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Supplementary Material

In this material, we provide the detailed proofs of the proposed 4 theorems in the main

context.

S1 Complement Lemmas

We provide some useful lemmas that support our proofs in this section. In Lemma 1 we

reformulate BCSS for facilitating our derivation. Lemma 2 gives a concentration inequal-

ity of a non-central χ2 random variable. Lemma 3 calculates an important expectation

which will be used in the proof of Theorem 3 and 4.

Lemma 1. Under the same setting we have described at subsection 2.3 of the main

context, we can obtain aj denoted in (3) of main context has the reformulation

aj =
K∑
k=1

(

∑
i∈Ck

xij√
nπ̃k

)2 − (

∑n
i=1 xij√
n

)2, (S1.1)

where nk, k = 1, 2, . . . , K is the number of sample size in cluster Ck and π̃k , nk/n.

Therefore,

BCSS(C) =

p∑
j=1

aj =

p∑
j=1

{ K∑
k=1

(

∑
i∈Ck

xij√
nπ̃k

)2 − (

∑n
i=1 xij√
n

)2
}
.
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Proof. Based on the definition of aj, j = 1, 2, . . . , p, we have

aj =
1

2n

∑
i1,i2

(xi1j − xi2j)2 −
K∑
k=1

1

2nk

∑
i1,i2∈Ck

(xi1j − xi2j)2 (S1.2)

=
∑
i

x2
ij −

1

n
(
∑
i

xij)
2 −

K∑
k=1

(
∑
i∈Ck

x2
ij −

1

nk
(
∑
i∈Ck

xij)
2)

= − 1

n
(
∑
i

xij)
2 +

K∑
k=1

1

nk
(
∑
i∈Ck

xij)
2

=
K∑
k=1

(

∑
i∈Ck

xij√
nπ̃k

)2 − (

∑n
i=1 xij√
n

)2.

Lemma 2. Suppose Y ∈ Rm is a random vector with standard multivariate normal dis-

tribution. A ∈ Rm×m is a matrix and b ∈ Rm is a vector. Then Z = ‖AY +b‖2 obeys sub-

exponential distribution with parameters (2
√
|||AAT |||2F + 2‖AT b‖2,

∣∣∣∣∣∣ATA∣∣∣∣∣∣∗). If we de-

note δ to be the spectral norm
∣∣∣∣∣∣ATA∣∣∣∣∣∣∗, we can also use the parameters (2

√
mδ2 + 2δ‖b‖2, δ).

Then we have the concentration inequality

P (|Z − EZ| ≥ t) ≤


exp(− t2

8(mδ2+2δ‖b‖2)
) if 0 ≤ t ≤ 4(mδ2+2δ‖b‖2)

δ

exp(− t
2δ

) if t ≥ 4(mδ2+2δ‖b‖2)
δ

.

Proof. Note that ‖AY + b‖2 obeys a non-central χ2 distribution, whose cumulative dis-

tribution function is explicit. Then the moment generating function can be deducted

and the lemma can be proved (Foss et al., 2011).

Lemma 3. Recall that F (C,w) is defined in (18) of main context and data is generated

from (12) of main context and. For any partition C = {C1, . . . , CK}, let π̃k = |Ck|
n

for

k = 1, . . . , K, and µ̃kj = 1
|Ck|
∑

i∈Ck

∑K
k′=1 φik′µk′j. Then the conditional expectation for

fixed φik would be EzF (C,w) = K‖w‖1 +
∑p∗

j=1 wj
∑K

k=1 nπ̃kµ̃
2
kj.
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Proof. We analyze the distribution of the objective function F (C,w). For any j, k and

fixed φik (i = 1, . . . , K), it is obvious that

1√
|Ck|

∑
i∈Ck

xij ∼ N (
√
nπ̃k · µ̃kj, 1).

Thus
∑K

k=1

(
1√
|Ck|

∑
i∈Ck

xij

)2

has the same distribution as ‖Y + bj‖2 where Y obeys

N (0, IK×K), bjk =
√
nπ̃k · µ̃kj. We further assume that the eigen decomposition of

Σ
⊗

IK×K = UΛ2UT , where
⊗

is the Kronecker product. Denote L = UΛ, then we know

F (C, w) has the same distribution as ‖W (LY + b)‖2, where W = diag(
√
wj)

⊗
IK×K .

The expectation of F (C, w) is

EF (C, w) =tr(LTW 2L) + ‖Wb‖2 (S1.3)

=tr(W 2LLT ) + ‖Wb‖2 (S1.4)

=tr(W 2Σ
⊗

IK×K) + ‖Wb‖2 (S1.5)

=K‖w‖1 +

p∑
j=1

wj

K∑
k=1

nπ̃kµ̃
2
kj. (S1.6)

S2 Proof of Theorem 1

Proof. we omit the proof since it is easy to obtain.
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S3 Proof of Theorem 2

Proof. Based on Lemma 1, the expectation of the BCSS for the jth feature is

Eaj(C) = E
K∑
k=1

(

∑
i∈Ck

xij√
nπ̃k

)2 − (

∑n
i=1 xij√
n

)2 (S3.7)

= n

K∑
k=1

π̃kµ̃
2
kj − n(

K∑
k=1

π̃kµ̃kj)
2 +K − 1, (S3.8)

where π̃k = Ck

n
is the proportion of the size of kth cluster Ck and µ̃k = 1

|Ck|
∑

i∈Ck

∑K
k′=1 φik′µk′

is the expectation of the sample mean in cluster Ck.

For p∗ < j ≤ p, we have Exij = 0. This shows µ̃kj = 0. Therefore we know they are

noise features Eaj(C) = K − 1, ∀C. For other features j ≤ p∗, consider Eaj(C∗) =

n
∑K

k=1 πkµ
2
kj − n(

∑K
k=1 πkµkj)

2 + K − 1. So, we can denote cj = n
∑K

k=1 πkµ
2
kj −

n(
∑K

k=1 πkµkj)
2 > 0 holds because of the convexity of function x2.

S4 Proof of Theorem 3

Proof. Let C∗ = (C1, . . . , CK) to be the partition defined by the Gaussian mixture model

parameter φik. If φik = 1, which means xi is drawn from the kth component of Gaussian

mixture model, then xi is in Ck. As n → ∞, |Ck|/n → πk almost surely independent

of the dimension p. Therefore, without loss of generality, we assume |Ck| = n × πk for

k = 1, . . . , K. Define ∆ to satisfy the following equation:

s =

∑p∗

j=1 Eāj(C∗)−∆p∗√∑p∗

j=1(Eāj(C∗)−∆)2
.
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Define w∗j =
Eāj(C∗)−∆√∑

j≤p∗ (Eāj(C∗)−∆)2
. The proof can be summarized as the following chain of

inequalities,

P (ŵ has SCP) (S4.9)

≥P
(

sup
j=1,...,p∗

|ŵj − w∗j | < min
j=1,...,p∗

w∗j

)
(S4.10)

≥P

(
sup

C,‖w‖1≤s
|F (C,w)− EF (C,w)| < cn

)
(S4.11)

≥1− pKn exp(− nc2

24s2σ2

), (S4.12)

where c = 1
4n

√∑
j≤p∗(Eāj(C∗)−∆)2 min

j=1,...,p∗
w∗2j > 0 is a constant. When p∗2 ≤ σ4

1

6400σ3
2 ln(K)

and

∑p∗

j=1

∑K
k=1 πkµ

2
kj − 1

2
σ1p

∗√∑p∗

j=1(
∑K

k=1 πkµ
2
kj − 1

2
σ1)2

≤ s ≤
∑p∗

j=1

∑K
k=1 πkµ

2
kj√∑p∗

j=1(
∑K

k=1 πkµ
2
kj)

2

,

since the relation between s and ∆, we know K + n1
2
σ1 ≥ ∆ ≥ K. Because c is lower

bounded by

c =
1

4n

√∑
j≤p∗

(Eāj(C∗)−∆)2 min
j=1,...,p∗

w∗2j (S4.13)

=
1

4n
min

j=1,...,p∗

(Eāj(C∗)−∆)2√∑
j≤p∗(Eāj(C∗)−∆)2

(S4.14)

≥ (nσ1 +K −∆)2

4p∗n(nσ2 +K −∆)
(S4.15)

≥ σ2
1

16
√
p∗σ2

, (S4.16)

and s2 ≤ p, we know

c2

25s2σ2

≥ c2

25p∗σ2

≥ σ4
1

6400p∗2σ3
2

≥ ln(K). (S4.17)

Thus when ln(p) = o(n), the last term goes to 0, the proof is complete.
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Now we turn to the proof of (S4.10-S4.12). The inequality (S4.10) is trivial, so we

only prove (S4.11) and (S4.12).

Proof of inequality (S4.11): It suffices to prove that

 sup
C,‖w‖1≤s

|F (C,w)− EF (C,w)| < 1

4

√∑
j≤p∗

(Eāj(C∗)−∆)2 min
j=1,...,p∗

w∗2j

(S4.18)

=⇒
{

sup
j=1,...,p∗

|ŵj − w∗j | < min
j=1,...,p∗

w∗j

}
. (S4.19)

We have the following line of inequalities:

EF (C∗,w∗) ≤F (C∗,w∗) +
1

4

√∑
j≤p∗

(Eāj(C∗)−∆)2 min
j=1,...,p∗

w∗2j (S4.20)

≤F (Ĉ, ŵ) +
1

4

√∑
j≤p∗

(Eāj(C∗)−∆)2 min
j=1,...,p∗

w∗2j (S4.21)

≤EF (Ĉ, ŵ) +
1

2

√∑
j≤p∗

(Eāj(C∗)−∆)2 min
j=1,...,p∗

w∗2j (S4.22)

≤EF (C∗, ŵ) +
1

2

√∑
j≤p∗

(Eāj(C∗)−∆)2 min
j=1,...,p∗

w∗2j . (S4.23)

Denote d = ŵ −w∗. Since ŵ and w∗ are both in Ω1, d must satisfy

∑
j≤p∗

dj +
∑
j>p∗

dj ≤ 0,

∑
j≤p∗

w∗jdj ≤ −
1

2

∑
j≤p∗

d2
j ,

dj ≥ 0 ∀j > p∗,
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Thus we have

EF (C∗, ŵ)− EF (C∗,w∗) =

p∑
j=1

Eāj(C∗)dj (S4.24)

≤∆

p∗∑
j=1

dj −
1

2

√∑
j≤p∗

(Eāj(C∗)−∆)2
∑
j≤p∗

d2
j +

p∑
j=p∗+1

Eāj(C∗)dj (S4.25)

≤(∆−K)

p∗∑
j=1

dj −
1

2

√∑
j≤p∗

(Eāj(C∗)−∆)2
∑
j≤p∗

d2
j (S4.26)

≤− 1

2

√∑
j≤p∗

(Eāj(C∗)−∆)2
∑
j≤p∗

d2
j (S4.27)

≤− 1

2

√∑
j≤p∗

(Eāj(C∗)−∆)2 sup
j=1,...,p∗

d2
j . (S4.28)

Combining (S4.23) and (S4.28), we get the result.

Proof of inequality (S4.12): It suffices to prove

P

(
sup

C,‖w‖1≤s
|F (C,w)− EF (C,w)| ≥ cn

)
(S4.29)

≤pKn exp(− nc2

24s2σ2

). (S4.30)

Since C can have at most Kn choices, we have

P

(
sup

C,‖w‖1≤s
|F (C,w)− EF (C,w)| ≥ cn

)

≤Kn sup
C
P

(
sup
‖w‖1≤s

|F (C,w)− EF (C,w)| ≥ cn

)
. (S4.31)

Using the dual norm, we actually have that

sup
‖w‖1≤s

|F (C,w)− EF (C,w)| = s · sup
j∈1,...,p

|āj(C)− Eāj(C)|. (S4.32)
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Therefore, (S4.31) can be bounded by

Kn sup
C
P

(
sup
‖w‖1≤s

|F (C,w)− EF (C,w)| ≥ cn

)

≤Kn sup
C
P

(
sup

j∈1,...,p
|āj(C)− Eāj(C)| ≥

c

s
n

)
(S4.33)

≤pKn sup
C,j=1,...,p

P
(
|āj(C)− Eāj(C)| ≥

c

s
n
)
. (S4.34)

āj =
∑K

k=1

(
1√
|Ck|

∑
i∈Ck

xij

)2

has the same distribution as ‖Y + bj‖2 where Y obeys

N (0, IK×K), bjk =
√
nπ̃kµ̃2

kj for j = 1, . . . , p∗ and bjk = 0 for j > p∗. By lemma 2, we

know āj are all sub exponential variables with parameter (2
√
K + 2nσ2, 1). Note that

c < σ2 and s ≥ 1,

c

s
n ≤ nσ2 ≤ 4(K + 2nσ2).

Therefore when n ≥ K
σ2

, i.e. σ2n > K, the last term could be bounded by

exp(− nc2

24s2σ2

). (S4.35)

This completes the proof.

S5 Proof of Theorem 4

Proof. Similar to the proof of Theorem 3, we assume |Ck| = n × πk for k = 1, . . . , K.

Then the proof can be summarized as the following chain of inequalities,

P (ŵ has SCP)

≥P
(

sup
C,w∈Ω2

|F (C,w)− EF (C,w)| < 1

2
nσ1

)
(S5.36)

≥1− pKn exp(− nσ2
1

96s2σ2

). (S5.37)
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Under the theorem conditions, similar to theorem 1, we can prove the last term goes to

0. Now we only prove (S5.36-S5.37).

Proof of inequality (S5.36): It suffices to prove that

{ŵ does not have SCP} =⇒
{

sup
C,w∈Ω2

|F (C,w)− EF (C,w)| ≥ 1

2
nσ1

}
.

If ŵ does not have SCP, then there exist features j1, j2 s.t. j1 > p∗ is a noise feature

where ŵj1 6= 0 and j2 < p∗ is a relevant feature where ŵj2 = 0. Consider w̃ such that

w̃j =


ŵj j 6= j1, j2,

ŵj2 j = j1,

ŵj1 j = j2.

Note that w̃ is in Ω2, too. By lemma 3 and Theorem 1,

EF (C∗, w̃)− EF (Ĉ, ŵ) =Ks+ n

p∗∑
j=1

w̃j

K∑
k=1

πkµ
2
kj −Ks− n

p∗∑
j=1

ŵj

K∑
k=1

π̃kµ̃
2
kj (S5.38)

≥n
p∗∑
j=1

(w̃j − ŵj)
K∑
k=1

πkµ
2
kj (S5.39)

=nŵj1

K∑
k=1

πkµ
2
kj2

(S5.40)

≥nσ1. (S5.41)

On the other hand, F (C∗, w̃
¯

) ≤ F (Ĉ, ŵ) because (Ĉ, ŵ) is optimal. Therefore,

sup
C,w∈Ω2

|F (C,w)− EF (C,w)| > 1

2
nσ1.

Thus we know the first inequality holds.
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Proof of inequality (S5.37): It suffices to prove

P

(
sup
C,w∈Ω2

|F (C,w)− EF (C,w)| ≥ 1

2
nσ1

)
(S5.42)

≤pKn exp(− nσ2
1

96s2σ2

). (S5.43)

Since C can have at most Kn choices. Therefore, we have

P

(
sup
C,w∈Ω2

|F (C,w)− EF (C,w)| ≥ 1

2
nσ1

)
≤Kn sup

C
P

(
sup
w∈Ω2

|F (C,w)− EF (C,w)| ≥ 1

2
nσ1

)
. (S5.44)

Using the dual norm,

sup
w∈Ω2

|F (C,w)− EF (C,w)| = s · sup
j∈1,...,p

|āj(C)− Eāj(C)|. (S5.45)

Therefore, (S5.44) can be bounded by

Kn sup
C
P

(
sup
w∈Ω2

|F (C,w)− EF (C,w)| ≥ 1

2
nσ1

)
≤Kn sup

C
P

(
sup

j∈1,...,p
|āj(C)− Eāj(C)| ≥

1

2s
nσ1

)
(S5.46)

≤pKn sup
C,j=1,...,p

P

(
|āj(C)− Eāj(C)| ≥

1

2s
nσ1

)
. (S5.47)

āj =
∑K

k=1

(
1√
|Ck|

∑
i∈Ck

xij

)2

has the same distribution as ‖Y + bj‖2 where Y obeys

N (0, IK×K), bjk =
√
nπ̃kµ̃2

kj for j = 1, . . . , p∗ and bjk = 0 for j > p∗. By lemma 2, we

know āj are all sub exponential variables with parameter (2
√
K + 2nσ2, 1). Note that

s ≥ 1,

1

2s
nσ1 ≤ nσ2 ≤ 4(K + 2nσ2).

When n ≥ K
σ2

, the last term could be bounded by

exp(− nσ2
1

96s2σ2

). (S5.48)
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Now the proof is completed.
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