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Abstract: We introduce a new small area predictor when the Fay-Herriot normal

error model is fitted to a logarithmically transformed response variable, and the

covariate is measured with error. This framework has been previously studied by

Mosaferi et al. (2023). The empirical predictor given in their manuscript cannot

perform uniformly better than the direct estimator. Our proposed predictor

in this manuscript is unbiased and can perform uniformly better than the one

proposed in Mosaferi et al. (2023). We derive an approximation of the mean

squared error (MSE) for the predictor. The prediction intervals based on the MSE

suffer from coverage problems. Thus, we propose a non-parametric bootstrap

prediction interval which is more accurate. This problem is of great interest in

small area applications since statistical agencies and agricultural surveys are often

asked to produce estimates of right skewed variables with covariates measured

with errors. With Monte Carlo simulation studies and two Census Bureau’s data

sets, we demonstrate the superiority of our proposed methodology.
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1. Introduction

Small area estimation concerns producing estimates or predictions of

means, totals or quantiles for each of a finite collection of geographic regions,

where there are a small number of sampled units in each individual region

(area). Classical models used in small area estimation take the form of

mixed linear models that result from the concatenation of a model for error

in direct sample-based estimators for each area and an additional model

that connects areas through the use of covariates and area-specific random

effects.

These linking models take the direct estimators to be linear combina-

tions of covariates and random effects. We focus here on what is called the

area level model (Ghosh and Rao (1994), Pfefferman (2013), and Rao and

Molina (2015), Chap. 4) which uses covariates at the level of the areas.

Recently, Mosaferi et al. (2023) proposed a model of the Fay-Herriot type

and developed an empirical predictor for small area quantities that they are

right skewed.

A complication that arises is that the area-level covariates to be used

can be the result of survey sampling (see for instance Ybarra and Lohr

(2008)), thus producing a small area model with measurement error in

the covariates. The predictor given in their manuscript cannot perform
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uniformly better than the direct estimator because of bias issues. In this

manuscript, we propose a new unbiased predictor, which can perform uni-

formly better than that of Mosaferi et al. (2023) and the direct estimator.

Much work with small area models has been devoted to the estimation

of MSE. Prasad and Rao (1990) derived a closed form approximation for

the estimator of the MSE of an empirical Bayes (EB) predictor under the

assumption of normality. Jiang et al. (2002) proposed a jackknife estimator

based on a decomposition of MSE where the leading term is approximately

unbiased and does not depend on the area-specific random effects. Butar

and Lahiri (2003) developed a bootstrap estimator of MSE.

Here, we derive an approximation of the MSE for the predictor as well

as the jackknife estimator of MSE. Prediction intervals based on these suffer

from inadequate coverage probabilities. In order to address this shortcom-

ing, we develop prediction intervals based on a non-parametric bootstrap

method. In the rest of this section, we list some of the previous works in

the literature and highlight our contributions.

1.1 Prior Work

Molina and Mart́ın (2018) and Berg and Chandra (2014) worked on

the log-transformation model and proposed an EB predictor for the value
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of the variable of interest for out-of-sample individuals (and for small area

means) in a nested-error regression model where no measurement error is

assumed present in the covariates. The analytical MSE given in Molina

and Mart́ın (2018) has a complex form. Thus, the authors proposed a

parametric bootstrap procedure for estimation of the uncertainty following

Butar and Lahiri (2003). Slud and Maiti (2006) proposed a large sample

approximation to the MSE of the predictor for the transformed Fay-Herriot

model without measurement error.

1.2 Our Contributions

In this paper, we make several contributions to the literature. First,

unlike the earlier works given in Section 1.1, we assume the available co-

variate in the model is measured with error. Second, we propose a new

small area predictor for the skewed response variable in the original scale

at the area-level instead of unit-level under presence of measurement error

in covariate and make comparisons with the earlier predictor proposed by

Mosaferi et al. (2023). Third, we explain how to estimate the unknown

parameters using unbiased score functions from the marginal likelihood.

Finally, we derive an approximation for the MSE of our proposed predictor

and develop prediction intervals based on nonparametric bootstrap tech-
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niques.

The rest of the paper is organized as follows. In Section 2, we apply the

Fay and Herriot (1979) model to the transformed data with measurement

error in covariate and formulate the problem. In Section 3, we derive a new

predictor for the response variable in the proposed modeling framework.

In Section 4, we explain how to estimate the unknown parameters in the

model. In Section 5, we derive an estimator of the MSE of the predictor.

In Section 6, we construct non-parametric bootstrap prediction inter-

vals. In Section 7, using a Monte Carlo simulation study, we make compar-

isons with other predictors given in the literature. In Section 8, we illustrate

our methodology using two data sets from the Census Bureau. The related

discussions and possible extensions are given in Section 9. Technical details

and additional numerical results are in the Supplementary Material. All

the R code implementing the proposed methodology is available at Github

repository https://github.com/SepidehMosaferi/UnbiasedPredictor_

SkewedData.

2. Transformed Fay-Herriot Model with Measurement Errors

Assume response variables yi (i = 1, ...,m) are right skewed. Thus, the

log transformation of yi can stabilize the variation. Let zi = log(yi) and
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zi = ϕi + ei, where ϕi = log(θi) such that θi is unknown and ei
ind∼ N(0, ψi)

is the sampling error. We further define ϕi = β0 + β1xi + vi, where the

covariate xi is not observed, and what one observes is the Wi. The linking

error is vi
iid∼ N(0, σ2

v). The error terms (ei, vi) are mutually independent

per each i-th small area.

Then, the transformed Fay-Herriot model with measurement error in

covariate can be presented with the following hierarchical set-up

zi|ϕi
ind∼ N(ϕi, ψi)

ϕi
ind∼ N(β0 + β1xi, σ

2
v)

Wi
ind∼ N(xi, Ci), i = 1, ...,m. (2.1)

The (zi, ϕi) are assumed to be independent of the Wi. This is because

the former constitutes the sampling and linking model, while the later brings

in the measurement error part. Here, following Ybarra and Lohr (2008), σ2
v

is unknown but the sampling variances ψi and Ci are assumed to be known,

which can be obtained from the asymptotic variances of transformed direct

estimates (see, Carter and Rolph (1974), Efron and Morris (1975), and Fay

and Herriot (1979)).

The primary parameter of interest in the original scale is θi ≡ exp(β0+

β1xi + vi). Prediction of ϕi = log(θi), where log(θi) ≡ β0 + β1xi + vi, is
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identical to the problem of Ybarra and Lohr (2008).

We will adopt an empirical Bayes approach for estimation of the θi.

We will assume a flat prior for all the xi’s, but then estimate β0, β1, and

σ2
v from the resulting marginal likelihood. To this end, first observe that

writing γ⋆i = σ2
v/(σ

2
v + ψi), the conditional posterior distributions

ϕi|β0, β1, σ2
v , xi, zi,Wi

ind∼ N(γ⋆i zi + (1− γ⋆i )(β0 + β1xi), γ
⋆
i ψi),

and xi|β0, β1, σ2
v , zi,Wi are mutually independent, where

π(xi|β0, β1, σ2
v , zi,Wi) ∝ (σ2

v+ψi)
−1/2 exp

[
−1

2

{(zi − β0 − β1xi)
2

σ2
v + ψi

+
(Wi − xi)

2

Ci

}]
.

Next we use the identity,

(zi − β0 − β1xi)
2/(σ2

v + ψi) + (Wi − xi)
2/Ci = {β2

1Ci + σ2
v + ψi}−1 × (zi − β0 − β1Wi)

2

+ {β2
1/(σ

2
v + ψi) + C−1

i } ×
(
xi −

{β1(zi − β0)

σ2
v + ψi

+
Wi

Ci

}/{ β2
1

σ2
v + ψi

+
1

Ci

})2

.

(2.2)

Now writing Si(β1, σ
2
v) = β2

1Ci + σ2
v + ψi, one gets

xi|β0, β1, σ2
v , zi,Wi

ind∼ N
[β1Ci(zi − β0) + (σ2

v + ψi)Wi

Si(β1, σ2
v)

,
σ2
v + ψi

Si(β1, σ2
v)

]
.

Accordingly,

E(ϕi|β0, β1, σ2
v , zi,Wi) = E

[
E(ϕi|β0, β1, σ2

v , xi, zi,Wi)|β0, β1, σ2
v , zi,Wi

]
=

σ2
v

σ2
v + ψi

zi +
ψi

σ2
v + ψi

[
β0 + β1

{β1Ci(zi − β0) + (σ2
v + ψi)Wi

Si(β1, σ2
v)

}]
7
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=
σ2
v Si(β1, σ

2
v) + ψiβ

2
1Ci

(σ2
v + ψi)Si(β1, σ2

v)
zi +

ψi

σ2
v + ψi

[β0(σ2
v + ψi)

Si(β1, σ2
v)

+
β1(σ

2
v + ψi)Wi

Si(β1, σ2
v)

]
=
β2
1Ci + σ2

v

Si(β1, σ2
v)
zi +

ψi(β0 + β1Wi)

Si(β1, σ2
v)

= γ̃izi + (1− γ̃i)(β0 + β1Wi),

where γ̃i ≡ (β2
1Ci + σ2

v)/Si(β1, σ
2
v). Further,

V (ϕi|β0, β1, σ2
v , zi,Wi) = E

[
V (ϕi|β0, β1, σ2

v , xi, zi,Wi)|β0, β1, σ2
v , zi,Wi

]
+ V

[
E(ϕi|β0, β1, σ2

v , xi, zi,Wi)|β0, β1, σ2
v , zi,Wi

]
= γ⋆i ψi + (1− γ⋆i )

2β2
1

(σ2
v + ψi)Ci

Si(β1, σ2
v)

=
σ2
vψi

σ2
v + ψi

+
ψ2
i

(σ2
v + ψi)2

β2
1Ci

σ2
v + ψi

Si(β1, σ2
v)

=
1

σ2
v + ψi

[
σ2
vψi +

ψ2
i β

2
1Ci

Si(β1, σ2
v)

]
=

ψi

(σ2
v + ψi)Si(β1, σ2

v)

[
σ2
v(β

2
1Ci + σ2

v + ψi) + β2
1Ciψi

]
=

ψi

(σ2
v + ψi)Si(β1, σ2

v)

[
σ2
v(σ

2
v + ψi) + β2

1Ci(σ
2
v + ψi)

]
= γ̃iψi.

This leads to the Bayes estimator

θ̃i,A = E[exp(ϕi)|β0, β1, σ2
v , zi,Wi]

= exp(γ̃izi + (1− γ̃i)(β0 + β1Wi) + γ̃iψi/2),

proposed by Mosaferi et al. (2023). Also,

V [exp(ϕi)|β0, β1, σ2
v , zi,Wi] = exp{γ̃iψi}[exp{γ̃iψi} − 1]

× exp{2[γ̃izi + (1− γ̃i)(β0 + β1Wi)]}.
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Further, from (2.2), the marginal likelihood of (β0, β1, σ
2
v) is given by

LM(β0, β1, σ
2
v) =

m∏
i=1

S
−1/2
i (β1, σ

2
v) exp

[
− 1

2

m∑
i=1

τ 2i (β0, β1)

Si(β1, σ2
v)

]
, (2.3)

where we define τi(β0, β1) = zi − β0 − β1Wi. In the reminder of this paper,

we will work with the score functions based on the marginal likelihood (2.3)

to estimate the vector of unknown parameters.

3. Optimal Predictor in the Original Scale

It is clear that E(θ̃i,A) = E(θi) = exp(β0 + β1xi +
1
2
σ2
v) when Ci = 0.

The above equality, however, is not true in general. To this end, we prove

the following theorem.

Theorem 1. E(θ̃i,A) = exp(β0 + β1xi +
1
2
{γ̃i(σ2

v + ψi) + (1− γ̃i)β
2
1Ci}).

Proof: See Supplementary Material.

In view of Theorem 1,

E(θ̃i,A)

E(θi)
= exp

(1
2
{γ̃i(σ2

v + ψi) + (1− γ̃i)β
2
1Ci − σ2

v}
)

= exp
(1
2
di

)
, (say)

that is

E
{
θ̃i,A exp

(
− 1

2
di

)}
= E(θi).
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Therefore, our proposed unbiased predictor is

θ̃i,B = θ̃i,A exp
(
− 1

2
di

)
. (3.1)

With some algebra, di can be simplified as di = 2ψiβ
2
1Ci/Si(β1, σ

2
v).

Remark 1. When Ci = 0, the true value of xi can be used for the optimal

predictor. By substituting Ci = 0 into θ̃i,B, the optimal predictor is θ̃0i,B =

exp(γ⋆i zi + (1 − γ⋆i )(β0 + β1xi) + γ⋆i ψi/2), which is same as the predictor

given in Slud and Maiti (2006) and is also identical to predictor θ̃i,A.

4. Estimating the Unknown Parameters

We are interested in obtaining estimates of the vector of unknown pa-

rameters ω = (β0, β1, σ
2
v)

′. Note that we do not directly use the partial

derivatives of the marginal likelihood given in expression (2.3) since they

are not unbiased. We denote the log-likelihood of LM(.) in (2.3) by ℓM(ω).

The score functions of ℓM(ω) can be defined as follows:

U(ω) = (U1(ω), U2(ω), U3(ω))′ =
(∂ℓM(ω)

∂β0
,
∂ℓM(ω)

∂β1
,
∂ℓM(ω)

∂σ2
v

)′
.

These score functions are biased for estimating the unknown parameters

ω. Thus, we define the unbiased score functions as follows

Ũ(ω) = (Ũ1(ω), Ũ2(ω), Ũ3(ω))′ = U(ω)− E[U(ω)], (4.1)
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such that E[Ũ(ω)] = 0. Original score functions for U(ω) are

U1(ω) =
m∑
i=1

S−1
i (β1, σ

2
v)τi(β0, β1),

U2(ω) = −
m∑
i=1

S−1
i (β1, σ

2
v)β1Ci +

m∑
i=1

S−1
i (β1, σ

2
v)Wiτi(β0, β1)

+
m∑
i=1

S−2
i (β1, σ

2
v)τ

2
i (β0, β1)β1Ci,

U3(ω) = −1

2

m∑
i=1

S−1
i (β1, σ

2
v) +

1

2

m∑
i=1

S−2
i (β1, σ

2
v)τ

2
i (β0, β1),

and their expected values are

E[U1(ω)] = 0, E[U2(ω)] = −
m∑
i=1

S−1
i (β1, σ

2
v)β1Ci, E[U3(ω)] = 0,

where we emphasize that E[Wiτi(β0, β1)] = −β1Ci.

Using expression (4.1), the unbiased score functions for estimating ω

are

Ũ1(ω) =
m∑
i=1

S−1
i (β1, σ

2
v)τi(β0, β1) = 0,

Ũ2(ω) =
m∑
i=1

S−1
i (β1, σ

2
v)Wiτi(β0, β1) +

m∑
i=1

S−2
i (β1, σ

2
v)τ

2
i (β0, β1)β1Ci = 0,

Ũ3(ω) = −1

2

m∑
i=1

S−1
i (β1, σ

2
v) +

1

2

m∑
i=1

S−2
i (β1, σ

2
v)τ

2
i (β0, β1) = 0. (4.2)

One can solve equations given in (4.2) numerically to find the estimates

of unknown parameters. Given the current estimate ω(r) of ω, by replacing

Si(β1, σ
2
v) with Si(β

(r)
1 , σ

2(r)
v ) and β1 with β

(r)
1 in Ũ1(ω), the solution of β0
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is given by

β0 =

{
m∑
i=1

S−1
i (β

(r)
1 , σ2(r)

v )

}−1 { m∑
i=1

S−1
i (β

(r)
1 , σ2(r)

v )(zi − β
(r)
1 Wi)

}
.

Similarly, by replacing Si(β1, σ
2
v) with Si(β

(r)
1 , σ

2(r)
v ) and β0 with β

(r)
0 in

Ũ2(ω), the solution of β1 is given by

β1 =

{
m∑
i=1

S−1
i (β

(r)
1 , σ2(r)

v )W 2
i −

m∑
i=1

S−2
i (β

(r)
1 , σ2(r)

v )τ 2i (β
(r)
0 , β

(r)
1 )Ci

}−1

×

{
m∑
i=1

S−1
i (β

(r)
1 , σ2(r)

v )Wi(zi − β
(r)
0 )

}
.

Therefore, we can develop the iterative Algorithm 1 to solve the estimating

equations.

Remark 2. Note that the updating process β1 in Algorithm 1 is similar

to the modified least squares estimator used in Ybarra and Lohr (2008) in

which a fixed weight is used instead of S−1
i (β1, σ

2
v). Thus, the updating

process in the iterative algorithm can be regarded as iteratively reweighted

least squares.
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Algorithm 1: Iterative algorithm for solving the unbiased esti-

mating equations (4.2)

1. Set the initial value ω(0) and r = 0.

for r = 1, . . . , R do

2. Update β0 as

β
(r+1)
0 =

{ m∑
i=1

S−1
i (β

(r)
1 , σ2(r)

v )
}−1{ m∑

i=1

S−1
i (β

(r)
1 , σ2(r)

v )(zi−β(r)
1 Wi)

}
.

3. Update β1 as

β
(r+1)
1 =

{ m∑
i=1

S−1
i (β

(r)
1 , σ2(r)

v )W 2
i −

m∑
i=1

S−2
i (β

(r)
1 , σ2(r)

v )τ 2i (β
(r+1)
0 , β

(r)
1 )Ci

}−1

×
{ m∑

i=1

S−1
i (β

(r)
1 , σ2(r)

v )Wi(zi − β
(r+1)
0 )

}
.

4. Update σ2
v (obtain σ

2(r+1)
v ) by solving the equation

−1

2

m∑
i=1

S−1
i (β

(r+1)
1 , σ2

v) +
1

2

m∑
i=1

S−2
i (β

(r+1)
1 , σ2

v)τ
2
i (β

(r+1)
0 , β

(r+1)
1 ) = 0.

5. If ∥ω(r+1) − ω(r)∥ < ε with tolerance ε > 0, ω(r+1) is the

final estimate; otherwise, set r = r + 1 and go back to Step 2.

end

Result: ω̂ = (β̂0, β̂1, σ̂
2
v)

′.
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Theorem 2. Define σ̃2
ci := Ci(σ

2
v +ψi)S

−1
i (β1, σ

2
v). Based on the properties

of the unbiased estimating functions, one can obtain [ω̂−ω]
D−→ N3(0, I

−1
ω )

as m→ ∞, where

Iω =


∑m

i=1 S
−1
i (β1, σ

2
v)

∑m
i=1 S

−1
i (β1, σ

2
v)xi 0∑m

i=1 S
−1
i (β1, σ

2
v)xi

∑m
i=1 S

−1
i (β1, σ

2
v)(x

2
i + σ̃2

ci) 0

0 0 1
2

∑m
i=1 S

−2
i (β1, σ

2
v)

 .

Proof: See Supplementary Material.

5. Mean Squared Error Formulae

In this Section, we find an expression for the MSE of θ̃i,B which is correct

up to O(m−1/2) as well as the jackknife estimator of MSE for θ̃Ei,B := θ̃i,B(ω̂).

The MSE of the empirical predictor B is

MSE(θ̃Ei,B) = E
[
(θ̃i,B − θi)

2
]
+ E

[
(θ̃Ei,B − θ̃i,B)

2
]

:= R1i +R2i, (5.1)

where R1i is equal to

R1i = E
[
(θ̃i,B − θi)

2
]
= E

[
(θi − θ̃i,A)

2
]
+ E

[
(θ̃i,A − θ̃i,B)

2
]
.

Firstly,

E
[
(θi − θ̃i,A)

2
]
= E

[
E
{
(θi − θ̃i,A)

2|β0, β1, σ2
v , zi,Wi

}]
= E

[
V (θi)|β0, β1, σ2

v , zi,Wi

]
= E

[
E(θ2i |β0, β1, σ2

v , zi,Wi)− θ̃2i,A

]
= E(θ2i )− E(θ̃2i,A).

14

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0098



Secondly, E
[
(θ̃i,A − θ̃i,B)

2
]
= E

[
θ̃2i,A{1− exp(−1

2
di)}2

]
. By combining the

expressions, we have

E
[
(θ̃i,B − θi)

2
]
= E(θ2i ) + E(θ̃2i,A)

{
− 2 exp(−1

2
di) + exp(−di)

}
.

Additionally,

E(θ̃2i,A) = E
[
exp

{
2γ̃izi + 2(1− γ̃i)(β0 + β1Wi) + γ̃iψi

}]
= exp

[
2
{
γ̃i(β0 + β1xi) + (1− γ̃i)(β0 + β1xi)

}]
× exp

[
2γ̃2i (σ

2
v + ψi) + 2(1− γ̃i)

2β2
1Ci + γ̃iψi

]
= exp

[
2(β0 + β1xi + σ2

v)
]
exp(−2σ2

v) exp(−γ̃iψi)

× exp
[
2
{
γ̃2i (σ

2
v + ψi) + (1− γ̃i)

2β2
1Ci + γ̃iψi

}]
.

Note γ̃2i (σ
2
v + ψi) + (1− γ̃i)

2β2
1Ci + γ̃iψi = di + r2. Thus,

E(θ̃2i,A) = E(θ2i ) exp
{
2di − γ̃iψi

}
.

As a result

R1i = E
[
(θ̃i,B − θi)

2
]
= E(θ2i ) + E(θ2i ) exp

{
2di − γ̃iψi

}{
− 2 exp

(
− 1

2
di

)
+ exp(−di)

}
= E(θ2i )

{
1− 2 exp

(3
2
di − γ̃iψi

)
+ exp[di − γ̃iψi]

}
:=M1i(ω)M2i(ω), (5.2)

where E(θ2i ) = exp[2(β0 + β1xi + σ2
v)]. We define M1i(ω) as follows

M1i(ω) := E(θ2i ) = E[exp(2ϕi)] = exp[2β0 + 2β1xi + 2σ2
v ].
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Now note that E[exp(2zi)] = exp[2β0 +2β1xi +2σ2
v +2ψi]. In order to find

an unbiased estimator forM1i(ω), one can define M̂1i(ω̂) := exp[2(zi−ψi)],

so that E[M̂1i(ω̂)] =M1i(ω).

Now, we have E[M̂1i(ω̂)−M1i(ω)]2 = E[M̂2
1i(ω̂)]−M2

1i(ω), so that

E[M̂2
1i(ω̂)] = E[exp{4(zi − ψi)}] = exp(−4ψi)E[exp(4zi)]

= exp(−4ψi) exp[4β0 + 4β1xi + 8σ2
v + 8ψi].

Therefore,

E[M̂1i(ω̂)−M1i(ω)]2 = exp(−4ψi) exp[4β0 + 4β1xi + 8σ2
v + 8ψi]

− exp(−4ψi) exp[4β0 + 4β1xi + 4σ2
v + 4ψi]

= exp(−4ψi) exp[4β0 + 4β1xi + 8σ2
v + 8ψi][1− exp(−4σ2

v − 4ψi)].

One can estimate E[M̂1i(ω̂)−M1i(ω)]2 by Λi(ω̂) defined as follows:

Λi(ω̂) := exp(−4ψi) exp(4zi)[1− exp(−4σ̂2
v − 4ψi)].

For M2i(ω) in expression (5.2), we have

M2i(ω) = 1− 2 exp
[3
2
di − γ̃iψi

]
+ exp[di − γ̃iψi].

Define

E[M2
2i(ω̂)−M2

2i(ω)] := E[M2i(ω̂)−M2i(ω)]2 + 2M2i(ω)E[M2i(ω̂)−M2i(ω)],
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where the terms can be expanded as

(i) E[M2i(ω̂)−M2i(ω)]2

= E
[{

exp(d̂i − ˆ̃γiψi)− exp(di − γ̃iψi)
}
− 2

{
exp

(3
2
d̂i − ˆ̃γiψi

)
− exp

(3
2
di − γiψi

)}]2
= O(m−1), following Theorem 2, and

(ii) E|M2i(ω̂)−M2i(ω)| ≤ E1/2[M2i(ω̂)−M2i(ω)]2 = O(m−1/2).

The quantity R1i can be estimated with

R̂1i =M2
2i(ω̂)Λi(ω̂) = [1− 2 exp

(3
2
d̂i − ˆ̃γiψi

)
+ exp(d̂i − ˆ̃γiψi)]

2

× exp(−4ψi) exp(4zi)[1− exp(−4σ̂2
v − 4ψi)],

where it has the property that its bias and variance vanish with an order

O(m−1/2). Details of derivations are given in the Supplementary Material.

In general, there is no closed form expression available for the term R2i

in (5.1). One can use the jackknife technique to estimate it as well as the

bias of R̂1i for R1i. Therefore, the jackknife estimator of MSE(θ̃Ei,B) is

mseJ(θ̃
E
i,B) = R̂1i,J + R̂2i,J ,

where R̂1i,J = R̂1i−m−1
m

∑m
j=1(R̂1i(−j)−R̂1i) and R̂2i,J = m−1

m

∑m
j=1(θ̃

E
i(−j),B−

θ̃Ei,B)
2.

Under the regularity conditions 1–3 given in the Supplementary Ma-

terial, one can show that E{R̂1i,J} = R1i + O(m−1) and E{R̂2i,J} =
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R2i + o(m−1) as m → ∞. Thus, E{mseJ(θ̃Ei,B)} = MSE(θ̃Ei,B) + O(m−1).

The proof follows along the same lines of Mosaferi et al. (2023), and hence

we omit it.

The analytical approximation for the MSE of predictor θ̃i,B has a com-

plex form. As we will find from our simulations, constructing intervals based

on that as well as the jackknife estimator of MSE perform poorly in terms

of coverage or length. Additionally, jackknife MSE might yield negative

values. Thus, one might prefer to use resampling procedures such as boot-

strap to construct the intervals as they are easier with better interpretation

and coverage property.

6. Non-parametric Bootstrap Prediction Intervals

In this Section, we propose a non-parametric bootstrap approach to

approximate the entire distribution of predictor B. We use the percentiles

of the bootstrap histogram to obtain highly accurate prediction intervals in

terms of coverage. For this purpose, we repeatedly draw samples from the

original observed sample.

We construct the bootstrap distribution of predictor B (θ̃i,B) based on

the observed data (Wi, yi) for i = 1, ...,m such that θ̃∗i,B = θ̃i,B(W
∗
i , y

∗
i ),

where (W ∗
i , y

∗
i ) is obtained from the resampling observed pairs (Wi, yi); i.e.,

18

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0098



{(Wj1 , yj1), (Wj2 , yj2), ..., (Wjm , yjm)} where j1, j2, ..., jm is a random sample

drawn with replacement from {1, 2, ...,m}. Each bootstrap sample gives a

non-parametric bootstrap replication of θ̃i,B denoted by θ̃∗i,B. After repeat-

ing the bootstrap distribution “BT” times, we obtain θ̃
∗(1)
i,B , θ̃

∗(2)
i,B , ..., θ̃

∗(BT )
i,B .

We use the upper and lower α/2 quantiles of these BT numbers as the

prediction interval for θ. Specifically, we propose to use the interval

Îi,α = [ℓi,α, ui,α] = [Ĝ−1
i (α/2), Ĝ−1

i (1− α/2)], (6.1)

where Ĝi(t) =
1

BT

∑BT
bt=1 I(θ̃

∗(bt)
i,B ≤ t). In the above expression, Ĝi(t) is the

cumulative distribution function (CDF) of BT bootstrap replications, and

we let BT = 2000 in the application and simulation studies.

Using functional delta method (van der Vaart (2000), Chap. 20) and

Theorem 2, (θ̃i,B − θi)
D−→ N(0, σ2) for a constant σ2 > 0. Let’s consider the

sampling distribution of standardized θ̃i,B (i.e. Ti = {θ̃i,B − θi}/σi) defined

as Gi(t) ≡ P (Ti ≤ t) for t ∈ R. We can obtain the bootstrap estimator

of Gi(t) from the bootstrap version T ∗
i = {θ̃∗i,B − θ̃i,B}/σ∗

i of Ti defined as

Ĝ∗
i (t) ≡ P∗(T

∗
i ≤ t) for t ∈ R. As m → ∞ and the bootstrap replications

BT increase, the probability distribution Ĝ∗
i (t) weakly converges to Gi(t),

i.e., Ĝ∗
i (t) → Gi(t) for all the continuity points t of Gi (see, Hall (2013),

Chaps. 3 and 4) and under the assumption of σ∗
i /σi

P−→ 1.

One can use the subsequence arguments and the correspondence be-
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tween convergence almost surely along subsequences and convergence in

probability to show the distance between distributions Ĝ∗
i and Gi goes to

zero in probability. Thus, based on Polya’s theorem, supt |Ĝ∗
i (t)−Gi(t)| =

supt |{Ĝ∗
i (t)−Φ(t)}−{Gi(t)−Φ(t)}| P−→ 0 for t ∈ R and as m→ ∞ (Lahiri

(2003), Chap. 2), where Φ(t) is the CDF of standard normal, and Ĝ∗
i (.)

is a consistent estimator of Gi(.) under the regularity conditions 1–2 given

in the Supplementary Material and assuming E[y2i ] , E[||xi||2] <∞. When

model (2.1) is correctly specified,

P (|σ−1
i (θi − θ̃∗i,B)| ≥ zα/2) ≤ P (|σ−1

i (θi − θ̃i,B)| ≥ zα/2) + P (|σ∗−1
i (θ̃i,B − θ̃∗i,B)| ≥ zα/2)

= α + o(1).

This states that the prediction interval Îi,α given in (6.1) is asymptotically

valid.

7. Simulation Studies

We perform a simulation study to compare the performance of several

predictors. For this purpose, we generate data from the model in Section

1. For effective comparisons, xi is drawn from N(5, 9) (see also Ybarra and

Lohr (2008)) and ψi ∼ Gamma(4.5, 2). Then, log Yi = 3xi + vi, log yi =

log Yi + ei, and Wi = xi + ui. Here, vi ∼ N(0, σ2
v), ei ∼ N(0, ψi), and

ui ∼ N(0, Ci). The sources of errors vi, ei, and ui are mutually independent.
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We let σ2
v = 2, and Ci ∈ {0, d}, where d = 2 or 4 such that only k% of the

Ci’s randomly receive d and the rest receive 0, where k ∈ {25, 50, 80, 100}.

The number of small areas are m ∈ {20, 50, 100}.

This set-up of simulation has been previously used by Ybarra and Lohr

(2008) which makes our results effectively comparable with theirs. We

assume the total number of replications to be R = 2000. We compare the

performance of four predictors as follows, where we assume Yi is the truth:

(1) yi: direct estimator,

(2) θ̃i,No-ME: predictor without measurement error,

(3) θ̃i,A: predictor A, and

(4) θ̃i,B: predictor B.

For all the predictors, we substitute the estimated values of unknown

parameters ω. The resulting predictors are listed in Table 1. Overall, the

values of proposed predictor B are much closer to the truth Yi compared to

the rest of other predictors.

We observe that when Ci = 0 (no measurement error), the values of

θ̃i,A, θ̃i,B, and θ̃i,No-ME are identical. As the measurement error Ci increases,

the values of proposed predictor θ̃i,B become much closer to the truth Yi

21

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0098



Table 1: Comparison of predictors among all the small areas assuming

m = 20 and k = 50%. The numerical values are in the logarithmic scale.

Ci Yi yi θ̃i,No-ME θ̃i,A θ̃i,B

2 16.030 18.222 17.218 19.668 16.337

0 34.128 38.389 36.726 36.726 36.726

2 13.808 20.581 15.308 19.826 14.595

2 -2.514 3.224 0.751 5.094 -0.987

0 9.524 14.283 11.011 11.011 11.011

0 6.371 13.469 8.172 8.172 8.172

2 10.209 14.919 11.995 16.771 10.640

2 18.659 21.433 19.917 23.553 18.665

0 14.746 18.158 15.858 15.858 15.858

0 11.059 16.921 12.780 12.780 12.780

2 26.719 32.409 29.597 34.329 27.178

0 21.941 29.260 24.298 24.298 24.298

2 1.420 8.516 4.125 9.875 4.291

0 14.547 18.936 15.751 15.751 15.751

2 13.990 18.599 16.078 20.317 14.602

2 15.504 22.758 17.554 23.219 15.844

2 16.491 20.650 18.181 22.292 16.827

2 12.325 15.297 13.927 16.460 12.934

0 16.549 20.563 17.501 17.501 17.501

2 25.688 28.582 27.296 30.386 26.005

Avg 14.860 19.758 16.702 19.194 15.951

rather than θ̃i,A. In the last row of Table 1, we report the average over the

values of all small areas, which confirm the previous conclusion.
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We compare the performance of predictors based on the empirical MSE

defined as follows:

EMSE(θ̃i) =
1

R

R∑
r=1

[
θ̃
(r)
i − Y

(r)
i

]2
, (7.1)

where θ̃i is the predictor for Yi, and R is the total number of replications.

Based on the results given in Table 2, predictor B is superior to the rest

of other predictors. Additionally, we make comparisons with the estimated

MSE (R̂1i) and jackknife estimator (mseJ). When Ci = 0, the empirical

MSE’s for θ̃i,A, θ̃i,B, and θ̃i,No-ME are identical, and when Ci = 2, the em-

pirical MSE’s for θ̃i,B are much smaller than the empirical MSE’s for θ̃i,A.

Overall, R̂1i and mseJ are much larger than the empirical MSE of predictor

B. In the last row of the Table, we report the average over the values of all

small areas.

For further evaluation, we give the ratio of average MSE of predictor θ̃i

to average MSE of direct estimator yi in Table 3. When Ci = 0, the ratio

of average MSE’s for θ̃i,A, θ̃i,B, and θ̃i,No-ME are identical. When Ci = 2,

this ratio is much smaller for θ̃i,B compared to θ̃i,A and θ̃i,No-ME. Note that,

since predictor A is substantially biased (see Section 3), its ratio of MSE to

the direct one is very large.
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Table 2: Comparison of empirical MSE of predictors among all the small

areas assuming m = 20 and k = 50%. The numerical values are in the

logarithmic scale.

Ci EMSE(yi) EMSE(θ̃i,No-ME) EMSE(θ̃i,A) EMSE(θ̃i,B) R̂1i(θ̃i,B) mseJ(θ̃i,B)

2 39.620 37.307 42.255 35.659 81.028 83.227

0 82.052 76.862 76.862 76.862 136.723 137.929

2 48.272 35.470 45.134 34.809 84.564 67.638

2 11.322 5.430 14.972 3.467 4.237 8.242

0 34.702 25.503 25.503 25.503 39.084 38.530

0 34.375 19.240 19.240 19.240 27.859 27.626

2 35.133 27.569 39.131 25.354 56.307 52.168

2 46.958 42.890 50.917 40.981 89.584 90.375

0 41.084 34.251 34.251 34.251 57.158 57.389

0 39.715 28.266 28.266 28.266 34.986 34.773

2 70.133 64.302 72.810 59.415 121.389 117.451

0 65.184 53.869 53.869 53.869 82.810 83.095

2 23.345 11.770 26.675 15.912 22.204 23.868

0 43.877 33.907 33.907 33.907 60.551 60.349

2 42.366 36.899 44.901 35.275 71.884 70.593

2 51.120 39.963 50.437 37.296 81.169 83.368

2 45.980 40.585 48.605 37.410 82.652 85.104

2 35.189 34.129 36.818 31.586 70.900 71.963

0 47.121 37.576 37.576 37.576 70.871 71.125

2 61.381 57.999 64.864 55.730 118.087 120.666

Avg 44.946 37.189 42.350 36.119 69.702 69.274
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Table 3: Ratio of average MSE of predictor θ̃i (A, B, or No-ME) to average

MSE of direct estimator yi, where m = 20.

Error Ratio of MSEs

Ci (k = 50%) θ̃i,No-ME θ̃i,A θ̃i,B

0 0.006 0.006 0.006

2 0.003 14.548 2.270e-05

We also provide the relative bias (RB) and the relative root mean

squared error (RRMSE) of the main competitors; i.e. predictor A and

predictor B in Figure 1. These quantities can be defined as follows:

RB(θ̃i) =
E[θ̃i − Yi]

Yi
, and RRMSE(θ̃i) =

{E[θ̃i − Yi]
2}1/2

Yi
.

Based on the results in Figure 1, we observe that the RB’s and RRMSE’s

of θ̃i,B are very closely centered around 0, but this is not the case for the

θ̃i,A.

For the sake of completeness, we compare the predictors over all pos-

sible values of k in Table S2.1 of the Supplementary Material for m ∈

{20, 50, 100}. The comparisons are based on the empirical MSE’s which

are averaged by values of Ci’s and confirm the previous arguments.

In order to compare the performance of our proposed prediction inter-

vals for predictor B with the direct estimator, we compare the coverage

probabilities and expected lengths of four prediction intervals as follows:
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Figure 1: (a) Plot of RB for two predictors A and B. (b) Plot of RRMSE

for two predictors A and B. We assume m = 20 and k = 50%.

(1) Direct: [yi − z1−α/2

√
ψi, yi + z1−α/2

√
ψi],

(2) Estimated MSE: [θ̃i,B − z1−α/2

√
R̂1i(θ̃i,B), θ̃i,B + z1−α/2

√
R̂1i(θ̃i,B)],

(3) Jackknife: [θ̃i,B−z1−α/2

√
mseJ(θ̃i,B), θ̃i,B+z1−α/2

√
mseJ(θ̃i,B)], and

(4) Bootstrap: [ℓi,α, ui,α] given in (6.1).

We consider nominal coverage 100(1 − α)% = 90%, 95%, and 99%. The

results are given in Table 4. Overall, the bootstrap method outperforms

the other three methods.
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The coverage probabilities for bootstrap method are close to the nomi-

nal coverage, thus the intervals more accurately include the truth. Predic-

tion intervals based on the direct method, estimated MSE, and jackknife

are not reliable as they do not approximately follow the normal theory.

Additionally, the latter two usually suffer from coverage problem because

of the choice of MSE estimator and small values of m.

Table 4: Comparison of coverage probabilities and mean of the log lengths

for the prediction intervals across all the methods. The results for the

lengths are averaged over all the small areas. Additionally, we assume

k = 50% for all the cases.

Nominal Small Areas Direct Estimated MSE Jackknife Bootstrap

Coverage m

90% 20 0.520 0.450 0.420 0.990

(15.383) (12.195) (13.646) (30.463)

50 0.688 0.596 0.718 0.928

(18.483) (19.754) (16.708) (32.969)

95% 20 0.560 0.450 0.420 1.000

(15.561) (12.374) (13.824) (37.314)

50 0.696 0.596 0.764 0.948

(18.662) (19.932) (16.887) (36.755)

99% 20 0.560 0.500 0.500 1.000

(15.836) (12.649) (14.099) (38.346)

50 0.736 0.596 0.791 0.992

(18.936) (20.207) (17.161) (37.692)
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8. Applications to Census Bureau’s Data Sets

In this Section, we describe the steps used to apply the preceding the-

ory to census data sets. The first application is related to the Census

of Governments, where we illustrate our methodology at the state level.

The second application is related to the Small Area Income and Poverty

Estimates (SAIPE) Program, where we illustrate our methodology at the

county level.

8.1 Census of Governments

The purpose of the Census of Governments is providing periodic and

comprehensive statistics about governments and governmental activities,

and it covers all the states and local governments in the United States.

Data are obtained on government organizations, finances, and employment

and include location, type, and characteristics of local governments and

officials; see https://www.census.gov/econ/overview/go0100.html for

further information.

Since 1957 the United States Census Bureau collects information from

governmental units for years ending in 2 and 7. Here, we utilize data from

2007 and 2012 with 49 states of the Continental United States (excluding

Hawaii and District of Columbia) as our small areas of interest.
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We define the parameter of interest θi to be the mean number of full-

time employees per government at state i from the 2012 data set. We define

the covariate to be the corresponding mean from the 2007 data set. To

define the response yi, we select sample of sizes 4000 and 8000 governmental

units from the 2012 data set. Similarly, we construct the covariate Wi from

an independent sample of 40, 000 and 80, 000 governmental units selected

from the 2007 data set.

The distributions of response and covariate are displayed in Figures S3.1

and S3.2 of the Supplementary Material for sample sizes 4000 and 8000. We

observe skewed patterns in both the average number of full-time employees

from 2007 and 2012 which motivates our proposed framework. Before a

logarithmic transformation, both variables fail the normality assumption,

and the normality assumption is more justified after the logarithmic trans-

formation.

The measurement error variances Ci’s for the covariates are obtained

from a Taylor series approximation because of the logarithmic transfor-

mation, and the formula of variance in simple random sampling without

replacement is used per each state in the original scale. Additionally, we

used Taylor series approximation for the ψi. We assume the sampling vari-

ances to be known throughout the estimation procedure. Based on our
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Table 5: Descriptive statistics for the log lengths of 95% prediction intervals

from the Census of Governments. The results are computed using data from

all the small areas.

Sample Size Method Minimum 25% Median Mean 75% Maximum

4000 Bootstrap 4.320 4.350 4.360 4.370 4.380 4.410

Direct 4.330 6.380 6.730 6.970 7.510 11.700

Jackknife -7.200 2.950 7.710 5.840 9.660 12.000

8000 Bootstrap 4.160 4.210 4.230 4.220 4.250 4.270

Direct 5.370 6.420 7.000 7.150 7.780 10.000

Jackknife -15.600 -1.560 6.400 3.760 8.590 11.300

proposed framework, we find the empirical predictor θ̃i,B.

We construct prediction intervals based on three methods of “Direct”,

“Jackknife”, and “Bootstrap”. The box-plots of prediction interval lengths

are given in Figure 2. We observe that the distribution of lengths based

on non-parametric bootstrap method has less variation in comparison with

both direct and jackknife methods. Additionally, the descriptive statistics

of lengths for 95% prediction intervals are given in Table 5. We clearly

observe more stable results for the descriptive statistics under the bootstrap

method.
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Figure 2: box-plots of prediction interval lengths with 1 − α = 0.95 based

on three methods for the Census of Governments assuming (a) 4000 and

(b) 8000 sample sizes.
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8.2 Small Area Income and Poverty Estimates Program

The U.S. Census Bureau’s SAIPE program uses Fay and Herriot (1979)

model to produce model-based estimates of income and poverty at the state

and county levels for various age groups. Since 2005, they use the data from

the American Community Survey (ACS) in the modeling. Prior to 2005,

data from the Current Population Survey were used. The ACS is the largest

U.S. household survey and it almost covers 3.5 million addresses per year.

Despite the large sample size of the ACS, the 1-year direct estimates of

the number of related school-aged (5-17 year old) children in poverty are

highly variable for many small counties. Thus, SAIPE program uses the Fay

and Herriot (1979) model to borrow strength from covariates such as log

number of food-stamp participants, log number of IRS child exemptions in

households in poverty, log number of related children aged 5-17 in poverty

from previous census, etc. to improve the direct estimate of the logarithm

of the single-year ACS poverty counts as the dependent variable. For more

information on the SAIPE program, see the SAIPE web page at https:

//www.census.gov/programs-surveys/saipe.html.

Recent research by Huang and Bell (2012) and Franco and Bell (2015)

suggests that the most recent previous 5-year ACS estimates instead of

outdated census results can be used as a covariate (see, Arima et al. (2017)).
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However, 5-year ACS estimates are subject to the sampling errors rather

than the census results. Thus, it is appropriate to use Fay and Herriot

(1979) where covariates are measured with errors and a log transformation

is required. As a consequence, our proposed predictor is well-suited for this

scenario.

Here, we assume the parameter of interest is the total population for

whom poverty status is determined for the age of 5 to 17 years in 2018 at the

county level. The covariate is the corresponding total of 5-year aggregated

values; i.e. 2013–2017 at the county level. Additionally, we use the 2018

SNAP data set as a separate covariate which is measured without error.

We summarize these variables as follows:

• yi: 1-year ACS (2018) estimates for i = 1, ..., 827.

• Wi: Aggregated 5-year ACS (2013–2017) estimates, measured with

errors, and

• xi: 2018 SNAP data set measured without error as a separate covari-

ate.

Unlike the 5-year aggregated ACS, the information for counties with

population less than 65,000 are not publicly released for a single-year ACS.

We successfully linked the same m=827 counties across the resources, and
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we only provide predictions for these publicly available counties. In Figure

S3.3 (a) given in the Supplementary Material, we display the scatter plots

of these counties.

We observe that both 5-year ACS and SNAP are highly correlated with

the response variable y. The skewness in the original scales diminishes after

a logarithmic transformation (see Figure S3.3 (b) in the Supplementary

Material). To obtain the variance of estimates, we use the 90% margin of

error given in the data set for both the covariate and the response variable.

Afterwards, we use a Taylor series approximation to obtain the variance of

the logarithm of estimates.

In this Section, we intend to study three small area models as follows:

(1) Measurement error model predictor: For this model, we assume the

response variable is the 1-year ACS and the covariate is the 5-year

ACS (measured with error). Because of skewed patterns in the data

set, we need to use a logarithmic transformation. For this purpose,

we use predictor B.

(2) Fay-Herriot model predictor: For this model, we assume the response

variable is the 1-year ACS and the covariate is the SNAP information

(measured without error). Because of skewed patterns in the data set,

we again use a logarithmic transformation. For this purpose, we use
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predictor θ̃0i,B, the so-called FHeblup afterwards.

(3) Direct Estimator: The results are solely based on the single-year ACS

estimates.

In Figure 3, we compare the distribution of prediction interval lengths

for all the counties based on non-parametric bootstrap, jackknife, direct,

and FHeblup. We observe that the box-plot for the prediction interval

lengths based on the non-parametric bootstrap method has a stable distri-

bution.

Additionally, box-plots of direct and FHeblup are similar due to the

close values of direct estimators and FHeblups (see Figure S3.4 in the Sup-

plementary Material). This means the values of θ̃0i,B are close to zi, which

requires ψi ≈ 0. This can be confirmed by the range of ψi, which is (6.579 e-

07, 6.843 e-03). The values of mean, median, and standard deviation of the

lengths for all the prediction intervals are given in Table 6.

9. Discussion and Future Work

We propose a new predictor for the skewed response variable under

Fay-Herriot model when the covariate is measured with error. Our set-up

can be easily extended to the multivariate covariate case, and some of the

steps in this regard are given in the Supplementary Material. While the
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Figure 3: Box-plots of prediction interval lengths with 1−α = 0.95 for the

SAIPE data set. Note that the results are in the logarithmic scale.

proposed method is for area level model, it would be possible to consider

an extension to unit level models, which is left to a future work.

This modeling framework can be of interest for government agencies

and survey practitioners dealing with right skewed response variables and

covariates that are measured with errors. Our proposed predictor is un-

biased and can perform uniformly better than the direct estimator and

the alternative predictor gien in the literature by Mosaferi et al. (2023).

Further, we derive an approximation of the MSE of predictor, which does
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Table 6: Mean, median, and standard deviation for the log lengths of 95%

prediction intervals from the SAIPE data set. The results are computed

using data from all the small areas.

Method Median Mean Standard Deviation

Bootstrap 12.360 12.400 0.112

Direct 7.358 7.342 0.453

FHeblup 7.357 7.342 0.453

Jackknife 12.370 12.340 0.905

not perform well for constructing prediction intervals in terms of coverage.

Thus, we develop nonparametric bootstrap prediction intervals.

Prediction intervals based on nonparametric bootstrap techniques are

easy and allow a good coverage property. In particular, they can be more

suitable for real applications as we use the available data sets for generating

resamples. It might be of interest to investigate other resampling methods

such as parametric bootstrap methods or extend the earlier works of log-

MSPE by Jiang et al. (2018) to construct prediction intervals and make

comparisons among them for our modeling framework.

Supplementary Material

The online Supplementary Material includes technical details, proofs of

the theorems, and additional numerical results.
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