Sparse k-Means with ℓ_{∞} / ℓ_{0} Penalty for High-Dimensional Data Clustering

Xiangyu Chang ${ }^{1}$, Yu Wang ${ }^{2}$, Rongjian Li^{3} and Zongben Xu^{1}
${ }^{1}$ Xi'an Jiaotong University, ${ }^{2}$ University of California, Berkeley and ${ }^{3}$ Old Dominion University

Supplementary Material

In this material, we provide the detailed proofs of the proposed 4 theorems in the main context.

S1 Complement Lemmas

We provide some useful lemmas that support our proofs in this section. In Lemma 1 we reformulate BCSS for facilitating our derivation. Lemma 2 gives a concentration inequality of a non-central χ^{2} random variable. Lemma 3 calculates an important expectation which will be used in the proof of Theorem 3 and 4.

Lemma 1. Under the same setting we have described at subsection 2.3 of the main context, we can obtain a_{j} denoted in (3) of main context has the reformulation

$$
\begin{equation*}
a_{j}=\sum_{k=1}^{K}\left(\frac{\sum_{i \in C_{k}} x_{i j}}{\sqrt{n \tilde{\pi}_{k}}}\right)^{2}-\left(\frac{\sum_{i=1}^{n} x_{i j}}{\sqrt{n}}\right)^{2}, \tag{S1.1}
\end{equation*}
$$

where $n_{k}, k=1,2, \ldots, K$ is the number of sample size in cluster C_{k} and $\tilde{\pi}_{k} \triangleq n_{k} / n$. Therefore,

$$
B C S S(\mathcal{C})=\sum_{j=1}^{p} a_{j}=\sum_{j=1}^{p}\left\{\sum_{k=1}^{K}\left(\frac{\sum_{i \in C_{k}} x_{i j}}{\sqrt{n \tilde{\pi}_{k}}}\right)^{2}-\left(\frac{\sum_{i=1}^{n} x_{i j}}{\sqrt{n}}\right)^{2}\right\} .
$$

Proof. Based on the definition of $a_{j}, j=1,2, \ldots, p$, we have

$$
\begin{align*}
a_{j} & =\frac{1}{2 n} \sum_{i_{1}, i_{2}}\left(x_{i_{1} j}-x_{i_{2} j}\right)^{2}-\sum_{k=1}^{K} \frac{1}{2 n_{k}} \sum_{i_{1}, i_{2} \in C_{k}}\left(x_{i_{1} j}-x_{i_{2} j}\right)^{2} \tag{S1.2}\\
& =\sum_{i} x_{i j}^{2}-\frac{1}{n}\left(\sum_{i} x_{i j}\right)^{2}-\sum_{k=1}^{K}\left(\sum_{i \in C_{k}} x_{i j}^{2}-\frac{1}{n_{k}}\left(\sum_{i \in C_{k}} x_{i j}\right)^{2}\right) \\
& =-\frac{1}{n}\left(\sum_{i} x_{i j}\right)^{2}+\sum_{k=1}^{K} \frac{1}{n_{k}}\left(\sum_{i \in C_{k}} x_{i j}\right)^{2} \\
& =\sum_{k=1}^{K}\left(\frac{\sum_{i \in C_{k}} x_{i j}}{\sqrt{n \tilde{\pi}_{k}}}\right)^{2}-\left(\frac{\sum_{i=1}^{n} x_{i j}}{\sqrt{n}}\right)^{2} .
\end{align*}
$$

Lemma 2. Suppose $Y \in \mathbb{R}^{m}$ is a random vector with standard multivariate normal distribution. $A \in \mathbb{R}^{m \times m}$ is a matrix and $b \in \mathbb{R}^{m}$ is a vector. Then $Z=\|A Y+b\|^{2}$ obeys subexponential distribution with parameters $\left(2 \sqrt{\left\|A A^{T}\right\|_{F}^{2}+2\left\|A^{T} b\right\|^{2}},\| \| A^{T} A\| \|_{*}\right)$. If we denote δ to be the spectral norm $\left\|\left\|A^{T} A\right\|_{*}\right.$, we can also use the parameters $\left(2 \sqrt{m \delta^{2}+2 \delta\|b\|^{2}}, \delta\right)$. Then we have the concentration inequality

$$
P(|Z-\mathbb{E} Z| \geq t) \leq\left\{\begin{array}{cc}
\exp \left(-\frac{t^{2}}{8\left(m \delta^{2}+2 \delta\|b\|^{2}\right)}\right) & \text { if } 0 \leq t \leq \frac{4\left(m \delta^{2}+2 \delta\|b\|^{2}\right)}{\delta} \\
\exp \left(-\frac{t}{2 \delta}\right) & \text { if } t \geq \frac{4\left(m \delta^{2}+2 \delta\|b\| \|^{2}\right)}{\delta}
\end{array} .\right.
$$

Proof. Note that $\|A Y+b\|^{2}$ obeys a non-central χ^{2} distribution, whose cumulative distribution function is explicit. Then the moment generating function can be deducted and the lemma can be proved (Foss et al., 2011).

Lemma 3. Recall that $F(\mathcal{C}, \mathbf{w})$ is defined in (18) of main context and data is generated from (12) of main context and. For any partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{K}\right\}$, let $\tilde{\pi}_{k}=\frac{\left|C_{k}\right|}{n}$ for $k=1, \ldots, K$, and $\tilde{\mu}_{k j}=\frac{1}{\left|C_{k}\right|} \sum_{i \in C_{k}} \sum_{k^{\prime}=1}^{K} \phi_{i k^{\prime}} \mu_{k^{\prime} j}$. Then the conditional expectation for fixed $\phi_{i k}$ would be $\mathbb{E}_{z} F(\mathcal{C}, \mathbf{w})=K\|\mathbf{w}\|_{1}+\sum_{j=1}^{p^{*}} w_{j} \sum_{k=1}^{K} n \tilde{\pi}_{k} \tilde{\mu}_{k j}^{2}$.

Proof. We analyze the distribution of the objective function $F(\mathcal{C}, \mathbf{w})$. For any j, k and fixed $\phi_{i k}(i=1, \ldots, K)$, it is obvious that

$$
\frac{1}{\sqrt{\left|C_{k}\right|}} \sum_{i \in C_{k}} x_{i j} \sim \mathcal{N}\left(\sqrt{n \tilde{\pi}_{k}} \cdot \tilde{\mu}_{k j}, 1\right)
$$

Thus $\sum_{k=1}^{K}\left(\frac{1}{\sqrt{\left|C_{k}\right|}} \sum_{i \in C_{k}} x_{i j}\right)^{2}$ has the same distribution as $\left\|Y+b_{j}\right\|^{2}$ where Y obeys $\mathcal{N}\left(0, \mathbf{I}_{K \times K}\right), b_{j k}=\sqrt{n \tilde{\pi}_{k}} \cdot \tilde{\mu}_{k j}$. We further assume that the eigen decomposition of $\Sigma \otimes \mathbf{I}_{K \times K}=U \Lambda^{2} U^{T}$, where \otimes is the Kronecker product. Denote $L=U \Lambda$, then we know $F(\mathcal{C}, w)$ has the same distribution as $\|W(L Y+b)\|^{2}$, where $W=\operatorname{diag}\left(\sqrt{w_{j}}\right) \otimes \mathbf{I}_{K \times K}$.

The expectation of $F(\mathcal{C}, w)$ is

$$
\begin{align*}
\mathbb{E} F(\mathcal{C}, w) & =\operatorname{tr}\left(L^{T} W^{2} L\right)+\|W b\|^{2} \tag{S1.3}\\
& =\operatorname{tr}\left(W^{2} L L^{T}\right)+\|W b\|^{2} \tag{S1.4}\\
& =\operatorname{tr}\left(W^{2} \Sigma \bigotimes \mathbf{I}_{K \times K}\right)+\|W b\|^{2} \tag{S1.5}\\
& =K\|w\|_{1}+\sum_{j=1}^{p} w_{j} \sum_{k=1}^{K} n \tilde{\pi}_{k} \tilde{\mu}_{k j}^{2} . \tag{S1.6}
\end{align*}
$$

S2 Proof of Theorem 1

Proof. we omit the proof since it is easy to obtain.

S3 Proof of Theorem 2

Proof. Based on Lemma 1, the expectation of the $B C S S$ for the j th feature is

$$
\begin{align*}
\mathbb{E} a_{j}(\mathcal{C}) & =\mathbb{E} \sum_{k=1}^{K}\left(\frac{\sum_{i \in C_{k}} x_{i j}}{\sqrt{n \tilde{\pi}_{k}}}\right)^{2}-\left(\frac{\sum_{i=1}^{n} x_{i j}}{\sqrt{n}}\right)^{2} \tag{S3.7}\\
& =n \sum_{k=1}^{K} \tilde{\pi}_{k} \tilde{\mu}_{k j}^{2}-n\left(\sum_{k=1}^{K} \tilde{\pi}_{k} \tilde{\mu}_{k j}\right)^{2}+K-1, \tag{S3.8}
\end{align*}
$$

where $\tilde{\pi}_{k}=\frac{C_{k}}{n}$ is the proportion of the size of k th cluster C_{k} and $\tilde{\mu}_{k}=\frac{1}{\left|C_{k}\right|} \sum_{i \in C_{k}} \sum_{k^{\prime}=1}^{K} \phi_{i k^{\prime}} \mu_{k^{\prime}}$ is the expectation of the sample mean in cluster C_{k}.

For $p^{*}<j \leq p$, we have $\mathbb{E} x_{i j}=0$. This shows $\tilde{\mu}_{k j}=0$. Therefore we know they are noise features $\mathbb{E} a_{j}(\mathcal{C})=K-1, \forall \mathcal{C}$. For other features $j \leq p^{*}$, consider $\mathbb{E} a_{j}\left(\mathcal{C}^{*}\right)=$ $n \sum_{k=1}^{K} \pi_{k} \mu_{k j}^{2}-n\left(\sum_{k=1}^{K} \pi_{k} \mu_{k j}\right)^{2}+K-1$. So, we can denote $c_{j}=n \sum_{k=1}^{K} \pi_{k} \mu_{k j}^{2}-$ $n\left(\sum_{k=1}^{K} \pi_{k} \mu_{k j}\right)^{2}>0$ holds because of the convexity of function x^{2}.

S4 Proof of Theorem 3

Proof. Let $\mathcal{C}^{*}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}\right)$ to be the partition defined by the Gaussian mixture model parameter $\phi_{i k}$. If $\phi_{i k}=1$, which means x_{i} is drawn from the k th component of Gaussian mixture model, then \mathbf{x}_{i} is in C_{k}. As $n \rightarrow \infty,\left|C_{k}\right| / n \rightarrow \pi_{k}$ almost surely independent of the dimension p. Therefore, without loss of generality, we assume $\left|C_{k}\right|=n \times \pi_{k}$ for $k=1, \ldots, K$. Define Δ to satisfy the following equation:

$$
s=\frac{\sum_{j=1}^{p^{*}} \mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta p^{*}}{\sqrt{\sum_{j=1}^{p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}}} .
$$

Define $w_{j}^{*}=\frac{\mathbb{E}_{\bar{a}_{j}}\left(\mathcal{C}^{*}\right)-\Delta}{\sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}}}$. The proof can be summarized as the following chain of inequalities,

$$
\begin{align*}
& P(\widehat{\mathbf{w}} \text { has SCP }) \tag{S4.9}\\
\geq & P\left(\sup _{j=1, \ldots, p^{*}}\left|\widehat{w}_{j}-w_{j}^{*}\right|<\min _{j=1, \ldots, p^{*}} w_{j}^{*}\right) \tag{S4.10}\\
\geq & P\left(\sup _{\mathcal{C},\|\mathbf{w}\|_{1} \leq s}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})|<c n\right) \tag{S4.11}\\
\geq & 1-p K^{n} \exp \left(-\frac{n c^{2}}{24 s^{2} \sigma_{2}}\right) \tag{S4.12}
\end{align*}
$$

where $c=\frac{1}{4 n} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \min _{j=1, \ldots, p^{*}} w_{j}^{* 2}>0$ is a constant. When $p^{* 2} \leq \frac{\sigma_{1}^{4}}{6400 \sigma_{2}^{3} \ln (K)}$ and

$$
\frac{\sum_{j=1}^{p^{*}} \sum_{k=1}^{K} \pi_{k} \mu_{k j}^{2}-\frac{1}{2} \sigma_{1} p^{*}}{\sqrt{\sum_{j=1}^{p^{*}}\left(\sum_{k=1}^{K} \pi_{k} \mu_{k j}^{2}-\frac{1}{2} \sigma_{1}\right)^{2}}} \leq s \leq \frac{\sum_{j=1}^{p^{*}} \sum_{k=1}^{K} \pi_{k} \mu_{k j}^{2}}{\sqrt{\sum_{j=1}^{p^{*}}\left(\sum_{k=1}^{K} \pi_{k} \mu_{k j}^{2}\right)^{2}}},
$$

since the relation between s and Δ, we know $K+n \frac{1}{2} \sigma_{1} \geq \Delta \geq K$. Because c is lower bounded by

$$
\begin{align*}
c & =\frac{1}{4 n} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \min _{j=1, \ldots, p^{*}} w_{j}^{* 2} \tag{S4.13}\\
& =\frac{1}{4 n} \min _{j=1, \ldots, p^{*}} \frac{\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}}{\sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}}} \tag{S4.14}\\
& \geq \frac{\left(n \sigma_{1}+K-\Delta\right)^{2}}{4 p^{*} n\left(n \sigma_{2}+K-\Delta\right)} \tag{S4.15}\\
& \geq \frac{\sigma_{1}^{2}}{16 \sqrt{p^{*} \sigma_{2}}}, \tag{S4.16}
\end{align*}
$$

and $s^{2} \leq p$, we know

$$
\begin{equation*}
\frac{c^{2}}{25 s^{2} \sigma_{2}} \geq \frac{c^{2}}{25 p^{*} \sigma_{2}} \geq \frac{\sigma_{1}^{4}}{6400 p^{* 2} \sigma_{2}^{3}} \geq \ln (K) \tag{S4.17}
\end{equation*}
$$

Thus when $\ln (p)=o(n)$, the last term goes to 0 , the proof is complete.

Now we turn to the proof of S4.10 S4.12). The inequality (S4.10) is trivial, so we only prove (S4.11) and (S4.12).

Proof of inequality (S4.11): It suffices to prove that

$$
\begin{align*}
& \left\{\sup _{\mathcal{C},\|\mathbf{w}\|_{1} \leq s}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})|<\frac{1}{4} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \min _{j=1, \ldots, p^{*}} w_{j}^{* 2}\right\}(\mathrm{S} \tag{S4.18}\\
& \Longrightarrow\left\{\sup _{j=1, \ldots, p^{*}}\left|\widehat{w}_{j}-w_{j}^{*}\right|<\min _{j=1, \ldots, p^{*}} w_{j}^{*}\right\} . \tag{S4.19}
\end{align*}
$$

We have the following line of inequalities:

$$
\begin{align*}
\mathbb{E} F\left(\mathcal{C}^{*}, \mathbf{w}^{*}\right) & \leq F\left(\mathcal{C}^{*}, \mathbf{w}^{*}\right)+\frac{1}{4} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \min _{j=1, \ldots, p^{*}} w_{j}^{* 2} \tag{S4.20}\\
& \leq F(\widehat{\mathcal{C}}, \widehat{\mathbf{w}})+\frac{1}{4} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \min _{j=1, \ldots, p^{*}} w_{j}^{* 2} \tag{S4.21}\\
& \leq \mathbb{E} F(\widehat{\mathcal{C}}, \widehat{\mathbf{w}})+\frac{1}{2} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \min _{j=1, \ldots, p^{*}} w_{j}^{* 2} \tag{S4.22}\\
& \leq \mathbb{E} F\left(\mathcal{C}^{*}, \widehat{\mathbf{w}}\right)+\frac{1}{2} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \min _{j=1, \ldots, p^{*}} w_{j}^{* 2} . \tag{S4.23}
\end{align*}
$$

Denote $d=\widehat{\mathbf{w}}-\mathbf{w}^{*}$. Since $\widehat{\mathbf{w}}$ and \mathbf{w}^{*} are both in Ω_{1}, d must satisfy

$$
\begin{aligned}
& \sum_{j \leq p^{*}} d_{j}+\sum_{j>p^{*}} d_{j} \leq 0, \\
& \sum_{j \leq p^{*}} w_{j}^{*} d_{j} \leq-\frac{1}{2} \sum_{j \leq p^{*}} d_{j}^{2}, \\
& d_{j} \geq 0 \quad \forall j>p^{*},
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& \mathbb{E} F\left(\mathcal{C}^{*}, \widehat{\mathbf{w}}\right)-\mathbb{E} F\left(\mathcal{C}^{*}, \mathbf{w}^{*}\right)=\sum_{j=1}^{p} \mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right) d_{j} \tag{S4.24}\\
& \leq \Delta \sum_{j=1}^{p^{*}} d_{j}-\frac{1}{2} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \sum_{j \leq p^{*}} d_{j}^{2}+\sum_{j=p^{*}+1}^{p} \mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right) d_{j} \tag{S4.25}\\
& \leq(\Delta-K) \sum_{j=1}^{p^{*}} d_{j}-\frac{1}{2} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \sum_{j \leq p^{*}} d_{j}^{2} \tag{S4.26}\\
& \leq-\frac{1}{2} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \sum_{j \leq p^{*}} d_{j}^{2} \tag{S4.27}\\
& \leq-\frac{1}{2} \sqrt{\sum_{j \leq p^{*}}\left(\mathbb{E} \bar{a}_{j}\left(\mathcal{C}^{*}\right)-\Delta\right)^{2}} \sup _{j=1, \ldots, p^{*}} d_{j}^{2} \tag{S4.28}
\end{align*}
$$

Combining (S4.23) and (S4.28), we get the result.
Proof of inequality (S4.12): It suffices to prove

$$
\begin{align*}
& P\left(\sup _{c,\|\mathbf{w}\|_{1} \leq s}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq c n\right) \tag{S4.29}\\
\leq & p K^{n} \exp \left(-\frac{n c^{2}}{24 s^{2} \sigma_{2}}\right) . \tag{S4.30}
\end{align*}
$$

Since \mathcal{C} can have at most K^{n} choices, we have

$$
\begin{align*}
& P\left(\sup _{\mathcal{C},\|\mathbf{w}\|_{1} \leq s}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq c n\right) \\
\leq & K^{n} \sup _{\mathcal{C}} P\left(\sup _{\|\mathbf{w}\|_{1} \leq s}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq c n\right) . \tag{S4.31}
\end{align*}
$$

Using the dual norm, we actually have that

$$
\begin{equation*}
\sup _{\|\mathbf{w}\|_{1} \leq s}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})|=s \cdot \sup _{j \in 1, \ldots, p}\left|\bar{a}_{j}(\mathcal{C})-\mathbb{E} \bar{a}_{j}(\mathcal{C})\right| . \tag{S4.32}
\end{equation*}
$$

Therefore, S4.31 can be bounded by

$$
\begin{align*}
& K^{n} \sup _{\mathcal{C}} P\left(\sup _{\|\mathbf{w}\|_{1} \leq s}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq c n\right) \\
\leq & K^{n} \sup _{\mathcal{C}} P\left(\sup _{j \in 1, \ldots, p}\left|\bar{a}_{j}(\mathcal{C})-\mathbb{E} \bar{a}_{j}(\mathcal{C})\right| \geq \frac{c}{s} n\right) \tag{S4.33}\\
\leq & p K^{n} \sup _{\mathcal{C}, j=1, \ldots, p} P\left(\left|\bar{a}_{j}(\mathcal{C})-\mathbb{E} \bar{a}_{j}(\mathcal{C})\right| \geq \frac{c}{s} n\right) . \tag{S4.34}
\end{align*}
$$

$\bar{a}_{j}=\sum_{k=1}^{K}\left(\frac{1}{\sqrt{\left|C_{k}\right|}} \sum_{i \in C_{k}} x_{i j}\right)^{2}$ has the same distribution as $\left\|Y+b_{j}\right\|^{2}$ where Y obeys $\mathcal{N}\left(0, \mathbf{I}_{K \times K}\right), b_{j k}=\sqrt{n \tilde{\pi}_{k} \tilde{\mu}_{k j}^{2}}$ for $j=1, \ldots, p^{*}$ and $b_{j k}=0$ for $j>p^{*}$. By lemma 2, we know \bar{a}_{j} are all sub exponential variables with parameter $\left(2 \sqrt{K+2 n \sigma_{2}}, 1\right)$. Note that $c<\sigma_{2}$ and $s \geq 1$,

$$
\frac{c}{s} n \leq n \sigma_{2} \leq 4\left(K+2 n \sigma_{2}\right)
$$

Therefore when $n \geq \frac{K}{\sigma_{2}}$, i.e. $\sigma_{2} n>K$, the last term could be bounded by

$$
\begin{equation*}
\exp \left(-\frac{n c^{2}}{24 s^{2} \sigma_{2}}\right) \tag{S4.35}
\end{equation*}
$$

This completes the proof.

S5 Proof of Theorem 4

Proof. Similar to the proof of Theorem 3, we assume $\left|C_{k}\right|=n \times \pi_{k}$ for $k=1, \ldots, K$. Then the proof can be summarized as the following chain of inequalities,

$$
\begin{align*}
& P(\widehat{\mathbf{w}} \text { has SCP }) \\
\geq & P\left(\sup _{\mathcal{C}, \mathbf{w} \in \Omega_{2}}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})|<\frac{1}{2} n \sigma_{1}\right) \tag{S5.36}\\
\geq & 1-p K^{n} \exp \left(-\frac{n \sigma_{1}^{2}}{96 s^{2} \sigma_{2}}\right) \tag{S5.37}
\end{align*}
$$

Under the theorem conditions, similar to theorem 1, we can prove the last term goes to 0 . Now we only prove (S5.36+S5.37).

Proof of inequality S5.36): It suffices to prove that

$$
\{\widehat{\mathbf{w}} \text { does not have } \mathrm{SCP}\} \Longrightarrow\left\{\sup _{\mathcal{C}, \mathbf{w} \in \Omega_{2}}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq \frac{1}{2} n \sigma_{1}\right\}
$$

If $\widehat{\mathbf{w}}$ does not have SCP, then there exist features j_{1}, j_{2} s.t. $j_{1}>p^{*}$ is a noise feature where $\widehat{w}_{j_{1}} \neq 0$ and $j_{2}<p^{*}$ is a relevant feature where $\widehat{w}_{j_{2}}=0$. Consider $\tilde{\mathbf{w}}$ such that

$$
\tilde{w}_{j}= \begin{cases}\widehat{w}_{j} & j \neq j_{1}, j_{2} \\ \widehat{w}_{j_{2}} & j=j_{1} \\ \widehat{w}_{j_{1}} & j=j_{2}\end{cases}
$$

Note that $\tilde{\mathbf{w}}$ is in Ω_{2}, too. By lemma 3 and Theorem 1,

$$
\begin{align*}
\mathbb{E} F\left(\mathcal{C}^{*}, \tilde{\mathbf{w}}\right)-\mathbb{E} F(\widehat{\mathcal{C}}, \widehat{\mathbf{w}}) & =K s+n \sum_{j=1}^{p^{*}} \tilde{w}_{j} \sum_{k=1}^{K} \pi_{k} \mu_{k j}^{2}-K s-n \sum_{j=1}^{p^{*}} \widehat{w}_{j} \sum_{k=1}^{K} \tilde{\pi}_{k} \tilde{\mu}_{k j}^{2} \tag{S5.38}\\
& \geq n \sum_{j=1}^{p^{*}}\left(\tilde{w}_{j}-\widehat{w}_{j}\right) \sum_{k=1}^{K} \pi_{k} \mu_{k j}^{2} \tag{S5.39}\\
& =n \widehat{w}_{j_{1}} \sum_{k=1}^{K} \pi_{k} \mu_{k j_{2}}^{2} \tag{S5.40}\\
& \geq n \sigma_{1} . \tag{S5.41}
\end{align*}
$$

On the other hand, $F\left(\mathcal{C}^{*}, \underline{\tilde{\mathbf{w}}}\right) \leq F(\widehat{\mathcal{C}}, \widehat{\mathbf{w}})$ because $(\widehat{\mathcal{C}}, \widehat{\mathbf{w}})$ is optimal. Therefore,

$$
\sup _{\mathcal{C}, \mathbf{w} \in \Omega_{2}}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})|>\frac{1}{2} n \sigma_{1} .
$$

Thus we know the first inequality holds.

Proof of inequality (S5.37): It suffices to prove

$$
\begin{align*}
& P\left(\sup _{\mathcal{C}, \mathbf{w} \in \Omega_{2}}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq \frac{1}{2} n \sigma_{1}\right) \tag{S5.42}\\
\leq & p K^{n} \exp \left(-\frac{n \sigma_{1}^{2}}{96 s^{2} \sigma_{2}}\right) \tag{S5.43}
\end{align*}
$$

Since \mathcal{C} can have at most K^{n} choices. Therefore, we have

$$
\begin{align*}
& P\left(\sup _{\mathcal{C}, \mathbf{w} \in \Omega_{2}}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq \frac{1}{2} n \sigma_{1}\right) \\
\leq & K^{n} \sup _{\mathcal{C}} P\left(\sup _{\mathbf{w} \in \Omega_{2}}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq \frac{1}{2} n \sigma_{1}\right) . \tag{S5.44}
\end{align*}
$$

Using the dual norm,

$$
\begin{equation*}
\sup _{\mathbf{w} \in \Omega_{2}}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})|=s \cdot \sup _{j \in 1, \ldots, p}\left|\bar{a}_{j}(\mathcal{C})-\mathbb{E} \bar{a}_{j}(\mathcal{C})\right| . \tag{S5.45}
\end{equation*}
$$

Therefore, S5.44 can be bounded by

$$
\begin{align*}
& K^{n} \sup _{\mathcal{C}} P\left(\sup _{\mathbf{w} \in \Omega_{2}}|F(\mathcal{C}, \mathbf{w})-\mathbb{E} F(\mathcal{C}, \mathbf{w})| \geq \frac{1}{2} n \sigma_{1}\right) \\
\leq & K^{n} \sup _{\mathcal{C}} P\left(\sup _{j \in 1, \ldots, p}\left|\bar{a}_{j}(\mathcal{C})-\mathbb{E} \bar{a}_{j}(\mathcal{C})\right| \geq \frac{1}{2 s} n \sigma_{1}\right) \tag{S5.46}\\
\leq & p K^{n} \sup _{\mathcal{C}, j=1, \ldots, p} P\left(\left|\bar{a}_{j}(\mathcal{C})-\mathbb{E} \bar{a}_{j}(\mathcal{C})\right| \geq \frac{1}{2 s} n \sigma_{1}\right) . \tag{S5.47}
\end{align*}
$$

$\bar{a}_{j}=\sum_{k=1}^{K}\left(\frac{1}{\sqrt{\left|C_{k}\right|}} \sum_{i \in C_{k}} x_{i j}\right)^{2}$ has the same distribution as $\left\|Y+b_{j}\right\|^{2}$ where Y obeys $\mathcal{N}\left(0, \mathbf{I}_{K \times K}\right), b_{j k}=\sqrt{n \tilde{\pi}_{k} \tilde{\mu}_{k j}^{2}}$ for $j=1, \ldots, p^{*}$ and $b_{j k}=0$ for $j>p^{*}$. By lemma 2, we know \bar{a}_{j} are all sub exponential variables with parameter $\left(2 \sqrt{K+2 n \sigma_{2}}, 1\right)$. Note that $s \geq 1$,

$$
\frac{1}{2 s} n \sigma_{1} \leq n \sigma_{2} \leq 4\left(K+2 n \sigma_{2}\right)
$$

When $n \geq \frac{K}{\sigma_{2}}$, the last term could be bounded by

$$
\begin{equation*}
\exp \left(-\frac{n \sigma_{1}^{2}}{96 s^{2} \sigma_{2}}\right) \tag{S5.48}
\end{equation*}
$$

Now the proof is completed.

Bibliography

Foss, S., Korshunov, D., and Zachary, S. (2011). An Introduction to Heavy-Tailed and Subexponential Distributions. Springer.

