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Abstract: Community structure is common in many real networks, with nodes clustered in groups

sharing the same connections patterns. While many community detection methods have been

developed for networks with binary edges, few of them are applicable to networks with weighted

edges, which are common in practice. We propose a pseudo-likelihood community estimation algo-

rithm derived under the weighted stochastic block model for networks with normally distributed

edge weights, extending the pseudo-likelihood algorithm for binary networks, which offers some

of the best combinations of accuracy and computational efficiency. We prove that the estimates

obtained by the proposed method are consistent under the assumption of homogeneous networks,

a weighted analogue of the planted partition model, and show that they work well in practice for

both homogeneous and heterogeneous networks. We illustrate the method on simulated networks

and on a fMRI dataset, where edge weights represent connectivity between brain regions and are

expected to be close to normal in distribution by construction.

Key words and phrases: community detection, weighted networks, pseudo-likelihood

1. Introduction

Network models have been a useful general tool for understanding and modeling inter-

actions between objects in many domains. The relationships (edges) between objects

(nodes) can represent many things depending on the application: social interactions,

trading partnerships, web links, packets sent between computers, disease contagion, neu-

ral connectivity, and so on. Some settings result in binary networks, where only the
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presence or absence of an edge is recorded, and other settings lead to weighted networks,

where an edge is associated with a weight which typically quantifies the strength of the

connection.

The probabilistic modeling of networks has traditionally focused on binary networks,

starting from the classical Erdös-Rényi graph Erdős and Rényi (1960) which models edges

as i.i.d. Bernoulli random variables. Yet many networks encountered in practice are

weighted, and many of the binary networks in the literature are obtained by thresholding

raw edge weights. For instance, the arguably most studied network with communities, the

karate club dataset Zachary (1977) is a binary network representing friendships, but the

data were collected by observing frequency of the club members’ interactions, and many

other traditional social networks are recorded through similar mechanisms. Moreover,

even when there is a true binary edge (e.g., friendship on Facebook), there is often an

accompanying strength measurement (e.g., how long these people have been friends, how

many of each other’s posts they have liked, etc).

Network communities, a term used to loosely refer to groups of nodes sharing connec-

tivity patterns, have been observed in many real-world networks and studied extensively.

The stochastic block model (SBM) Holland et al. (1983), probably the most studied

network model with communities, models a binary undirected graph with independent

edges, with probability of an edge determined by community membership of the inci-

dent nodes. A lot is now known about theory and algorithms for recovering communities

in this setting; see Abbe (2018) and references therein for a recent review. There are

also multiple extensions of the binary SBM, such as the degree-corrected SBM (Karrer

and Newman, 2011), and multiple models with overlapping communities, for example,

Airoldi et al. (2008); Zhang et al. (2020); Latouche et al. (2011). A version called labeled

SBM (Heimlicher et al., 2012; Lelarge et al., 2015) allows for multiple different types of
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edges between a pair of nodes, which one could think of as an edge vector or a discrete

categorical edge weight.

Our focus in this paper is on networks with real-valued edge weights. They occur

in many applications, notably brain connectivity networks obtained from various types

of neuroimaging, and other biological networks such as gene-gene interactions. Typically

the weights represent some quantitative similarity measure between the nodes, such as

marginal or partial correlations. While these measures can be thresholded to obtain a

binary network, there is at least empirical evidence that a lot of useful information is lost

in the process (Arroyo et al., 2019).

Several models have been proposed to directly model networks with continuous-valued

edge weights. For instance, Aicher et al. (2014) proposed a generalization of the SBM for

weighted edges and a variational Bayes approach to learning the latent community labels.

More recently, Xu et al. (2020) obtained the optimal error rate of any clustering algorithm

for weighted SBM through deriving an information-theoretic lower bound, and proposed

an algorithm that achieves the optimal rate using discretization of weighted SBM into

a labeled SBM. In the same line of research, Avrachenkov et al. (2020) extended these

results by allowing general probability distributions for the edge weights. Other methods

proposed to estimate communities in a weighted network include algorithms developed

in the complex systems community that do no rely on a generative statistical model

(Reichardt and Bornholdt, 2006; Blondel et al., 2008; Rosvall and Bergstrom, 2008) and

hierarchical clustering (Balakrishnan et al., 2011). Another line of work has focused on

jointly analyzing multiple weighted networks, largely motivated by neuroimaging prob-

lems; see, for example, Levin et al. (2022), MacDonald et al. (2021), and references

therein. The work on community detection in multiple networks, however, has focused

on binary networks to the best of our knowledge (Arroyo et al., 2021; Tang et al., 2009;
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Le et al., 2018; Bhattacharyya and Chatterjee, 2018; Wang et al., 2021).

Another related line of work is the submatrix localization problem, especially in the

setting of a random matrix with Gaussian entries with a constant variance. The problem

is to locate a submatrix of a known size of entries with positive means, while the rest of

the matrix entries are assumed to have mean 0. The case of one hidden submatrix can be

viewed as a special case of weighted SBM with two communities and was studied by Ma

and Wu (2015) and Hajek et al. (2018). Chen and Xu (2016) studied the case of more

than one hidden submatrix, all of the same size.

In this paper, we consider the community detection problem for a single weighted

SBM network. We model edge weights as Gaussian random variables (in practice this may

be after a suitable transformation, for example, the Fisher transform for correlations),

with means and variances determined by the communities of the incident nodes. Our

main contribution is a fast and tractable pseudo-likelihood algorithm for fitting this

model, inspired by the seminal pseudo-likelihood algorithm of Amini et al. (2013) for

both the binary SBM and the degree-corrected binary SBM. Wang et al. (2023) extended

it to a profile pseudo-likelihood approach, also for binary networks only. We prove that

one iteration step of our pseudo-likelihood algorithm achieves the optimal error rate

derived by Xu et al. (2020), up to a constant. We characterize the optimal error rate for

this setting explicitly in terms of the means and variances of the within- and between-

community edge distributions, revealing interesting trade-offs that do not appear in the

binary setting. We also show empirically that the pseudo-likelihood algorithm improves

on other community detection methods when they are used to provide an initial value.

We allow for any fixed number of communities of different sizes, and do not assume

assortativity in any form. In contrast with the work (Aicher et al., 2014), we also allow

the means and variances of the edges weights to depend on the number of nodes, thus
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controlling the overall expected “degree”.

This paper is organized as follows. Section 2 introduces the weighted SBM and

proposes the pseudo-likelihood based EM algorithm for fitting the model. Section 3

presents our main consistency results. The performance of the algorithm on simulated

networks and comparison with other methods are presented in Section 4. An application

to brain connectivity networks is studied in Section 5. We conclude with discussion in

Section 6.

2. A Pseudo-Likelihood Algorithm for the Weighted Stochastic Block Model

Consider a weighted undirected networkW with the node set {1, 2, . . . , n}. Let C1, C2, . . . , Cn

be independent and identically distributed random variables representing node commu-

nity labels, with P(Ci = k) = πk, k = 1, . . . , K and π = (π1, . . . , πK). The weighted

stochastic block model (WSBM) assumes that, conditionally on the node labels c =

(c1, . . . , cn), the edge weights are drawn independently from a distribution that depends

only on the labels of the incident nodes. In this paper, we study the model where the

number of communities K is fixed and known, and the distribution of edge weights is

Gaussian. Since our goal is to derive a pseudo-likelihood algorithm, some distributional

assumption is needed, and many real weighted networks are reasonably well described

by a Gaussian distribution of weights. In particular, the motivating example in Section

5 is on brain connectivity networks from fMRI, with edge weights measured as Fisher-

transformed Pearson correlations, which are designed to be approximately Gaussian.

Formally, we have

L (Wij |Ci = k, Cj = l) = N (Bkl , Σkl) , 1 ≤ i < j ≤ n (2.1)
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where B ∈ RK×K and Σ ∈ RK×K
+ are symmetric matrices that contain the means and the

variances of the edge weights, respectively. Diagonal elements of the matrix W typically

carry no information, and in some applications may be set to 0; for completeness, we set

the diagonal elements Wii = 0, but their distribution can be left unspecified since they

are not included in any calculations.

Zero entries in weighted networks are sometimes interpreted as non-observed edges,

e.g., in Aicher et al. (2014) and Xu et al. (2020). We simply treat this as an edge with

weight 0 (which has probability 0 in the Gaussian setting), and assume all edge weights

are observed, resulting in a dense weighted SBM. This is a common scenario in real

weighted networks, including those from neuroimaging.

Under this model, the log-likelihood function for an observed network W = w is given

by

l(π,B,Σ;w) = log

 ∑
e∈{1,...,K}n

p(w, e |π,B,Σ)

 , (2.2)

where e is an arbitrary community assignment,

p(w, e |π,B,Σ) =
K∏
k=1

π
nk(e)
k ×

K∏
k,l=1

[2πΣkl]
−nkl(e)/2 exp

(
−

∑
1≤i<j≤n

(wij −Bkl)
2

2Σkl

1{ei = k, ej = l}

)
,

(2.3)

and

nk(e) =
n∑

i=1

1{ei = k} , nkl(e) =
∑

1≤i<j≤n

1{ei = k, ej = l} (2.4)

Given an observed weighted network W = w, our goal is to estimate the label as-

signments c. Since the log-likelihood function (2.2) involves a sum over all possible labels

configurations (Kn terms), maximizing the likelihood or applying the EM algorithm di-

rectly is not tractable, as discussed for the binary networks case in Amini et al. (2013).
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Aicher et al. (2014) proposed a variational Bayes approach for the case of edge weights

drawn from exponential family distributions and demonstrated its good empirical perfor-

mance, but variational Bayes tends to scale poorly with the number of nodes and there

are no theoretical performance guarantees available for this method. Another proposal

is the discretization-based rate-optimal method by Xu et al. (2020), which works by con-

verting a weighted network to a labeled network and by applying spectral methods to

labeled networks and does not make a distributional assumption about edge weights. This

method achieves the optimal error rate for a discretization level that satisfies theoretical

requirements. However, in practice the performance of this method depends significantly

on the choice of the level of discretization.

Inspired by the pseudo-likelihood approach of Amini et al. (2013) for binary networks,

we aim to replace the full intractable likelihood function (2.2) with an approximate like-

lihood of appropriate sums of edge weights. Let e = (e1, . . . , en) ∈ {1, . . . , K}n be an

arbitrary vector of node labels. For i = 1, . . . , n and k = 1, . . . , K, we define Sik(e) as

the sum of weights of edges between node i and all nodes in community k, that is,

Sik(e) =
n∑

j=1

Wij1{ej = k} , (2.5)

and write sik for the corresponding observed quantity. For each node i, define the vector

of block sums Si(e) = (Si1(e), . . . , SiK(e)). Let R be the K×K confusion matrix between

the label vector e and the true labels c, defined by

Rkl =
1

n

n∑
i=1

1{ei = k, ci = l} . (2.6)

Conditionally on the true labels c, {Si1(e), . . . , SiK(e)} are mutually independent random

variables. Moreover, again conditionally on c, for a node i with ci = k, each variable Sil,

l = 1, . . . , K, follows the normal distribution N (Pkl ,Λkl), where the mean and variance
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are given by

Pkl = nRl.B.k , Λkl = nRl.Σ.k ,

and Mk. and M.k denote, respectively, the kth row and column of a matrix M .

The form of K × K parameter matrices P and Λ suggests a Gaussian mixture dis-

tribution, and indeed each random vector Si(e), conditioned on c, can be written as a

mixture of K Gaussian random vectors with the probability distribution function

p( si(e) ; π, P,Λ) =
K∑
l=1

πl p( si(e) ; Pl. ,Λl.) . (2.7)

Since we consider undirected networks, the matrix W is symmetric, and the block sums

for nodes i and j are not independent. Specifically, they share exactly one common

summand, Wij = Wji, while all other terms in the sums are independent by assumption.

The pseudo-likelihood part of our approach is to ignore this fairly weak dependence, and

treat the row block sums as independent, leading to the pseudo log-likelihood function

(up to a constant) given by

ℓPL(π, P,Λ; {si(e)}) =
n∑

i=1

log

(
K∑
l=1

πl

K∏
k=1

1√
Λlk

exp

{
−(sik(e)− Plk)

2

2Λlk

})
(2.8)

The pseudo-likelihood differs from the likelihood of the block sums under the WSBM

by the one assumption of independence between Wij and Wji, namely treating them

as two i.i.d. variables instead of setting Wij = Wji. We can reasonably hope that this

minor departure from the problem structure should not affect the results too much, and

ultimately we will prove that maximizing the objective function (2.8) results in a solution

close to the truth under appropriate conditions.

The function (2.8) is the log-likelihood of a Gaussian mixture model, with mixture

components labels matching the distribution of the latent communities, and thus fitting

this model, which can be done by a standard EM algorithm for Gaussian mixture models,
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allows us to estimate the true labels c = (c1, . . . , cn). The EM algorithm starts from an

initial value of the labels, say c0, estimates the parameters given the labels, then updates

the labels, and repeats this process either until the parameters converge or for a fixed

number of iterations T . The steps of the EM algorithm are given in Algorithm 1.

Algorithm 1 The pseudo-likelihood algorithm for estimating labels

Input: Initial labeling c0, number of communities K and the network matrix W

Output: The estimated label vector ĉ

1. Initialize parameters π̂l(c0), R̂ = diag(π̂1(c0), . . . , π̂K(c0)), P̂lk = nR̂k.B̂.l and

Λ̂lk = nR̂k.Σ̂.l.

2. Repeat T times

3. Repeat until the parameter estimates π̂, P̂ and Λ̂ converge

3.1. Compute the block sums using (2.5).

3.2. Estimate the probabilities P
PL
(ci = l| si(e) ) by

π̂il =

π̂l

K∏
k=1

1

(Λ̂lk)1/2
exp

{
−(sik(e)− P̂lk)

2

2Λ̂lk

}
K∑

m=1

π̂m

K∏
k=1

1

(Λ̂mk)1/2
exp

{
−(sik(e)− P̂mk)

2

2Λ̂mk

} . (2.9)

3.3. Update the parameter values:

π̂l =
1

n

n∑
i=1

π̂il , P̂lk =

n∑
i=1

π̂ilsik(e)

n∑
i=1

π̂il

, Λ̂lk =

n∑
i=1

π̂il(sik(e)− P̂lk)
2

n∑
i=1

π̂il

. (2.10)

4. Update the labels: ei = arg max
l=1,...,K

π̂il.

Return: ĉ = e

Once we have estimated the labels ĉ, the parameters π, B and Σ can be easily

obtained in closed form by maximizing the complete likelihood (2.3). For any fixed label
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assignment e, the likelihood (2.3) is maximized by

π̂k(e) =
nk(e)

n
,

B̂kl(e) =
1

nkl(e)

∑
1≤i<j≤n

wij1{ei = k, ej = l}

Σ̂kl(e) =
1

nkl(e)

∑
1≤i<j≤n

(wij − B̂kl)
2 1{ei = k, ej = l} .

Plugging in the labels found by Algorithm 1 gives the final parameter estimates.

As always, how well an EM algorithm performs depends on the initial value c0. The

consistency analysis in Section 3 quantifies this dependence, at one step of the algorithm,

in terms of the fraction of initial labels that match the true labels c. In practice, the EM

algorithm can be initialized with the output of any clustering algorithm, such as spectral

clustering; we discuss different choices of the initial value in detail in Section 4.

3. Consistency results

We establish consistency of the estimated node labels ĉ obtained from the pseudo-

likelihood algorithm as the number of nodes n grows. We focus on what is called weak

consistency in the literature: the fraction of mislabeled nodes converges to zero in prob-

ability as n → ∞. In this framework, we treat c as an unknown parameter and define

the error for an estimate ĉ as

L(ĉ, c) = min
ϕ∈ΦK

1

n

n∑
i=1

1{ĉi ̸= ϕ(ci)} , (3.1)

where ΦK is the set of all permutations of community labels {1, . . . , K}.

We will establish weak consistency of the estimator ĉ, meaning P(L(ĉ, c) > ϵ) → 0 for

all ϵ > 0, as n → ∞. We study consistency under the homogeneous weighted SBM, where

all within-community edge weights have the same distribution, and so do all between-

community edge weights. This is a common theoretical framework, often called the
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planted partition model for binary networks. In our setting, we assume that the K ×K

mean matrix B and the K ×K variance matrix Σ are given by

Bkl =


a, if k = l

b, if k ̸= l

and Σkl = σ2, for all k, l , (3.2)

where a, b ∈ R and σ2 > 0. All of the parameters a, b and σ2 can vary with n, but most

of the time we suppress this dependence to simplify notation.

Intuitively, the larger the absolute difference between the means |a− b| is relative to

σ, the easier it should be to recover communities. Besides that, as with all SBM-based

community detection, the problem should get harder for larger K and for unbalanced

community sizes. Yet even in the homogeneous setting, it is clear that the trade-offs for

weighted SBM are more complex than they are for the binary SBM, not least because both

the mean and the variance parameters are involved. Our goal is to establish conditions

for consistency that make these trade-offs as explicit as possible.

We will study a single label update step (4) of the algorithm, which updates the

estimated labels ĉ(t) to ĉ(t+1). Then for each node i, the label update is given by

ĉ
(t+1)
i = arg max

k=1,...,K

{
log π̂k(ĉ

(t))−

(
K∑

m=1

(sim(ĉ
(t))− P̂km(ĉ

(t)))2

2Λ̂km(ĉ(t))
+

1

2
log Λ̂km(ĉ

(t))

)}
,

(3.3)

where P̂ (ĉ(t)) = n(R(ĉ(t))B̂(ĉ(t)))T , Λ̂(ĉ(t)) = n(R(ĉ(t))Σ̂(ĉ(t)))T , and ĉ(0) ≡ c0.

Since the estimator (3.3) depends on π̂k(ĉ
(t)), P̂ (ĉ(t)) and Λ̂(ĉ(t)) we would expect the

consistency results to depend on how good these estimates are. For the parameter values

a and b, we only require a very mild condition, a correct ordering of â(ĉ(t)) and b̂(ĉ(t)),

and will assume the parameter estimates belong to the set

Sa,b = { (â, b̂, σ̂2) ∈ R3 | (â− b̂)(a− b) > 0 and σ̂2 > 0 } . (3.4)
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3.1 Balanced communities

For the initial labels c0, we will express all the consistency results in terms of the

proportion of labels in c0 that match the true community labels c, up to a permutation

of community labels 1, . . . , K. All consistency results on community detection involve

this permutation which is luckily irrelevant in practice, and to keep notation simple,

we will omit it from further discussion. The proportion of correct initial values is not

relevant asymptotically, but our empirical results in Section 4 show, not surprisingly, that

in practice starting from a good initial value is beneficial.

3.1 Balanced communities

We start from the case of balanced communities, that is, we assume each community has

m nodes and n = mK. We further assume the initial labeling c0 ∈ {1, . . . , K}n matches

γm labels in each community, resulting in the overall matching proportion γ ∈ (0, 1). The

remaining misclassified (1−γ)m nodes of each community are assumed to be distributed

equally between the other K − 1 community assignments. This set of initial partitions

can be formally written as

Eγ =
{
e ∈ {1, . . . , K}n : for all k, l = 1, . . . , K

n∑
i=1

1{ei = k, ci = l} = γm1(k = l) +
(1− γ)m

K − 1
1(k ̸= l)

}
We emphasize that we do not know which initial labels are correct, only the proportion

γ. The assumption that the misclassified nodes are equally distributed among the other

K − 1 communities is a technical assumption made only to simplify derivations of the

confusion matrix in the proof of the Theorem 1 when K > 2; the proof under a relaxation

of this assumption but with uglier algebra can be found in the Supplementary Material.

For any γ ∈ (0, 1), let h(γ) = −γ log(γ)−(1−γ) log(1−γ) be the binary entropy and

let κγ(n) =
1
n

(
log n− log

(
4πγ(1− γ) + 1

3n

))
. The following theorem gives a probabilistic
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3.1 Balanced communities

upper bound on the error of a single update step of the algorithm given by estimator (3.3).

We analyze the first step of the algorithm, that is, set t = 0 and omit t from now on.

Theorem 1 (Balanced case). Assume that π1 = · · · = πK = 1/K. Let the initial labeling

e ∈ Eγ and let ĉ(e) be the estimate of the labels obtained from (3.3). For a, b ∈ R, a ̸= b,

σ2 > 0, γ ∈ (0, 1), γ ̸= 1
K

we have

sup
e∈Eγ

sup
â,b̂,σ̂2 ∈Sa,b

E [L(ĉ (e), c) ] ≤ (K − 1) exp

{
−1

4

(γK − 1)2

K(K − 1)2
n(a− b)2

σ2

}
, (3.5)

and

P

(
sup
e∈Eγ

sup
â, b̂, σ̂2 ∈Sa,b

L(ĉ (e), c) > exp

{
−1

8

(γK − 1)2

(K − 1)2
n

K

(a− b)2

σ2

})

≤ (K − 1) exp

{
−n

(
1

8

(γK − 1)2

K(K − 1)2
(a− b)2

σ2
− C(n, γ)

)} (3.6)

where C(n, γ) = h(γ) + κγ(2n/K) + (1− γ) log(K − 1 ). As long as

1

8

(γK − 1)2

K(K − 1)2
(a− b)2

σ2
> C(n, γ) , (3.7)

the pseudo-likelihood estimator is uniformly weakly consistent.

Theorem 1 holds both for a > b and a < b. Further, when parameter values scale

with the number of nodes n, the consistency result of Theorem 1 holds as long as

n
(an − bn)

2

σ2
n

→ ∞ when n → ∞ . (3.8)

Condition (3.7) in Theorem 1 can be viewed as a requirement on the minimum dif-

ference between the distributions of within-community and between-community edges.

This is not a particularly strong requirement since the term κγ(2n/K) in C(n, γ) goes

to zero as n grows and the binary entropy term is bounded by 1. Empirical studies in

Section 4 confirm the method works well even when the difference in the means is small.

A recent result by Xu et al. (2020) established the optimal error rate for the weighted

SBM, for any clustering algorithm, as a function of the Renyi divergence of order 1/2
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3.2 Unbalanced communities

between the within- and between-community edge distributions. We compute this bound

explicitly for our model (3.2), with N(a, σ2) and N(b, σ2) distributions for the within-

and between-community edges, respectively. In this case, the lower bound from Xu et al.

(2020), for the balanced communities case, is given by

exp

{
−(1 + o(1) )

n

K

(a− b)2

4σ2

}
, (3.9)

and our upper bound (3.5) matches this theoretical lower bound up to a constant. More-

over, by (3.6)

lim
n→∞

P

(
sup
e∈Eγ

sup
â, b̂, σ̂2 ∈Sa,b

L(ĉ (e), c) > exp

{
−1

8

(γK − 1)2

(K − 1)2
n

K

(a− b)2

σ2

})
= 0 , (3.10)

when 1
8

(γK−1)2

K(K−1)2
(a−b)2

σ2 > C(n, γ). This implies that the pseudo-likelihood algorithm

achieves the optimal rate up to a constant.

3.2 Unbalanced communities

The case of unbalanced communities is substantially more complicated, because now both

the number of nodes and the proportion of correct initial labels in each community affect

the performance. To keep the technical details manageable and focus on understanding

trade-offs, we limit our study of the unbalanced case to K = 2.

Let nk =
n∑

i=1

1{ci = k} be the number of nodes in community k, k = 1, 2, and let

πk = nk/n. Assume that the initial labeling c0 ∈ {1, 2}n, up to a permutation of labels,

matches γ1n1 labels in community 1 and γ2n2 labels in community 2, or in other words,

the initial label vector belongs to the set

E γ1,γ2 =

{
e ∈ {1, 2}n :

n∑
i=1

1{ei = k, ci = k} = γknk, k = 1, 2

}
. (3.11)
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3.2 Unbalanced communities

For e ∈ E γ1,γ2 , the confusion matrix R is given by

R(e) =

 γ1
n1

n
(1− γ2)

n2

n

(1− γ1)
n1

n
γ2

n2

n

 =

 γ1π1 (1− γ2)π2

(1− γ1)π1 γ2π2

 . (3.12)

For any e ∈ E γ1,γ2 , observe that the number of nodes in each community can be

expressed as

ñ1 =
n∑

i=1

1{ei = 1} = γ1n1 + (1− γ2)n2 ,

ñ2 =
n∑

i=1

1{ei = 2} = (1− γ1)n1 + γ2n2 .

The corresponding proportions of nodes in each community of e ∈ E γ1,γ2 are then π̃1 =

γ1π1 + π2(1 − γ2) and π̃2 = (1 − γ1)π1 + π2γ2. Conditional on the true labels c, the

proportion of nodes in each community defined by e depends only on the known matching

proportions γ1 and γ2, and on the true proportions π1 and π2. Define the quantities

β1 = π̃2 ((1− γ2)π2 − γ1π1) ,

β2 = π̃1 ((1− γ1)π1 − γ2π2) .

(3.13)

For parameter estimates â, b̂, σ̂2 ∈ P̂a,b,σ2 , define the function

F (x, y) = (−2x+ â+ b̂) (β1γ1π1 − β2(1− γ1)π1)

+ (−2y + â+ b̂) (β1(1− γ2)π2 − β2γ2π2) .

(3.14)

By (3.13), the values of β1 and β2 depend only on γ1, γ2, π1 and π2, and we suppress this

dependence to simplify notation. Theorem 2 gives an upper bound on the probability

of misclassification of each node i in terms of γ1, γ2, â, b̂, σ̂
2, π1 and π2. The proof of this

theorem relies on bounding the probability of misclassification of a node by bounding

the probability that the label update, given by (3.3), chooses the wrong label. We will

express this bound in terms of two quantities, t1 and t2, that depend on all the initial

values in a fairly complicated way, and on how well they approximate the true values.
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3.2 Unbalanced communities

Theorem 2 (Unbalanced case). Initialize the algorithm with a label vector e ∈ E γ1,γ2 and

the corresponding parameter estimates â, b̂, σ̂2 ∈ Sa,b. Let

t1 =
2 σ̂2π̃1π̃2

n(â− b̂)
log

(
π̃1

π̃2

)
+ F (a, b) , t2 =

2σ̂2π̃1π̃2

n(â− b̂)
log

(
π̃1

π̃2

)
+ F (b, a) . (3.15)

If a > b, t1 ≥ 0 and t2 < 0 or if a < b, t1 < 0 and t2 ≥ 0, the probability of misclassifica-

tion for any node i ∈ {1, . . . , n}, conditionally on â, b̂ and σ̂2, is given by

P(ĉi(e) ̸= 1 | ci = 1) ≤ exp
{
− n

8σ2τ 2
t21

}
, (3.16)

P(ĉi(e) ̸= 2 | ci = 2) ≤ exp
{
− n

8σ2 τ 2
t22

}
, (3.17)

where τ 2 = β2
1π1 + β2

2π2.

The sign assumptions on t1 and t2 are technical assumptions needed to apply the

Gaussian tail bounds used in the proof to the correct tail; the bounds themselves only

depend on t21 and t22. For the balanced case, the symmetry ensures that the assumption of

alignment of signs of â− b̂ and a− b made in (3.4) is sufficient. For the unbalanced case,

we did not find a simple way to express this assumption in terms of how the initial values

relate to the parameters, but intuitively it also reflects the quality of starting values, and

thus can be expected to hold if the starting values are good enough.

The result (3.15) implies that the probabilities of misclassification (3.16) and (3.17)

go to zero as n grows. Note that in this analysis K remains fixed while n grows. The im-

balance between community sizes does not matter in this situation asymptotically, though

in practice estimation does suffer from unbalanced community sizes, as the simulations

studies in Section 4 show.

To get more intuition about the tradeoffs indicated by Theorem 2, take a δn > 0 such

that |ân − an| < δn, |b̂n − bn| < δn and assume the variance is known, with σ̂2
n = σ2

n. We
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3.2 Unbalanced communities

can then rewrite the bound (3.16) in Theorem 2 as

exp

{
−n(an − bn)

2

8τ 2σ2
n

×
(

2σn
2π̃1π̃2

n(an − bn + 2δn)(an − bn)
log

(
π̃1

π̃2

)
+ Cγ,π

1 − 2δCγ,π
2

(an − bn)

)2
}

,

where Cγ,π
1 = β1π2 + β2π1 − (β1 + β2)(π1γ1 + π2γ2) and Cγ,π

2 = β1π2 − β2π1 + (β1 +

β2)(π1γ1 − π2γ2). If

σ2
n

n
→ 0 and

n(an − bn)
2

σ2
n

→ ∞ ,

then the probabilities of misclassification (3.16) and (3.17) go to zero as n → ∞.

Combining the two bounds of Theorem 2, we can conclude that the expected error

of ĉ(e), for any e ∈ Eγ1,γ2 , satisfies

E [L(ĉ(e), c)] ≤ π1 exp
{
− n

8σ2τ 2
t21

}
+ π2 exp

{
− n

8σ2τ 2
t22

}
. (3.18)

In particular, when π = (1/2, 1/2) and γ1 = γ2 = γ, we have π̃1 = π̃2 = 1/2,

β1 = β2 = 1
4
(1 − 2γ) and −t2 = t1 = 1

4
(1 − 2γ)2(a − b). Thus, the expected error given

by (3.18) matches, up to a constant, the expected error (3.5) obtained for the balanced

case.

Figure 1 shows the negative logarithm of the bound on the expected error (higher

values means tighter bound) as a function of the signal strength |a − b|, the difference

between the within- and between-community means, and the quality of the initial pa-

rameter estimates δ. We fix n = 100 and the variance σ̂2 = 1. We plot the value of the

log-bound as a heatmap, for the set of parameters that satisfy conditions (3.15). As one

would expect, the error decreases as δ decreases (better initial value for the parameters),

as |a− b| increases (easier problem), and as the proportion of matches γ increases (better

initial value for the labels). We also see that a better initial value for the labels (higher

γ) leads to a larger set of parameters satisfying the conditions, and to lower errors. Note,

however, that the error bound is a complicated function of all the relevant parameters
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3.2 Unbalanced communities

(π, γ, δ, etc), and thus the overall effect of any one parameter may be hard to isolate; for

example, the comparison of (a) to (b) may seem counter-intuitive, because the bound is

tighter for the less balanced case, but this is an artifact of a complex dependence on the

initial values of the quantities t1 and t2, and the fact the bound is not optimal. In our

empirical results, the errors are higher in less balanced cases all other things being equal.

(a) π = (0.7, 0.3), γ1 = γ2 = 0.6 (b) π = (0.7, 0.3), γ1 = γ2 = 0.8

(c) π = (0.9, 0.1), γ1 = γ2 = 0.6 (d) π = (0.9, 0.1), γ1 = γ2 = 0.8

(e) π = (0.5, 0.5), γ1 = γ2 = 0.6 (f) π = (0.5, 0.5), γ1 = γ2 = 0.8

Figure 1: The negative logarithm of the upper bound of the expected error (3.18) when

n = 100, σ̂2 = σ2 = 1, |ân−an| < δn and |b̂n−bn| < δn for different proportion of matches

γ1 and γ2.
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4. Empirical evaluation on simulated networks

Our empirical investigations focus on two goals: understanding how the various parame-

ters of the problem affect the performance of the pseudo-likelihood algorithm (PL), and

comparing it to other ways of estimating communities from weighted networks. We sim-

ulate networks from the model (3.2) with K = 3 and other parameters as specified below.

The number of iterations of the PL algorithm is fixed at 20. Performance is evaluated by

the the error in community assignments defined in (3.1), averaged over 100 replications.

4.1 Impact of problem difficulty and initial values

Figure 2 shows the performance of the PL algorithm, as implemented in Algorithm 1,

as a function of several quantities that control the difficulty of the problem: the signal

strength |a− b| (with fixed σ2 = 1), and several values of the number of nodes n and the

correct fraction of initial labels γ. The results are intuitive: the error rate decreases as the

signal gets stronger (larger |a− b|), the initial value improves (larger γ), and the number

of nodes grows. An encouraging finding is that these results are not especially sensitive to

γ, which we cannot easily control in practice. When there is little difference between the

means a and b, the error rate gets close to random guessing (2/3 in this case, as K = 3),

as one would expect. The comparison between balanced and unbalanced community sizes

is not straightforward with K = 3, but overall the balanced case is easier, as one would

expect. The higher errors for the balanced case when the signal is very low are an artifact

of the fact that putting all nodes into the single largest community gives the error rate

of 66% for the balanced case but only 50% for the unbalanced case.

We compare two choices of the initial labels for the PL algorithm. One is spectral clus-

tering (SC), implemented as described in Lei and Rinaldo (2015) for unweighted networks,
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4.1 Impact of problem difficulty and initial values

(a) n = 500 and π = (1/3, 1/3, 1/3). (b) n = 500 and π = (0.2, 0.5, 0.3).

(c) γ = 0.7 and π = (1/3, 1/3, 1/3). (d) γ = 0.7 and π = (0.2, 0.5, 0.3).

Figure 2: Error of the PL algorithm as a function of the difference between the means

|a−b|, for several values of the correct proportion γ and the number of nodes n, averaged

over 100 replications. The variance is fixed at σ2 = 1.

applied directly to the matrix of weightsW . The second option is the discretization-based

algorithm (DB) of Xu et al. (2020), which first discretizes the matrix of weights and then

applies clustering. The DB method itself depends on the choice of the discretization level;

we followed the DB authors’ recommendation and set it to ⌊0.4(log log n)4⌋.

Figure 3 shows that the PL algorithm improves substantially upon both initial values.

The SC algorithm is generally more accurate than DB, and thus leads to better PL

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0081



4.2 Robustness to the Gaussian assumption

solutions when used as the initial value. For comparison, the PL algorithm started with

γ = 0.7 correct labels is included in all scenarios. Spectral clustering is known to favor

balanced solutions, and thus for unbalanced networks with a small community containing

only 10% of the nodes (Figure 4a), the SC estimates are the worst among all the methods,

but even then the PL method is able to improve somewhat on the initial value provided

by spectral clustering.

(a) π = (1/3, 1/3, 1/3) (b) π = (0.2, 0.5, 0.3)

Figure 3: Balanced vs. unbalanced community sizes. Overall error for PL initialized with

γ = 0.7, SC, DB, and PL initialized with either SC (PL-SC) or DB (PL-DB). For both

settings, σ2 = 0.5, n = 1000, and results are averaged over 100 replications.

4.2 Robustness to the Gaussian assumption

To investigate robustness to the Gaussian assumption, we also considered the case of

heavier-tailed edge weights. We generated the weights from a mixture of Gaussian and a

noncentral t distribution tµ,d with d degrees of freedom and the noncentrality parameter

µ. The within-community and between-community edge weights are generated by the

mixture αN (0.2, 0.25) + (1− α)t0.2,4 and αN (0, 0.25) + (1− α)t0,4, respectively. Figure

5a illustrates the within and between densities for α = 0.4. Figure 5a shows that the PL
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4.2 Robustness to the Gaussian assumption

(a) Overall error. (b) Estimated π̂1.

(c) Estimated π̂2. (d) Estimated π̂3.

Figure 4: Unbalanced case, π = (0.2, 0.7, 0.1). Overall error and estimated proportion of

nodes for PL initialized with γ = 0.7, SC, DB, and PL initialized with either SC (PL-SC)

or DB (PL-DB). For every setting, σ2 = 0.5, n = 1000, and results are averaged over 100

replications.

method performs well even for small values of α, when the edge weights are heavy-tailed.

Figure 5b illustrates a different violation of the distributional assumption, with

within-community edge weights generated from a bimodal mixture of Gaussians 0.5N (−0.3, 0.25)+

0.5N (b, 0.25), and the between-community edge weights are N (0, 0.25). We vary b from

0.3 to 0.6, with the mean of within-community edge weights varying from 0 to 0.15,
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4.3 Estimating the number of communities

while the between-community mean is always 0. As expected, the overall error of the PL

estimates decreases as the difference between the within and between means increases.

The DB algorithm has an advantage in this case because the discretization step helps

overcome this departure from normality, which was also pointed out by the authors.

(a) Heavy tails (b) Bimodal

Figure 5: Overall error for PL initialized with γ = 0.7, SC, DB, and PL initialized with

either SC (PL-SC) or DB (PL-DB). (a) Edge weights are generated from a mixture of

Gaussian and a noncentral t-distribution with mixture probability α and n = 1000. (b)

Within-community edge weights are generated from a mixture of Gaussians and between-

community weights from a Gaussian distribution.

4.3 Estimating the number of communities

In practice, the number of communities K is not known. While developing an estimator

for K in this setting is outside the scope of this work, we empirically investigate the

algorithm’s performance when K has to be estimated. Following the penalized likelihood

model selection approach for binary networks proposed by Wang and Bickel (2017), who

proved its consistency for the binary SBM setting, we use a similar penalty, n log(n) times
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4.4 Running times comparison

the number of parameters, and estimate the number of communities by

K̂ = argmax
k

{
log p(w, ẑ | π̂, B̂, Σ̂)− k(k + 1)n log n

}
(4.1)

where p(w, ẑ | π̂, B̂, Σ̂) is the maximum complete likelihood described in (2.3), obtained

by plugging in the estimated labels ẑ and the parameter estimates obtained by the pseudo-

likelihood method. The number of parameters in this case is the number of mean and

variance parameters of the edge weights.

First, we simply evaluate whether the estimator K̂ is correct; the proportion of times

K̂ = K is shown in Table 1. In all of the settings we consider in the table, the estimated

K̂ is either correct and equal to K = 3, or else K̂ = 2. This is common for all estimators

of the number of communities – in more difficult settings they underestimate the true K.

To compare the true communities with the communities estimated with K̂, we also show,

in Figure 6, the Normalized Mutual Information (NMI) between the two communities

assignments (Yao, 2003). NMI is well defined even for partitions with different number

of communities and takes values between 0 (the two partitions are independent random

assignments) and 1 (perfect match). For the hardest setting for signal strength b = 1.3,

we get K̂ = 2 while the true K = 3. Figure 6 shows that as the number of nodes n

grows, NMI approaches 1 as the K̂ converges to the true value, but it takes much longer

in more challenging settings.

4.4 Running times comparison

Finally, we compare the running times of different methods in Figure 7a, on the same

standard single core. The time reported for the PL method does not include the time

needed to generate the initial labeling. As n grows, the PL algorithm becomes cheaper

to compute than SC and DB themselves, suggesting it is an effective tool for improving
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Table 1: Proportion (out of 100 replications) that K̂ = 3 is correctly estimated by the

penalized log maximum complete likelihood, for different values of b and the number of

nodes n, with fixed a = 2, σ2 = 0.5. In all of the settings considered, the estimator

returns either K̂ = 3 or K̂ = 2.

b \ n 700 800 900 1000 1100 1200

π = (1/3, 1/3, 1/3)

1.1 1.00 1.00 1.00 1.00 1.00 1.00

1.2 0.52 1.00 1.00 1.00 1.00 1.00

1.3 0.00 0.00 0.38 1.00 1.00 1.00

π = (0.2, 0.5, 0.3)

1.1 0.00 0.00 0.06 0.33 0.89 1.00

1.2 0.00 0.00 0.00 0.00 0.00 0.19

1.3 0.00 0.00 0.00 0.00 0.00 0.00

Figure 6: The NMI between true and estimated communities obtained using K̂, averaged

over 100 replications, for different values of b and the number of nodes n, while fixing

a = 2, σ2 = 0.5 and the true number of communities K = 3.
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their performance, increasing statistical accuracy at little computational cost.

(a) (a− b)/σ = 2; (b) (a− b)/σ = 0.2

Figure 7: The running time T (in seconds) of the algorithms PL (γ1 = 0.9 and γ2 = 0.5),

SC and DB as a function of the number of nodes n.

5. Application to fMRI data

Here we apply the pseudo-likelihood method to the COBRE data (Aine et al., 2017),

consisting of resting state fMRI brain images of 54 schizophrenic patients and 69 healthy

patients. Each fMRI scan was processed following a standard pipeline at the time of data

collection, and converted to a weighted graph with n = 264 nodes representing the regions

of the brain; see Arroyo et al. (2019) for details. The edge weights represent functional

connectivity between the brain regions, measured by Fisher-transformed correlations be-

tween the time series of blood oxygenation levels at the corresponding regions. Since

the Fisher transform of the correlation coefficient is designed to make the distribution

approximately normal, this is a natural application for the normally distributed edge

weights model. We average the 69 weighted networks corresponding to healthy patients

using the weighted network average method of Levin et al. (2022) to obtain an estimate
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5.1 Community detection in fMRI brain networks

for the healthy population, and similarly for the schizophrenic patients, resulting in two

“prototypical” weighted networks.

5.1 Community detection in fMRI brain networks

There are no ground truth communities in this problem, but we can still compare the

healthy and the schizophrenic populations. We can also compare results from community

detection to previously published known brain atlases such as Power et al. (2011). The

true number of communities K is also unknown, and we simply vary K from 2 to 20, a

range based on previous findings for fMRI connectivity networks. As before, we use both

DB and SC as potential initial values for our pseudo-likelihood method. Using the same

formula as in the simulation study, the discretization level for DB method is set to 10.

We start from comparing fitted likelihoods of different starting values and the PL

solutions initialized with them, shown in Figure 8. While we plot these as a function

of the number of community K for convenience, the values across different Ks are not

directly comparable, since we are not applying any penalization for model complexity.

The plots generally agree with what we saw in simulations: the PL algorithm finds a

better fit than the initial value it starts from, and the DB method especially does not fit

the data as well.

We also looked at how different solutions differ from each other and from their initial

values. Figure 9 shows the proportion of nodes labeled differently (after finding the best

permutation of community labels) between pairs of methods. We see similar patterns

for the healthy and the schizophrenic populations, and while the two initial values are

substantially different, the solutions of the PL method are closer, suggesting that it moves

in the direction of a higher likelihood from both initial values, giving us more confidence

in the PL solutions.
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Figure 8: The log of the complete likelihood using the communities from spectral clus-

tering (SC), discretization-based method (DB), and pseudo-likelihood with two initial

values, PL-SC and PL-DB.

Figure 9: Proportion of mismatched nodes between different pairs of methods as a func-

tion of the number of communities K.

5.2 Comparative Analysis of Brain Systems

We also compared our solutions to the Power parcellation (Power et al., 2011), an assign-

ment of the same 264 ROIs (nodes) to 14 functional brain systems (regions), one of which
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is labeled “uncertain” and others correspond to known brain functions, as described in

Table 2. This parcellation was obtained from a different dataset which included only

healthy subjects.

Table 2: Brain regions in the Power parcellation.

Region Function Nodes Region Function Nodes

P1 Sensory/somatomotor

Hand

30 P8 Fronto-pariental

Task Control

25

P2 Sensory/somatomotor

Mouth

5 P9 Salience 18

P3 Cingulo-opercular

Task Control

14 P10 Subcortical 13

P4 Auditory 13 P11 Ventral attention 9

P5 Default mode 58 P12 Dorsal attention 11

P6 Memory retrieval 5 P13 Cerebellar 4

P7 Visual 31 P14 Uncertain 28

Fixing K = 14 to match the Power parcellation, we estimated 14 communities for

both populations by the PL algorithm using SC as the initial value. The estimated

communities for the healthy population were relabeled to match their numbers as closely

as possible to the Power regions using the Hungarian algorithm (Kuhn, 1955). Table 3

compares the parcellation estimated from the healthy population (H1-H14) to both the

Power regions (P1-P14) and the parcellation estimated for the schizophrenic population

(S1-S14), listing the region(s) with the highest overlap for each of the H1-H14 and the

proportion of shared nodes. The Sankey diagram in Figure 10 shows the correspondence
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between the healthy and Power parcellation for reference, and the correspondence between

the healthy and the schizophrenic populations. We see that only a few regions are strongly

different between the healthy and the schizophrenic parcellations; in particular, H2 and

H11, which both appear to split off from P5, which is the default mode network (DMN).

The DMN has been implicated in schizophrenia previously (Broyd et al., 2009; Öngür

et al., 2010), and we have observed in previous work Kim et al. (2023) that different

parts of the DMN seem to play different roles, and so the splitting into multiple parts

makes sense. We also note that the most stable Power regions, which were obtained from

different patients, seem to correspond to communities correspond to the Power regions are

the two attention regions, visual, and fronto-pariental task control, which could indicate

these are the strongest communities. This is, of course, exploratory analysis, and making

formal inferences requires further study.

Table 3: Proportion of common nodes of the estimated regions of the healthy network

(H1-H14) with the correspondent Power parcellation regions (P1-P14) and the estimated

regions of the schizophrenic network (S1-S14).

Region Region Region Region Region Region

H1 P1 (0.70) S1 (0.59) H8 P7 (0.48) S8 (1.00)

H2 P5 (0.61) S5 (0.44) H9 P8 (0.61) S9 (1.00)

H3 P1,P3 (0.40) S11 (0.40) H10 P10 (0.35) S10 (0.67)

H4 P3,P4,P5 (0.26) S4 (0.95) H11 P5 (0.65) S11 (0.59)

H5 P5 (1.00) S5 (0.85) H12 P12 (0.69) S12 (1.00)

H6 P5 (0.62) S6 (0.44) H13 P5 (0.33) S13 (0.67)

H7 P7 (0.69) S7 (0.61) H14 P14 (1.00) S14 (1.00)
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Figure 10: A Sankey diagram comparing the communities obtained by the PL-SC al-

gorithm for the healthy population (H1-H14) with the Power regions (P1-P14) and the

communities estimated for the schizophrenic patients (S1-S14).

6. Discussion

In this paper, we proposed a pseudo-likelihood method for community detection on

weighted networks, a much less studied type of networks than binary but just as common

in practice, or even more common, once we account for the fact that many binary net-

works are obtained by thresholding weighted networks obtained directly from the data.

Like with many other community detection methods, we provided the analysis under the

weighted stochastic block model, but empirically the algorithm appears reasonably ro-

bust to model misspecification. Our theoretical analysis shows that the proposed method

achieves the optimal error rate up to a constant, and illustrates the trade-offs between
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the means, variances, and community sizes. Like all iterative algorithms, our algorithm

depends on how good the initial value is. We were able to quantify this dependence in

theory, and showed empirically that the algorithm is robust to the choice of initial value.

In particular, the initial value provided by spectral clustering is a fast and reliable way

to initialize pseudo-likelihood, which can still improve upon it substantially.

There are many directions in which this work can be taken further. We only con-

sidered theoretical analysis for homogenous models, where all within-communities edge

distributions are the same, and between-communities edge distributions are also the same.

This simplification allows for bounds that make the within- and between- tradeoff explicit,

which is arguably the main value of obtaining such bounds. The algorithm itself, however,

is equally applicable to heterogeneous models, and theoretical properties under that sce-

nario remain to be investigated. Another useful extension would be to incorporate edge

distributions with a point mass at zero, so that the network can be truly sparse. More

generally, relaxing parametric assumptions on edge distributions and developing more

general versions of the pseudo-likelihood approach to community detection on weighted

networks would increase the range of applications where the method could be applied not

just based on empirical evidence, but with provable guarantees. Finally, further investi-

gation of model selection options and of theoretical properties of the penalized likelihood

model selection method we proposed remain an open question.

Supplementary Material

The online Supplementary Material contains the proof of Theorems 1 and 2, and a ver-

sion of Theorem 1 without the assumption of equal proportions of true labels in each

community on the initial value.
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Lelarge, M., L. Massoulié, and J. Xu (2015). Reconstruction in the labelled stochastic block model. IEEE

Transactions on Network Science and Engineering 2 (4), 152–163.

Levin, K., A. Lodhia, and E. Levina (2022). Recovering shared structure from multiple networks with unknown

edge distributions. Journal of Machine Learning Research 23 (3), 1–48.

Ma, Z. and Y. Wu (2015). Computational barriers in minimax submatrix detection. The Annals of Statis-

tics 43 (3), 1089–1116.

MacDonald, P. W., E. Levina, and J. Zhu (2021, 11). Latent space models for multiplex networks with shared

structure. Biometrika 109 (3), 683–706.
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