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Abstract: Sparse functional data analysis (FDA) is powerful for making inference on the underlying

random function when noisy observations are collected at sparse time points. To have a precise

inference, knowledge on optimal designs that allow the experimenters to collect informative functional

data is crucial. Here, we propose a framework for selecting optimal designs to precisely predict

functional principal and empirical component scores. Our work gives a relevant generalization of

previous results on the design for predicting individual response curves. We obtain optimal designs,

and evaluate the performance of commonly used designs. We demonstrate that without a judiciously

selected design, there can be a great loss in statistical efficiency.

Key words and phrases: Design efficiency, Exact designs, Mixed model equations, Random function,

Sparse orthonormal approximation.

1 Introduction

We are concerned with optimal experimental designs for sparse functional data analysis

(FDA). With limited resources and practical constraints, it is common to have only a small

number of observations from the underlying random function. Many sparse FDA methods

are developed and shown powerful in analyzing such sparse functional data (e.g., Shi et al.,

1996; Yao et al., 2005a,b; Hall et al., 2006, 2008; Müller, 2008; Nie et al., 2022; Zhong et al.,
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2022). However, knowledge on optimal designs for collecting informative sparse functional

data remains scarce. For many sparse FDA methods, there is no guidance on the evaluation

and selection of designs, and one may (randomly) select a design without having a good

knowledge of its performance. As demonstrated in Ji and Müller (2017), and in this work,

imprudently selected designs can result in a great loss in statistical efficiency, making the

experiment inefficient, or even impossible, to achieve the study objectives of interest. The

development of knowledge on optimal designs is crucial.

Due to its importance, the research on the design for sparse FDA has recently drawn

some attention. As a pioneering work, Ji and Müller (2017) proposed optimal designs for

two study objectives, including (i) trajectory recovery of the underlying random function,

and (ii) prediction of the scalar response under a scalar-on-function regression. Park et al.

(2018) studied bi-objective optimal designs by considering compound criteria of both study

objectives. Rha et al. (2020) developed a probabilistic subset selection (PSS) algorithm for

finding optimal designs, and extended the previous design works to function-on-function

regression. These works provide methods for evaluating designs and obtaining optimal de-

signs. They also highlighted the practical usefulness of optimal designs in real applications.

For example, Rha et al. (2020) discussed a study of Alzheimer’s disease (AD), where the

optimal design provides a guidance on scheduling the patient’s visits for taking a clinical

rating, called the AD Assessment Scale-Cognitive Subscale (ADAS-Cog), to evaluate the

cognitive impairment in AD. Park et al. (2018) demonstrated the use of optimal designs

in determining the time points for performing abdominal ultrasound scans to give precise

predictions of fetal growth trajectories. Ji and Müller (2017) illustrated the advantages
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of optimal designs through Mediterranean fruit fly application, and the Baltimore longitu-

dinal study of aging. It is noteworthy that, in these previous works, the optimal designs

are obtained by taking advantages of prior knowledge (e.g., from pilot studies) on some

characteristics of the underlying random function. In the sense of Chernoff (1953), the

methods proposed in these previous studies are locally optimal design approaches; see also

discussions by, e.g., Ford et al. (1992) and Stufken and Yang (2012) on the theoretical

importance and practical relevance of locally optimal designs. For cases where the prior

knowledge is vague, Rha et al. (2021) proposed an approach to enhance the quality of de-

signs by borrowing the strengths of bagging (bootstrap aggregating). They demonstrated

the usefulness of their proposed method, and applied it in finding optimal designs for func-

tional quadratic regression. In addition, Li and Xiao (2020) considered another design

problem on the classification of functional data.

In this work, we study two related design issues for collecting sparse functional data.

Note that the designs that we consider here are collections of sampling time points (or

locations) for making observations from underlying random functions Xi(t)’s. Following

the previous works in the same research line, the sampling time points for each Xi(t) are

selected from a specified grid on the compact domain of Xi(t). We first discuss optimal

designs for the sparse functional principal component analysis (FPCA; e.g., Yao et al.,

2005a), and then work on a design issue for a recently proposed alternative method of

FPCA, namely the functional empirical component approach (FECA) of Nie et al. (2022).

The FPCA is popular, and is a main focus of the previously discussed works. In contrast to

these works, our focus here is on designs that render a precise prediction of the FPC scores,
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which is essential for further inferences, including objectives (i) and (ii) mentioned above

(see also Yao et al., 2005a,b). We note that our problem formulation for the design of FPC

scores allows us to consider the commonly used optimality criteria for evaluating optimal

designs. It can then be shown (see Theorem 1) that the A-optimal design for predicting FPC

scores gives an optimal design for the previously described objective (i) of Ji and Müller

(2017) for recovering the trajectory of Xi(t). Similarly, the compound criterion studied in

Park et al. (2018) for objectives (i) and (ii) is essentially the L-optimality criterion for the

FPC scores. Thus, the design issues considered in these previous studies can be viewed as

special cases of the design problem formulated in Section 2 for predicting FPC scores.

In addition, we study optimal designs for the FECA that is recently proposed by Nie

et al. (2022) as an improved alternative to the FPCA. To our knowledge, there is no

published optimal design research for this sparse FDA method, and guidance on selecting

good designs is currently unavailable. Building upon the design works for FPCA, we

propose here a framework for evaluating and selecting designs to give a precise prediction

of FEC scores. Our proposed framework not only allows experimenters to evaluate and

identify good designs for FECA, but also provides a generalization of a previous work

of Prus and Schwabe (2016) on predicting individual random effects under mixed effects

models. This generalization, as also indicated by Prus and Schwabe (2016), is practically

relevant. Specifically, we obtain designs for situations where the method of Prus and

Schwabe (2016) cannot be applied. These situations are very common for sparse FDA. For

cases where their method is applicable, our proposed method allows us to identify designs

that outperform the single-support designs found by their method, as well as those obtained

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0051



for the FPCA (e.g., Ji and Müller, 2017). We also provide discussions and comparisons of

these competing designs, and the commonly used random designs.

The designs that we consider here are exact designs, in the sense that they are obtained

for a prespecified number, n, of subjects. Exact designs can directly be used in practice.

However, obtaining these designs for FECA becomes rather involved, due to the enormous

space of candidate designs. We adapt here a wide used exchange algorithm for finding

optimal designs. To allow a feasible computation, we derive alternative representations

of the optimality criterion to give a great reduction in the computational effort. In our

numerical study, we are able to combine the exchange algorithm with a step that involves

an exhaustive search (Section 3). For problems where exhaustive search is infeasible, we

also present a possible alternative by considering the PSS approach of Rha et al. (2020).

We further note that our formulation of the optimality criterion also makes it possible to

consider combining the exchange algorithm with a second-order cone programming (SOCP)

solver (as another alternative for the exhaustive search). A discussion, along with a needed

result, for this is provided in Appendix A.

In the next section, we present the sparse FPCA setting, and discuss the optimal issue

for predicting FPC scores, along with its link with the design problems in existing works.

Section 2 also gives some background knowledge for our work on FECA. We then describe

our proposed optimal design approach for predicting FEC scores in Section 3. Section

4 provides a numerical study to give insights into the performance of competing designs,

including our obtained designs for FEC scores , randomly generated designs, single-support

designs from the method of Prus and Schwabe (2016), and designs for FPC scores. This is
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followed by a discussion in Section 5. The use of the PSS algorithm, and SOCP solver can

be found in Appendix A. Some proofs of our results are provided in Appendix B.

2 Optimal Designs for Functional Principal Components

Let T be a compact (time) interval such as T = [0, 1], and X = {X(t) : t ∈ T } be a mean-

square continuous, second-order stochastic process with its realizations in the separable

Hilbert space L2(T ) of square-integrable functions on T . The random function X has

continuous mean and covariance functions, which are denoted as µx(t) = E{X(t)}, and

Cx(t1, t2) = Cov{X(t1), X(t2)}, respectively. With Mercer theorem and Karhunen-Lóeve

expansion, we may write

Cx(t1, t2) =
∞∑
j=1

λjψj(t1)ψj(t2), and

X(t) = µx(t) +
∞∑
j=1

〈X − µx, ψj〉ψj(t). (2.1)

Here, {ψj(t) : j = 1, 2, ...} is a set of orthonormal eigenfunctions of (the covariance operator

of) X, λj is the jth greatest eigenvalue with
∑∞

j=1 λj <∞, 〈f, g〉 =
∫
T f(t)g(t) dt (Lebesgue

integration) is the inner product, and ζj = 〈X − µx, ψj〉 gives the jth leading FPC score

having E(ζj) = E(ζjζk) = 0 for j 6= k, and E(ζ2j ) = λj. See Hsing and Eubank (2015) for

further mathematical details on such random functions.

In most cases, the entire sample path of X is unavailable, but the functional data,

{uik : k = 1, ..., K}, of subject i form a noisy subsample of the underlying Xi at time

points {tik : k = 1, ..., K} ⊂ T ; i = 1, ..., n and tik < ti,k+1. That is, uik = Xi(tik) + εik,

where εik’s are iid noise with mean 0 and variance σ2, and are independent of Xi. Our focus
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is on cases where limited resources and practical constraints permit only a relatively small

K for each subject. The sampling times, ti = {ti1, ..., tiK}, for each Xi may be irregularly

spaced over T , and possibly, ti 6= tj for some i 6= j. Under this sparse functional data

setting, we are concerned with the selection of an optimal design, which is a multiset

d = {t1, ..., tn}, for collecting informative functional data uik’s to render precise statistical

inference. For clarity, the set ti of sampling time points for each subject will be refer to as

an elemental design (of the design d for a study of size n).

Under the above setting, Ji and Müller (2017), Park et al. (2018), and Rha et al. (2020,

2021) studied some optimal design issues. With a focus on the FPCA, they considered the

following approximation for a given (sufficiently large) J .

Xi(t) ≈ µx(t) +
J∑

j=1

ζijψj(t), (2.2)

where ζij = 〈Xi − µx, ψj〉 is the jth FPC score of Xi, and the remaining terms are defined

as in (2.1). With sparse functional data ui = (ui1, ..., uiK)>, a prediction of the FPC scores

ζi = (ζi1, ..., ζiJ)> is (e.g., Yao et al., 2005a):

ζ̃i = ΛΨ>i
(
σ2IK + ΨiΛΨ>i

)−1
(ui − µx,i) =

(
σ2Λ−1 + Ψ>i Ψi

)−1
Ψ>i (ui − µx,i),

where Λ = diag(λ1, ..., λJ) with λj > 0 for all j = 1, ..., J , Ψi = [ψ1(ti), ..., ψJ(ti)], ψj(ti) =

(ψj(ti1), ..., ψj(tiK))>, IK is the identity matrix of orderK, and µx,i = (µx(ti1), ..., µx(tiK))>.

This ζ̃i is used in (2.2) for predicting Xi. The quality of the prediction will depend on ti.

One of the design goals of the previous studies is thus on finding optimal t∗i that minimizes

the corresponding mean integrated squared error (MISE); see, e.g., Park et al. (2018).

MISE(ti) = tr{Λ−ΛΨ>i (σ2IK + ΨiΛΨ>i )−1ΨiΛ}. (2.3)
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Here, tr{·} is the matrix trace. Ji and Müller (2017), and Park et al. (2018) considered

a greedy search, and Rha et al. (2020) proposed a probabilistic subset selection (PSS)

algorithm for finding optimal t∗i that minimizes the MISE. It is noteworthy that the MISE

depends not only on ti, but also on other quantities, including σ2, J , and (λi, ψj) for

j = 1, ..., J . As suggested by Ji and Müller (2017), the values of these quantities can

be estimated from a pilot study with the methods discussed in, e.g., Yao et al. (2005a).

Consequently, t∗i is obtained by minimizing the estimated MISE, and can thus be viewed

as a locally optimal design in the sense of Chernoff (1953). A design approach that partly

takes the uncertainty of the estimated MISE into can be found in Rha et al. (2021). We note

that the approach of Rha et al. (2021) can be extended to our current study. But for clarity,

we follow the previous works to consider locally optimal designs, and for convenience, the

term ‘locally’ is omitted in this paper.

The inference on Xi requires a prediction of the FPC scores ζi, whose prediction preci-

sion will again depend on the selected elemental design ti. Let I(ζi; ti) = σ2Cov−1(ζ̃i− ζi)

be the (standardized) precision matrix for ζi under the elemental design ti. With design

d = {t1, ..., tn}, the precision matrix for ζ = (ζ>1 , ..., ζ
>
n )> is then I(ζ;d) = ⊕n

i=1I(ζi; ti),

where ⊕ is the matrix direct sum. To evaluate the goodness of design, we follow Kiefer

(1959, 1974) to consider specific scalar function Φ(I) of the precision matrix I of interest as

the optimality criterion. For example, the A-optimality criterion is ΦA(I) = tr(I−1), and

the L-criterion has ΦL(I) = tr(LI−1) with given constant matrix L. One may also consider

the D-criterion to aim at designs minimizing det(I−1). We note that I−1 might not exists

for some designs. These designs are considered the worst, and their criterion values are set
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to Φ = +∞.

With the above discussions, we immediately observe the following result, which can be

derived with similar arguments as in Sec. 5.3 of Fedorov and Hackl (1997). The proof is

omitted.

Theorem 1. The A-optimal design for predicting the FPC scores ζ of n subjects can be

formed by d∗ = {t∗1, ..., t∗n}, where t∗i is an elemental design minimizing ΦA{I(ζi; ti)} =

tr{(σ2Λ−1 + Ψ>i Ψi)
−1}, or equivalently, minimizing MISE(ti) of (2.3).

Theorem 1 suggests that finding the optimal t∗i for predicting Xi is equivalent to finding

A-optimal elemental design for ζi. By applying the same t∗i to all the n subject, we have

an A-optimal design for predicting the n sets of FPC scores ζ. It can also be seen that

with specific constant matrix L, the L-optimal design for ζi will minimize the mean square

prediction error (MSPE) for predicting the response in a functional regression studied

in, e.g., Rha et al. (2020). The compound criterion of MISE and MSPE considered in

the previously mentioned works also corresponds to an L-optimality criterion for ζi. As

demonstrated in Rha et al. (2020), the PSS algorithm gives an efficient tool for finding

optimal elemental designs for these study objectives. Another possible approach is by

recasting this optimization problem to a second-order cone programming (SOCP) one.

With the ΦA in Theorem 1, this can be easily done by the method of Harman and Prus

(2018). The application of PSS and SOCP approaches to the present work is discussed in

Appendix A.

From Theorem 1, it also can be seen that there aremn optimal designs for ζ of n subjects

for cases having m distinct optimal designs for each ζi. The previous studies mainly focused
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on designs having only one elemental designs; i.e., d∗ = {t∗i , ...t∗i }. This is partly because

that the proposed algorithms do not aim at finding multiple t∗i ’s, and practically, we only

need one t∗i for achieving the study objectives discussed in this section. Hereinafter, a

design formed by a single elemental design will be referred to as a single-support design.

It turns out that these single-support designs can be suboptimal for predicting FEC scores

to be discussed in the next section. In some cases commonly encountered in sparse FDA,

these designs do not even allow the prediction of FEC scores, and thus have zero statistical

efficiency.

3 Optimal Designs for Functional Empirical Components

As an improved alternative to the FPCA, Nie et al. (2022) proposed the use of FECA by

considering the following approximation.

Xi(t) ≈
J∑

j=1

αijηj(t), (3.1)

where ηj(t) is the eigenfunction of the nonnegative-definite, self-adjoint, Hilbert–Schmidt

integral operator Hx having [Hxϕ](s) =
∫
T Hx(t, s)ϕ(t) dt, Hx(t1, t2) = E{X(t1)X(t2)} is

the (uncentered) second-moment function of X, 〈ηj, η`〉 = δj`, δj` is the Kronecker delta,

and αij = 〈Xi, ηj〉 is referred to as the FEC score. We also write θj = E(αij) = 〈µx, ηj〉,

and τj = E(α2
ij) > 0 for j = 1, ..., J , and note that the integer J of (3.1) might not equal

that of (2.2). With (3.1), we consider the following model for the functional data uik.

uik =
J∑

j=1

αijηj(tik) + εik; i = 1, ..., n, k = 1, ..., K. (3.2)

Following the discussion in Section 2, our focus here is on optimal designs d∗ for precise

prediction of the FEC scores αi = (αi1, ..., αiJ)>; i = 1, ..., n. With specified ηj (e.g.,
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from pilot study), (3.2) presents a mixed-effects model, and some results on designs for

predicting individual random effects can be found in Prus and Schwabe (2016). However,

the application of their results requires assumptions that may not hold in the sparse FDA

setting. In particular, Prus and Schwabe (2016) allowed a sampling time point tij to appear

more than once in an elemental design ti. But in almost all realistic FDA settings, we do not

make more than one observation from Xi(t) at a given time point t. Moreover, the design d

considered by Prus and Schwabe (2016) is formed by the same elemental design t; i.e., it is

a single-support design. A necessary condition for these designs to be useful for predicting

FEC scores is K ≥ J . However, cases with K < J are also very common. In addition,

even with K ≥ J , we may still require more than one elemental design for generating an

optimal d, as demonstrated in our numerical study in Section 4. New developments are

thus called for.

Here, we develop new results on optimal designs for predicting FEC scores by relaxing

the constraint on K and J . To derive the optimality criterion for predicting the FEC scores

α, we consider the following working model for (3.2):

u = Fθ +Rγ + ε; Cov

 γ

ε

 =

 In ⊗∆ O

O σ2InK

 , (3.3)

where u = (u>1 , ...,u
>
n )> represents the functional data of the n subjects, θ = (θ1, ..., θJ)>,

F = [F>1 , ...,F
>
n ]>, F i = [η1(ti), ..., ηJ(ti)], ηj(ti) = (ηj(ti1), ..., ηj(tiK))>, γ = α− jn ⊗ θ,

α = (α>1 , ...,α
>
n )> is the vector of the n sets of FEC scores, jn is the vector of n ones, ⊗

is the Kronecker product, R = ⊕n
i=1F i, ε = (ε11, ..., εnK)> is noise, ∆ = diag(τ1, ..., τJ),

and O represents a zero matrix of appropriate dimensions. In line with Prus and Schwabe
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(2016) and Nie et al. (2022), we do not impose Gaussian assumption on α, and in contrast

to the FPCA, prior knowledge of µx(t) is not required; see also Nie et al. (2022) for a

discussion on this. For predicting α, we consider the mixed model equations for (3.3) that

can be reduced to the following with working W i = σ2∆−1 + F>i F i (cf. Appendix A of

Prus and Schwabe, 2016, and references therein). F>F F>R

R>F ⊕n
i=1W i


 θ̃

γ̃

 =

 F>u

R>u

 . (3.4)

The unique solution for (θ̃
>
, γ̃>)> of (3.4) is presented in Theorem 2 below. Assump-

tions for this and subsequent results are as follows. First, ∆ is nonsingular, and thus,

W i = σ2∆−1 + F>i F i is positive definite. This is not a strong assumption, and holds if

τj > 0 for j = 1, ..., J . Extending our derivations in Appendix B to cases with a singular

∆ is possible, but is beyond the scope of our study. In addition, the predictability of α

will hinge on the estimability of its mean θ. Thus, we will focus only on designs d allowing

an estimable θ (and hence, a predictable α). As suggested by Theorem 2, this means that

d yields a full-column-rank F (i.e., rank(F ) = J). The collection of such designs will be

denoted as Ξd hereinafter. We note that any d ∈ Ξd has at least J distinct tij’s (even when

K < J). Moreover, for typical FDA settings, the K sampling time points ti1, ..., tiK for an

Xi(t) are all distinct. We thus require each tij to appear no more than once in a ti. We

now present Theorem 2.

Theorem 2. Eq. (3.4) has the following unique solution if and only if F has full column
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rank.

γ̃ = (γ̃>1 , ..., γ̃
>
n )>; γ̃i = W−1

i F
>
i (ui − F iθ̃);

θ̃ = (
n∑

j=1

W−1
j F

>
j F j)

−1
n∑

i=1

W−1
i F

>
i ui. (3.5)

It is noteworthy that γ̃ is the best linear unbiased prediction for γ, and θ̃ gives the

best linear unbiased estimate satisfying F>Σ−1u F θ̃ = F>Σ−1u u, where Σu = ⊕n
i=1(σ

2IK +

F i∆F
>
i ) is the covariance matrix of u; see also, Henderson et al. (1959), and Theorem

12.3.1 of Christensen (2002). We also note that if F i = F 1 has a full column rank for all i,

the solution is reduced to the one presented in Prus and Schwabe (2016). But here, we also

consider cases where F i 6= F j for some i 6= j, and allow rank(F i) < J . In other words,

we do not restrict ourselves to single-support designs, and allow different subjects to have

different elemental designs ti. With this relaxation of assumptions, our results provide a

generalization of Prus and Schwabe (2016).

Theorem 2 also gives a prediction of the FEC scores α, which in turn allows the

formulation of an optimality criterion for evaluating competing designs. With αi = γi +θ,

a prediction of α = (α>1 , ...,α
>
n )> is

α̃ = G

 θ̃

γ̃

 , where G = [jn, In]⊗ IJ . (3.6)

Some discussions on the designs for the fixed effects θ can be found in Sec. 5.3 of

Fedorov and Hackl (1997) and Prus (2022). But, the estimation precision of θ̃ is not

the main concern here. We instead search over the previously defined Ξd for an optimal

design yielding the highest prediction precision for α. To this end, we again consider

specific real-function Φ{I(α;d)} of the precision matrix I(α;d) as the optimality criterion
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for evaluating competing designs. To derive such an optimality criterion, we present below

Cov(α̃−α) = σ2I−1(α;d), i.e., the MSE of α̃; this also gives a generalization of Theorem

2 of Prus and Schwabe (2016).

Theorem 3. Consider a design d ∈ Ξd for model (3.3), and the prediction α̃ in (3.6).

The covariance matrix of (α̃ − α) can be written as a partitioned matrix Cov(α̃ − α) =

((σ2Cij))i,j=1,...,n, where Cij is an J × J matrix with

Cij = δijW
−1
i + (W jAW i)

−1, A = nσ−2∆−
n∑

i=1

W−1
i , (3.7)

δij is the Kronecker delta, and W i is as in (3.4). A−1 exists and is positive definite if and

only if F has full column rank.

With Theorem 3, the A-optimality criterion (Section 2) for predicting the FEC scores α

can be written as the ΦA below. Similarly, the L-optimality criterion can be easily derived.

We note that the unknown quantities involved in ΦA{I(α;d)} can be estimated from, e.g.,

a pilot study with the method of Nie et al. (2022).

Corollary 1. The A-optimality criterion for evaluating a design d = {t1, ..., tn} ∈ Ξd in

predicting the FEC scores α can be written as

ΦA{I(α;d)} =
n∑

i=1

tr(W−1
i ) +

n∑
i=1

tr(W−2
i A

−1). (3.8)

For convenience, we will refer to the first term of ΦA as ΦA1 =
∑n

i=1 tr(W
−1
i ), and set

ΦA2 =
∑n

i=1 tr(W
−2
i A

−1). We note that with unknown θ, the precision matrix I(α) for

the FEC scores is no longer a block-diagonal matrix, and has a more complex structure

than its counterpart I(ζ) in Section 2. We also note that the A-criterion for α is not
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reduced to that of ζ, even when µx = 0 (although in this case, ∆ = Λ, and F i = Ψi).

Specifically, ΦA{I(α;d)} includes an additional term
∑n

i=1 tr(W
−2
i A

−1), as can be seen by

comparing Corollary 1 and Theorem 1. But with µx = 0, ΦA{I(ζ;d)} gives a lower bound

of ΦA{I(α;d)}. This fact leads to a lower bound for the A-efficiency as presented later in

Theorem 5, where a sharper lower bound is also provided.

Finding an A-optimal design for α will require a search of the best combination of n

elemental designs ti. But in contrast to Theorem 1, each of these ti’s is not necessarily

optimal for studying the individual αi. When used alone, ti might not even allow the

prediction of αi, especially when K < J . Another noteworthy feature of the current design

issue is that the dimension of I(α) grows with n, and the ΦA-value, or in a sense, the

amount of information, is not additive by replicating a design for a larger n. Corollary

2 provides some insights into this, and suggests that ΦA1 is increasingly important than

ΦA2 with an increased number of replicates. The same argument gives Corollary 3 for

single-support designs, which are in Ξd only if K ≥ J . This result can also be derived from

Corollary 2 of Prus and Schwabe (2016) by applying, e.g., the Woodbury matrix identity

or Theorem 18.2.8 of Harville (1997).

Corollary 2. As in Corollary 1, let d = {t1, ..., tn} ∈ Ξd be a design for α, and drn be

the r(> 1) copies of d for the FEC scores of rn subjects. The A-optimality criterion of drn

has:

ΦA(drn) = r
n∑

i=1

tr(W−1
i ) +

n∑
i=1

tr(W−2
i A

−1).

Corollary 3. Suppose K ≥ J , and d ∈ Ξd is a single-support design formed by the n

copies of an elemental design t1; i.e., d = {t1, ..., t1}. The A-optimality criterion of d on
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predicting α is reduced to the following.

ΦA(d) = ntr(W−1
1 ) + tr{W−2

1 (σ−2∆−W−1
1 )−1}.

Our aim is at an exact optimal design d for n future subjects. To our knowledge, no

approach is currently available for finding such designs under the FECA setting. A naive

approach is perhaps by comparing candidate designs with the trace of inverse precision

matrix of (α̃ − α) obtained directly from (3.4), and (3.6). For each design, one then

needs to calculate the inverse of an (n + 1)J-by-(n + 1)J matrix, which requires much

computational effort and computer memory. With Theorem 3, and the results below (Eq.

(3.9) and Theorem 4), we are allowed to consider an approach that involves inverting

matrices of reduced dimensions (J-by-J). To obtain an optimal design, we utilize exchange-

type algorithms which are widely considered in tackling various optimal design problems

(see also Atkinson et al., 2007, Ch. 12). The algorithm that we consider begins with an

initial design d(0) = {t(0)1 , ..., t(0)n }. At the tth iteration of the algorithm, a substitution

of t
(t−1)
j of the current design d(t−1) with another elemental design tp is proposed. The

proposed substitution is accepted to give the next design d(t) when it reduces the ΦA-value;

otherwise, the design remains intact, and d(t) = d(t−1). This procedure is repeated until

no further improvement is expected. To identify the pair (t
(t−1)
j , tp) at each iteration, we

derive (3.9) below, which gives an updating formula for the ΦA-value after the exchange.

Without loss of generality, (3.9) is presented with j = n. We also use dp to denote the

resulting design after the substitution. We require both designs to allow an estimable θ

(i.e., d,dp ∈ Ξd). We now provide the updating formula for the ΦA-criterion when moving
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from d to dp.

ΦA{I(α;dp)} = ΦA{I(α;d)}+ Φ−(d) + Φ+(dp); (3.9)

Φ−(d) = −tr(W−1
n +

n∑
i=1

W−2
i A

−1); and

Φ+(dp) = tr(W−1
p +

n−1∑
i=1

W−2
i A

−1
p +W−2

p A
−1
p ).

Here, W p is as W i defined under (3.4), but W p is obtained with tp. Similarly, Ap is from

dp, but otherwise is the same as A (for d) in (3.7). Ideally, we would like to simultaneously

identify t
(t−1)
j and tp that give a large reduction in the ΦA-value. To have a feasible

computing time, we instead separate this into two steps, namely the deletion of a t
(t−1)
j ,

followed by the addition of a tp. Each of the two steps will change the dimensions of the

precision matrix. However, deriving an updating formula for ΦA by taking this change into

account does not seem advantageous. We thus implement the two steps by fixing the order

of the precision matrix to nJ . With (3.9), we first identify a tj ∈ d that has the smallest

Φ−, and then replace it with a tp that minimizes Φ+. Note that the last term of Φ− is

constant across all elemental designs in d, and can thus be omitted when selecting tj. To

facilitate the calculation of Φ+ for identifying the best tp, we provide below an alternative

expression.

Theorem 4. With the same notation as in (3.9), let An−1 = nσ−2∆−
∑n−1

i=1 W
−1
i . Suppose

that d,dp ∈ Ξd. Then,

Φ+(dp) = tr{(W p −A−1n−1)
−1(IJ +A−1n−1

n−1∑
i=1

W−2
i A

−1
n−1)}+ tr(A−1n−1

n−1∑
i=1

W−2
i ).

We note that A−1p in (3.9) is a function of tp, and needs to be calculated for every

candidate design in every iteration of the algorithm. By contrast, A−1n−1 in Theorem 4
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depends only on the (n−1) elemental designs of d that remain intact in the same iteration,

and is free of tp. It only needs to be calculated once per iteration. The same is true

for
∑n−1

i=1 W
−2
i . Consequently, the only term in Φ+(dp) of Theorem 4 that needs to be

calculated for each candidate design is (W p −A−1n−1)
−1, which can also be used to check

the validity of tp as suggested in the proof of Theorem 4 in Appendix B. Moreover, the last

term of that Φ+(dp) can be ignored in the search of the best tp. In our numerical study,

we find the best tp in each iteration with an exhaustive search over all candidate elemental

designs. For such an exchange algorithm, it often is recommended to implement it multiple

times with different initials. We follow this recommendation in our numerical study with

parallel computing, but further ‘refine’ the obtained design (i.e., the best one among the

multiple runs) by substituting each of its elemental design with the one minimizing the Φ+

in Theorem 4. We note that when the candidate set grows, the exhaustive search can be

infeasible, and we propose to adapt the PSS algorithm of Rha et al. (2020) as described

in Appendix A. Systematic comparisons of the algorithms will be reported elsewhere (Kao

and Huang, 2023), but combining the exchange algorithm with the PSS algorithm tends to

give an efficient tool for finding optimal designs. We note that Theorem 4 also allows us

to recast the search of optimal tp as an SOCP problem. This can be done by applying the

method of Harman and Prus (2018). A discussion of this, along with a needed result, can

be found in Appendix A.

With the above discussions, we now provide lower bounds for the design efficiency of

d ∈ Ξd.
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Theorem 5. For a design d, define the relative A-efficiency as

REA(d) =
ΦA{I(α;d∗)}
ΦA{I(α;d)}

,

where d∗ is the A-optimal design for predicting α. Suppose that d̃ ∈ Ξd minimizes

Φ̃(d) =
∑n

i=1 tr(W̃
−1
i ) with W̃ i = n−1

n
σ2∆−1+F>i F i. We have the following lower bounds

for REA(d).

REA(d) =
ΦA{I(α;d∗)}
ΦA{I(α;d)}

>
Φ̃(d∗)

ΦA{I(α;d)}
≥ Φ̃(d̃)

ΦA{I(α;d)}
>
nminti tr(W

−1
i )

ΦA{I(α;d)}
.

With FPCA, Park et al. (2018) showed that the prediction precision for ζ is no worse

after including an additional sampling time point to the current design. A similar result is

provided in Theorem 6 for the FECA. The same result holds for any smaller-the-better cri-

terion Φ that is nonincreasing in the Löwner ordering; i.e., Φ(I1) ≤ Φ(I2) if I1 ≥L I2, where

≥L represents the Löwner ordering. Most commonly used criteria possess this property

(Pukelsheim, 1993).

Theorem 6. Let d = {t1, ..., tn} ∈ Ξd, and da be obtained by augmenting a sampling time

point to d. We have I(α;da) ≥L I(α;d), and ΦA{I(α;da)} ≤ ΦA{I(α;d)}.

4 A Numerical Study

To provide some additional insights, we conduct a numerical study to obtain and study

designs for FPC and FEC scores, with a focus on the latter. For the eigenfunctions ηj, we

consider Fourier bases of the following form (see also Park et al., 2018): ηj(t) =
√

2 sin{(j+

1)πt} for odd j, and ηj(t) =
√

2 cos{(j + 1)πt} for even j, with t ∈ T = [0, 1]. The

corresponding eigenvalue has τj = 10/2j, and the number of effective FECs is J = 3, 5, or
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7. The number of observations per subject is K ∈ {3, 5, 7}. We also assume that we are

designing for studies having n = 10, 50 or 70 subjects, and set σ2 = 1. The numerical study

thus has 33 = 27 full-factorial settings. The sampling time points in each elemental design

ti are selected from a regular grid on [0, 1] with 21 grid points. We thus have sn candidate

designs for d (or (n + s − 1)!/{n!(s − 1)!} designs if the search algorithm can identify

designs that are equivalent under subject permutations); here, s = 21!/{K!(21−K)!}. We

obtain each design by implementing the previously mentioned exchange algorithm 1, 000

times with different random initials. This is followed by the refinement of the obtained

design, as described in Section 3. The numerical study is conducted on a 3.7GHz Intel

Core i7-8700k 6-core processor with 32GB RAM; there are two hyperthreads per physical

core. The R codes, which are available upon request to the first author, are written to allow

a parallel computing by assigning ten hyperthreads for executing the exchange algorithm

with multiple random initials.

With no guidance on design selection, random designs are commonly adopted in prac-

tice. In Figure 1, we present the box plot of the relative A-efficiency of 1, 000 randomly

generated designs to our obtained design in each of the 27 scenarios. There, Scenarios

3q+ 1, 3q+ 2, and 3q+ 3 have the same (J,K), but are for n = 10, 50 and 70, respectively,

and here, q = {3(J − 3) + (K − 3)}/2 for J,K = 3, 5, 7. These randomly generated designs

do not perform well and can have at least 17% to 72% efficiency loss in predicting the FEC

scores. Our designs, which are referred to as the FECA designs, and are presented in Table

S1 in the supplementary document, significantly outperform randomly generated designs.

For K ≥ J , we also obtain optimal single-support designs ds = {ts, ..., ts} ∈ Ξd by
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Figure 1: Relative efficiency (%) of 1,000 random designs to the obtained optimal FECA

designs in predicting FEC scores.

minimizing ΦA of Corollary 3 with an exhaustive search over all the 21!/{K!(21−K)!}

elemental designs. In addition, we use the same method to find single-support design dfpc

that minimize ΦA1 =
∑n

i=1 tr(W
−1
i ) = ntr(W−1

1 ). When µx = 0, these dfpc are A-optimal

for predicting the FPC scores. There exist multiple ds and dfpc (see Table S2 in the

supplementary document), and these two designs agree in all the cases that we consider,

except for K = J = 7. The elemental designs of dfpc and ds for K = J = 7 are provided in

Table 1, where we present the indices of the K = 7 time points from the 21-point regular

grid on T = [0, 1]. The optimality of dfpc does not depend on n as discussed in Section

2. Nevertheless, ds can be different for different n, as a result of Corollary 2. We provide
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Table 1: Elemental designs for single-support designs with K = J = 7

dfpc ds for n=10 ds for n=50 & 70

(2, 5, 7, 10, 13, 16, 19)

(3, 6, 9, 12, 15, 17, 20)

(2, 4, 7, 9, 12, 16, 18)

(2, 6, 8, 12, 14, 17, 19)

(3, 5, 8, 10, 14, 16, 20)

(4, 6, 10, 13, 15, 18, 20)

(2, 4, 7, 10, 13, 16, 18)

(2, 5, 8, 10, 14, 16, 19)

(3, 6, 8, 12, 14, 17, 20)

(4, 6, 9, 12, 15, 18, 20)

below further discussions on the single-support designs, and their comparisons with our

obtained A-optimal designs d∗ for predicting FEC scores.

A further analysis of the above single-support designs and our obtained optimal d∗

reveals that for most cases with K ≥ J , each elemental design of d∗ minimizes ΦA1 defined

below Corollary 1. Following Theorem 1, such d∗ also give an optimal design for FPC scores

(if µx = 0). But combining these elemental designs helps to further reduce ΦA2, and gives

the obtained d∗. However, ΦA2 is elevated when each of these elemental designs is used

alone in generating a single-support design. This can be seen from the relative ΦA-value of

ds = dfpc to d∗ for (J,K) 6= (7, 7), as in Table 2. In many cases with K ≥ J , ds is highly

efficient, but remains suboptimal. For J = K = 7, the elemental designs of the obtained

d∗ are those of the two dfpc’s in Table 1. While both elemental designs minimize ΦA1,

none of them gives a full-column-rank F i. The resulting single-support design dfpc thus

have zero efficiency in predicting the FEC scores. It also is noteworthy that the elemental

design for each ds in Table 1 has a higher ΦA1 than that of dfpc. As reported in the last

column of Table 2, these ds are suboptimal with < 93% design efficiency for predicting
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Table 2: Relative efficiency (%) of single-support designs ds ∈ Ξd to the obtained optimal

FECA designs in predicting FEC scores with K ≥ J . Note. Single-support designs have 0

efficiency for K < J .

J=3 J=5 J=7

n K=3 K=5 K=7 K=5 K=7 K=7

10 99.9628 99.9987 99.9971 99.8364 99.9955 91.4515

50 99.9924 99.9997 99.9994 99.9666 99.9991 92.5612

70 99.9946 99.9998 99.9996 99.9761 99.9993 92.8818

FEC scores. We note that the design comparisons here suggest the possible suboptimality

of imprudently selected designs. But as for most numerical studies, the achieved relative

efficiencies reported in Table 2 (and Table 3 below) may vary across experimental settings;

see also Kao and Huang (2023). We also note that the single-support designs with K < J

are outside of Ξd, and will always have 0 efficiency for predicting α.

In Table 3, we present the performance of our obtained d∗ for FEC scores in predicting

FPC scores of n subjects when µx = 0. With ΦA in Theorem 1, the relative efficiency

reported there is

ΦA{I(ζ;dfpc)}
ΦA{I(ζ;d∗)}

× 100%, where dfpc = {tfpc, ..., tfpc}

As discussed above, our obtained d∗ are also A-optimal for FPC scores when K ≥ J . Unlike

the dfpc that has 0 efficiency in predicting FEC scores when K < J , d∗ attains a relatively
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Table 3: Relative efficiency (%) of d∗ to the single-support FPCA designs dfpc in predicting

FPC scores when µx(t) = 0.

J=3 J=5 J=7

n K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7

10 100 100 100 91.1277 100 100 86.1183 98.4277 100

50 100 100 100 95.2612 100 100 95.2581 99.2092 100

70 100 100 100 96.0966 100 100 96.5176 99.2092 100

high efficiency in predicting ζ for most of these cases. But moving away from µx = 0, the

eigenpairs used in the two methods can be different, and we recommend finding optimal

designs under the corresponding setting with prior knowledge from, e.g., pilot studies.

In addition, we use Φ̃ to obtain a lower bound for the relative A-efficiency of the

obtained d∗ as in Theorem 5. Many of the obtained d∗ has > 99% efficiency (Table 4).

For cases where the lower bound is below 95%, additional searches were conducted, but a

slightly improved designs was found only for the case with (J,K, n) = (5, 3, 50). This was

the design considered in our previous discussions. But the difference in ΦA is small (with

a 0.000294% improvement), which does not change our conclusion. We further note that

for some cases, d∗ for an n can be obtained by re-weighting (i.e., adjusting the number

of replicates of) the elemental designs of the d∗ for another n. This seems to be the case

for K ≥ J , but there is an exception for (J,K) = (7, 5). For this latter case, the design

for n = 10 is slightly different from that for n = 50 and 70. As suggested by Corollary

2, having a small ΦA2 tends to be more important for smaller n, which provides a partial
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Table 4: A lower bound (%) of relative A-efficiency

J=3 J=5 J=7

n K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7

10 99.8212 99.9515 99.9747 77.3935 99.4299 99.7848 66.4967 87.7406 95.6981

50 99.9606 99.9894 99.9945 89.9769 99.8748 99.9533 85.2123 96.5283 99.0570

70 99.9717 99.9924 99.9960 91.5263 99.9100 99.9665 88.0291 97.2737 99.3221

explanation of the different elemental designs needed for n = 10 in this case. For this

and other scenarios with K < J , we also studied the relative efficiency of the designs

obtained from re-weighting the designs of a different n. The re-weighted designs that we

studied (omitted here) did not perform as well as the d∗ obtained from correctly specified

n, although these re-weighted designs are expected to be efficient for an n that is nearby.

Having some knowledge on the number of future subjects that we would like to study is

thus helpful for selecting a good design.

To further demonstrate the usefulness of optimal designs, we compare the empirical

MSEs for predicting Xi(t) of these designs with 1,000 random designs. Specifically, for

each of the 27 combinations of (J,K, n) of this numerical study, we simulate 100 sets of

‘true’ X1(t), ..., Xn(t) from (3.1), where ηj(t) is the previously mentioned Fourier basis func-

tions, and as in Nie et al. (2022), αij are generated from the centered gamma distribution,

Gamma(1,
√
τj) −

√
τj, with shape parameter 1, and scale parameter

√
τj =

√
10/2j; i.e.

θj = 0. For each true Xi(t), 100 sets of K observations uik’s are then generated from (3.2),

where tik’s are determined by the design being evaluated, and εik
iid∼ N(0, σ2). Each set of

ui1, ..., uiK is used to give X̂i(t) =
∑J

j=1 α̃ijηj(t) as described in Section 3. Thus, we have
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Figure 2: Empirical MSE in predicting X for FECA designs (∗) vs. 1,000 random designs

(box plot) with σ2 = 1

100 X̂i(t) for each of the 100 simulated Xi(t) at all the 21 grid points of the time domain

[0, 1]; i = 1, ..., n. The empirical MSE is set to the average of {Xi(t)− X̂i(t)}2 taken over

the n curves, the grid points, and the 100 × 100 simulations. Figure 2 presents the box

plots of this empirical MSE of the 1,000 random designs. The empirical MSEs for our

obtained optimal designs are marked as ‘∗’, and they are consistently smaller than that of

the random designs across all the 27 scenarios; the scenarios are defined as in Figure 1.

In addition to σ2 = 1, we also consider the σ2 that is ten times greater (i.e., σ2 = 10).

Our approach is applied again to obtain optimal FECA designs with this σ2, and the

empirical MSEs of our obtained designs and 1,000 random designs are compared in Figure
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Figure 3: Empirical MSE in predicting X for FECA designs (∗) vs. 1,000 random designs

(box plot) with σ2 = 10

3. Both Figures 2 and 3 again suggest that the optimal designs outperform random designs.

In Table 5, we present the computing time spent in obtaining optimal FECA designs

for σ2 = 1 by implementing the exchange algorithm 1,000 times with random initials.

The computing time for σ2 = 10 is similar, and is omitted. As described in Section 3, each

iteration of the exchange algorithm involves the identification of the ‘worst’ tj in the current

design, followed by an exhaustive search of the ‘best’ tp among the 21!/{K!(21−K)!}

elemental designs. The exhaustive search is used here to render high-quality designs, but

it contributes the most to the consumed computational resources. For cases with large n

and K, one may consider replacing the exhaustive search with a ‘shortcut’ method, e.g.,
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Table 5: Computing time (hr) of the exchange algorithm with 1,000 initials.

J=3 J=5 J=7

n K=3 K=5 K=7 K=3 K=5 K=7 K=3 K=5 K=7

10 0.02 0.27 1.40 0.02 0.27 1.53 0.02 0.32 1.60

50 0.08 1.16 6.49 0.07 1.23 6.99 0.08 1.29 7.40

70 0.11 1.60 8.96 0.10 1.73 9.70 0.11 1.80 10.24

the PSS algorithm, as also mentioned Section 3 and Appendix A.

5 A discussion

In this work, we study optimal designs for predicting FPC and FEC scores. We first

demonstrate that the design issues considered in some previous design works for sparse

FDA (e.g., Ji and Müller, 2017) can be formulated as A- or L-optimal design problems for

FPC scores. We then present a framework for finding designs that give precise prediction

of FEC scores. We note that the FPCA is popular and has a wide application. On the

other hand, the FECA is recently proposed by Nie et al. (2022), who demonstrated the

advantages of this new method over the FPCA. As also described in Section 3, the latter

method does not require precise information on µx(t), and can be considered even when

the FEC scores do not follow a Gaussian distribution; see also our numerical study in the

previous section, where α has a centered Gamma distribution.

As a byproduct, our work also gives a generalization of Prus and Schwabe (2016). This
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and existing works on the designs for sparse FDA only considered single-support designs,

which do now allow the FECA with K < J as explained in this paper. In sparse FDA, cases

with K < J are common. For example, an analysis of the Mediterranean fruit flies data set

(i.e., the medfly data set of the FDAPACE R package) reveals that we need J = 5 eigenpairs

to explain ≥ 95% of the total variation in the numbers of eggs laid per day from Day 1 to

Day 25. Explaining ≥ 99% of the total variation requires at least J = 8 eigenpairs. We thus

can easily have K < J , such as the case in Ji and Müller (2017), where K = 3. For these

situations, our proposed framework allows to generate high-quality designs. We also note

that even with K ≥ J , single-support design can be suboptimal, and some single-support

designs for FPCA can still have zero design efficiency for predicting FEC scores.

The proposed framework not only gives high-quality designs, but also provides a method

for evaluating other (e.g., random) designs to avoid wasting time and money on conducting

experiments with inefficient designs. It thus provides an important tool for practitioners

and researchers for making informed decisions when selecting a design for their studies.

An important future research is the development of efficient algorithms for finding optimal

designs. The exchange algorithm with an exhaustive search described in Section 3 allowed

us to identify good designs for our numerical study. There are cases where the exhaustive

search can become infeasible. A possible alternative is by considering the PSS algorithm as

described in Appendix A. Our experience suggests that the PSS algorithm requires much

less computing time than the exhaustive search, and finds very efficient designs.
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Appendix

A The PSS algorithm and SOCP

We present the probabilistic subset selection (PSS) algorithm of Rha et al. (2020), and

its application to our setting. This algorithm takes advantages of prior knowledge on

the moments of the underlying random function X(t), and allows a higher probability in

exploring time points where X(t) has a greater uncertainty. This has been demonstrated

efficient in finding some high quality designs for sparse FDA. With the notation in this

paper, let Φ be the objective function of interest, Tg be the grid of size Ng on the domain

T . The PSS algorithm uses the following steps to search for an optimal K-point elemental
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design t = {t1, ..., tK} minimizing Φ.

Step 1. Generate an initial K-point design t
(0)
K . Specify an integer ` < Ng −K; e.g., ` = 3.

Set m = 1.

Step 2. For the mth iteration, let t
(m−1)
K be the best design obtained in the previous iteration.

With probability proportional to V ar{X(t)}, randomly draw a t` of ` distinct points

from the Ng −K points in the set (Tg − t(m−1)K ). Set tK+` = t
(m−1)
K ∪ t`.

Step 3. Select a Φ-optimal K-point design among the (K + `)!/K!`! designs from tK+`. The

obtained design is used as t
(m)
K for the next iteration. Set m = m+ 1.

Step 4. Repeat Steps 2-3 until a stopping rule is met; e.g., when the same design is obtained

for M = 30 consecutive iterations.

To find designs for FPC scores, Φ is the ΦA in Theorem 1, t
(0)
K in Step 1 is randomly

generated, and V ar{X(t)} in Step 2 is approximated by
∑J

j=1 λjψ
2
j (t). The PSS algorithm

can also be considered for obtaining tp in the exchange algorithm to find designs for FEC

scores. In this case, Φ is set to Φ+ in Theorem 4, and t
(0)
K is the t

(t−1)
j selected in each

iteration of the exchange algorithm as described in Section 3. As for V ar{X(t)} in Step 2,

we propose to replace it by E{X2(t)}, which is approximated by
∑J

j=1 τjη
2
j (t).

Harman and Prus (2018) proposed the use of second-order cone programming (SOCP)

solvers for minimizing a criterion of the following form:

Φ{d} =
s∑

j=1

tr
{

(M (d) +Bj)
−1Hj

}
,

where Bj’s are nonnegative definite matrices, and Hj’s are positive definite. The ΦA in

our Theorem 1 for FPC scores is a special case with s = 1, M (d) = Ψ>i Ψi, B1 = σ2Λ−1,
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and H1 = IJ . Their method can thus be directly applied, with the constraint that a time

point cannot appear more than once in an elemental design.

We also note that the same method can be adapted to search for tp in each iteration of

the exchange algorithm for obtaining FECA designs. This is done by focusing on minimizing

the first term of Φ+ in Theorem 4 with s = 1, and H1 = IJ +A−1n−1
∑n−1

i=1 W
−2
i A

−1
n−1. H1

is positive definite, but we also need the following result.

Lemma A.1. W p − A−1n−1 = F>p F p + σ2∆−1 − A−1n−1, and B1 = (σ2∆−1 − A−1n−1) is

nonnegative definite.

Proof. Let ≤L represent the Löwner ordering. We would like to show that σ−2∆ ≤L

An−1. But

An−1 = nσ−2∆−
n−1∑
i=1

W−1
i = σ−2∆ +

n−1∑
i=1

(σ−2∆−W−1
i ).

Our claim then follows from the following observation.

W−1
i = (σ2∆−1 + F>i F i)

−1 ≤L (σ2∆−1)−1 = σ−2∆.

B Proofs of theorems

We first present a useful lemma, which extends from Lemma 18.2.3 of Harville (1997).

Lemma B.1. Suppose c > 0, V is a v-by-v positive definite matrix, and S is s-by-v. We

have

S>(cIs + SV S>)−1 = V −1(cV −1 + S>S)−1S>.
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Proof. With c > 0, (cIs + SV S>) and (cV −1 + S>S) are positive definite, and are

thus nonsingular. We then have the following.

S>(cIs + SV S>)−1 = c−1S>(Is + c−1SV S>)−1 = c−1(Iv + c−1S>SV )−1S>

= c−1V −1(V −1 + c−1S>S)−1 = V −1(cV −1 + S>S)−1S>.

Proof of Theorem 2. Following Theorem 8.5.11 of Harville (1997), Eq. (3.4) have

a unique solution requiring that (In ⊗ σ2∆−1) + R>R is full rank, and Q = F>F −

F>R(⊕n
i=1W i)

−1R>F is nonsingular. With σ2 > 0, the former matrix is positive definite,

and is thus nonsingular. Q is nonsingular if and only if F has full column rank. This

can be seen from the following equivalent expressions of Q, and the positive-definiteness of

Σu = ⊕n
i=1(σ

2IK + F i∆F
>
i ), even when F i does not have full column rank.

Q =
n∑

i=1

F>i {IK − F i(σ
2∆−1 + F>i F i)

−1F>i }F i

= σ2

n∑
i=1

F>i (σ2IK + F i∆F
>
i )−1F i = σ2F>Σ−1u F

= σ2∆−1
n∑

i=1

(σ2∆−1 + F>i F i)
−1F>i F i (B.1)

The second equality is from the Woodbury matrix identity (Theorem 18.2.8 of Harville,

1997), and the last equality is from Lemma B.1. With some algebra (omitted), the solution

(θ̃, γ̃) can then be found from Lemma B.1, and (B.1) with Theorem 8.5.11 of Harville

(1997).

Proof of Theorem 3. Suppose F has full column rank, and W i = σ2∆−1 +F>i F i with

(In⊗σ2∆−1) +R>R = ⊕n
i=1W i. Following Henderson (1975), Theorem 8.5.11 of Harville
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(1997), and (B.1), we then have

Cov

G
 θ̃ − θ

γ̃ − γ


 = σ2G

 F>F F>R

R>F ⊕n
i=1W i


−1

G> = σ2G

 Q11 Q12

Q>12 Q22

G>;

Q11 = Q−1 = σ−2

(
n∑

i=1

W−1
i F

>
i F i

)−1
∆;

Q12 = −Q−1F>R(⊕n
i=1W

−1
i ) = −Q−1

[
F>1 F 1W

−1
1 , ...,F>nF nW

−1
n

]
;

Q22 = (⊕n
i=1W

−1
i ) + (⊕n

i=1W
−1
i )R>FQ−1F>R(⊕n

i=1W
−1
i );

= (⊕n
i=1W

−1
i ) +


W−1

1 F
>
1 F 1

...

W−1
n F

>
nF n

Q−1
[
F>1 F 1W

−1
1 , ...,F>nF nW

−1
n

]
.

Here, G = [jn, In]⊗ IJ , and we observe that W−1
i F

>
i F i = IJ − σ2W−1

i ∆−1. The Cij in

Theorem 3 can then be derived as follows.

Cij = Q−1 −W−1
i F

>
i F iQ

−1 −Q−1F>j F jW
−1
j + δijW

−1
i +W−1

i F
>
i F iQ

−1F>j F jW
−1
j .

= δijW
−1
i +Q−1 − (IJ − σ2W−1

i ∆−1)Q−1 −Q−1(IJ − σ2∆−1W−1
j )

+(IJ − σ2W−1
i ∆−1)Q−1(IJ − σ2∆−1W−1

j )

= δijW
−1
i + σ4W−1

i ∆−1Q−1∆−1W−1
j

= δijW
−1
i +W−1

i

(
n∑

i=1

σ−2∆−W−1
i

)−1
W−1

j .

The last equality is due to the following.

Q = σ2∆−1
n∑

i=1

W−1
i F

>
i F i = σ2∆−1

n∑
i=1

(IJ − σ2W−1
i ∆−1)

= σ4∆−1

(
n∑

i=1

σ−2∆−W−1
i

)
∆−1. (B.2)
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With (B.2), and the above proof for Theorem 2, we see thatA−1 = (nσ−2∆−
∑n

i=1W
−1
i )−1

exists and is positive definite if and only if F has full column rank.

Proof of Theorem 4. As in the proof for Theorem 3, W 1, ...,W n, and A = nσ−2∆ −∑n
i=1W

−1
i are positive definite under the design d, and so isAn−1 = A+W−1

n . In addition,

the two matrices Ap = An−1−W−1
p and W p−A−1n−1 have the same rank (Theorem 18.2.4

of Harville, 1997). They are nonsingular if and only if dp yields a full-column rank F . We

then have

A−1p = (An−1 −W−1
p )−1 = −W p +W p(W p −A−1n−1)

−1W p;

W−1
p + W−1

p A
−1
p W

−1
p = (W p −A−1n−1)

−1; and

W−2
i A

−1
p = W−2

i (An−1 −W−1
p )−1 = W−2

i A
−1
n−1 +W−2

i A
−1
n−1(W p −A−1n−1)

−1A−1n−1.

The result in Theorem 4 then follows with simple algebra.

Proof of Theorem 5. For any design d ∈ Ξd, and given i, we observe that

W−1
i +W−1

i A
−1W−1

i >L W
−1
i +W−1

i (nσ−2∆−W−1
i )−1W−1

i = W̃
−1
i >L W

−1
i ,

where >L is Löwner ordering, and M 1 >L M 2 if (M 1 −M 2) is positive definite. Our

claim then follows from the Löwner isotonicity of trace.

Proof of Theorem 6. With the same G as in the proof for Theorem 3, we have

I−1(α;d) = G[G>(⊕n
i=1F

>
i F i)G+ {OJ ⊕ (In ⊗ σ2∆−1)}]−1G>.

Without loss of generality, let da be obtained by adding a point, ta, to t1 of d. Then

I−1(α;da) can be obtained from I−1(α;d) by replacing F>1 F 1 with F>1 F 1+ff
>(≥L F

>
1 F 1)

with f = (η1(ta), ..., ηJ(ta))
>; I−1(α;da) = I−1(α;d) if ηj(ta) = 0 for j = 1, ..., J . Our claim

then follows from Theorems 14.2.9 & 18.3.4 of Harville (1997).
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