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Abstract: We study impact of class misspecification on the analysis of linear mixed model-

s. Here, the misclassification means that some of the classes or groups associated with the

random effects are mismatched. Such misclassification problems are becoming increasing-

ly common in modern data science, including intentional and unintentional misclassifica-

tions. One important case of intentional misspecification is related to differential privacy;

while a case of unintentional misspecification arises in classified mixed model prediction.

Our study shows that standard asymptotic properties of the maximum likelihood and re-

stricted maximum likelihood estimators, including consistency and asymptotic normality,

remain valid under the misclassification provided that the proportion of the misclassified

group numbers is asymptotically negligible in a suitable sense. Empirical results of simu-

lation studies fully support our theoretical findings. A real-data example is considered.

Key words and phrases: Asymptotic behavior, differential privacy, linear mixed models,

misclassification, random effects, robustness
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1. Introduction

Mixed effects models (e.g., Jiang and Nguyen (2021)) are widely used in prac-

tice. These models explore heteroscedasticity within the population, such as

subpopulations or groups. These groups, characterized by the random effects,

are of fundamental importance, and a main reason for the broad application of

mixed effects models. It should be noted that the groups depend on the model

we define, namely the mixed effects model—the data itself is not necessarily

grouped, or grouped according to the mixed effects model.

A classical mixed effects model assumes that the group classifications are

correctly specified. For example, there are 58 counties in the state of California,

USA. Thus, if data are clustered according to those counties, numbered from 1

to 58, it is assumed that the county number is correctly specified for each data

record. Specifically, consider a linear mixed model (LMM) with county-level

random effects, expressed as yij = x′ijβ+αi+ εij , i = 1, · · · , 58, j = 1, · · · , ni,

where yij is jth value of the response variable from county i, xij is an associated

vector of covariates, β is an unknown vector of fixed effects, αi is a county-level

random effect, and εij is an additional error. The number ni corresponds to the

group size, that is, the number of observations for the ith group. By correct

group specification it means that each data record, (yij, xij), is associated with

the random effect αi, not αi′ for some i′ 6= i.
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There are, however, increasingly many situations in modern data science, in

which some of the group classifications are incorrect or mismatched. Some of

these mismatches are unintentional, such as recording errors or matching errors

(see below), while the others are intentional. An important case of the latter sit-

uation is differential privacy (DP). This is because, the classifications, or some

components of the classifications, are related to privacy issues such as location,

race, gender, and age groups. For example, Table 1 shows a portion of data from

the 2010 Census of the United States for population totals of the 58 counties

of the state of California. Only data from the first county (in alphabetical or-

der of county name) are reported. Column 2 reports population totals for the

18 age-groups of column 1, and column 3 are the corresponding DP “contam-

inated” fuzzy versions produced by a U. S. Census DP algorithm (Abowd et

al. (2022)). The fuzzy versions were created due to concerns of privacy pro-

tection so that various classifications, such as race, gender and age groups, have

been altered. As a result, the fuzzy population totals do not match the census

population totals for all of the age groups. Nevertheless, it is observed that the

differences are very small compared to the subpopulation sizes, indicating that

the impact of the contamination is minor. In fact, a main objective of the DP is to

maintain primary content of the information and, at the same time, protect priva-

cy. A case of unintentional misspecification is classified mixed model prediction
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Table 1: Age-adjusted Population Totals and Their Fuzzy Counterparts: Alameda

County, California; Source: United States Census Bureau 2010 (Fuzzy Population To-

tals Produced in March 2022; Diff. = Difference between Pops and Fuzzy Pops)

Age Groups Pops Fuzzy Pops Diff Age Groups Pops Fuzzy Pops Diff

00-04 years 97,652 97,676 24 45-49 years 114,111 114,155 44

05-09 years 94,546 94,547 1 50-54 years 108,506 108,457 -49

10-14 years 91,070 91,058 -12 55-59 years 94,648 94,659 11

15-19 years 100,394 100,256 -138 60-64 years 78,854 78,861 7

20-24 years 107,049 106,977 -72 65-69 years 52,663 52,719 56

25-29 years 113,597 113,643 46 70-74 years 37,774 37,733 -41

30-34 years 114,607 114,651 44 75-79 years 29,185 29,267 82

35-39 years 115,275 115,271 -4 80-84 years 23,391 23,386 -5

40-44 years 112,216 112,201 -15 85+ years 24,733 24,753 20

(CMMP; Jiang et al. (2018); also see Ma and Jiang (2022)). The latter may

be regarded as a modernized version of the traditional mixed model prediction

(MMP; e.g., Rao and Molina (2015), Jiang and Nguyen (2021)). Basically, in

many practical problems there are available “training” data, for which the group

numbers are correctly specified, and one wishes to make prediction about certain

characteristics associated with some new data. The new data are un-classified in

the sense that the group numbers for the new data are unknown. Therefore, as a

first step, CMMP tries to identify the group numbers of the new data. Once the
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group numbers are identified, the well-developed MMP methods can be utilized

to improve prediction accuracy. There are situations in which the group classi-

fications within the training data are also unknown, in which case a procedure

is needed to identify the training data groups before using CMMP (e.g., Rao, Li

and Jiang (2023)). In all of these situations, there are mismatched groups within

the training data, or expanded training data. Specifically, in the former case, it

is quite possible that the group number for the new data is mis-identified; thus,

when the new data is combined with the training data (to be used as future train-

ing data), some of the group numbers are mismatched; in the latter case, there are

mismatched groups within the training data as a result of the group-identifying

process.

In situations like the above, a question of practical interest is to what ex-

tent the misclassification impacts the existing methods of mixed model analysis.

Typically, one would expect such an impact to be “minor”, but how minor is mi-

nor, and in what sense? We need guidelines from a theoretical standpoint. Given

the wide-ranging applications of LMMs, which by far are the most popular type

of mixed effects models, we shall focus on LMM in this paper.

The current state-of-the-art methods for LMM analysis are maximum likeli-

hood (ML) and restricted maximum likelihood (REML); see, for example, Chap-

ter 1 of Jiang and Nguyen (2021). When groups numbers are are correctly
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classified, asymptotic behavior of the ML and REML estimators have been well

established. See, for example, Sections 2.1 and 2.2 of Jiang (2017). In partic-

ular, Miller (1977) established asymptotic normality of the ML estimators of

the fixed effects and variance components under a mixed ANOVA model; Jiang

(1996) gives sufficient conditions for the consistency and asymptotic normality

of the REML and ML estimators, respectively, under a mixed ANOVA model

that are also necessary in the case of balanced data.

The main goal of our current asymptotic analysis is to investigate the con-

ditions, under which these standard asymptotic behaviors of the ML and REML

continue to hold under misclassification of the group numbers. Before introduc-

ing the general settings and results, in Section 2 we first consider a special case,

which is conceptually simple for illustration purposes. In this case, the stan-

dard asymptotic properties of ML and REML estimators, namely, consistency

and asymptotic normality, can be established provided that the proportion of the

misclassified group numbers is asymptotically negligible in a suitable sense.

Here, the word “negligible” should be defined more precisely to avoid con-

fusion. It is in the sense that the large-sample behaviors of the parameter esti-

mators, namely, consistency and asymptotic normality, are preserved. In some

cases, such as the special case mentioned above, the condition for the negligi-

bility can be expressed more explicitly; in some more complex situation, the
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condition is not explicit, but the general concept still applies.

The more general settings are considered in Section 3, in which we extend

the results of the special case to two types of LMMs. According to Jiang and

Nguyen (2021) (sec. 1.2), there are two main types of LMMs, namely, the mixed

ANOVA model and longitudinal model. Due to the space limit, here in this paper

we focus on the mixed ANOVA models. We have obtained similar results for the

longitudinal models, which will be published elsewhere. Some empirical results,

including simulation studies and a real-data example, are presented in Section 4.

The technical lemmas and detailed proofs of theoretical results for the special

and general cases are deferred to the Supplementary Material.

2. A special case

Before introducing the general results, we take a look at a special case, in which

the general result can be expressed in an explicit form. Consider a balanced

one-way random effects model (e.g., Jiang and Nguyen (2021)), which can be

expressed as

yij = µ+ αi + εij, (2.1)

i = 1, . . . ,m, j = 1, . . . , n, where i represents the group (e.g., subject, commu-

nity), n is the group size, that is, the number of observations in the training data

that belong to group i, which is assumed to be the same for difference groups,
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hence explaining the term “balanced”. Furthermore, yij is the outcome of in-

terest, µ is an unknown mean, αi is a group-specific random effect, and εij is

an error. It is assumed that the random effects and errors are independent with

αi ∼ N(0, τ 2) and εij ∼ N(0, σ2), where σ2, τ 2 > 0 are unknown variances.

The model can be expressed in a vector-matrix form:

y = Xµ+ Zα + ε, (2.2)

where y = (yi)1≤i≤m with yi = (yij)1≤j≤n; X = 1m ⊗ 1n; Z = Im ⊗ 1n, In, 1n

denote the n-dimensional identity matrix and vector of 1’s, respectively, and ⊗

denotes the Kronecker product; α = (αi)1≤i≤m, and ε is defined in a similar way

as y with yij replaced by εij .

The model, (2.1) or (2.2), is the assumed model. In practice, such a model

may be mis-classified so that, in reality, one has

yij = µ+ αγij + εij, (2.3)

i = 1, . . . ,m, j = 1, . . . , n, where γij ∈ {1, ...,m} denotes the true index of

the random effect that yij is associated with. Let z̃′ij be the 1×m vector whose

uth component is 1(γij=u), 1 ≤ u ≤ m. Note that one of the components of

zij is 1 and the rest are 0. Also, let Z̃i be the n × m matrix whose jth row is

z̃′ij , 1 ≤ j ≤ n, that is, Z̃i = (z̃′ij)1≤j≤n. Then, let Z̃ be the matrix of stacking

Z̃i, i = 1, . . . ,m, that is, Z̃ = (Z̃i)1≤i≤m. Note that Z̃ is an N ×m matrix with
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N = mn. Then, the true model, (2.3), can be expressed as

y = Xµ+ Z̃α + ε, (2.4)

where X is the same as in (2.2).

Let θ̂ = (τ̂ 2, σ̂2)′ be the REML estimator of θ = (τ 2, σ2)′, and θ0 =

(τ 2
0 , σ

2
0)′ be the true θ. Similarly, let ψ̃ = (µ̃, τ̃ 2, σ̃2)′ be the ML estimator of

ψ = (µ, τ 2, σ2)′, and ψ0 = (µ0, τ
2
0 , σ

2
0)′ be the true ψ. We assume that γij

are independent, and independent with the random effects and errors, such that

P(γij 6= i) = p and P(γij = k) does not depend on k for k 6= i. Intuitively,

p is the probability that the group index is misclassified, that is, the true group

index is not the same as it is thought to be. It follows that P(γij = i) = 1 − p

and P(γij = k) = p/(m − 1) for k 6= i. Note that there are different ways of

misclassification. For example, one could have the group labels of two groups

completely swapped while the group labels of the other groups correctly intact,

or the group labels of some members in each group misclassified. The asymp-

totic theory, to be established below, does not distinguish these two scenarios, as

long as p is asymptotically the same.

The following results, which are special cases of the general theory to be es-

tablished, state conditions, especially regarding the magnitude of p, under which

the standard asymptotic theory for the REML and ML estimators holds. Here,

the REML equations refers to setting the system of equations that set the deriva-
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tives of the restricted log-likelihood function to zero, and the ML equations are

defined similarly. The notation m ∼ n means that lim sup(m/n) < ∞ and

lim inf(m/n) > 0.

Theorem 1 (Consistency of REML and ML estimators; special case).

Suppose that the above distributional assumptions about the random effects, er-

rors, and γij hold. Furthermore, suppose that σ2
0 and τ 2

0 are positive and that, as

m,n→∞, we have m ∼ n and p = O(1/
√
mn). Then, the following hold:

(I) With probability tending to 1, the REML equation has a solution, θ̂ = (τ̂ 2, σ̂2),

such that [
√
m(τ̂ 2−τ 2

0 ),
√
mn(σ̂2−σ2

0)]′ is bounded in probability. Thus, in par-

ticular, we have θ̂ P→ θ0, that is, θ̂ is consistent.

(II) With probability tending to 1, the ML equation has a solution, ψ̃ = (µ̃, τ̃ 2, σ̃2)′,

such that [
√
m(µ̃−µ0),

√
m(τ̃ 2−τ 2

0 ),
√
mn(σ̃2−σ2

0)]′ is bounded in probability.

Thus, in particular, we have ψ̃ P→ ψ0, that is, ψ̃ is consistent.

(III) In fact, the result for µ̃ holds without any restriction on p.

Note 1. It is interesting to note that, in the standard asymptotic theory,

consistency of the REML estimator only requires m→∞, as long as n > 1, in

this special case (e.g., Jiang (1996), th. 4.2). Now, because some of the group

labels are misclassified, it requires that, in addition, n→∞. Such a requirement

is similar to that for the consistency of CMMP (e.g., Jiang et al. (2018), Ma and

Jiang (2022)), and there is an intuitive explanation. Basically, in each group
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there are some “misters right”, that is, those whose group indexes are correctly

classified, and some “misters wrong”, that is, those whose group indexes are

misclassified. The condition n → ∞, together with the order of p, ensure that,

in each group, the misters right dominate the misters wrong so that the overall

structure of the LMM is essentially unchanged. In a similar way, the next result

can be interpreted.

Note 2. It is also interesting to note that the restriction on p is needed only

for the estimation of the variance components—no restriction on p is needed for

the estimation of µ. In fact, in this case, the MLE of µ is simply the overall

sample mean, which is not affected by the classifications. A similar note also

applies to the next result.

Theorem 2 (Asymptotic normality of REML and ML estimators; spe-

cial case). Under the conditions of Theorem 1, if the big O for p is replaced by

small o, then the REML and ML estimators are asymptotically normal in that
√
m(τ̂ 2 − τ 2

0 )

√
mn(σ̂2 − σ2

0)

 d−→ N


 0

0

 ,

 2τ 4
0 0

0 2σ4
0


 ;


√
m(τ̃ 2 − τ 2

0 )

√
mn(σ̃2 − σ2

0)

 d−→ N


 0

0

 ,

 2τ 4
0 0

0 2σ4
0


 .

Also, we have
√
m(µ̃ − µ0)

d−→ N(0, τ 2
0 ), which holds without any restriction

on p.
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Note 3. In modern data science, it has become increasingly possible to ob-

tain massive training data in the sense that both m,n are large(e.g.,Kramlinger,

Krivobokova and Sperlich (2022)), and n is even (much) larger than m. One

special case of the latter is in the analysis of network data (e.g., Bickel and Chen

(2009)). For example, community network plays an important role in precision

epidemiology for infectious disease control (e.g., Ladner et al. (2019)). Typ-

ically, the number of distinct communities is relatively small compared to the

number of individuals within each community. There are certainly correlations

within the community but different communities may be treated as independen-

t, or approximately independent. Also see Lyu and Welsh (2021) for another

recent work under this kind of asymptotic framework.

The proofs of Theorem 1 and Theorem 2 are given in Supplementary Mate-

rial for the REML parts. The proof for the ML parts is similar (actually, simpler),

and therefore omitted. Some remarks about the key differences between ML and

REML, as well as similarity in the proofs for ML to that for REML, are provided

in the Supplementary Material.
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3. Mixed ANOVA model

A general mixed ANOVA model (e.g., Jiang and Nguyen (2021), sec. 1.2.1.1)

can be expressed as

yij = x′ijβ + u′ij1αi1 + · · ·+ u′ijsαis + εij, (3.1)

i = 1, . . . ,m, j = 1, . . . , ni, where i is a group index, determined by possibly

multiple levels of factors, ni is the number of “replicates” within group i; yij

is the outcome variable for the jth replicate within the ith group, xij is a q-

vector of associated covariates, β = (β1, · · · , βq)′ is an unknown vector of fixed

effects, uijl are known ql-vectors, αil are ql-vectors of random effects, and εij is

a random error. It is assumed that the random effects and errors are independent

with αil ∼ N(0, τ 2
l Iql), 1 ≤ l ≤ s and εij ∼ N(0, σ2), where σ2, τ 2

l , 1 ≤ l ≤ s

are unknown variances. The model can be written as

yi = Xiβ + Ui1α1 + · · ·+ Uisαs + εi, (3.2)

where yi = (yij)1≤j≤ni
, Xi = (x′ij)1≤j≤ni

, Uil = diag(u′i1l, . . . , u
′
inil

)(Zi ⊗ Iql)

with Zi = e′i ⊗ 1ni
, ei is the m × 1 vector whose i-th component is 1 and other

components are 0, αl = (α′1l, . . . , α
′
ml)
′, 1 ≤ l ≤ s, and εi = (εij)1≤j≤ni

.

Furthermore, let X = (Xi)1≤i≤m, Ul = (Uil)1≤i≤m, 1 ≤ l ≤ s, y = (yi)1≤i≤m,

and ε = (εi)1≤i≤m. Then, the mixed ANOVA model can be rewritten as

y = Xβ + U1α1 + · · ·+ Usαs + ε. (3.3)
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The mixed ANOVA model (3.1), (3.2) or (3.3), is the assumed model. In

practice, such a model may be misclassified in that, in reality, one has

yij = x′ijβ + u′ij1αγij1 + · · ·+ u′ijsαγijs + εij, (3.4)

where γijl ∈ {1, ...,m} denotes the true group index for the random effects that

yij is associated with. Let z̃′ijl be the 1 × m vector whose uth component is

1(γijl=u), 1 ≤ u ≤ m, Z̃il = (z̃i1l, · · · , z̃inil)
′, Z̃l = (Z̃il)1≤i≤m, X = (Xi)1≤i≤m,

Ũil = diag(u′i1l, · · · , u′inil
)(Z̃il ⊗ Iql),

Ũl = (Ũil)1≤i≤m, 1 ≤ l ≤ s. Then, the true mixed ANOVA model, (3.4), can be

expressed as

y = Xβ + Ũ1α1 + · · ·+ Ũsαs + ε. (3.5)

Comparing (3.5) with (3.3), the difference is apparent, that is, in the design

matrices of the random effect vectors. Note that while U1, . . . , Us are known,

Ũ1, . . . , Ũs are unknown.

The standard methods for estimating the unknown coefficient parameters β,

θ = (τ 2
1 , · · · , τ 2

s , σ
2) are ML and restricted maximum likelihood (REML) based

on the assumed model, (3.3), because the true design matrices for the random

effects are unknown. See, for example, Searle, Casella and McCulloch (1992),

Jiang and Nguyen (2021). LetN =
∑m

i=1 ni be the total number of observations
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in the training data, and Φ be anN×(N−q) matrix satisfying rank(Φ) = N−q

and Φ′X = 0. Under (3.3), we have y ∼ N(Xβ,
∑s

l=1 UlU
′
lτ

2
l + INσ

2). Thus,

the joint pdf of ỹ = Φ′y is given by

fθ(ỹ) =
1

(2π)(N−q)/2|V (Φ, θ)|1/2
exp

{
−1

2
ỹ′V −1(Φ, θ)ỹ

}
,

where V (Φ, θ) = σ2Φ′Φ+
∑s

l=1 τ
2
l Φ′UlU

′
lΦ, and |A| denotes the determinant of

matrix A. The REML estimator of θ can be obtained by maximizing log fθ(ỹ).

We first state the results regarding asymptotic behavior of the REML estimator

under the misclassification.

3.1 Asymptotic behavior of REML estimator under misclassification

Let lθ(ỹ) = log |V (Φ, θ)| + ỹ′V −1(Φ, θ)ỹ. As noted in Jiang (1996), a key

condition for the consistency and asymptotic normality properties to hold for

the REML estimator is that the LMM is asymptotically identifiable and in-

finitely informative under the invariant class. This condition is abbreviated as

AI4. Define, for any matrices A,B, cor(A,B) = tr(A′B)/‖A‖2‖B‖2, where

‖A‖2 =
√

tr(A′A). Let

Vl = σ2V (Φ, θ)−1/2Φ′UlU
′
lΦV (Φ, θ)−1/2, 1 ≤ l ≤ s,

and Vs+1 = IN−q/σ
2. Then, define

Cor(V1, . . . , Vs+1) = [cor(Vk, Vl)]1≤k,l≤s+1.
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θ0 is said to be asymptotically identifiable under the invariant class (AI2) if

lim inf λmin(Cor(V1, . . . , Vs+1)) > 0

[λmin(A) denotes the smallest eigenvalue of symmetric matrix A]. The model is

infinitely informative under the invariant class (I3) about θ0 if

lim ‖Vl‖2 =∞, 1 ≤ l ≤ s+ 1.

Then, the AI4 condition holds provided that θ0 is AI2, about which the model

is I3. As noted in Jiang (1996), the standard limiting process in mixed effects

model is not as simple asN →∞. Multiple numbers associated with the sample

size, such as m, q1, . . . , qs and ni, 1 ≤ i ≤ m, may increase. In the sequel,

the notation lim (without subscript) simply represents such a complex limiting

process. We also use the w. p. → 1 for “with probability tending to one” under

such a limiting process.

We further introduce the following notation. For i, j, l = 1, · · · , s+1, define

Ψ1i(θ0) = V −1(Φ, θ0)
∂V (Φ, θ0)

∂θi
,

Ψ2ij(θ0) = V −1(Φ, θ0)
∂V (Φ, θ0)

∂θi
V −1(Φ, θ0)

∂V (Φ, θ0)

∂θj
,

Ψ3ijl(θ) = V −1(Φ, θ)
∂V (Φ, θ)

∂θi
V −1(Φ, θ)

∂V (Φ, θ)

∂θj
V −1(Φ, θ)

∂V (Φ, θ)

∂θl
.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0082



17

Also, let b(θ0) = (σ0IN , τ10Ũ1, · · · , τs0Ũs)′,

A1i(θ0) = b(θ0)ΦΨ1i(θ0)V −1(Φ, θ0)Φ′b′(θ0),

A2ij(θ0) = b(θ0)ΦΨ2ij(θ0)V −1(Φ, θ0)Φ′b′(θ0),

A3ijl(θ) = ΦΨ3ijl(θ)V
−1(Φ, θ)Φ′.

Define ΘN = {θ : ‖θl − θl0‖ < ql(N), l = 1, · · · , s + 1}, where ql(N) are

sequences of positive numbers such that ql(N) → 0 and pl(N)ql(N) → ∞,

l = 1, · · · , s+ 1.

Theorem 3. Consider a general mixed ANOVA model (3.3). Let the true

model be (3.5) and the variances, σ2, τ 2
l , 1 ≤ l ≤ s be positive. Let pl(N) be

any sequence such that

pl(N) ∼ Eθ0

{
∂2lθ(ỹ)

∂θ2
l

∣∣∣∣
θ=θ0

}
, l = 1, · · · , s+ 1.

Also assume that AI4 and the following additional conditions hold:

(i) The class indexes γijl’s are independent with the random effects and errors.

(ii) For 1 ≤ i ≤ s+ 1, we have Eθ0

[
tr{A2ii(θ0)}

]
= tr{Ψ2ii(θ0)}{1 + o(1)},

Varθ0 [tr{A2ii(θ0)}] = p4
i (N)o(1), Eθ0

[
tr{A2

2ii(θ0)}
]

= p4
i (N)o(1).

(iii) For 1 ≤ i, j ≤ s+ 1, we have Eθ0

[
tr{A2ij(θ0)}

]
= tr{Ψ2ij(θ0)}{1 + o(1)},

Varθ0 [tr{A2ij(θ0)}] = p2
i (N)p2

j(N)o(1),Eθ0

[
tr{A2

2ij(θ0)}
]

= p2
i (N)p2

j(N)o(1).
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(iv) For i, j, l = 1, · · · , s+ 1, we have

sup
θ∈ΘN

|tr{Ψ3ijl(θ)}| = pi(N)pj(N)pl(N)o(1)

and {supθ∈ΘN
‖A3ijl(θ)‖}tr

[
E{b′(θ0)b(θ0)}

]
= pi(N)pj(N)pl(N)o(1), where

for any matrix, A, ‖A‖ =
√
λmax(A′A) denotes its spectral norm.

(v) For 1 ≤ l ≤ s+ 1, we have Eθ0

[
tr{A1i(θ0)}

]
= tr{Ψ1i(θ0)}+ pi(N)O(1),

Varθ0
[
tr{A1i(θ0)}

]
= p2

i (N)O(1), Eθ0

[
tr{A2

1i(θ0)}
]

= p2
i (N)O(1).

Then, w. p. → 1, the REML equation has a solution, θ̂ = (τ̂ 2
1 , . . . , τ̂

2
s , σ̂

2)′,

satisfying

[
p1(N)(τ̂ 2

1 − τ 2
10), . . . , ps(N)(τ̂ 2

s − τ 2
s0), ps+1(N)(σ̂2 − σ2

0)
]′

= OP(1).

Thus, in particular, we have θ̂ P−→ θ0.

Conditions (ii)—(v) basically regularize the orders of certain expectations

and variances, which become trivial in the special case considered in Theorem 1

and Theorem 2. Note that these conditions also implicitly set constraints on the

degree of class misspecification, which once again becomes more clear in the

case of Theorem 1 and Theorem 2.

Next, define IN(θ0) = [INij(θ0)]1≤i,j≤s+1, Σ(θ0) = [Σij(θ0)]1≤i,j≤s+1 with

INij(θ0) =
tr{Ψ2ij(θ0)}
pi(N)pj(N)

, Σij(θ0) = 2 lim
tr[E{A1i(θ0)}E{A1j(θ0)}]

pi(N)pj(N)
,
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1 ≤ i, j ≤ s + 1. For random matrices Mi, 1 ≤ i ≤ k, their trace covariance

matrix is defined as

Tc(Mi, 1 ≤ i ≤ k) =
(
tr[{Mi − E(Mi)}{Mj − E(Mj)}]

)
1≤i,j≤k. (3.6)

Theorem 4. Suppose that the conditions of Theorem 3 hold with condition

(v) replaced by the following: (v+) Eθ0 [tr{A1i(θ0)}] = tr{Ψ1i(θ0)}+pi(N)o(1),

Varθ0 [tr{A1i(θ0)}] = p2
i (N)o(1), 1 ≤ i ≤ s+ 1. Furthermore, suppose that (vi)

E{Tc(A1i(θ0)/pi(N), 1 ≤ i ≤ s + 1)} = o(1). Then, the θ̂ in Theorem 3

satisfies

Σ−
1
2 (θ0)IN(θ0)

[
p1(N)(τ̂ 2

1 − τ 2
10), . . . , ps+1(N)(σ̂2 − σ2

0)
]′ d−→ N(0, Is+1).

Conditions (v+) and (vi) specify the orders of some additional expectation

and variance. Note that E(Tc(· · · )} is similar to a correlation matrix.

Note 4. Unlike Theorems 1 and 2, in the last two theorems the restriction on

the extent of misclassification is not explicit due to the generality of the results;

however, the restriction is embedded in the limiting behavior of the quantities

controlling the asymptotic behavior, namely, conditions (i)–(v) in Theorem 3,

and (i)–(vi) in Theorem 4. A good thing about these general conditions is that

they are not restricted to a specific form of misclassification, which may or may

not be known in practice. In the special case of the balanced one-way random

effects model, those conditions reduce to simply m/n = O(1), p = O(1/
√
mn)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0082



20

for Theorem 1, and m/n = o(1), p = o(1/
√
mn) for Theorem 2.

The proofs of Theorem 3 and Theorem 4 are given in the Supplementary

Material.

3.2 Asymptotic behavior of ML estimator under misclassification

We now state the results on asymptotic behavior of the ML estimators. To avoid

introducing too many notation, which a reader may lose track of, we maintain

similar notation used for REML estimation; this may also help to link the ML

results to the corresponding REML results, which may actually help understand

the results on both ends. Just keep in mind that all the notation used in this

subsection stay within the subsection.

Let θ = (θ′1, θ2, . . . , θs+2)′ = (β′, τ 2
1 , . . . , τ

2
s , σ

2)′. Similarly, let θ0 =

(β′0, τ
2
10, · · · , τ 2

s0, σ
2
0)′ be the true θ. Note that θ1 = β is a p-dimensional. Let

lθ(y) = log[|V (τ 2, σ2)|] + (y −Xβ)′V −1(τ 2, σ2)(y −Xβ),

where V (τ 2, σ2) = σ2IN +
∑s

l=1 τ
2
l UlU

′
l . For i, j, l = 1, · · · , s+ 2, define

Ψ1i(θ0) = V −1(τ 2
0 , σ

2
0)
∂V (τ 2

0 , σ
2
0)

∂θi
,

Ψ2ij(θ0) = V −1(τ 2
0 , σ

2
0)
∂V (τ 2

0 , σ
2
0)

∂θi
V −1(τ 2

0 , σ
2
0)
∂V (τ 2

0 , σ
2
0)

∂θj
,

Ψ3ijl(θ0) = V −1(τ 2
0 , σ

2
0)
∂V (τ 2

0 , σ
2
0)

∂θi
V −1(τ 2

0 , σ
2
0)
∂V (τ 2

0 , σ
2
0)

∂θj

×V −1(τ 2
0 , σ

2
0)
∂V (τ 2

0 , σ
2
0)

∂θl
;
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and b(θ0) = (σ0IN , τ10Ũ1, · · · , τs0Ũs)′,A1i(θ0) = b(θ0)Ψ1i(θ0)V −1(τ 2
0 , σ

2
0)b′(θ0),

A2ij(θ0) = b(θ0)Ψ2ij(θ0)V −1(τ 2
0 , σ

2
0)b′(θ0), A3ijl(θ0) = Ψ3ijl(θ0)V −1(τ 2

0 , σ
2
0).

Also, define ql(N), l = 1, . . . , s+ 2 as above Theorem 3.

Theorem 5. Consider the mixed ANOVA model (3.3) and let the true mod-

el be (3.5) and that the variances, σ2, τ 2
l , 1 ≤ l ≤ s be positive. Let pl(N)

be any sequence such that p2
1(N) ∼ tr[Eθ0{∂2lθ(y)/∂θ1∂θ

′
1|θ=θ0}], p2

l (N) ∼

Eθ0{∂2lθ(y)/∂θ2
l }, l = 2, . . . , s + 2. Also assume that AI4 and the following

conditions hold:

(i) The class indexes γijl’s are independent with the random effects and errors.

(ii) For i = 2, . . . , s+ 2, we have Eθ0 [tr{A2ii(θ0)}] = tr{Ψ2ii(θ0)}{1 + o(1)},

tr
[
X ′Ψ1i(θ0)V −1(τ 2

0 , σ
2
0)E{b′(θ0)b(θ0)}Ψ1i(θ0)V −1(τ 2

0 , σ
2
0)X

]
= p2

1(N)p2
i (N)o(1);

Varθ0
[
tr{A2ii(θ0)}

]
= p4

i (N)o(1), Eθ0

[
tr{A2

2ii(θ0)}
]

= p4
i (N)o(1).

(iii) For i, j=2, · · · , s+2, we have Eθ0 [tr{A2ij(θ0)}] = tr{Ψ2ij(θ0)}{1+o(1)},

tr
[
X ′ sup

θ∈ΘN

{Ψ1i(θ)V
−1(τ 2, σ2)}X

]
= p2

1(N)pi(N)o(1),

Varθ0
[
tr{A2ij(θ0)}

]
= p2

i (N)p2
j(N)o(1),

Eθ0

[
tr{A2

2ij(θ0)}
]

= p2
i (N)p2

j(N)o(1).
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(iv) For i, j, l = 2, · · · , s+ 2, we have

sup
θ∈ΘN

|tr{Ψ3ijl(θ)}| = pi(N)pj(N)pl(N)o(1),

tr
[

sup
θ∈ΘN

{A3ijl(θ)
}

E
{
b′(θ0)b(θ0)

}]
= pi(N)pj(N)pl(N)o(1),

sup
θ∈ΘN

tr
[
X ′{Ψ2ji(θ) + Ψ2ij(θ)}V −1(τ 2, σ2)E

{
b′(θ0)b(θ0)

}
V −1(τ 2, σ2){Ψ2ji(θ) + Ψ2ij(θ)}′X

]
= p2

1(N)p2
i (N)p2

j(N)o(1).

(v) For i = 2, · · · , s+2, we have Eθ0 [tr{A1i(θ0)}] = tr{Ψ1i(θ0)}+pi(N)O(1),

tr
[
X ′V −1(τ 2

0 , σ
2
0)E{b′(θ0)b(θ0)}V −1(τ 2

0 , σ
2
0)X

]
= p2

1(N)O(1),

Varθ0
[
tr{A1i(θ0)}

]
= p2

i (N)O(1), Eθ0

[
tr{A2

1i(θ0)}
]

= p2
i (N)O(1).

Then, w. p. → 1, the ML equation has a solution, θ̂ = (β̂′, τ̂ 2
1 , . . . , τ̂

2
s , σ̂

2)′,

satisfying

[
p1(N)(β̂ − β0)′, p2(N)(τ̂ 2

1 − τ 2
10), . . . , ps+1(N)(τ̂ 2

s − τ 2
s0),

ps+2(N)(σ̂2 − σ2
0)
]

= OP(1).

Thus, in particular, we have θ̂ P−→ θ0.

Conditions (ii)–(v) of Theorem 5, and conditions (vi)–(viii) of Theorem 6

below, have similar interpretations as the corresponding conditions in Theorem

3 and Theorem 4.

Next, we consider asymptotic normality of the ML estimator. First intro-

duce some notation. Let IN(θ0) = diag[IN1(θ0), IN2(θ0)], where IN1(θ0) =
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(2/N)XV −1(τ 2
0 , σ

2
0)X ′, IN2(θ0) = {IN2ij(θ0)}2≤i,j≤s+2 with IN2ij(θ0) =

tr{Ψ2ij(θ0)}/pi(N)pj(N), and Σ(θ0) =
{

Σij(θ0)
}

2≤i,j≤s+2
with Σij(θ0) =

limN→∞{2/pi(N)pj(N)}tr
[
E{A1i(θ0)}E{A1j(θ0)}

]
, i, j = 2, · · · , s+ 2. Also

recall the trace covariance matrix defined via (3.6).

Theorem 6. Suppose that, in addition to the conditions of Theorem 5,

(vi) tr
[
X ′V −1(τ 2

0 , σ
2
0)Var{b′(θ0)}V −1(τ 2

0 , σ
2
0)X

]
= No(1) and

tr
{
X ′V −1(τ 2

0 , σ
2
0)
[
E{b′(θ0)}E{b(θ0)} − V (τ 2

0 , σ
2
0)
]
V −1(τ 2

0 , σ
2
0)X

}
= No(1);

(vii) Eθ0

[
tr{A1i(θ0)}

]
= tr{Ψ1i(θ0)}+ pi(N)o(1) and

Varθ0
[
tr{A1i(θ0)}

]
= p2

i (N)o(1) for i = 2, · · · , s+ 2;

(viii) E
{

Tc(A1i(θ0)/pi(N), 1 ≤ i ≤ s+ 2)
}

= o(1).

Then, the ML estimator θ̂ of Theorem 5 satisfies

√
N(β̂ − β0)

L−→ N
[
0,
{ 1

N
X ′V −1(τ 2

0 , σ
2
0)X

}−1]
,

Σ−1/2(θ0)IN2(θ0)
[
p2(N)(τ̂ 2

1 − τ 2
10), · · · , ps+2(N)(σ̂2 − σ2

0)
]′

L−→ N(0, Is+1).

The proofs of Theorem 5 and Theorem 6 for the asymptotic behavior of the

ML estimator of β are given in the supplementary material; the proofs for the ML

estimators of the variance components are similar to their REML counterparts,

and therefore omitted.

Note 5. Like Theorems 3 and 4, the restriction on the extent of misclassi-
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fication is not explicit in Theorems 5 and 6 due to the generality of the results;

however, the restriction is embedded in the limiting behavior of the quantities

controlling the asymptotic behavior. As noted, an advantage about these general

conditions is that they are not restricted to a special kind of misclassification,

which may or may not be known in practice. Basically, one needs is to verify

that (i)–(v) in Theorem 1, and (vi)–(viii) in Theorem 2, are satisfied. In partic-

ular, for the special case considered in Section 2, those conditions reduce to the

restriction on p.

Note 6. Unlike Theorem 1 and Theorem 2, it can be shown that, in general,

the asymptotic behavior of β can be affected by p, the probability of misclassifi-

cation, under the special form of misclassification considered in Section 2.

4. Empirical results

4.1 A simulation study

We carry out a simulation study on the finite-sample performance of the M-

L estimators under the mis-classified LMM. Specifically, we consider an ex-

ample studied by Jiang et al. (2018) based the following assumed model:

yij = β10 + x1,ijβ20 + x2,ijβ30 + αi + εij , where β0 = (β10, β20, β30) = (1, 2, 3),

i = 1, . . . ,m, j = 1, . . . , n, αi’s and εij’s are independent with αi ∼ N(0, τ 2),

εij ∼ N(0, σ2), with τ 2 = σ2 = 1; xk,ij, k = 1, 2 are generated from N(0, 1),
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then fixed throughout the simulation. The true index γij of the random ef-

fect that yij is associated with satisfies the model described below (2.4) with

1− p ∈ {0.5, 0.55, 0.6, · · · , 1}. We consider n = 50 and m = 5, 20, 100.

We run 200 simulations under each combination of m,n, p values specified

above, and report the empirical MSE of the MLE of the fixed effects β and

variance components τ 2, σ2. The empirical MSEs are presented in Figure 1.

It can be seen that, when m is relatively small, the empirical MSE for τ 2 is

relatively large, and does not converge to zero as p approaches zero. On the

other hand, the empirical MSEs for σ2 are very small, and rapidly converge to

zero as p tends to zero. This is not surprising, because the convergence rate of

the MLE of σ2 is
√
mn, while that of τ 2 is

√
m (e.g., Theorem 1).

When m is relatively large, the empirical MSEs for both τ 2 and σ2 are very

small, and approach to zero as p tends to zero. Furthermore, the convergence

patterns of two variance estimators are very similar, with σ̂2 having better per-

formance than τ̂ 2.

In addition, regarding the empirical MSE of the MLE of β, it seems clear

that, for fixed m, and different misclassification probability p ∈ [0, 1], the em-

pirical MSE of remain almost unchanged. Moreover, as m increases from 5 to

100, the empirical MSE of β̂ tends to zero rapidly. This can be also explained

by the convergence rate of β̂ (e.g., Theorem 1).
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In summary, the results seem to be consistent with the asymptotic behavior

of the MLEs under the mis-classified LMM, as established by our theory.

4.2 A real data analysis

Here we analyze a more modern dataset, specifically, breast cancer data from

The Cancer Genome Atlas (TCGA) (https://tcgabdata.nci.nih.gov/tcga). TC-

GA is a public repository data portal of high-quality pan-cancer tumor samples

where clinical information, metadata, histopathology and molecular profiling in-

formation is available to researchers. For some cancers, non-tumor samples are

also in the repository. It is a data repository that is commonly used to study

underlying genomic determinants of cancer.

This dataset has been studied by Jiang et al. (2018). Here, we re-analyzed

breast cancer samples and their clinical information variables only to illustrate

the robustness of maximum likelihood method under the misclassification. To

facilitate this analysis, we focus on those patients who died and use a transfor-

mation of their survival time as our response of interest. This left 104 patients.

Clinical variables included history of other malignancies, race, tumor status, sur-

gical procedure performed, lymph nodes examined (yes/no), number of positive

lymph nodes, stage of tumor based on AJCC staging criteria, estrogen receptor

status, progesterone receptor status (both determined by an in situ hybridzation
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(a) m = 5, n = 50
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(b) m = 20, n = 50
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(c) m = 100, n = 50

Figure 1: Trend of Empirical MSE as p decreases for MLE of β (dotted, green),

τ 2 (dashed, blue), and σ2 (solid, red)
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(ISH) assay) and age at diagnosis.

Since the group classifications within this real data are unknown, one does

not know the truth in this application study. Thus, we need pre-perform a pro-

cedure to identify the training data groups. Similar to Jiang et al. (2018), we

use the prediction analysis of microarrays (pam) algorithm of Tibshirani et al.

(2002) to cluster survival time into different groups based on the clinical predic-

tors and chose informative predictors based on this clustering. This left only the

age and surgery variables. After removing observations with missing values in

either of these two predictors, we had 95 patients for the robustness analysis.

In Jiang et al. (2018), they adopted an elbow point in scree plot to select the

number of groups as 10 (note that the between cluster to within cluster variance

ratio continued to decrease as the number of groups increased, but 10 represented

an elbow point where larger group numbers gave diminishing improvements in

fit). Given the fact that there is some uncertainty in determining the number

of groups produced by the pam algorithm, therefore, this selection method has

certain subjective and inaccuracy, and there may be some misclassifications in

both the number of groups and the group index for every observation. Now,

we assume the true number of groups as 10 (the elbow point in scree plot) and

consider the number of groups as 8,9,10,11,12, respectively. Then, we use the

pam algorithm to conduct the clustering analysis for this dataset. At last, we
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consider the following LMM: yij = β0 + x′ijβ + αi + eij , where the covariate

vector xij consists of age and surgery variables; the response, yij is the square

root of of survival time, which give a suitable normalizing transformation, the

group-specific random effects, αi, and errors, eij , are assumed to be independent

with αi ∼ N(0, τ 2) and eij ∼ N(0, σ2).

We report the averaged relative absolute bias (RAB), defined as

RABτ2(m) = |τ̂ 2(m)− τ̂ 2(10)|/τ̂ 2(10),

RABσ2(m) = |σ̂2(m)− σ̂2(10)|/σ̂2(10),

RABβ(m) =
1

3

3∑
r=1

|β̂r−1(m)− β̂r−1(10)|/|β̂r−1(10)|,

where β̂r−1(m), τ̂ 2(m), σ̂2(m) are the MLEs of βr−1, τ 2, σ2, respectively, under

the number of groups m = 8, 9, 10, 11, 12, and β̂r−1(10), τ̂ 2(10), σ̂2(10), r =

1, 2, 3, are the MLEs for the “true” case, that is, m = 10.
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Figure 2: Trend of Empirical RAB as the number of groups m increases for

MLE of β (dotted, green), τ 2 (dashed, blue) , and σ2 (solid, red)

From Figure 2, it is clear that when the number of groups is deviated from

the “true” value m = 10, the RAB increases for every parameter estimation.

However, the increase rates and patterns are different for different parameter

estimations. From a theoretical standpoint, the convergence rates for different

parameter estimation are different (Theorem 5). Specifically, the convergence

rate for σ2 and the slope coefficients of β is O(N−1/2) with N =
∑m

i=1 ni, while

the convergence rate for τ 2 and the intercept β0 is O(m−1/2). Note that the RAB

for β is defined as the average RAB for different β components; thus, the overall

convergence rate for β is somewhere between O(N−1/2) and O(m−1/2). This
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is consistent with what we have observed in Figure 2, that is, in terms of the

magnitudes of increase in RAB, τ 2 is the largest, followed by β, and σ2 is the

smallest.

5. Discussion

We have studied the impact of class misspecification on the asymptotic analysis

of linear mixed models for the special and general cases of LLM.

For balanced data (Theorem 1 and Theorem 2), we consider the standard

asymptotic theories for the REML and ML estimators under the misclassifica-

tion, with restrictions on the extent of misclassification, that is,m/n = O(1), p =

O(1/
√
mn) for Theorem 1, and m/n = o(1), p = o(1/

√
mn) for Theorem 2.

For the general case when the data are not necessarily balanced (Theorems 3-6),

although the conditions do not seem to put restrictions regarding the misclas-

sification rate and the degree of data balancedness due to the generality of the

results, the restrictions are embedded in the limiting behavior of the quantities

controlling the asymptotic behavior, namely, conditions (i)–(v) in Theorem 3,

(i)–(vi) in Theorem 4, (i)–(v) in Theorem 5, and (vi)–(viii) in Theorem 6. A

good thing about these general conditions is that they are not restricted to a spe-

cific form of misclassification, which may or may not be known in practice.

On the other hand, from the results of the empirical studies, it can be seen
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that the data unbalancedness seems to impact estimation of different parameters

differently. See the discussions of our simulation results and real-data analysis.

We suspect that this has to do with the convergence rates for estimating different

parameters, but not in a simple way. We shall investigate the impact of data

unbalancedness theoretically in our future work.

As noted in the first paragraph of Section 1, the groups in a mixed effects

model characterized by the random effects are of fundamental importance. Intu-

itively, one cannot maintain good asymptotic behavior of the estimators without

restriction on the group misclassification. For example, suppose the one wishes

to estimate the between-cluster variation. If the classes are substantially mis-

classified, the observed variation is not the actual between-cluster variation (for

instance, if all the larger observations are misclassified into one group, and all

the smaller observations to another, one might think there is a larger between-

cluster variation, while, in fact, each group have both larger and smaller obser-

vations). In the special case of Theorem 1 and Theorem 2, the restrictions on p,

the proportion of misclassified groups, is quite close to necessary, if not already

necessary. However, for the general results of Theorems 3–6, it is possible to

express the constraints in more explicit ways, although we do not believe that

they can be substantially weakened.

Supplementary Material
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FILL IN A SHORT RUNNING TITLE

The Supplementary Material contains some technical lemmas and detailed

proofs of the theoretical results.
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