=1}^n (Z_i^{11}u + x_i^1)\varepsilon_i\| > \tau\Big) \le m_n^2 \exp\Big(-\frac{a_n^2(\tau - \epsilon - \epsilon_1)^2}{2c_2\sigma^2} + o(a_n^2)\Big)$$

From (3.8) we conclude that $a_n^{-2} \log m_n^2 = a_n^{-2} \left(s \log(1+2n) \right) \to 0$, which

together with the above inequality implies that

$$\limsup_{n \to \infty} a_n^{-2} \log \mathbb{P}\left(\frac{1}{a_n \sqrt{n}} \sup_{u \in S} \left\|\sum_{i=1}^n (Z_i^{11} u + x_i^1) \varepsilon_i\right\| > \tau\right) \le -\frac{(\tau - \epsilon - \epsilon_1)^2}{2c_2 \sigma^2}.$$

Since ϵ and ϵ_1 are arbitrary, we have for large enough n,

$$\mathbb{P}\Big(\frac{1}{a_n\sqrt{n}}\sup_{u\in S}\|\sum_{i=1}^n (Z_i^{11}u + x_i^1)\varepsilon_i\| > \tau\Big) \le \exp\Big(-\frac{a_n^2\tau^2}{2c_2\sigma^2} + o(a_n^2)\Big).$$

Lemma S1.3. Under the assumptions of Lemma S1.2, there exists $\hat{\beta}_1 = \arg\min_{\beta_1 \in \mathbb{R}^s} \tilde{L}_n(\beta_1)$ such that

$$\mathbb{P}\big(\|\hat{\beta}_1 - \beta_1^*\| \le r_n\big) \ge 1 - \exp\big(-\frac{(1 + c_1^2/4)a_n^2}{2c_2\sigma^2} + o(a_n^2)\big).$$
(S1.2)

Proof. To show the existence of minimizer $\hat{\beta}_1$, we consider the level set $\{\beta_1 \in \mathbb{R}^s : \tilde{L}_n(\beta_1) \leq \tilde{L}_n(\beta_1^*)\}$. It is apparent that

$$\inf_{\beta_1 \in \mathbb{R}^s} \tilde{L}_n(\beta_1) = \inf_{\beta_1 \in \{\beta_1 \in \mathbb{R}^s : \tilde{L}_n(\beta_1) \le \tilde{L}_n(\beta_1^*)\}} \tilde{L}_n(\beta_1).$$

Since $\tilde{L}_n(\cdot)$ is continuous and the level set is non-empty and closed, $\tilde{L}_n(\cdot)$ has at least one minimizer $\hat{\beta}_1$ in the level set.

Now we prove (S1.2). For notational convenience, we denote $\hat{Z} = (\hat{Z}_1, \dots, \hat{Z}_n)$, $\hat{\Sigma}_n = \hat{Z}\hat{Z}^T/n$ and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^T$, where $\hat{Z}_i = Z_i^{11}(\hat{\beta}_1 + \beta_1^*) + x_i^1$. Obviously, Condition 1 implies that $\hat{\Sigma}_n$ is invertible. Then by the definition of $\hat{\beta}_1$ we have $\tilde{L}_n(\hat{\beta}_1) \leq \tilde{L}_n(\beta_1)$ for any $\beta_1 \in \mathbb{R}^s$, which implies

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} + \lambda_{n} \sum_{j=1}^{s} |\beta_{1j}^{*}|^{q} \ge \sum_{i=1}^{n} \left(\varepsilon_{i} - (\hat{\beta}_{1} - \beta_{1}^{*})^{T} \hat{Z}_{i} \right)^{2} + \lambda_{n} \sum_{j=1}^{s} |e_{s,j}^{T} \hat{\beta}_{1}|^{q}$$
$$= \sum_{i=1}^{n} \varepsilon_{i}^{2} - 2(\hat{\beta}_{1} - \beta_{1}^{*})^{T} \hat{Z} \varepsilon + \lambda_{n} \sum_{j=1}^{s} |e_{s,j}^{T} \hat{\beta}_{1}|^{q}$$
$$+ n(\hat{\beta}_{1} - \beta_{1}^{*})^{T} \hat{\Sigma}_{n} (\hat{\beta}_{1} - \beta_{1}^{*})$$

and therefore

$$n(\hat{\beta}_1 - \beta_1^*)^T \hat{\Sigma}_n(\hat{\beta}_1 - \beta_1^*) \le 2(\hat{\beta}_1 - \beta_1^*)^T \hat{Z}\varepsilon + \lambda_n \sum_{j=1}^s (|e_{s,j}^T \beta_1^*|^q - |e_{s,j}^T \hat{\beta}_1|^q (\$1.3))$$

By the similar method to the proof of relation (8) in Huang, Horowitz and Ma (2008), we conclude from Condition 1, the second convergence of Condition 4 and the strong law of large number that for large enough n,

$$\|\hat{\beta}_1 - \beta_1^*\| \le C_1 \sqrt{s}$$
 and $\|\hat{\beta}_1 + \beta_1^*\| \le C_1 \sqrt{s}$, a.s.

and

$$\begin{aligned} \|\hat{\beta}_{1} - \beta_{1}^{*}\|^{2} &\leq \frac{2}{nc_{1}} \|\hat{\beta}_{1} - \beta_{1}^{*}\| \|\hat{Z}\varepsilon\| + \frac{\eta_{n}}{nc_{1}} \\ &\leq \frac{2C_{1}\sqrt{s}}{nc_{1}} \sup_{u \in S} \|\sum_{i=1}^{n} (Z_{i}^{11}u + x_{i}^{1})\varepsilon_{i}\| + \frac{\lambda_{n}s\overline{c}^{q}}{nc_{1}}, \quad a.s., (S1.4) \end{aligned}$$

where $\eta_n = \lambda_n \sum_{j=1}^s (|e_{s,j}^T \beta_1^*|^q - |e_{s,j}^T \hat{\beta}_1|^q)$. Therefore,

$$1 = \mathbb{P}\Big(\|\hat{\beta}_{1} - \beta_{1}^{*}\|^{2} \le \frac{2C_{1}\sqrt{s}}{nc_{1}} \sup_{u \in S} \|\sum_{i=1}^{n} (Z_{i}^{11}u + x_{i}^{1})\varepsilon_{i}\| + \frac{\lambda_{n}s\overline{c}^{q}}{nc_{1}}\Big)$$
$$\le \mathbb{P}\Big(\|\hat{\beta}_{1} - \beta_{1}^{*}\|^{2} \le \frac{2C_{1}\sqrt{s}a_{n}}{c_{1}\sqrt{n}} + \frac{\lambda_{n}s\overline{c}^{q}}{nc_{1}}\Big) + \mathbb{P}\Big(\frac{1}{a_{n}\sqrt{n}} \sup_{u \in S} \|\sum_{i=1}^{n} (Z_{i}^{11}u + x_{i}^{1})\varepsilon_{i}\| > 1\Big),$$

which together with Lemma S1.2 yields that

$$\mathbb{P}(\|\hat{\beta}_1 - \beta_1^*\| > r'_n) \le \exp\left(-\frac{a_n^2}{2c_2\sigma^2} + o(a_n^2)\right),$$
(S1.5)

where $r'_n = \left(\frac{2C_1 a_n \sqrt{s}}{c_1 \sqrt{n}} + \frac{\lambda_n s \overline{c}^q}{n c_1}\right)^{1/2}$.

Since $r'_n \to 0$ as $n \to \infty$, it follows that for large enough n,

$$\frac{1}{2}|e_{s,j}^T\beta_1^*| \le |e_{s,j}^T\hat{\beta}_1| \le \frac{3}{2}|e_{s,j}^T\beta_1^*|, \quad j = 1, \cdots, s$$

when $\|\hat{\beta}_1 - \beta_1^*\| \leq r'_n$. By the mean value theorem and Cauchy-Schwarz inequality, we have, for large enough n,

$$\eta_n \le 2\underline{c}^{q-1}\lambda_n\sqrt{s}\|\hat{\beta}_1 - \beta_1^*\|$$

when $\|\hat{\beta}_1 - \beta_1^*\| \leq r'_n$. Combining the above inequality, (S1.3), Cauchy-Schwarz inequality and Condition 1, we have, for large enough n,

$$\|\hat{\beta}_1 - \beta_1^*\| \leq \frac{2}{nc_1} \|\hat{Z}\varepsilon\| + \frac{2\underline{c}^{q-1}\lambda_n\sqrt{s}}{nc_1},$$

when $\|\hat{\beta}_1 - \beta_1^*\| \le r'_n$. Therefore it follows from the first inequality of (S1.4) that for large enough n,

$$1 = \mathbb{P}\Big(\|\hat{\beta}_{1} - \beta_{1}^{*}\|^{2} \leq \frac{2}{nc_{1}}\|(\hat{\beta}_{1} - \beta_{1}^{*})^{T}\|\|\hat{Z}\varepsilon\| + \frac{\eta_{n}}{nc_{1}}\Big)$$

$$\leq \mathbb{P}\Big(\|\hat{\beta}_{1} - \beta_{1}^{*}\| \leq \frac{2}{nc_{1}}\|\hat{Z}\varepsilon\| + \frac{2\underline{c}^{q-1}\lambda_{n}\sqrt{s}}{c_{1}n}\Big) + \mathbb{P}\Big(\|\hat{\beta}_{1} - \beta_{1}^{*}\| > r_{n}'\Big)$$

$$\leq \mathbb{P}\Big(\|\hat{\beta}_{1} - \beta_{1}^{*}\| \leq \frac{a_{n}}{\sqrt{n}} + \frac{2\underline{c}^{q-1}\lambda_{n}\sqrt{s}}{c_{1}n}\Big)$$

$$+ \mathbb{P}\Big(\frac{1}{a_{n}\sqrt{n}}\sup_{\|u\|\leq C_{1}\sqrt{s}}\|\sum_{i=1}^{n}(Z_{i}^{11}u + x_{i}^{1})\varepsilon_{i}\| > c_{1}/2\Big) + \mathbb{P}\Big(\|\hat{\beta}_{1} - \beta_{1}^{*}\| > r_{n}'\Big)$$

Then, by Lemma S1.2 and (S1.5) we have

$$\mathbb{P}(\|\hat{\beta}_1 - \beta_1^*\| \ge r_n) \le \exp\left(-\frac{a_n^2}{2c_2\sigma^2} + o(a_n^2)\right) + \exp\left(-\frac{c_1^2a_n^2}{8c_2\sigma^2} + o(a_n^2)\right),$$

which yields

$$\limsup_{n \to \infty} a_n^{-2} \log \mathbb{P}(\|\hat{\beta}_1 - \beta_1^*\| \ge r_n) \le -\frac{1}{2c_2\sigma^2} - \frac{c_1^2}{8c_2\sigma^2}.$$

Thus, we have

$$\mathbb{P}(\|\hat{\beta}_1 - \beta_1^*\| \ge r_n) \le \exp\left(-\frac{(1 + c_1^2/4)a_n^2}{2c_2\sigma^2} + o(a_n^2)\right),$$

which yields (S1.2).

Proof of Theorem 1 Denote $b_n = a_n + \frac{2\underline{c}^{q-1}\lambda_n\sqrt{s}}{\sqrt{c_1n}}$ and $\tilde{r}_n = \left(\frac{a_n}{\sqrt{n}} + \frac{2\underline{c}^{q-1}\lambda_n\sqrt{s}}{c_1n}\right)\sqrt{s}$.

We first show that

$$\lambda_n^{-1}\tilde{r}_n^{1-q}b_n\sqrt{ns} \to 0 \quad \text{and} \quad \lambda_n^{-1}\tilde{r}_n^{2-q}\sqrt{ns^2} \to 0, \quad \text{as} \quad n \to \infty.$$
(S1.6)

The first convergence of (S1.6) follows from the second convergence of Condition 4 and (3.10). Since $\lambda_n s^2/n \to 0$, the inequality of Condition 2 implies that

$$\frac{s^{3/2}}{\sqrt{n}} \le \frac{\lambda_n s^2}{n} \cdot \frac{\sqrt{n}}{\lambda_n} \le \frac{\lambda_n s^2}{n} \frac{1}{\sigma \underline{c}^{1-q} \sqrt{\log p}} \to 0,$$
(S1.7)

which yields

$$\lambda_n^{-1}\tilde{r}_n^{2-q}\sqrt{n}s^2 = \lambda_n^{-1}\tilde{r}_n^{1-q}b_n\sqrt{n}s\cdot\frac{s^{3/2}}{\sqrt{n}}\to 0.$$

For any $u = (u_1^T, u_2^T) \in \mathbb{R}^p$ and $u_1 \in \mathbb{R}^s$, we show that there exists a sufficiently large constant \tilde{C} such that

$$\mathbb{P}\Big(L_n(\hat{\beta}_1, 0) = \inf_{\|u\|_1 \le \tilde{C}} L_n(\beta_1^* + \tilde{r}_n u_1, \tilde{r}_n u_2)\Big) \ge 1 - \exp\big(-C_0 a_n^2 + o(a_n^2)\big),$$
(S1.8)

which implies that with probability $1 - \exp\left(-C_0 a_n^2 + o(a_n^2)\right)$ that $(\hat{\beta}_1^T, 0^T)^T$ is a local minimizer in the ball $\{\beta^* + \tilde{r}_n u : \|u\|_1 \leq \tilde{C}\}$, so that both (3.6) and (3.7) hold.

Denote
$$\zeta_{1i} = Z_i^{11}(2\beta_1^* + \tilde{r}_n u_1) + x_i^1$$
 and $\zeta_{2i} = 2Z_i^{21}(\beta_1^* + \tilde{r}_n u_1) + x_i^2 + \tilde{r}_n Z_i^{22} u_2$, and define event

$$E_1 := \big\{ \|\sum_{i=1}^n \zeta_{2i} \varepsilon_i\|_{\infty} \le 4((1+\overline{c}^2))^{1/2} b_n \sqrt{ns} \big\},\$$

where $b_n = a_n + \frac{2\underline{c}^{q-1}\lambda_n\sqrt{s}}{\sqrt{c_1n}}$. For any $u_2 \in \mathbb{R}^{p-s}$, we show that under event

 E_1 ,

$$L_n(\beta_1^* + \tilde{r}_n u_1, \tilde{r}_n u_2) \ge L_n(\beta_1^* + \tilde{r}_n u_1, 0).$$
(S1.9)

Clearly, $L_n(\beta_1^* + \tilde{r}_n u_1, \tilde{r}_n u_2) = L_n(\beta_1^* + \tilde{r}_n u_1, 0)$ when $||u_2||_1 = 0$. We proceed to show (S1.9) for $||u_2||_1 > 0$. It follows that

$$L_{n}(\beta_{1}^{*} + \tilde{r}_{n}u_{1}, \tilde{r}_{n}u_{2}) - L_{n}(\beta_{1}^{*} + \tilde{r}_{n}u_{1}, 0)$$

$$= -2\tilde{r}_{n}\sum_{i=1}^{n}u_{2}^{T}\zeta_{2i}\varepsilon_{i} + \tilde{r}_{n}^{2}\sum_{i=1}^{n}(u_{2}^{T}\zeta_{2i})^{2} + 2\tilde{r}_{n}^{2}\sum_{i=1}^{n}u_{1}^{T}\zeta_{1i}u_{2}^{T}\zeta_{2i} + \lambda_{n}\tilde{r}_{n}^{q}||u_{2}||_{q}^{q}$$

$$\geq -2\tilde{r}_{n}\sum_{i=1}^{n}u_{2}^{T}\zeta_{2i}\varepsilon_{i} + 2\tilde{r}_{n}^{2}\sum_{i=1}^{n}u_{1}^{T}\zeta_{1i}u_{2}^{T}\zeta_{2i} + \lambda_{n}\tilde{r}_{n}^{q}||u_{2}||_{q}^{q}.$$
(S1.10)

We now use the fact that $|u^T A v| \leq ||u_1||_1 ||Av||_{\infty} \leq |A|_{\infty} ||u||_1 ||v||_1$ for any $n \times d$ matrix A and vector $u \in \mathbb{R}^n$, $v \in \mathbb{R}^d$ to discuss the bound of $|\sum_{i=1}^n u_1^T \zeta_{1i} u_2^T \zeta_{2i}|$. Noting that

$$\left|\sum_{i=1}^{n} u_{1}^{T} \zeta_{1i} u_{2}^{T} \zeta_{2i}\right| \leq \|u_{1}\|_{1} \|u_{2}\|_{1} \left|\sum_{i=1}^{n} \zeta_{1i} \zeta_{2i}^{T}\right|_{\infty}$$

we then estimate the upper bound of $|\sum_{i=1}^{n} \zeta_{1i} \zeta_{2i}^{T}|_{\infty}$. Recalling the definition of $|\cdot|_{\infty}$, we calculate the $e_{s,j}^{T} \zeta_{1i} \zeta_{2i}^{T} e_{p-s,k}$ for each $j = 1, \dots, s$ and $k = 1, \dots, p-s$. It is easy to check that

$$\begin{aligned} e_{s,j}^{T}\zeta_{1i}\zeta_{2i}^{T}e_{p-s,k} \\ =& 2(2\beta_{1}^{*}+\tilde{r}_{n}u_{1})^{T}Z_{i}^{11}e_{s,j}e_{p-s,k}^{T}Z_{i}^{21}(\beta_{1}^{*}+\tilde{r}_{n}u_{1})+2x_{i}^{1T}e_{s,j}e_{p-s,k}^{T}Z_{i}^{21}(\beta_{1}^{*}+\tilde{r}_{n}u_{1}) \\ &+(2\beta_{1}^{*}+\tilde{r}_{n}u_{1})^{T}Z_{i}^{11}e_{s,j}e_{p-s,k}^{T}x_{i}^{2}+x_{i}^{1T}e_{s,j}e_{p-s,k}^{T}x_{i}^{2} \\ &+\tilde{r}_{n}(2\beta_{1}^{*}+\tilde{r}_{n}u_{1})^{T}Z_{i}^{11}e_{s,j}e_{p-s,k}^{T}Z_{i}^{22}u_{2}+\tilde{r}_{n}x_{i}^{1T}e_{s,j}e_{p-s,k}^{T}Z_{i}^{22}u_{2}. \end{aligned}$$

So,

$$\begin{split} &|\sum_{i=1}^{n} e_{s,j}^{T} \zeta_{1i} \zeta_{2i}^{T} e_{p-s,k}| \\ \leq &2 \| (2\beta_{1}^{*} + \tilde{r}_{n} u_{1}) \|_{1} \| (\beta_{1}^{*} + \tilde{r}_{n} u_{1}) \|_{1} |\sum_{i=1}^{n} Z_{i}^{11} e_{s,j} e_{p-s,k}^{T} Z_{i}^{21} |_{\infty} \\ &+ 2 \| \beta_{1}^{*} + \tilde{r}_{n} u_{1} \|_{1} |\sum_{i=1}^{n} e_{s,j}^{T} x_{i}^{1} e_{p-s,k}^{T} Z_{i}^{21} |_{\infty} \\ &+ \| (2\beta_{1}^{*} + \tilde{r}_{n} u_{1}) \|_{1} |\sum_{i=1}^{n} Z_{i}^{11} e_{s,j} e_{p-s,k}^{T} x_{i}^{2} |_{\infty} + |\sum_{i=1}^{n} x_{i}^{1T} e_{s,j} e_{p-s,k}^{T} X_{i}^{2} |_{\infty} \\ &+ \tilde{r}_{n} \| (2\beta_{1}^{*} + \tilde{r}_{n} u_{1}) \|_{1} \| \| u_{2} \|_{1} |\sum_{i=1}^{n} Z_{i}^{11} e_{s,j} e_{p-s,k}^{T} Z_{i}^{22} |_{\infty} \\ &+ \tilde{r}_{n} \| u_{2} \|_{1} |\sum_{i=1}^{n} x_{i}^{1T} e_{s,j} e_{p-s,k}^{T} Z_{i}^{22} |_{\infty} \\ \leq & \Big(2(2\bar{c}s + \tilde{r}_{n}\tilde{C}) (\bar{c}s + \tilde{r}_{n}\tilde{C}) + 2(\bar{c}s + \tilde{r}_{n}\tilde{C}) + (2\bar{c}s + \tilde{r}_{n}\tilde{C}) + 1 \\ &+ \tilde{r}_{n} (2\bar{c}s + \tilde{r}_{n}\tilde{C}) \tilde{C} + \tilde{r}_{n}\tilde{C} \Big) \sqrt{n}c_{0}, \end{split}$$

where the last inequality follows from Condition 3. Since $\tilde{r}_n \to 0$ as $n \to \infty$, we conclude that for large enough n,

$$\left|\sum_{i=1}^{n} e_{s,j}^{T} \zeta_{1i} \zeta_{2i}^{T} e_{p-s,k}\right| \le (12\overline{c}^{2}s^{2} + 12\overline{c}s + 1)\sqrt{n}c_{0} \le (12\overline{c}^{2} + 1)c_{0}\sqrt{n}s^{2},$$

and therefore

$$|\sum_{i=1}^{n} u_{1}^{T} \zeta_{1i} u_{2}^{T} \zeta_{2i}| \leq ||u_{1}||_{1} ||u_{2}||_{1} |\sum_{i=1}^{n} \zeta_{1i} \zeta_{2i}^{T}|_{\infty}$$

$$\leq (12\overline{c}^{2} + 1)c_{1}C\sqrt{n}s^{2} ||u_{2}||_{1}.$$
(S1.11)

Note that

$$\left|\sum_{i=1}^{n} u_2^T \zeta_{2i} \varepsilon_i\right| \le \|u_2\|_1 \|\sum_{i=1}^{n} \zeta_{2i} \varepsilon_i\|_{\infty}$$

and $||u_2||_q^q \ge \tilde{C}^{q-1} ||u_2||_1$. Under the event E_1 , it follows from (S1.6), (S1.10) and (S1.11) that

$$L_{n}(\beta_{1}^{*} + \tilde{r}_{n}u_{1}, \tilde{r}_{n}u_{2}) - L_{n}(\beta_{1}^{*} + \tilde{r}_{n}u_{1}, 0)$$

$$\geq -2\tilde{r}_{n} \|\sum_{i=1}^{n} \zeta_{2i}\varepsilon_{i}\|_{\infty} \|u_{2}\|_{1} - (12\bar{c}^{2} + 1)c_{1}C\tilde{r}_{n}^{2}\sqrt{n}s^{2}\|u_{2}\|_{1} + \tilde{C}^{q-1}\lambda_{n}\tilde{r}_{n}^{q}\|u_{2}\|_{1}$$

$$\geq \lambda_{n}\tilde{r}_{n}^{q}\|u_{2}\|_{1} \Big(-2(2(1+\bar{c}^{2}))^{1/2}\lambda_{n}^{-1}\tilde{r}_{n}^{1-q}b_{n}\sqrt{n}s$$

$$-(12\bar{c}^{2} + 1)c_{1}C\lambda_{n}^{-1}\tilde{r}_{n}^{2-q}\sqrt{n}s^{2} + \tilde{C}^{q-1}\Big)$$

>0,

when $||u_2||_1 > 0$. That is, (S1.9) holds.

On the other hand, under the event $\{\|\hat{\beta}_1 - \beta_1^*\|_1 \leq r_n\}$, we conclude from $\|\hat{\beta}_1 - \beta_1^*\|_1 \leq \sqrt{s}\|\hat{\beta}_1 - \beta_1^*\|$, that $\|\hat{\beta} - \beta^*\|_1 = \|\hat{\beta}_1 - \beta_1^*\|_1 \leq \tilde{r}_n\sqrt{s}$, which yields

$$\inf_{\|u\|_1 \le \tilde{C}} L_n(\beta_1^* + \tilde{r}_n u_1, \tilde{r}_n u_2) \le L_n(\hat{\beta}) = L_n(\hat{\beta}_1, 0) \le L_n(\beta_1^* + \tilde{r}_n u_1, 0).$$

Combining this and (S1.9), we have $L_n(\hat{\beta}) = \inf_{\|u\|_1 \leq \tilde{C}} L_n(\beta_1^* + \tilde{r}_n u_1, \tilde{r}_n u_2)$ under the event $E_1 \cap \{\{\|\hat{\beta}_1 - \beta_1^*\| \leq r_n\}$. That is,

$$E_1 \cap \left\{ \{ \|\hat{\beta}_1 - \beta_1^*\| \le r_n \} \subseteq \left\{ \hat{\beta} \in \arg \inf_{\|u\|_1 \le \tilde{C}} L_n(\beta_1^* + \tilde{r}_n u_1, \tilde{r}_n u_2) \right\}.$$
(S1.12)

To complete the proof of (S1.8), we need to verify that

$$\mathbb{P}\left(\|\sum_{i=1}^{n} \zeta_{2i}\varepsilon_i\|_{\infty} > 4((1+\overline{c}^2))^{1/2}b_n\sqrt{n}s\right) \le \exp\left(-\frac{b_n^2}{4\sigma^2} + o(b_n^2)\right).$$
(S1.13)

Denote the *j*th element of ζ_{2i} by ζ_{2ij} . Since $\|\beta_1^* + \tilde{r}_n u_1\|_1 \le \|\beta_1^*\|_1 + \tilde{r}_n \|u_1\|_1 \le \overline{cs} + \tilde{r}_n \tilde{C}$, we use Cauchy-Schwarz inequality to obtain

$$\begin{aligned} |\zeta_{2ij}| &\leq 2|e_{p-s,j}^T Z_i^{21}(\beta_1^* + \tilde{r}_n u_1)| + |x_{ij}| + \tilde{r}_n |e_{p-s,j}^T Z_i^{22} u_2| \\ &\leq 2||e_{p-s,j}^T Z_i^{21}||_{\infty} ||\beta_1^* + \tilde{r}_n u_1||_1 + \kappa_{1n} + \tilde{r}_n ||e_{p-s,j}^T Z_i^{22}||_{\infty} ||u_2||_1 \\ &\leq (2\bar{c} + 3\tilde{r}_n \tilde{C}) \kappa_{2n} s + \kappa_{1n}. \end{aligned}$$
(S1.14)

By similar calculation, we have

$$\sum_{i=1}^{n} \zeta_{2ij}^{2}$$

$$\leq 4 \sum_{i=1}^{n} \left(4 \left(e_{p-s,j}^{T} Z_{i}^{21} \beta_{1}^{*} \right)^{2} + 4 \tilde{r}_{n}^{2} \left(e_{p-s,j}^{T} Z_{i}^{21} u_{1} \right)^{2} + x_{ij}^{2} + \tilde{r}_{n}^{2} \left(e_{p-s,j}^{T} Z_{i}^{22} u_{2} \right)^{2} \right)$$

$$\leq 4 \sum_{i=1}^{n} \left(4 \| e_{p,j}^{T} Z_{i} \|_{\infty}^{2} \left(\| \beta_{1}^{*} \|_{1}^{2} + \tilde{r}_{n}^{2} \| u_{1} \|_{1}^{2} + \tilde{r}_{n}^{2} \| u_{2} \|_{1}^{2} \right) + x_{ij}^{2} \right)$$

$$\leq 4 \sum_{i=1}^{n} \left(4 \| Z_{i} \|_{\infty}^{2} \left(\| \beta_{1}^{*} \|_{1}^{2} + \tilde{r}_{n}^{2} \| u \|_{1}^{2} \right) + x_{ij}^{2} \right)$$

$$\leq 4 (4 \bar{c}^{2} + 4 \tilde{r}_{n}^{2} \tilde{C}^{2} + 1) n s^{2}.$$

Write $B_n = 4(4\overline{c}^2 + 4\tilde{r}_n^2\tilde{C}^2 + 1)ns^2$. Since the limits (3.5) and (3.9) imply respectively that

$$\frac{\lambda_n \sqrt{s}}{\sqrt{n}} \left(\frac{\kappa_{2n} s + \kappa_{1n}}{\sqrt{n} s} \right) \to 0 \text{ and } a_n \left(\frac{\kappa_{2n} s + \kappa_{1n}}{\sqrt{n} s} \right) \to 0,$$

it follows from (S1.14) and $\tilde{r}_n \rightarrow 0$ that

$$\frac{b_n \max_{1 \le i \le n} |\zeta_{2ij}|}{\sqrt{B_n}} \to 0, \quad \text{as } n \to \infty.$$

We use Lemma S1.1 to obtain that,

$$\mathbb{P}\Big(|\sum_{i=1}^{n}\zeta_{2ij}\varepsilon_i| > b_n\sqrt{B_n}\Big) \le \exp\Big(-\frac{b_n^2}{2\sigma^2} + o(b_n^2)\Big),$$

which combining the relation $\tilde{r}_n \to 0$ leads to

$$\mathbb{P}\left(\|\sum_{i=1}^{n}\zeta_{2i}\varepsilon_{i}\|_{\infty} > 4((1+\overline{c}^{2}))^{1/2}b_{n}\sqrt{n}s\right) \le \exp\left(-\frac{b_{n}^{2}}{2\sigma^{2}} + o(b_{n}^{2})\right).$$
 (S1.15)

Note that the first relation of Condition 4 implies that

$$b_n > \frac{2\underline{c}^{q-1}\lambda_n\sqrt{s}}{\sqrt{n}} \ge 2\sigma\sqrt{\log p}.$$

Therefore we conclude that

$$\mathbb{P}\left(\|\sum_{i=1}^{n}\zeta_{2i}\varepsilon_{i}\|_{\infty} > 4((1+\overline{c}^{2}))^{1/2}b_{n}\sqrt{n}s\right) \leq \sum_{j=s+1}^{p}\mathbb{P}\left(|\sum_{i=1}^{n}\zeta_{2ij}\varepsilon_{i}| > 4((1+\overline{c}^{2}))^{1/2}b_{n}\sqrt{n}s\right) \\ \leq \exp\left(-\frac{b_{n}^{2}}{4\sigma^{2}} + o(b_{n}^{2})\right).$$

which yields (S1.13). Further by Lemma S1.3, (S1.12) and (S1.13), we have

$$\mathbb{P}\left(\hat{\beta} \in \arg \inf_{\|u\|_1 \leq \tilde{C}} L_n(\beta_1^* + \tilde{r}_n u_1, \tilde{r}_n u_2)\right) \geq \mathbb{P}\left(E_1 \cap \{\|\hat{\beta}_1 - \beta_1^*\| \leq r_n\}\right)$$
$$\geq 1 - \exp\left(-C_0 a_n^2 + o(a_n^2)\right).$$

Proof of Theorem 2 It suffices to show that the sequence $a_n = \sqrt{s} \log n$ satisfies (3.8)-(3.10). First, it is clear that $a_n/\sqrt{s \log n} \to \infty$. Further, it follows from (S1.7) that

$$a_n \sqrt{n} = \frac{\sqrt{s} \log n}{\sqrt{n}} \le \frac{\left(\max(s, \log n)\right)^{3/2}}{\sqrt{n}} \to 0.$$

Moreover, the inequality in Condition 4 and (3.4) imply that

$$\frac{a_n \kappa_{1n} \sqrt{s}}{\sqrt{n}} = \frac{\lambda_n \kappa_{1n} s \log n}{n} \cdot \frac{\sqrt{n}}{\lambda_n} \le \frac{\lambda_n \kappa_{1n} s \log n}{n} \cdot \frac{1}{\sigma \underline{c}^{1-q} \sqrt{\log p}} \to 0$$

and

$$\frac{a_n \kappa_{2n} s^{3/2}}{\sqrt{n}} = \frac{\lambda_n \kappa_{2n} s^2 \log n}{n} \cdot \frac{\sqrt{n}}{\lambda_n} \le \frac{\lambda_n \kappa_{2n} s^2 \log n}{n} \cdot \frac{1}{\sigma \underline{c}^{1-q} \sqrt{\log p}} \to 0.$$

Therefore by the first convergence of Condition 4, we obtain

$$\frac{a_n^{2-q} n^{\frac{q}{2}} s^{\frac{4-q}{2}}}{\lambda_n} = \frac{\sqrt{n^q} s^{3-q} (\log n)^{2-q}}{\lambda_n} \to 0,$$

which completes the proof.

S2 Proofs of Theorem 3 and 4

We here also use the notation in Section S1 and provide two lemmas below, i.e., Lemmas S2.1 and S2.2, corresponding to Lemmas S1.2 and S1.3 there.

Lemma S2.1. For the model (4.1), assume that Conditions 1'-2' and 4' hold. Let $\{a_n\}$ be a sequence of positive numbers satisfying (3.8) and (3.9). Then, for any $\tau > 0$,

$$\mathbb{P}\Big(\frac{1}{a_n\sqrt{n}}\sup_{u\in S}\|\sum_{i=1}^n (Z_i^{11}u)\varepsilon_i\| > \tau\Big) \le \exp\Big(-\frac{a_n^2\tau^2}{2c_2\sigma^2} + o(a_n^2)\Big),$$

where $S' = S_1 \cap S$.

Proof. First note that

$$\left\{ u \in \mathbb{R}^s : \|u\|_0 \ge s - [\frac{s}{2}] \right\} \subseteq \bigcup_{k=[\frac{s}{2}]}^s \{ u \in \mathbb{R}^s : \|u\|_0 = k \right\},\$$

and Lemma 14.27 of Bühlmann and Van De Geer (2011) implies that in the subspace \mathbb{R}^k ,

$$\{v \in \mathbb{R}^k : \min_{1 \le l \le k} |e_{k,l}^T v| \ge \frac{c}{2}, ||v|| \le C_1 \sqrt{s}\}$$
$$\subseteq \bigcup_{j=1}^{(1+2n)^k} \{v \in \mathbb{R}^k : ||v - v_j|| \le \frac{1}{n}, \min_{1 \le l \le k} |e_{k,l}^T v_j| \ge \frac{c}{2}, ||v_j|| \le C_1 \sqrt{s}\}.$$

Since

$$\sum_{k=\left[\frac{s}{2}\right]}^{s} C_{s}^{k} (1+2n)^{k} \le (1+2n)^{s} \sum_{k=\left[\frac{s}{2}\right]}^{s} C_{s}^{k} \le (2+4n)^{s}$$

and

$$\left\{ u \in \mathbb{R}^{s} : |\{j : |e_{s,j}^{T}u| \ge \frac{c}{2}\}| \ge s - [\frac{s}{2}] \right\}$$
$$= \left\{ u \in \mathbb{R}^{s} : ||u||_{0} \ge s - [\frac{s}{2}], |e_{s,j}^{T}u| \ge \underline{c}/2, j \in \operatorname{supp}(u) \right\},$$

we have

$$S' \subseteq \bigcup_{j=1}^{(2+4n)^s} \{ u \in \mathbb{R}^s : ||u - u_j|| \le \frac{1}{n}, u_j \in S' \}.$$

Then, we can use the similar method to the proof of Lemma S1.2 to get the

desired result.

Lemma S2.2. Under the assumptions of Lemma S2.1, $\tilde{L}_n(\beta_1)$ has two minimizers $\hat{\beta}_1$ and $-\hat{\beta}_1$ such that

$$\mathbb{P}\big(\|(-\hat{\beta}_1) - (-\beta_1^*)\| \le r_n\big) = \mathbb{P}\big(\|\hat{\beta}_1 - \beta_1^*\| \le r_n\big)$$

$$\ge 1 - \exp\big(-\frac{(1 + c_1^2/4)a_n^2}{2c_2\sigma^2} + o(a_n^2)\big).$$

Proof. Define

$$S_1(\beta_1^*) = \left\{ u \in \mathbb{R}^s : \left| \left\{ j : |e_{s,j}^T u + e_{s,j}^T \beta_1^*| \ge \underline{c}/2 \right\} \right| \ge s - [\frac{s}{2}] \right\}$$

and

$$S_1(-\beta_1^*) = \left\{ u \in \mathbb{R}^s : \left| \left\{ j : |e_{s,j}^T u - e_{s,j}^T \beta_1^*| \ge \underline{c}/2 \right\} \right| \ge s - [\frac{s}{2}] \right\}.$$

We first show that

$$S_1(\beta_1^*) \cup S_1(-\beta_1^*) = \mathbb{R}^s.$$
 (S2.1)

First, it is obvious that $S_1(\beta_1^*) \cup S_1(-\beta_1^*) \subseteq \mathbb{R}^s$. To show the opposite inclusion, we need the following two facts that for any $u \in \mathbb{R}^s$,

$$\left|\{j: |e_{s,j}^{T}u + e_{s,j}^{T}\beta_{1}^{*}| \ge \underline{c}/2\}\right| \le \left[\frac{s}{2}\right] \Leftrightarrow \left|\{j: |e_{s,j}^{T}u + e_{s,j}^{T}\beta_{1}^{*}| < \underline{c}/2\}\right| \ge s - \left[\frac{s}{2}\right]$$

and

$$\{j: |e_{s,j}^T u + e_{s,j}^T \beta_1^*| < \underline{c}/2\} \subseteq \{j: |e_{s,j}^T u - e_{s,j}^T \beta_1^*| \ge \underline{c}/2\}.$$

It is clear that the first holds. We only need to check the second. Note that for each j with $|e_{s,j}^T u + e_{s,j}^T \beta_1^*| < \underline{c}/2$, it is easy to verify that

$$-2e_{s,j}^{T}\beta_{1}^{*} - \underline{c}/2 < e_{s,j}^{T}u - e_{s,j}^{T}\beta_{1}^{*} < -2e_{s,j}^{T}\beta_{1}^{*} + \underline{c}/2.$$

Combining this and the assumption $0 < \underline{c} \leq \min\{|e_{p,j}^T\beta^*|, j \in \Gamma^*\}$, we have

$$e_{s,j}^T u - e_{s,j}^T \beta_1^* \begin{cases} < -3\underline{c}/2, & \text{if } e_{s,j}^T \beta_1^* > \underline{c}; \\ > 3\underline{c}/2, & \text{if } e_{s,j}^T \beta_1^* > -\underline{c}. \end{cases}$$

which yields $|e_{s,j}^T u - e_{s,j}^T \beta_1^*| \ge \underline{c}/2$. Therefore the second fact holds. It follows that, for any $\beta_1 \notin S_1(\beta_1^*)$, i.e., $|\{j : |e_{s,j}^T u + e_{s,j}^T \beta_1^*| \ge \underline{c}/2\}| \le [\underline{s}]$, the above two facts imply $\beta_1 \in S_1(-\beta_1^*)$, which further implies that (S2.1) holds.

Note that for any $\beta_1 \in S_1(\beta_1^*)$, $-\beta_1 \in S_1(-\beta_1^*)$, and for any $\beta_1 \in S_1(-\beta_1^*)$, $-\beta_1 \in S_1(\beta_1^*)$. That is, the sets $S_1(\beta_1^*)$ and $-S_1(-\beta_1^*)$ are symmetric. Since $\tilde{L}_n(\beta_1)$ is an even function, it follows from (S2.1) that

$$\min_{\beta_1 \in \mathbb{R}^s} \tilde{L}_n(\beta_1) = \min_{\beta_1 \in S_1(\beta_1^*)} \tilde{L}_n(\beta_1) = \min_{\beta_1 \in S_1(-\beta_1^*)} \tilde{L}_n(\beta_1).$$

By the similar method to the proof of Lemma S1.3, we can show that there exists a minimizer $\hat{\beta}_1 = \arg \min_{\beta_1 \in S_1(\beta_1^*)} \tilde{L}_n(\beta_1)$, such that (S1.2) holds. Therefore the desired result follows and the proof is completed.

Proof of Theorem 3 From Lemmas S2.1 and S2.2, we can use the similar method for model (2.1) to prove that under the event $E_1 \cap \{ \| \hat{\beta}_1 - \beta_1^* \| \le r_n, (\hat{\beta}_1^T, 0^T)^T \text{ is a local minimizer in the ball } \{\beta^* + \tilde{r}_n u : \| u \|_1 \le \tilde{C} \}$, and $(-\hat{\beta}_1^T, 0^T)^T$ is a local minimizer in the ball $\{-\beta^* + \tilde{r}_n u : \| u \|_1 \le \tilde{C} \}$. As mentioned before, we identify vectors $\beta, \beta' \in \mathbb{R}^p$ which satisfy $\beta' = \pm \beta$. Then, there exists strict local minimizer $\hat{\beta}$ such that both the results (3.6) and (3.7) remain true.

Proof of Theorem 4 Proof of Theorem 4 is analogous to that of Theorem3.

S3 Analysis of the optimization algorithm

Lemma S3.1. [Chen, Xiu and Peng (2014)] Let $t \in \mathbb{R}, \lambda > 0, q \in (0,1)$ be given and $t^* = (2-q)(q(1-q)^{q-1}\lambda)^{1/(2-q)}$. For any $t_0 > t^*$, there exists a unique implicit function $u = \bar{h}_{\lambda,q}(t)$ on (t^*,∞) such that $u_0 = \bar{h}_{\lambda,q}(t_0), u = \bar{h}_{\lambda,q}(t) > 0, \ \bar{h}_{\lambda,q}(t) - t + \lambda q \bar{h}_{\lambda,q}(t)^{q-1} = 0$ and $u = \bar{h}_{\lambda,q}(t)$ is continuously differentiable with $\bar{h}_{\lambda,q}'(t) = \frac{1}{1+\lambda q(q-1)\bar{h}_{\lambda,q}(t)^{q-2}} > 0$. For any $t_0 < -t^*$, there exists a unique function $u = \underline{h}_{\lambda,q}(t)$ on $(-\infty, -t^*)$ such that $u_0 = \underline{h}_{\lambda,q}(t_0), u = \underline{h}_{\lambda,q}(t) < 0, \ \bar{h}_{\lambda,q}(t) - t - \lambda q |\bar{h}_{\lambda,q}(t)|^{q-1} = 0$ and $u = \bar{h}_{\lambda,q}(t)$ is continuously differentiable with $\underline{h}_{\lambda,q}'(t) = \frac{1}{1+\lambda q(q-1)|\underline{h}_{\lambda,q}(t)|^{q-2}} > 0$.

Furthermore, the global solution \hat{u} of the problem (5.2) satisfies

$$\hat{u} = h_{\lambda,q}(t) := \begin{cases} \frac{h_{\lambda,q}(t)}{2}, & \text{if } t < -t^*; \\ -(2\lambda(1-q))^{\frac{1}{2-q}} & \text{or } 0, & \text{if } t = -t^*; \\ 0, & \text{if } -t^* < t < t^*; \\ (2\lambda(1-q))^{\frac{1}{2-q}} & \text{or } 0, & \text{if } t = t^*; \\ \overline{h}_{\lambda,q}(t), & \text{if } t > t^*. \end{cases}$$

Especially, $h_{\lambda,1/2}(t) = \frac{2}{3}t\left(1+\cos\left(\frac{2\pi}{3}-\frac{2}{3}\phi_{\lambda}(t)\right)\right)$ with $\phi_{\lambda}(t) = \arccos\left(\frac{\lambda}{4}\left(\frac{|t|}{3}\right)^{-3/2}\right)$.

Lemma S3.2. For $q \in (0,1)$, $\lambda > 0$, let $\hat{u} = \arg\min_{u \in \mathbb{R}^p} \frac{1}{2} ||u - b||_2^2 + \lambda ||u||_q^q$, $\forall b \in \mathbb{R}^p$. Then $\hat{u} = \mathcal{H}_{\lambda,q}(b)$.

The result is an immediate consequence of Lemma S3.1 and therefore

the proof is omitted.

Proof of Theorem 5 For any $\tau > 0$, define the following auxiliary problem

$$\min_{\beta \in \mathbb{R}^p} F_{\tau}(\beta, u) := \ell(u) + \langle \nabla \ell(u), \beta - u \rangle + \frac{1}{2\tau} \|\beta - u\|_2^2 + \lambda \|\beta\|_q^q, \quad \forall u \in \mathbb{R}^p.$$
(S3.1)

It is easy to check that the problem (S3.1) is equivalent to the following minimization problem

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|\beta - (u - \tau \nabla \ell(u))\|_2^2 + \lambda \tau \|\beta\|_q^q$$

For any r > 0, let $B_r = \{\beta \in \mathbb{R}^p : \|\beta\|_2 \le r\}$ and $G_r = \sup_{\beta \in B_r} \|\nabla^2 \ell(\beta)\|_2$. For any $\tau \in (0, G_r^{-1}]$ and $\beta, u \in B_r$, we have

$$L(\beta) = \ell(u) + \langle \nabla \ell(u), \beta - u \rangle + \frac{1}{2} (\beta - u)^T \nabla^2 \ell(\xi) (\beta - u) + \lambda \|\beta\|_q^q$$

$$= F_\tau(\beta, u) + \frac{1}{2} (\beta - u)^T \nabla^2 \ell(\xi) (\beta - u) - \frac{1}{2\tau} \|\beta - u\|_2^2$$

$$\leq F_\tau(\beta, u) + \frac{1}{2} \|\nabla^2 \ell(\xi)\|_2 \|\beta - u\|_2^2 - \frac{1}{2\tau} \|\beta - u\|_2^2$$

$$\leq F_\tau(\beta, u) + \frac{L}{2} \|\beta - u\|_2^2 - \frac{1}{2\tau} \|\beta - u\|_2^2$$

$$\leq F_\tau(\beta, u), \qquad (S3.2)$$

where $\xi = u + \alpha(\beta - u)$ for some $\alpha \in (0, 1)$ and the second inequality follows from $\|\xi\|_2 \leq r$.

Further, let $\bar{\beta} \in \arg \min_{\beta \in \mathbb{R}^p} F_{\tau}(\beta, \hat{\beta})$. Since $L(\beta) \ge 0$ and $\lim_{\|\beta\|_2 \to \infty} L(\beta) = \infty$, there exists a positive constant r_1 such that $\|\hat{\beta}\|_2 \le r_1$. Note

that

$$\nabla \ell(\beta) = 2\sum_{i=1}^{m} (\beta^T Z_i \beta + x_i^T \beta - y_i)(2Z_i \beta + x_i)$$
(S3.3)

which implies that $\nabla \ell(\beta)$ is continuous differentiable. Then, take

$$r_2 = r_1 + \sup_{\beta \in B_{r_1}} \|\nabla \ell(\beta)\|_2.$$

Hence it follows from Lemma S3.2 that $\|\bar{\beta}\|_2 \leq r_2$ for any $\tau \in (0, 1]$. By the definitions of $\hat{\beta}$ and $\bar{\beta}$, we obtain from the inequality (S3.2) that for any $\tau \in (0, \min\{G_{r_2}^{-1}, 1\}),$

$$F_{\tau}(\bar{\beta},\hat{\beta}) \leq F_{\tau}(\hat{\beta},\hat{\beta}) = L(\hat{\beta}) \leq L(\bar{\beta}) \leq F_{\tau}(\bar{\beta},\hat{\beta}),$$

which leads to $F_{\tau}(\hat{\beta}, \hat{\beta}) = F_{\tau}(\bar{\beta}, \hat{\beta})$. Therefore $\hat{\beta}$ is also a minimizer of the problem (S3.1) with $u = \hat{\beta}$. The results follows then from Lemma S3.2. \Box

Lemma S3.3. Let $g_k = \|\nabla \ell(\beta^k)\|_2$, $G_k = \sup_{\beta \in B_k} \|\nabla^2 \ell(\beta)\|_2$ where $B_k = \{\beta \in \mathbb{R}^p : \|\beta\|_2 \le \|\beta^k\|_2 + g_k\}$. For any $\delta > 0, \gamma, \alpha \in (0, 1)$, define

$$j_{k} = \begin{cases} 0, & \text{if } \gamma(G_{k} + \delta) \leq 1; \\ -[\log_{\alpha} \gamma(G_{k} + \delta)] + 1, & \text{otherwise.} \end{cases}$$

Then (5.4) holds.

Proof. From the definition of τ_k and j_k , it is easy to check that

$$G_k - \frac{1}{\tau_k} \le -\delta. \tag{S3.4}$$

Indeed, take $\tau_k = \gamma$ which yields to

$$G_k - \frac{1}{\tau_k} = \frac{\gamma G_k - 1}{\gamma} \le -\delta,$$

when $\gamma(G_k + \delta) \leq 1$. If $\gamma(G_k + \delta) > 1$,

$$\tau_k = \gamma \alpha^{j_k} \le \gamma \alpha^{-\log_\alpha \gamma(G_k + \delta)} = \frac{1}{G_k + \delta}$$

which also leads to (S3.4).

Note that

$$\beta^{k+1} \in \arg\min_{\beta \in \mathbb{R}^p} G_{\tau_k}(\beta, \beta^k)$$
(S3.5)

and

$$\|\beta^{k+1}\|_2 \le \|\beta^k - \tau_k \nabla \ell(\beta^k)\|_2 \le \|\beta^k\|_2 + g_k,$$

which yields $\beta^{k+1} \in B_k$. Similar to (S3.2), we obtain from (S3.4) that

$$L(\beta^{k+1}) \leq F_{\tau_{k}}(\beta^{k+1}, \beta^{k}) + \frac{1}{2} \|\beta^{k+1} - \beta^{k}\|_{2}^{2} (\|\nabla^{2}\ell(\xi_{k})\|_{2} - \frac{1}{\tau_{k}})$$

$$\leq F_{\tau_{k}}(\beta^{k+1}, \beta^{k}) + \frac{1}{2} \|\beta^{k+1} - \beta^{k}\|_{2}^{2} (G_{k} - \frac{1}{\tau_{k}})$$

$$\leq F_{\tau_{k}}(\beta^{k+1}, \beta^{k}) - \frac{\delta}{2} \|\beta^{k+1} - \beta^{k}\|_{2}^{2},$$

where $\xi_k = \beta^k + \varrho(\beta^{k+1} - \beta^k)$ for some $\varrho \in (0, 1)$ and then $\xi_k \in B_k$ leads to the second inequality. Combining this and (S3.5), we have

$$\begin{split} L(\beta^{k}) - L(\beta^{k+1}) &= F_{\tau_{k}}(\beta^{k}, \beta^{k}) - L(\beta^{k+1}) \ge F_{\tau_{k}}(\beta^{k+1}, \beta^{k}) - L(\beta^{k+1}) \\ &\ge \frac{\delta}{2} \|\beta^{k+1} - \beta^{k}\|_{2}^{2}, \end{split}$$

which completes the proof.

Lemma S3.4. Let $\{\beta^k\}$ and $\{\tau_k\}$ be generated by FPIA. Then,

- (i) $\{\beta^k\}$ is bounded; and
- (ii) there is a nonnegative integer \overline{j} such that $\tau_k \in [\gamma \alpha^{\overline{j}}, \gamma]$.

Proof. Lemma S3.3 implies that $\{L(\beta^k)\}$ is strictly decreasing. From this, $\ell(\cdot) \geq 0$ and the definition of $L(\cdot)$, it is easy to check that $\{\beta^k\}$ is bounded. Since $\ell(\cdot)$ is a twice continuous differentiable function, it then follows from the bound of $\{\beta^k\}$ that there exist two positive constants \bar{g} and \bar{G} such that $\sup_{k\geq 0}\{g_k\} \leq \bar{g}$ and $\sup_{k\geq 0}\{G_k\} \leq \bar{G}$. Define $\bar{j} = \max(0, [-\log_{\alpha}\gamma(\bar{G} + \delta)] + 1)$. Then, $0 \leq j_k \leq \bar{j}$ which combining the definition of τ_k imply that $\tau_k \in [\gamma \alpha^{\bar{j}}, \gamma]$.

Now we consider the convergence of the sequence $\{\beta^k\}$. To this end we slightly modify $h_{\lambda,q}(\cdot)$ as follows

$$h_{\lambda,q}(t) := \begin{cases} \underline{h}_{\lambda,q}(t), & \text{if } t < -t^*; \\ 0, & \text{if } |t| \le t^*; \\ \overline{h}_{\lambda,q}(t), & \text{if } t > t^*. \end{cases}$$
(S3.6)

Then we have the following result.

Theorem S3.1. Let $\{\beta^k\}$ be the sequence generated by FPIA. Then,

(i) $\{L(\beta^k)\}$ converges to $L(\widetilde{\beta})$, where $\widetilde{\beta}$ is any accumulation point of

 $\{\beta^k\};$

(*ii*) $\lim_{k \to \infty} \frac{\|\beta^{k+1} - \beta^k\|_2}{\tau_k} = 0;$

(iii) any accumulation point of $\{\beta^k\}$ is a stationary point of the minimization problem (5.1) when $\gamma \leq \left(\frac{q}{16(1-q)}\bar{g}^{-1}\right)^{\frac{2-q}{1-q}} (\lambda(1-q))^{\frac{1}{1-q}}$ and $\bar{g} = \sup_{k\geq 0} \|\nabla \ell(\beta^k)\|_2$.

Proof. (i) Since $\{\beta^k\}$ is bounded, it has at least one accumulation point. Since $\{L(\beta^k)\}$ is monotonically decreasing and $L(\cdot) \ge 0$, $\{L(\beta^k)\}$ converges to a constant $\widetilde{L}(\ge 0)$. Since $L(\beta)$ is continuous, we have $\{L(\beta^k)\} \to \widetilde{L} = L(\widetilde{\beta})$, where $\widetilde{\beta}$ is an accumulation point of $\{\beta^k\}$ as $k \to \infty$.

(ii) From the definition of β^{k+1} and (5.4), we have

$$\sum_{k=0}^{n} \|\beta^{k+1} - \beta^{k}\|_{2}^{2} \leq \frac{2}{\delta} \sum_{k=0}^{n} [L(\beta^{k}) - L(\beta^{k+1})] = \frac{2}{\delta} [L(\beta^{0}) - L(\beta^{n+1})] \leq \frac{2}{\delta} L(\beta^{0})$$

Hence, $\sum_{k=0}^{\infty} \|\beta^{k+1} - \beta^k\|_2^2 < \infty$ and $\|\beta^{k+1} - \beta^k\|_2 \to 0$ as $k \to \infty$. Then the second result of Lemma S3.4 leads to the result (*ii*).

(iii) Since $\{\beta^k\}$ and $\{\tau_k\}$ have convergent sequences, without loss of generality, assume that

$$\beta^k \to \beta \text{ and } \tau_k \to \widetilde{\tau}, \text{ as } k \to \infty.$$
 (S3.7)

It suffices to prove that $\hat{\beta}$ and $\tilde{\tau}$ satisfy (5.3). Note that

$$\begin{split} \|\widetilde{\beta} - \mathcal{H}_{\lambda\widetilde{\tau},q} \big(\widetilde{\beta} - \widetilde{\tau} \nabla \ell(\widetilde{\beta})\big)\|_{2} \\ \leq \|\widetilde{\beta} - \beta^{k+1}\|_{2} + \|\mathcal{H}_{\lambda\tau_{k},q} \big(\beta^{k} - \tau_{k} \nabla \ell(\beta^{k})\big) - \mathcal{H}_{\lambda\widetilde{\tau},q} \big(\widetilde{\beta} - \widetilde{\tau} \nabla \ell(\widetilde{\beta})\big)\|_{2} \\ = I_{1} + I_{2}. \end{split}$$
(S3.8)

The result (*ii*) and (S3.7) imply that $I_1 \to 0$ as $k \to \infty$.

To complete the proof, we need show $I_2 \to 0$ for $q \in (0,1)$. For $i = 1, \dots, p$, denote

$$v_i^k = e_{p,i}^T \left(\beta^k - \tau_k \nabla \ell(\beta^k) \right), \\ \widetilde{v}_i = e_{p,i}^T \left(\widetilde{\beta} - \widetilde{\tau} \nabla \ell(\widetilde{\beta}) \right), \\ t_i^* = \frac{2-q}{2(1-q)} [2\lambda \widetilde{\tau}(1-q)]^{1/(2-q)}$$

and $\widetilde{\beta}_i = \left(2\lambda \widetilde{\tau}(1-q)\right)^{1/(2-q)}$. Then it suffices to prove that

$$h_{\lambda\tau_k,q}(v_i^k) \to h_{\lambda\tau_k,q}(\widetilde{v}_i)$$
 (S3.9)

when $v_i^k \to \tilde{v}_i$ as $k \to \infty$. We only give the proof of (S3.9) as $\tilde{v}_i > 0$ because the case of $\tilde{v}_i < 0$ can be similarly proved.

For $\tilde{v}_i < t_i^*$, the limit (S3.7) and the definition of $h_{\lambda\tau,q}$ imply that $h_{\lambda\tau_k,q}(v_i^k) = 0 = h_{\lambda\tilde{\tau},q}(\tilde{v}_i)$. For $\tilde{v}_i > t_i^*$, one can conclude from (S3.7) and the continuity of $h_{\lambda\tau,q}$ on (t_i^*,∞) that $h_{\lambda\tau_k,q}(v_i^k) \to h_{\lambda\tilde{\tau},q}(\tilde{v}_i)$. For $\tilde{v}_i = t_i^*$, we show that any subsequence of $\{v_i^k\}$ converging to \tilde{v}_i , without loss of generality, say $\{v_i^k\}$, must satisfy

$$v_i^k \le t_i^*$$
, for large enough k . (S3.10)

We prove the above inequality by contradiction. Denote $\Delta = \frac{q}{16(1-q)} \left(\lambda(1-q)\right)^{\frac{1}{2-q}}$ and $\delta_i = \frac{t_i^* - \tilde{\beta}_i}{4}$. Note that $t_i^* > \tilde{\beta}_i$ implies that $\delta_i = \frac{p}{16(1-q)} \Delta(2\tilde{\tau})^{\frac{1}{2-q}} > 0$. The second limit of (S3.7) implies $\tilde{\tau} \ge \frac{1}{2}\tau_k$ and hence $\delta_i \ge 2\Delta(\tau_k)^{\frac{1}{2-q}}$ for large enough k. Since $\tau_k^{\frac{1-q}{2-q}} \Delta^{-1} \le \gamma^{\frac{1-q}{2-q}} \Delta^{-1} \le \bar{\ell}^{-1}$, for large enough k, we have

$$\tau_k \|\nabla \ell(\beta^k)\|_2 \le \Delta \tau_k \bar{\ell} \Delta^{-1} \le \frac{\delta_i}{2} \tau_k^{-\frac{1}{2-q}} \tau_k \bar{\ell} \Delta^{-1} \le \frac{\delta_i}{2}$$

and therefore

$$e_{p,i}^T \beta^k = v_i^k + \tau_k [\nabla \ell(\beta^k)]_i \ge v_i^k - \tau_k \| [\nabla \ell(e_{p,i}^T \beta^k)) \|_2 \ge v_i^k - \frac{1}{2} \delta_i$$

Combining this, the result (ii) and $v_i^k \to t_i^*$, we have

$$e_{p,i}^{T}\beta^{k+1} \ge e_{p,i}^{T}\beta^{k} - \frac{1}{2}\delta_{i} \ge v_{i}^{k} - \delta_{i} \ge t_{i}^{*} - 2\delta_{i} = \widetilde{\beta}_{i} + 2\delta_{i}, \quad \text{for large enough } k.$$
(S3.11)

Note that $h_{\lambda\tau,q}$ is continuous on (t_i^*,∞) and $\lim_{n\to\infty} h_{\lambda\tau_k,q}(v_i^k) = \widetilde{\beta}_i$. For large enough k, we have $e_{p,i}^T \beta^{k+1} = h_{\lambda\tau_k,q}(v_i^k) \in [\widetilde{\beta}_i - \delta_i, \widetilde{\beta}_i + \delta_i]$, which is in contradiction with (S3.11). So (S3.10) holds. By the definition of $h_{\lambda,q}(\cdot)$, we have $h_{\lambda\tau_k,q}(v_i^k) = 0 = h_{\lambda\tilde{\tau},q}(\tilde{v}_i)$.

References

Bühlmann, P. and Van De Geer. S., (2011). Statistics for high-dimensional data: methods, theory

and applications. Springer, Heidelberg.

- Chen, Y., Xiu, N. and Peng, D. (2014). Global solutions of non-Lipschitz $S_2 S_p$ minimization over positive semidefinite cone. *Optimization Letters* 8, 2053-2064.
- Fan, Jun, Yan, Ailing and Xiu, Naihua. (2014). Asymptotic Properties for M-estimators in Linear Models with Dependent Random Errors. J. Stat. Plan. Infer. 148, 49-66.
- Huang, J. Horowitz, J.L. and Ma, S. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Statist. 36, 587-613.