OPTIMAL DESIGN FOR EXPERIMENTS

WITH POSSIBLY INCOMPLETE OBSERVATIONS

Kim May Lee, Stefanie Biedermann and Robin Mitra

University of Southampton, UK

Supplementary Material

This supplement discusses Theorem 3 in the main paper.

S1 Discussion for Theorem 3.

We consider the restricted range $2 / n \leq w_{1} \leq 1-2 / n$. For fixed but arbitrary n, denote the second order approximation to $E\left[1 / Z_{i}\right]$ from (3.6) by $f\left(w_{i}, P\right), i=1,2$, and $w_{2}=1-w_{1}$.

For the D-objective function, consider $f\left(w_{1}, P\right) f\left(1-w_{1}, P\right)$. Taking derivatives with respect to w_{1} and setting equal to zero yields

$$
f\left(1-w_{1}^{*}, P\right) \frac{\partial}{\partial w_{1}} f\left(w_{1}^{*}, P\right)=f\left(w_{1}^{*}, P\right) \frac{\partial}{\partial w_{1}} f\left(1-w_{1}^{*}, P\right)
$$

which is solved by $w_{1}^{*}=1 / 2$.
Similarly, for the c-objective function, consider $f\left(w_{1}, P\right)+f\left(1-w_{1}, P\right)$.
After taking derivatives with respect to w_{1} and setting equal to zero, we
find that again the value $w_{1}^{*}=1 / 2$ satisfies the resulting equation

$$
\frac{\partial}{\partial w_{1}} f\left(w_{1}^{*}, P\right)=\frac{\partial}{\partial w_{1}} f\left(1-w_{1}^{*}, P\right)
$$

So for both optimality criteria, $w_{1}=1 / 2$ is a critical point. However, the objective functions are not generally convex in w_{1}. Figure 1 shows the typical behaviour of the c-criterion as a function of w_{1}, for fixed $n=20$ and various choices of P, where $0.1 \leq w_{1} \leq 0.9$ to ensure at least two runs in each support point. As n increases, the values of P where the shape of the

Figure 1: Top left: For small to moderate $P, w_{1}=1 / 2$ is the only turning point, and is the local and global minimum point. Top right: As P increases, two local maxima emerge while $w_{1}=1 / 2$ still is a local and the global minimum point. Bottom left: As P increases further, $w_{1}=1 / 2$ still is a local but no longer the global minimum point. Bottom right: For very large $P, w_{1}=1 / 2$ is the local and global maximum point.
objective function changes, will also be larger. For various values of n, we
have found the respective largest possible values of P such that $w_{1}=1 / 2$ is still the global minimum point (where $2 / n \leq w_{1} \leq 1-2 / n$). These points, together with the function $P(n)=1-2 / n$ for comparison, are depicted in Figure 2. While this function is not a perfect fit through the points, it can be used as a guideline.

Figure 2: Dots: Largest values of $P($ given $n)$ such that $w=1 / 2$ is the global minimum point. Continuous line: $P(n)=1-2 / n$.

For D-optimality, the objective function has the same shape and behaviour as the c-objective function, but the largest values of P that guarantee the global minimum to occur at $w_{1}=1 / 2$ are slightly smaller. For this criterion, the function $P(n)=1-2 / n^{0.8}$ turns out to be a good approximation to the upper bound.

