Statistica Sinica: Supplement 1

Sparse k-Means with ℓ_{∞}/ℓ_0 Penalty for High-Dimensional Data Clustering

Xiangyu Chang $^1,\ \, {\rm Yu\ Wang}^2,\ \, {\rm Rongjian\ Li}^3\ \, {\rm and\ Zongben\ Xu}^1$

¹Xi'an Jiaotong University, ²University of California, Berkeley and ³Old Dominion University

Supplementary Material

In this material, we provide the detailed proofs of the proposed 4 theorems in the main context.

S1 Complement Lemmas

We provide some useful lemmas that support our proofs in this section. In Lemma 1 we reformulate BCSS for facilitating our derivation. Lemma 2 gives a concentration inequality of a non-central χ^2 random variable. Lemma 3 calculates an important expectation which will be used in the proof of Theorem 3 and 4.

Lemma 1. Under the same setting we have described at subsection 2.3 of the main context, we can obtain a_j denoted in (3) of main context has the reformulation

$$a_{j} = \sum_{k=1}^{K} \left(\frac{\sum_{i \in C_{k}} x_{ij}}{\sqrt{n\tilde{\pi}_{k}}}\right)^{2} - \left(\frac{\sum_{i=1}^{n} x_{ij}}{\sqrt{n}}\right)^{2},$$
 (S1.1)

where $n_k, k = 1, 2, ..., K$ is the number of sample size in cluster C_k and $\tilde{\pi}_k \triangleq n_k/n$.

Therefore,

$$BCSS(\mathcal{C}) = \sum_{j=1}^{p} a_j = \sum_{j=1}^{p} \left\{ \sum_{k=1}^{K} \left(\frac{\sum_{i \in C_k} x_{ij}}{\sqrt{n\tilde{\pi}_k}} \right)^2 - \left(\frac{\sum_{i=1}^{n} x_{ij}}{\sqrt{n}} \right)^2 \right\}.$$

Proof. Based on the definition of $a_j, j = 1, 2, \ldots, p$, we have

$$a_{j} = \frac{1}{2n} \sum_{i_{1},i_{2}} (x_{i_{1}j} - x_{i_{2}j})^{2} - \sum_{k=1}^{K} \frac{1}{2n_{k}} \sum_{i_{1},i_{2} \in C_{k}} (x_{i_{1}j} - x_{i_{2}j})^{2}$$

$$= \sum_{i} x_{ij}^{2} - \frac{1}{n} (\sum_{i} x_{ij})^{2} - \sum_{k=1}^{K} (\sum_{i \in C_{k}} x_{ij}^{2} - \frac{1}{n_{k}} (\sum_{i \in C_{k}} x_{ij})^{2})$$

$$= -\frac{1}{n} (\sum_{i} x_{ij})^{2} + \sum_{k=1}^{K} \frac{1}{n_{k}} (\sum_{i \in C_{k}} x_{ij})^{2}$$

$$= \sum_{k=1}^{K} (\frac{\sum_{i \in C_{k}} x_{ij}}{\sqrt{n \tilde{\pi}_{k}}})^{2} - (\frac{\sum_{i=1}^{n} x_{ij}}{\sqrt{n}})^{2}.$$
(S1.2)

Lemma 2. Suppose $Y \in \mathbb{R}^m$ is a random vector with standard multivariate normal distribution. $A \in \mathbb{R}^{m \times m}$ is a matrix and $b \in \mathbb{R}^m$ is a vector. Then $Z = \|AY + b\|^2$ obeys sub-exponential distribution with parameters $(2\sqrt{\|AA^T\|_F^2 + 2\|A^Tb\|^2}, \|A^TA\|_*)$. If we denote δ to be the spectral norm $\|A^TA\|_*$, we can also use the parameters $(2\sqrt{m\delta^2 + 2\delta\|b\|^2}, \delta)$. Then we have the concentration inequality

$$P(|Z - \mathbb{E}Z| \ge t) \le \begin{cases} exp\left(-\frac{t^2}{8(m\delta^2 + 2\delta||b||^2)}\right) & \text{if } 0 \le t \le \frac{4(m\delta^2 + 2\delta||b||^2)}{\delta} \\ exp\left(-\frac{t}{2\delta}\right) & \text{if } t \ge \frac{4(m\delta^2 + 2\delta||b||^2)}{\delta} \end{cases}.$$

Proof. Note that $||AY + b||^2$ obeys a non-central χ^2 distribution, whose cumulative distribution function is explicit. Then the moment generating function can be deducted and the lemma can be proved (Foss et al., 2011).

Lemma 3. Recall that $F(\mathcal{C}, \mathbf{w})$ is defined in (18) of main context and data is generated from (12) of main context and. For any partition $\mathcal{C} = \{C_1, \ldots, C_K\}$, let $\tilde{\pi}_k = \frac{|C_k|}{n}$ for $k = 1, \ldots, K$, and $\tilde{\mu}_{kj} = \frac{1}{|C_k|} \sum_{i \in C_k} \sum_{k'=1}^K \phi_{ik'} \mu_{k'j}$. Then the conditional expectation for fixed ϕ_{ik} would be $\mathbb{E}_z F(\mathcal{C}, \mathbf{w}) = K \|\mathbf{w}\|_1 + \sum_{j=1}^{p^*} w_j \sum_{k=1}^K n \tilde{\pi}_k \tilde{\mu}_{kj}^2$.

Proof. We analyze the distribution of the objective function $F(\mathcal{C}, \mathbf{w})$. For any j, k and fixed ϕ_{ik} (i = 1, ..., K), it is obvious that

$$\frac{1}{\sqrt{|C_k|}} \sum_{i \in C_k} x_{ij} \sim \mathcal{N}(\sqrt{n\tilde{\pi}_k} \cdot \tilde{\mu}_{kj}, 1).$$

Thus $\sum_{k=1}^K \left(\frac{1}{\sqrt{|C_k|}} \sum_{i \in C_k} x_{ij}\right)^2$ has the same distribution as $\|Y + b_j\|^2$ where Y obeys $\mathcal{N}(0, \mathbf{I}_{K \times K})$, $b_{jk} = \sqrt{n\tilde{\pi}_k} \cdot \tilde{\mu}_{kj}$. We further assume that the eigen decomposition of $\Sigma \bigotimes \mathbf{I}_{K \times K} = U\Lambda^2 U^T$, where \bigotimes is the Kronecker product. Denote $L = U\Lambda$, then we know $F(\mathcal{C}, w)$ has the same distribution as $\|W(LY + b)\|^2$, where $W = diag(\sqrt{w_j}) \bigotimes \mathbf{I}_{K \times K}$. The expectation of $F(\mathcal{C}, w)$ is

$$\mathbb{E}F(\mathcal{C}, w) = tr(L^T W^2 L) + \|Wb\|^2 \tag{S1.3}$$

$$=tr(W^{2}LL^{T}) + ||Wb||^{2}$$
 (S1.4)

$$=tr(W^{2}\Sigma\bigotimes\mathbf{I}_{K\times K})+\|Wb\|^{2}$$
(S1.5)

$$=K\|w\|_{1} + \sum_{i=1}^{p} w_{j} \sum_{k=1}^{K} n\tilde{\pi}_{k} \tilde{\mu}_{kj}^{2}.$$
 (S1.6)

S2 Proof of Theorem 1

Proof. we omit the proof since it is easy to obtain.

S3 Proof of Theorem 2

Proof. Based on Lemma 1, the expectation of the BCSS for the jth feature is

$$\mathbb{E}a_j(\mathcal{C}) = \mathbb{E}\sum_{k=1}^K \left(\frac{\sum_{i \in C_k} x_{ij}}{\sqrt{n\tilde{\pi}_k}}\right)^2 - \left(\frac{\sum_{i=1}^n x_{ij}}{\sqrt{n}}\right)^2$$
 (S3.7)

$$= n \sum_{k=1}^{K} \tilde{\pi}_k \tilde{\mu}_{kj}^2 - n \left(\sum_{k=1}^{K} \tilde{\pi}_k \tilde{\mu}_{kj}\right)^2 + K - 1,$$
 (S3.8)

where $\tilde{\pi}_k = \frac{C_k}{n}$ is the proportion of the size of kth cluster C_k and $\tilde{\mu}_k = \frac{1}{|C_k|} \sum_{i \in C_k} \sum_{k'=1}^K \phi_{ik'} \mu_{k'}$ is the expectation of the sample mean in cluster C_k .

For $p^* < j \le p$, we have $\mathbb{E}x_{ij} = 0$. This shows $\tilde{\mu}_{kj} = 0$. Therefore we know they are noise features $\mathbb{E}a_j(\mathcal{C}) = K - 1, \forall \mathcal{C}$. For other features $j \le p^*$, consider $\mathbb{E}a_j(\mathcal{C}^*) = n \sum_{k=1}^K \pi_k \mu_{kj}^2 - n(\sum_{k=1}^K \pi_k \mu_{kj})^2 + K - 1$. So, we can denote $c_j = n \sum_{k=1}^K \pi_k \mu_{kj}^2 - n(\sum_{k=1}^K \pi_k \mu_{kj})^2 > 0$ holds because of the convexity of function x^2 .

S4 Proof of Theorem 3

Proof. Let $C^* = (C_1, \ldots, C_K)$ to be the partition defined by the Gaussian mixture model parameter ϕ_{ik} . If $\phi_{ik} = 1$, which means x_i is drawn from the kth component of Gaussian mixture model, then \mathbf{x}_i is in C_k . As $n \to \infty$, $|C_k|/n \to \pi_k$ almost surely independent of the dimension p. Therefore, without loss of generality, we assume $|C_k| = n \times \pi_k$ for $k = 1, \ldots, K$. Define Δ to satisfy the following equation:

$$s = \frac{\sum_{j=1}^{p^*} \mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta p^*}{\sqrt{\sum_{j=1}^{p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2}}.$$

Define $w_j^* = \frac{\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta}{\sqrt{\sum_{j \leq p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2}}$. The proof can be summarized as the following chain of inequalities,

$$P(\widehat{\mathbf{w}} \text{ has SCP})$$
 (S4.9)

$$\geq P\left(\sup_{j=1,\dots,p^*} |\widehat{w}_j - w_j^*| < \min_{j=1,\dots,p^*} w_j^*\right)$$
 (S4.10)

$$\geq P\left(\sup_{\mathcal{C}, \|\mathbf{w}\|_{1} \leq s} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| < cn\right)$$
(S4.11)

$$\geq 1 - pK^n \exp(-\frac{nc^2}{24s^2\sigma_2}),$$
 (S4.12)

where $c=\frac{1}{4n}\sqrt{\sum_{j\leq p^*}(\mathbb{E}\bar{a}_j(\mathcal{C}^*)-\Delta)^2}\min_{j=1,\dots,p^*}w_j^{*2}>0$ is a constant. When $p^{*2}\leq \frac{\sigma_1^4}{6400\sigma_2^3\ln(K)}$ and

$$\frac{\sum_{j=1}^{p^*} \sum_{k=1}^K \pi_k \mu_{kj}^2 - \frac{1}{2} \sigma_1 p^*}{\sqrt{\sum_{j=1}^{p^*} (\sum_{k=1}^K \pi_k \mu_{kj}^2 - \frac{1}{2} \sigma_1)^2}} \le s \le \frac{\sum_{j=1}^{p^*} \sum_{k=1}^K \pi_k \mu_{kj}^2}{\sqrt{\sum_{j=1}^{p^*} (\sum_{k=1}^K \pi_k \mu_{kj}^2)^2}},$$

since the relation between s and Δ , we know $K + n\frac{1}{2}\sigma_1 \geq \Delta \geq K$. Because c is lower bounded by

$$c = \frac{1}{4n} \sqrt{\sum_{j \le p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2} \min_{j=1,\dots,p^*} w_j^{*2}$$
 (S4.13)

$$= \frac{1}{4n} \min_{j=1,\dots,p^*} \frac{(\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2}{\sqrt{\sum_{j \le p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2}}$$
(S4.14)

$$\geq \frac{(n\sigma_1 + K - \Delta)^2}{4p^*n(n\sigma_2 + K - \Delta)} \tag{S4.15}$$

$$\geq \frac{\sigma_1^2}{16\sqrt{p^*}\sigma_2},\tag{S4.16}$$

and $s^2 \leq p$, we know

$$\frac{c^2}{25s^2\sigma_2} \ge \frac{c^2}{25p^*\sigma_2} \ge \frac{\sigma_1^4}{6400p^{*2}\sigma_2^3} \ge \ln(K). \tag{S4.17}$$

Thus when ln(p) = o(n), the last term goes to 0, the proof is complete.

Now we turn to the proof of (S4.10-S4.12). The inequality (S4.10) is trivial, so we only prove (S4.11) and (S4.12).

Proof of inequality (S4.11): It suffices to prove that

$$\left\{ \sup_{\mathcal{C}, \|\mathbf{w}\|_{1} \leq s} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| < \frac{1}{4} \sqrt{\sum_{j \leq p^{*}} (\mathbb{E}\bar{a}_{j}(\mathcal{C}^{*}) - \Delta)^{2}} \min_{j=1,\dots,p^{*}} w_{j}^{*2} \right\} (S4.18)$$

$$\Longrightarrow \left\{ \sup_{j=1,\dots,p^{*}} |\widehat{w}_{j} - w_{j}^{*}| < \min_{j=1,\dots,p^{*}} w_{j}^{*} \right\}. \tag{S4.19}$$

We have the following line of inequalities:

$$\mathbb{E}F(\mathcal{C}^*, \mathbf{w}^*) \le F(\mathcal{C}^*, \mathbf{w}^*) + \frac{1}{4} \sqrt{\sum_{j \le p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2} \min_{j=1,\dots,p^*} w_j^{*2}$$
(S4.20)

$$\leq F(\widehat{\mathcal{C}}, \widehat{\mathbf{w}}) + \frac{1}{4} \sqrt{\sum_{j \leq p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2} \min_{j=1,\dots,p^*} w_j^{*2}$$
 (S4.21)

$$\leq \mathbb{E}F(\widehat{C}, \widehat{\mathbf{w}}) + \frac{1}{2} \sqrt{\sum_{j \leq p^*} (\mathbb{E}\bar{a}_j(C^*) - \Delta)^2} \min_{j=1,\dots,p^*} w_j^{*2}$$
 (S4.22)

$$\leq \mathbb{E}F(\mathcal{C}^*, \widehat{\mathbf{w}}) + \frac{1}{2} \sqrt{\sum_{j \leq p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2} \min_{j=1,\dots,p^*} w_j^{*2}.$$
 (S4.23)

Denote $d = \widehat{\mathbf{w}} - \mathbf{w}^*$. Since $\widehat{\mathbf{w}}$ and \mathbf{w}^* are both in Ω_1 , d must satisfy

$$\sum_{j \le p^*} d_j + \sum_{j > p^*} d_j \le 0,$$

$$\sum_{j \le p^*} w_j^* d_j \le -\frac{1}{2} \sum_{j \le p^*} d_j^2,$$

$$d_j \ge 0 \quad \forall j > p^*,$$

Thus we have

$$\mathbb{E}F(\mathcal{C}^*, \widehat{\mathbf{w}}) - \mathbb{E}F(\mathcal{C}^*, \mathbf{w}^*) = \sum_{j=1}^p \mathbb{E}\bar{a}_j(\mathcal{C}^*)d_j$$
 (S4.24)

$$\leq \Delta \sum_{j=1}^{p^*} d_j - \frac{1}{2} \sqrt{\sum_{j \leq p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2} \sum_{j \leq p^*} d_j^2 + \sum_{j=p^*+1}^p \mathbb{E}\bar{a}_j(\mathcal{C}^*) d_j$$
 (S4.25)

$$\leq (\Delta - K) \sum_{j=1}^{p^*} d_j - \frac{1}{2} \sqrt{\sum_{j \leq p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2} \sum_{j \leq p^*} d_j^2$$
 (S4.26)

$$\leq -\frac{1}{2}\sqrt{\sum_{j\leq p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2} \sum_{j\leq p^*} d_j^2 \tag{S4.27}$$

$$\leq -\frac{1}{2} \sqrt{\sum_{j \leq p^*} (\mathbb{E}\bar{a}_j(\mathcal{C}^*) - \Delta)^2} \sup_{j=1,\dots,p^*} d_j^2.$$
 (S4.28)

Combining (S4.23) and (S4.28), we get the result.

Proof of inequality (S4.12): It suffices to prove

$$P\left(\sup_{\mathcal{C}, \|\mathbf{w}\|_{1} \le s} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| \ge cn\right)$$
(S4.29)

$$\leq pK^n \exp(-\frac{nc^2}{24s^2\sigma_2}). \tag{S4.30}$$

Since C can have at most K^n choices, we have

$$P\left(\sup_{\mathcal{C},\|\mathbf{w}\|_{1} \leq s} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| \geq cn\right)$$

$$\leq K^{n} \sup_{\mathcal{C}} P\left(\sup_{\|\mathbf{w}\|_{1} \leq s} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| \geq cn\right). \tag{S4.31}$$

Using the dual norm, we actually have that

$$\sup_{\|\mathbf{w}\|_1 \le s} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| = s \cdot \sup_{j \in 1, \dots, p} |\bar{a}_j(\mathcal{C}) - \mathbb{E}\bar{a}_j(\mathcal{C})|. \tag{S4.32}$$

Therefore, (S4.31) can be bounded by

$$K^{n} \sup_{\mathcal{C}} P\left(\sup_{\|\mathbf{w}\|_{1} \leq s} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| \geq cn\right)$$

$$\leq K^{n} \sup_{\mathcal{C}} P\left(\sup_{j \in 1, \dots, p} |\bar{a}_{j}(\mathcal{C}) - \mathbb{E}\bar{a}_{j}(\mathcal{C})| \geq \frac{c}{s}n\right)$$
(S4.33)

$$\leq pK^n \sup_{\mathcal{C}, j=1,\dots,p} P\left(|\bar{a}_j(\mathcal{C}) - \mathbb{E}\bar{a}_j(\mathcal{C})| \geq \frac{c}{s}n\right). \tag{S4.34}$$

 $\bar{a}_j = \sum_{k=1}^K \left(\frac{1}{\sqrt{|C_k|}} \sum_{i \in C_k} x_{ij}\right)^2$ has the same distribution as $\|Y + b_j\|^2$ where Y obeys $\mathcal{N}(0, \mathbf{I}_{K \times K})$, $b_{jk} = \sqrt{n\tilde{\pi}_k \tilde{\mu}_{kj}^2}$ for $j = 1, \dots, p^*$ and $b_{jk} = 0$ for $j > p^*$. By lemma 2, we know \bar{a}_j are all sub exponential variables with parameter $(2\sqrt{K + 2n\sigma_2}, 1)$. Note that $c < \sigma_2$ and $s \ge 1$,

$$\frac{c}{s}n \le n\sigma_2 \le 4(K + 2n\sigma_2).$$

Therefore when $n \geq \frac{K}{\sigma_2}$, i.e. $\sigma_2 n > K$, the last term could be bounded by

$$\exp(-\frac{nc^2}{24s^2\sigma_2}). (S4.35)$$

This completes the proof.

S5 Proof of Theorem 4

Proof. Similar to the proof of Theorem 3, we assume $|C_k| = n \times \pi_k$ for k = 1, ..., K. Then the proof can be summarized as the following chain of inequalities,

$$P(\widehat{\mathbf{w}} \text{ has SCP})$$

$$\geq P\left(\sup_{\mathcal{C}, \mathbf{w} \in \Omega_2} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| < \frac{1}{2}n\sigma_1\right)$$
 (S5.36)

$$\geq 1 - pK^n \exp(-\frac{n\sigma_1^2}{96s^2\sigma_2}).$$
 (S5.37)

Under the theorem conditions, similar to theorem 1, we can prove the last term goes to 0. Now we only prove (S5.36-S5.37).

Proof of inequality (S5.36): It suffices to prove that

$$\{\widehat{\mathbf{w}} \text{ does not have SCP}\} \Longrightarrow \left\{ \sup_{\mathcal{C}, \mathbf{w} \in \Omega_2} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| \ge \frac{1}{2} n \sigma_1 \right\}.$$

If $\widehat{\mathbf{w}}$ does not have SCP, then there exist features j_1, j_2 s.t. $j_1 > p^*$ is a noise feature where $\widehat{w}_{j_1} \neq 0$ and $j_2 < p^*$ is a relevant feature where $\widehat{w}_{j_2} = 0$. Consider $\widetilde{\mathbf{w}}$ such that

$$\tilde{w}_j = \begin{cases} \widehat{w}_j & j \neq j_1, j_2, \\ \widehat{w}_{j_2} & j = j_1, \\ \widehat{w}_{j_1} & j = j_2. \end{cases}$$

Note that $\tilde{\mathbf{w}}$ is in Ω_2 , too. By lemma 3 and Theorem 1,

$$\mathbb{E}F(\mathcal{C}^*, \tilde{\mathbf{w}}) - \mathbb{E}F(\widehat{\mathcal{C}}, \hat{\mathbf{w}}) = Ks + n \sum_{j=1}^{p^*} \tilde{w}_j \sum_{k=1}^K \pi_k \mu_{kj}^2 - Ks - n \sum_{j=1}^{p^*} \widehat{w}_j \sum_{k=1}^K \tilde{\pi}_k \tilde{\mu}_{kj}^2 \quad (S5.38)$$

$$\geq n \sum_{j=1}^{p^*} (\tilde{w}_j - \hat{w}_j) \sum_{k=1}^K \pi_k \mu_{kj}^2$$
 (S5.39)

$$= n\widehat{w}_{j_1} \sum_{k=1}^{K} \pi_k \mu_{kj_2}^2 \tag{S5.40}$$

$$\geq n\sigma_1.$$
 (S5.41)

On the other hand, $F(\mathcal{C}^*, \underline{\tilde{\mathbf{w}}}) \leq F(\widehat{\mathcal{C}}, \widehat{\mathbf{w}})$ because $(\widehat{\mathcal{C}}, \widehat{\mathbf{w}})$ is optimal. Therefore,

$$\sup_{\mathcal{C}, \mathbf{w} \in \Omega_2} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| > \frac{1}{2} n \sigma_1.$$

Thus we know the first inequality holds.

Proof of inequality (S5.37): It suffices to prove

$$P\left(\sup_{\mathcal{C},\mathbf{w}\in\Omega_2}|F(\mathcal{C},\mathbf{w}) - \mathbb{E}F(\mathcal{C},\mathbf{w})| \ge \frac{1}{2}n\sigma_1\right)$$
 (S5.42)

$$\leq pK^n \exp(-\frac{n\sigma_1^2}{96s^2\sigma_2}). \tag{S5.43}$$

Since C can have at most K^n choices. Therefore, we have

$$P\left(\sup_{C,\mathbf{w}\in\Omega_{2}}|F(C,\mathbf{w}) - \mathbb{E}F(C,\mathbf{w})| \ge \frac{1}{2}n\sigma_{1}\right)$$

$$\le K^{n}\sup_{C}P\left(\sup_{\mathbf{w}\in\Omega_{2}}|F(C,\mathbf{w}) - \mathbb{E}F(C,\mathbf{w})| \ge \frac{1}{2}n\sigma_{1}\right). \tag{S5.44}$$

Using the dual norm,

$$\sup_{\mathbf{w}\in\Omega_2} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| = s \cdot \sup_{j\in 1, \dots, p} |\bar{a}_j(\mathcal{C}) - \mathbb{E}\bar{a}_j(\mathcal{C})|.$$
 (S5.45)

Therefore, (S5.44) can be bounded by

$$K^{n} \sup_{\mathcal{C}} P\left(\sup_{\mathbf{w} \in \Omega_{2}} |F(\mathcal{C}, \mathbf{w}) - \mathbb{E}F(\mathcal{C}, \mathbf{w})| \ge \frac{1}{2} n \sigma_{1}\right)$$

$$\le K^{n} \sup_{\mathcal{C}} P\left(\sup_{j \in 1, \dots, p} |\bar{a}_{j}(\mathcal{C}) - \mathbb{E}\bar{a}_{j}(\mathcal{C})| \ge \frac{1}{2s} n \sigma_{1}\right)$$
(S5.46)

$$\leq pK^n \sup_{\mathcal{C}, j=1,\dots,p} P\left(|\bar{a}_j(\mathcal{C}) - \mathbb{E}\bar{a}_j(\mathcal{C})| \geq \frac{1}{2s}n\sigma_1\right). \tag{S5.47}$$

 $\bar{a}_j = \sum_{k=1}^K \left(\frac{1}{\sqrt{|C_k|}} \sum_{i \in C_k} x_{ij}\right)^2$ has the same distribution as $||Y + b_j||^2$ where Y obeys $\mathcal{N}(0, \mathbf{I}_{K \times K})$, $b_{jk} = \sqrt{n\tilde{\pi}_k \tilde{\mu}_{kj}^2}$ for $j = 1, \dots, p^*$ and $b_{jk} = 0$ for $j > p^*$. By lemma 2, we know \bar{a}_j are all sub exponential variables with parameter $(2\sqrt{K + 2n\sigma_2}, 1)$. Note that $s \geq 1$,

$$\frac{1}{2s}n\sigma_1 \le n\sigma_2 \le 4(K + 2n\sigma_2).$$

When $n \geq \frac{K}{\sigma_2}$, the last term could be bounded by

$$\exp\left(-\frac{n\sigma_1^2}{96s^2\sigma_2}\right). \tag{S5.48}$$

BIBLIOGRAPHY 11

Now the proof is completed.

Bibliography

Foss, S., Korshunov, D., and Zachary, S. (2011). An Introduction to Heavy-Tailed and Subexponential Distributions. Springer.