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Abstract:

Estimating characteristics of domains (referred to as small areas) within a population from a

sample survey of the population is an important problem in survey statistics. In this paper,

we consider model-based small area estimation under the nested error regression model. We

discuss the construction of mixed model estimators (empirical best linear unbiased predic-

tors, EBLUPs) of small area means and the conditional linear predictors of small area means.

Under the asymptotic framework of increasing numbers of small areas and increasing num-

bers of units in each area, we establish asymptotic linearity results and central limit theorems

for these estimators which allow us to establish asymptotic equivalences between estimators,

approximate their sampling distributions, obtain simple expressions for and construct simple

estimators of their asymptotic mean squared errors, and justify asymptotic prediction inter-

vals. We present model-based simulations that show that in quite small, finite samples, our

mean squared error estimator performs as well or better than the widely-used Prasad and Rao

(1990) type estimators and is much simpler, so is easier to interpret. We also carry out a design-

based simulation using real data on consumer expenditure on fresh milk products to explore

the design-based properties of the mixed model estimators. We explain and interpret some

surprising simulation results through analysis of the population and further design-based sim-
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ulations that highlight important differences between the model- and design-based properties

of mixed model estimators in small area estimation.

Key words and phrases: Increasing area size asymptotics, indirect estimator, mean squared

error estimation, mixed model estimator, model-based prediction, prediction intervals

1. Introduction

Estimates of characteristics such as means and totals for areas, domains or clusters

within a population (all referred to as areas) obtained from sample survey data are

widely used for resource allocation in social, education and environmental pro-

grams, and as the basis for commercial decisions. Direct estimates which use only

data specific to an area, can have large standard errors because of relatively small

area-specific sample sizes. Small area estimation is concerned with producing

more reliable estimates with valid measures of uncertainty for the characteristics

of interest; recent reviews include Rao (2005); Jiang and Lahiri (2006b); Rao (2008);

Lehtonen and Veijanen (2009); Pfeffermann (2013); Pratesi (2016); Sugasawa and

Kubokawa (2020), and Morales et al. (2021).

A popular method for small-area estimation (Fay and Herriot, 1979; Battese

et al., 1988) is to introduce a population-level mixed model that includes fixed ef-

fects (to describe unit-level and/or area-level effects) and random effects (to de-

scribe additional between area variation), fit the model using sample data from

multiple areas and then, use the fitted model to construct the desired estimates.
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For estimating means or totals from unit-level data, a widely used approach (Bat-

tese et al., 1988) is to use empirical best linear unbiased predictors (EBLUPs) ob-

tained by minimising the (prediction) mean squared error under the nested error

regression or random intercept model and then estimating the unknown quan-

tities by maximum likelihood or restricted maximum likelihood (REML) estima-

tion; see for example Saei and Chambers (2003b,a), Jiang and Lahiri (2006a) and

Haslett and Welsh (2019). Some authors (e.g. reference) target the conditional ex-

pectations of the small area means given the random effects rather than the means

themselves. These two targets are different and have different EBLUPs with poten-

tially different mean squared errors, but are often treated interchangeably in small

area estimation. They are both random variables under the model-based frame-

work, so technically they need to be predicted rather than estimated. However,

both “prediction” and “estimation” are used in small area estimation so we refer

to the EBLUPs as mixed model estimators and distinguish them by their different

targets (Tzavidis et al., 2010); they are sometimes called composite and synthetic

estimators respectively.

The model-based variability of small area estimators can be reported through

estimates of their (prediction) mean squared errors or by prediction intervals. Esti-

mation of (prediction) mean squared errors for mixed model estimators is compli-

cated, even for simple linear mixed models like the nested error regression model.

Under normal linear mixed models (including the nested error regression model),
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when the number of areas is allowed to increase while the area sizes are held fixed

(or bounded), Kackar and Harville (1981) and Prasad and Rao (1990) used Taylor

expansions to obtain approximations to the (prediction) mean squared error of

the EBLUPs of the conditional expectation of the small area means, and then con-

structed mean squared error estimators by replacing the unknown quantities in

these approximations by estimators; Rao and Molina (2015) later derived a modi-

fied approximation for estimating the small area mean. The Prasad-Rao approx-

imation and estimator have been extended to other models and to allow addi-

tional estimators of the model parameters by Datta and Lahiri (2000) and Das et al.

(2004); see also ŻaÌğdło (2009) and Torabi and Rao (2013). The area-level jackknife

(treating the small area means as the characteristics of interest) (Jiang et al., 2002)

is an alternative to the analytic approximations. Chatterjee et al. (2008) proposed

a parametric bootstrap approach for constructing prediction intervals.

The standard asymptotic framework for model-based small area estimation

under the nested error regression model follows Kackar and Harville (1981) and

Prasad and Rao (1990) in allowing the number of areas to increase while hold-

ing the area sizes fixed (or bounded). In this framework, small area estimators are

not consistent and there are no asymptotic distribution results. Consequently, the

construction of mean squared error estimates is complicated and prediction inter-

vals based on the estimated mean squared errors cannot be shown to achieve their

nominal level even asymptotically. To overcome these difficulties, we need both
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the number of areas and the sample size in each area to increase. This appears to

contradict the “small” in “small area estimation”. However, i) the framework is di-

rectly relevant to applications that include a number of large “small areas” and no

tiny ones and ii) all asymptotic results are simply a mathematically rigorous way of

obtaining approximations to use with (even very small) finite samples. i.e. outside

the strict framework. Approximations derived within the increasing small area size

framework perform well in other contexts even when some areas have quite small

sample size, e.g., for 10 areas with area size 10 (Lyu and Welsh, 2022a,b), and we will

show good results with even smaller sample sizes later in this paper. Thus the re-

sults can be used successfully in problems that do not appear to fit the framework.

Examples of problems that do fit the framework occur in clinical research (clus-

tered trials) when we study records on large groups (areas) of patients (units) with

each group treated by a different medical practitioner or at a different hospital, in

educational research when we look at records on college students (units) grouped

within schools (areas), and in sample surveys when we observe people or house-

holds (units) grouped in defined clusters (areas). For example, Arora and Lahiri

(1997) gave an example with 43 areas ranging in size from 95 to 633 units, and such

examples are common in poverty data (Pratesi, 2016). In the era of big data, exam-

ples where small area estimation and our asymptotic framework are directly rele-

vant are increasingly likely to occur. Although direct estimation is then a feasible

alternative, small area estimation techniques still offer opportunities to extract ad-
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ditional, more precise information from the data, and thereby enable us to address

complex challenges and improve decision-making processes. For example, in pub-

lic health surveillance, we may want to estimate health-related variables, such as

disease incidence and access to healthcare services, to enable health authorities to

better identify health disparities and allocate resources more effectively. Similarly,

in precision agriculture, we may want to analyze high-resolution data on crops,

soil, and weather across smaller zones within farmlands to enable accurate and

precise agricultural management practices, ultimately benefiting farmers and the

environment.

This study fills current practical and theoretical gaps in small area estimation

by deriving the asymptotic distributions of some model-based small area estima-

tors (EBLUPs) of area means and conditional linear predictors. Without assuming

normality, we obtain straightforward approximations to the estimators’ distribu-

tions that include the distribution of the target of interest and a normal distri-

bution. These approximations yield simple, easily estimated expressions for the

asymptotic mean squared errors of the estimators and enable the construction of

prediction intervals with proven accurate asymptotic coverage. The present work

is related to that of Lyu and Welsh (2022a) who also used the asymptotic results for

maximum likelihood and restricted maximum likelihood (REML) estimators of the

parameters in mixed model obtained by Lyu and Welsh (2022b), but considered

estimation of the random effects in the model instead of small area estimation.
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There are common issues between the two problems (e.g. they are both prediction

problems) but the targets are different (unobservable random effects versus po-

tentially observable finite population parameters) so their estimators are different,

have different asymptotic distributions and therefore different asymptotic mean

squared errors and confidence intervals.

We describe the nested error regression model, discuss the targets of estima-

tion and the mixed model estimators we consider in Section 2. We present our in-

creasing number of areas and increasing area size asymptotic results in Section 3

and use (model-based) simulation to demonstrate the relevance of these results to

finite samples in Section 4. We include a design-based simulation using real con-

sumer expenditure on fresh milk products data, and then use additional design-

based simulations to explore some unexpected findings in Section 5. We conclude

with a brief discussion in Section 6.

2. Small area estimation

Consider a population U =∪g
i=1Ui of N units, partitioned into g exclusive areas Ui ,

each containing Ni units so that
∑g

i=1 Ni = N . Let yi j be a scalar survey variable of

interest and xi j be a vector of auxiliary variables for the j th unit in the i th area. The

problem of interest is to use data from a sample of units in U to make inference

about the area means ȳi = N−1
i

∑Ni
j=1 yi j . We assume that the values of the auxiliary

variables are known for every unit in the sample, the population area means of the
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auxiliary variables are known, and the values of the survey variable are observed

on a sample of units s = ∪g
i=1si , where si ⊆ Ui of size ni ≤ Ni is the set of sample

units within Ui and
∑g

i=1 ni = n. We assume that the units are selected using a non-

informative sampling method such that the minimum area sample size nL > 0, so

that some units from every area are included in the sample. The available data D

consists of (yi j ,xi j ) for j ∈ si , i = 1, . . . , g and N−1
i

∑Ni
j=1 xi j for i = 1, . . . , g .

We assume the nested error regression (or random intercept) model for the

survey variable at the population level, so

yi j =µ(xi j )+αi +ei j , for j = 1, . . . , Ni , i = 1, . . . , g , (2.1)

where µ(xi j ) is the regression function (the conditional mean of the response)

given xi j , αi is a random effect representing a random intercept or area effect and

ei j is a random error. We assume that the {αi } and {ei j } are all mutually indepen-

dent with mean zero and variances (called variance components) σ2
α and σ2

e , re-

spectively, and write θ = [σ2
α,σ2

e ]T . These random variables do not have to be nor-

mally distributed so the responses yi are not necessarily normally distributed. Lyu

and Welsh (2022b) showed that, in asymptotic theory with increasing area size, we

need to distinguish within area variables (unit level variables that vary within areas

so need subscripts i and j ) which we place in the pw -vector x(w)
i j and between area

variables (area level variables that are constant within areas so only need subscript

i ) which we place in the pb-vector x(b)
i . Distinguishing the two kinds of variables is

important because they contain different amounts of information and hence esti-
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mators of their coefficients have different rates of convergence. We then write the

regression function as

µ(xi j ) =β0 +x(b)T
i β1 +x(w)T

i j β2 = uT
i ξ+x(w)T

i j β2, (2.2)

whereβ0 is the unknown intercept,β1 is the unknown between area slope andβ2 is

the unknown within area slope. It is convenient to group the intercept and the be-

tween area slope terms in the (pb +1)−vectors ui = [1, x(b)T
i ]T and ξ= [β0,βT

1 ]T . It

is also sometimes useful to write the regression function in terms of zi j = [1, x(b)T
i , x(w)T

i j ]T

= [uT
i , x(w)T

i j ]T and β = [β0,βT
1 ,βT

2 ]T = [ξT ,βT
2 ]T . Finally, grouping the between

and within area parameters, the full set of model parameters isω= [β0,βT
1 ,σ2

α,βT
2 ,σ2

e ]T .

The regression function (2.2) includes the three cases with either or both be-

tween and within area variables. It also gives us the option of replacing x(w)
i j by

the population-area-mean-centered within area variables x(w)
i j − x̄(w)

i , where x̄(w)
i =

N−1
i

∑Ni
k=1 x(w)

i k , for j = 1, . . . , Ni , i = 1, . . . , g , and including the area means x̄(w)
i as

contextual effects with the between area variables from xi j in x(b)
i . This centering

makes the between and within area variables orthogonal and allows a simple in-

terpretation of the parameters; this is the reason we center about the population

area means rather than the sample area means. See Yoon and Welsh (2020) and the

references therein for more discussion of the benefits of centering the within area

variables.

The two common targets when we are interested in the small area means are

the actual small area means ȳi = uT
i ξ+ x̄(w)T

i β2 +αi + ēi and the conditional linear
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predictors of the small area means

ηi = E(ȳi |ui ,xw
i 1, . . . ,x(w)

i Ni
,αi ) = uT

i ξ+ x̄(w)T
i β2 +αi , i = 1, . . . , g .

The targets have the same expectations E(ȳi ) = E(ηi ) but different variances Var(ȳi ) =

σ2
α+N−1

i σ2
e and Var(ηi ) =σ2

α. This means that unbiased predictors of one will also

be unbiased predictors of the other, but the (prediction) mean squared errors of

unbiased predictors will differ with the target. We prefer to predict ȳi rather than

ηi because ȳi is a simple finite population parameter whereas ηi is tied to the spe-

cific population model we are using and hence is more difficult to interpret than ȳi .

Also, when Ui is completely enumerated, ȳi , unlike ηi , can be evaluated without

any prediction error. In the standard asymptotic framework with fixed area size,

the difference between the targets is fixed; under our increasing area size frame-

work, the two targets are asymptotically the same up to order N−1/2
i , because

ȳi −ηi = ēi =Op (N−1/2
i ), as Ni →∞,

where Op denotes stochastic boundedness in probability. This means that the pre-

dictors are quite similar in large areas and may explain why the distinction be-

tween the two targets has been largely ignored in practice.

The prediction mean squared error for predicting a target random variable is

minimised by the conditional expectation of the target given the observed data D.

Typically, the distribution of the target given D is derived from a model with un-

known parameters (such as (2.1) and (2.2)) so the conditional expectation depends
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on these unknown parameters and a feasible predictor requires replacing the un-

known parameters by estimators; in our case, we use the maximum likelihood or

REML estimators of the parameters in the model (2.1) and (2.2).

To simplify notation, we write j 6∈ si to mean j ∈ Ui \si , ki = (Ni − ni )/Ni ,

and use subscripts (s) and (r ) to denote quantities related to sampled and non-

sampled units. Specifically, let ȳi (s) = n−1
i

∑
j∈si

yi j , ȳi (r ) = (Ni − ni )−1 ∑
j 6∈si

yi j ,

x̄(w)
i (s) = n−1

i

∑
j∈si

x(w)
i j , x̄(w)

i (r ) = (Ni − ni )−1 ∑
j 6∈si

x(w)
i j , ēi (s) = n−1

i

∑
j∈si

ei j and ēi (r ) =

(Ni −ni )−1 ∑
j 6∈si

ei j . Then, under the model (2.1) and (2.2), we can write the actual

small area means ȳi as

ȳi = (1−ki )ȳi (s) +ki ȳi (r ) = (1−ki )ȳi (s) +ki (uT
i ξ+ x̄(w)T

i (r ) β2 +αi + ēi (r )). (2.3)

Taking the conditional expectation given the data D of (2.3) and substituting the

maximum likelihood or restricted maximum likelihood (REML) estimators ξ̂ and

β̂2 for ξ and β2, respectively, and predicting E(αi |D) by the empirical best linear

unbiased predictor (EBLUP)

α̂i = γ̂i {ȳi (s) −uT
i ξ̂− x̄(w)T

i (s) β̂2}, with γ̂i = ni σ̂
2
α/(σ̂2

e +ni σ̂
2
α), (2.4)

where σ̂2
α and σ̂2

e are maximum likelihood or REML estimators of σ2
α and σ2

e , re-

spectively, we obtain the predictor

M̂ sam
i = (1−ki )ȳi (s) +ki {uT

i ξ̂+ x̄(w)T
i (r ) β̂2 + α̂i }, (2.5)

which is the mixed model estimator of ȳi (Tzavidis et al., 2010); the superscript

’sam’ shows that the target is the ‘small area mean’. It can also be called an EBLUP
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or a composite estimator (Costa et al., 2003) as it combines the sample mean ȳi (s)

with a synthetic component uT
i ξ̂+ x̄(w)T

i (r ) β̂2+α̂i (Rao, 2008). The mixed model esti-

mator of ηi obtained similarly is the EBLUP

M̂ clp
i = uT

i ξ̂+ x̄(w)T
i β̂2 + α̂i = (1−ki ){uT

i ξ̂+ x̄(w)T
i (s) β̂2 + α̂i }+ki {uT

i ξ̂+ x̄(w)T
i (r ) β̂2 + α̂i },

(2.6)

which is a fully synthetic or indirect estimator (Prasad and Rao, 1990; Lahiri and

Rao, 1995; Jiang et al., 2011); the superscript ‘clp’ shows that the target is the ‘con-

ditional linear predictor’.

The main difference between the estimators (2.5) of ȳi and (2.6) of ηi is that the

former uses the observed ȳi (s) whereas the latter uses a model-based prediction

for this quantity. The difference between the estimators of the two targets can be

expressed in terms of the EBLUP α̂i for the random effect (2.4) as

M̂ sam
i − M̂ clp

i = (1−ki ){ȳi (s) −uT
i ξ̂− x̄(w)T

i (s) β̂2 − α̂i } = ni

Ni

{
α̂i

γ̂i
− α̂i

}
= σ̂2

e

σ̂2
α

α̂i

Ni
. (2.7)

This difference is often quite small, but it can be large for areas with extreme EBLUPs

α̂i , particularly if Ni is small and the estimated within area variance is much larger

than the estimated between area variance so σ̂2
e > σ̂2

α. Asymptotically, the differ-

ence is Op (N−1
i ), so the estimators are asymptotically equivalent up to this order

and hence asymptotically closer than their respective targets; see Section 3 for de-

tails. Again, these properties only hold when the area sizes are increasing and do

not hold for fixed area-size asymptotics.
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We emphasise that the predictor depends on the target random variable, the

data and the model. If, instead of D, we only observe the sample data (yi j ,xT
i j )T ,

j = 1, . . .ni , i = 1, . . . , g , the population mean x̄(w)
i and hence the non-sample mean

of the within area variables x̄(w)
i (r ) is unknown and also needs to be predicted. If

we estimate x̄(w)
i (r ) by the simple nonparametric estimator x̄(w)

i (s), we obtain the mixed

model estimator/predictor of the small area mean ȳi given by M̂∗sam
i = (1−ki )ȳi (s)+

ki {uT
i ξ̂+ x̄(w)T

i (s) β̂2 + α̂i }.

Theorem 1 in Section 3 below establishes that, as g ,nL →∞, the mixed model

estimators (2.5) and (2.6) are asymptotically equivalent predictors of the small area

means ȳi ; Theorem 2 establishes that they are asymptotically unbiased predictors

and their asymptotic prediction mean squared errors are MSELW,i = n−1
i kiσ

2
e . We

can estimate MSELW,i by substituting the consistent maximum likelihood or REML

estimator σ̂2
e for σ2

e to obtain

�MSELW,i = n−1
i ki σ̂

2
e . (2.8)

We can then construct simple, asymptotic 100(1− ε)% prediction intervals for ȳi

which we denote sam-LW and clp-LW, respectively, as

[M̂ sam
i −Φ−1(1−ε/2)�MSE

1/2
LW,i , M̂ sam

i +Φ−1(1−ε/2)�MSE
1/2
LW,i ], (2.9)

[M̂ clp
i −Φ−1(1−ε/2)�MSE

1/2
LW,i , M̂ clp

i +Φ−1(1−ε/2)�MSE
1/2
LW,i ], (2.10)

where Φ−1 is the inverse of the standard normal cumulative distribution function.

The asymptotic coverage of the intervals (2.9) and (2.10) is guaranteed by Lyu and
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Welsh (2022b), Slutsky’s Theorem and Theorem 2, which do not require the as-

sumption of normality in the model.

3. Increasing area-size asymptotic results

We assume throughout that the true model describing the actual data generating

mechanism is given by (2.1) and (2.2) with true parameter ω̇= [β̇0, β̇
T
1 , σ̇2

α, β̇
T
2 , σ̇2

e ]T

and take all expectations under the true model. Let ω̂ denote the normal max-

imum likelihood estimator (MLE) of ω̇ obtained by maximizing the normal like-

lihood based on a sample s. Similarly, let θ̂R be the normal REML estimator of

θ̇ = [σ̇2
α, σ̇2

e ]T obtained by maximizing the normal REML criterion function and let

β̂(θ) = [β̂0(θ), β̂1(θ)T , β̂2(θ)T ]T be the profile likelihood estimator of β̇= [β̇0, β̇
T
1 , β̇

T
2 ]T

obtained by maximizing the normal likelihood with θ held fixed. We call β̂R =

β̂(θ̂R ) the normal REML estimator of β̇, and ω̂R = (β̂R0, β̂
T
R1, σ̂2

Rα, β̂
T
R2, σ̂2

Re )T the

normal REML estimator of ω̇.

Following Lyu and Welsh (2022b), we impose the following conditions:

Condition A

1. The model (2.1) and (2.2) holds with true parameters ω̇ inside the parameter

spaceΩ.

2. The number of areas g →∞ and minimum area sample size nL →∞.

3. The random variables {αi } and {ei j } are independent and identically dis-
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tributed and there is a δ > 0 such that E |αi |4+δ < ∞ and E |ei j |4+δ < ∞ for

all j = 1, . . . , Ni , i = 1, . . . , g .

4. The limits b1 = limg→∞ g−1 ∑g
i=1 x(b)

i , B2 = limg→∞ g−1 ∑g
i=1 x(b)

i x(b)T

i and

B3 = limg→∞ limnL→∞ n−1 ∑g
i=1

∑
j∈si

(x(w)
i j − x̄(w)

i )(x(w)
i j − x̄(w)

i )T exist, and the

matrices B2 and B3 are positive definite. Further, limg→∞ g−1 ∑g
i=1 |x̄(w)

i |2 <

∞, and there exists a δ> 0 such that limg→∞ g−1 ∑g
i=1 |x(b)

i |2+δ <∞

and limg→∞ limnL→∞ n−1 ∑g
i=1

∑
j∈si

|x(w)
i j − x̄(w)

i |2+δ <∞.

As noted in Lyu and Welsh (2022b), these are mild conditions. Conditions A3 and

A4 ensure that limits needed to ensure the existence of the asymptotic variance of

the estimating function exist, and that we can establish a Lyapounov condition and

hence a central limit theorem for the estimating function. Condition A4 ensures

the matrix

B = block diag[Bu/σ̇2
α,1/(2σ̇4

α),B3/σ̇2
e ,1/(2σ̇4

e )], with Bu =

 1 bT
1

b1 B2

 ,

is positive definite. For later, note that Bu = limg→∞ g−1 ∑g
i=1 ui uT

i .

We use the central limit theorem of Lyu and Welsh (2022b) for the maximum

likelihood and REML estimators to derive the asymptotic distribution of the mixed

model estimators (2.5) and (2.6). These results are achieved by approximating the

estimators directly and taking the (prediction) mean squared error of the approx-

imation, rather than directly approximating the (prediction) mean squared error.
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Consequently, we begin by establishing asymptotic linearity results for the estima-

tors. Recall that ki = (Ni −ni )/Ni .

Theorem 1. Suppose Condition A holds. Then, as g ,nL →∞, we have

M̂ sam
i − ȳi = ki {ēi (s) − ēi (r )}+ki Op (n−1

L + g−1/2n−1/2
L ),

M̂ clp
i − ȳi = ki {ēi (s) − ēi (r )}+Op (n−1

L + g−1/2n−1/2
L ) and

M̂ clp
i − η̇i = ēi (s) +Op (n−1

L + g−1/2n−1/2
L ).

Proof. From (2.5) and (2.3), we can write

M̂ sam
i − ȳi = ki

{
uT

i (ξ̂− ξ̇)+ x̄(w)T
i (r ) (β̂2 − β̇2)+ α̂i −αi + ēi (r )

}
.

Using the approximation

α̂i =αi + ēi (s) −uT
i (ξ̂− ξ̇)+Op (n−1

L + g−1/2n−1/2
L ) (3.1)

obtained by Lyu and Welsh (2022a) in the proof of their Theorem 2 (see also their

Supplementary Material page 14), and the result from the central limit theorem of

Lyu and Welsh (2022b) that β̂2−β̇2 =Op (n−1/2) =Op (g−1/2n−1/2
L ), as g ,nL →∞, we

obtain the approximation

M̂ sam
i − ȳi = ki

{
ēi (s) − ēi (r ) + x̄(w)T

i (r ) (β̂2 − β̇2)+Op (n−1
L + g−1/2n−1/2

L )
}

= ki {ēi (s) − ēi (r )}+ki Op (n−1
L + g−1/2n−1/2

L ).

Similarly, from (2.6) and (2.3), we have

M̂ clp
i − ȳi = uT

i (ξ̂− ξ̇)+ x̄(w)T
i (β̂2 − β̇2)+ (α̂i −αi )− ēi .
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Substituting the approximation (3.1) for α̂i , we then obtain

M̂ clp
i − ȳi = ēi (s) − ēi + x̄(w)T

i (r ) (β̂2 − β̇2)+Op (n−1
L + g−1/2n−1/2

L )

= ēi (s) − ēi +Op (n−1
L + g−1/2n−1/2

L )

= ki {ēi (s) − ēi (r )}+Op (n−1
L + g−1/2n−1/2

L ),

(3.2)

because ki ēi (s) −ki ēi (r ) = ki ēi (s) − {ēi − (1−ki )ēi (s)} = ēi (s) − ēi .

The final result follows from the fact that ȳi = η̇i + ēi , so we have

M̂ clp
i − η̇i = M̂ clp

i − (ȳi − ēi ) = ēi (s) +Op (n−1
L + g−1/2n−1/2

L ),

using (3.2).

We can also consider using the estimator of the small area mean to estimate

η̇i . We obtain the same leading term as for the estimator of the conditional lin-

ear predictor because ki {ēi (s) − ēi (r )}+ ēi = ēi (s) − (ni /Ni )ēi (s) − ki ēi (r ) + ēi = ēi (s).

However, it would be unusual in practice to use the estimator of the small area

mean for this purpose, so we only state the formal result for the estimator of the

conditional linear predictor. The estimators of the small area mean and the con-

ditional linear predictor have the same leading terms (so are asymptotically equiv-

alent to first order). However the remainders for the two estimators are different,

showing that there can be higher order differences between them. In particular, If

we sample the entire i th area (so ni = Ni and ki = 0), we have M̂ sam
i − ȳi = 0 but

M̂ clp
i − ȳi =Op (n−1

L + g−1/2n−1/2
L ), so M̂ clp

i − ȳi is only asymptotically zero.
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The asymptotic distribution of the estimators is given by the following theo-

rem.

Theorem 2. Suppose Condition A holds, n1/2
i /nL → 0 and ni /Ni → fi for 0 ≤ fi < 1.

Then as g ,nL →∞, we have

n1/2
i (M̂ sam

i − ȳi )
D−→ N (0, (1− fi )σ̇2

e ), n1/2
i (M̂ clp

i − ȳi )
D−→ N (0, (1− fi )σ̇2

e ),

and n1/2
i (M̂ clp

i − η̇i )
D−→ N (0, σ̇2

e ).

Proof. Write ēi (s)− ēi (r ) =∑Ni
j=1 wi j ei j , where wi j = n−1

i Ii j −(Ni −ni )−1(1− Ii j ) with

Ii j = 1 if unit j in area i is selected in the sample and 0 otherwise. Using the fact

that the ei j are independent, we can show that Var(
∑Ni

j=1 wi j ei j ) = (ni ki )−1σ̇2
e and,

for δ> 0 such that E |ei j |2+δ <∞,
∑Ni

j=1 E |wi j ei j |2+δ = O(n−1−δ
i ). It follows that the

Lyapounov condition holds, and hence from the central limit theorem that

(ni ki )1/2
Ni∑
j=1

wi j ei j
D−→ N (0, σ̇2

e ).

Since fi < 1, the theorem follows from Theorem 1. The final statement follows

because n1/2
i ēi (s)

D−→ N (0, σ̇2
e ).

Theorem 2 allows us to reach several interesting conclusions.

i) The asymptotic distribution of both estimators is the distribution of the tar-

get characteristic of interest F ȳi or Fη̇i ; Theorem 2 suggests that a better ap-

proximation is the distribution of ki (ēi (s) − ēi (r )) plus ȳi when the target is

ȳi , or the distribution of ēi (s) plus η̇i when the target is η̇i . The first pair
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of random variables are uncorrelated while the second are independent (so

the distribution is the convolution of the N (0,n−1
i σ̇2

e ) distribution with Fη̇i ).

These distributions are not the same in general, but when the random ef-

fects and error in the model are all normally distributed, these approxima-

tions are the same, being N (uT
i ξ̇+ x̄(w)T

i β̇2, σ̇2
α + N−1

i σ̇2
e + (1 − fi )n−1

i σ̇2
e ) =

N (uT
i ξ̇+x̄(w)T

i β̇2, σ̇2
α+n−1

i σ̇2
e ) and N (uT

i ξ̇+x̄(w)T
i β̇2, σ̇2

α+n−1
i σ̇2

e ), respectively.

ii) The asymptotic mean squared error of M̂ clp
i for estimating η̇i is n−1

i σ̇2
e which

is greater than or equal to n−1
i (1− fi )σ̇2

e , the asymptotic mean squared error of

M̂ clp
i (or M̂ sam

i ) for estimating ȳi . Thus, using the asymptotic mean squared

error of M̂ clp
i for estimating η̇i when we are estimating ȳi is conservative.

iii) We can also use the central limit theorem of Lyu and Welsh (2022b) to de-

scribe the rate at which we can estimate the asymptotic mean squared er-

rors. For example, we have �MSELW,i −MSELW,i = n−1
i ki (σ̂2

e − σ̇2
e ), so it follows

from Theorem 1 that

k−1/2
i n1/2

i n1/2
(�MSELW,i −MSELW,i

)= n1/2(σ̂2
e − σ̇2

e )
D−→ N (0,Ee4

11 − σ̇4
e ).

iv) Theorem 2 establishes that the prediction intervals (2.9) and (2.10) have the

correct asymptotic level.

v) The result for estimating η̇i also holds when fi = 1. In this case, for estimating

ȳi , provided Ni − ni → ∞, we have (Ni − ni )1/2(M̂ sam
i − ȳi )

P−→ 0 and (Ni −

ni )1/2(M̂ clp
i − ȳi )

P−→ 0.
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4. Simulation study

We carried out a model-based simulation study to evaluate the performance of

the prediction intervals (2.9) and (2.10). We generated population data with g ∈

{15,30,50} small areas and Ni units in each small area by making area 1 the small-

est area (N1 = NL = 40) and then setting the remaining Ni equal to the integer

parts of g −1 independent uniform [40,400] random variables. The Ni were gen-

erated once for each simulation setting so that each setting involved populations

of fixed Ni and hence fixed size N = ∑g
i=1 Ni . For each setting, we generated N

population values of an auxiliary variable xi j with an area structure by setting

xi j = 3+ 2ui + 4vi j , where ui and vi j are independent standard normal random

variables. We centered the xi j about their small area means x̄i to obtain the within

small area variable xi j − x̄i and also included x̄i as a between small area variable.

The N population values for y were generated from the model

yi j =β0 +β1x̄i +β2(xi j − x̄i )+αi +ei j , j = 1, . . . , Ni , i = 1, . . . , g , (4.1)

where {αi } were generated independently from Fα with E(αi ) = 0 and Var(αi ) =

σ2
α, and independently, {ei j } were generated independently from Fe with E(ei j ) = 0

and Var(ei j ) = σ2
e . We set the true parameters β̇ = [5,7,3]T , σ̇2

α ∈ {4,64} and σ̇2
e ∈

{25,100}, and the distributions Fα = N (0, σ̇2
α) or Fα = 0.3N (0.5,1)+ 0.7N

(
µ̇, {σ̇2

α−

0.375− 0.7µ̇2}/0.7
)
, and Fe = N (0, σ̇2

e ) or Fe = 0.3N (0.5,1)+ 0.7N (µ̇, {σ̇2
e − 0.375−

0.7µ̇2
}
/0.7) with µ̇ = −0.3×0.5/0.7. The 3 values of g and 2 for each of σ̇2

α, σ̇2
e , Fα
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and Fe produced 48 different simulation settings.

For each of the 48 simulation settings, we generated 1000 populations and then

selected one sample via simple random sampling without replacement from each

population. We randomly set three sample sizes 4 ≤ ni ≤ 8 for three randomly se-

lected areas with population sizes 50 ≤ Ni ≤ 200. For the remaining samples, if

Ni ≤ 50, we randomly set ni between 10 and 20. However, if 50 ≤ Ni ≤ 100, we set

ni = b0.5∗Ni c, and if Ni > 100, we set ni = b0.3∗Ni c. Here, b c denotes the inte-

ger part function. We select the units in each area independently through simple

random sampling without replacement.

For each sample, we fitted the model (4.1) using REML in lmer and computed

the 95% prediction intervals based on these estimates described in (2.9) and (2.10).

In the results, these intervals are denoted sam-LW and clp-LW to emphasise that

the intervals are based on the sam or clp predictors, (2.5) or (2.6), respectively,

and the proposed estimator of the LW mean squared error (2.8). For comparison,

we computed the Prasad-Rao interval clp-PR based on the clp predictor and the

Prasad-Rao estimator PR of the root mean squared error, and the Rao-Molina inter-

val sam-RM based on the sam predictor and the Rao-Molina extension RM of the

Prasad-Rao estimator of the root mean squared error for this predictor; see Sup-

plementary Material for details. We also computed some Chatterjee et al. (2008)

bootstrap prediction intervals but these were computationally more burdensome

and performed very poorly in some non-normal cases; see the Supplementary Ma-
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Table 1: Simulated coverage and length of prediction intervals when αi and ei j

have normal distributions with variances σ̇2
α = 4 and σ̇2

e = 25, respectively.

Method Direct sam-LW sam-RM clp-LW clp-PR

Area N_i n_i Cvge Alen Cvge Alen Cvge Alen Cvge Alen Cvge Alen

1 74 4 0.994 5.942 0.998 2.431 0.918 1.622 0.998 2.431 0.911 1.604

2 176 5 0.997 5.380 0.993 2.204 0.911 1.535 0.992 2.204 0.910 1.531

3 196 6 0.998 4.927 0.992 2.009 0.935 1.467 0.992 2.009 0.931 1.468

4 44 15 1.000 2.674 0.955 1.048 0.932 0.956 0.949 1.048 0.955 1.112

5 40 20 1.000 2.016 0.961 0.790 0.947 0.750 0.944 0.790 0.978 0.999

6 57 28 1.000 1.732 0.956 0.674 0.943 0.649 0.934 0.674 0.977 0.872

7 64 32 1.000 1.606 0.970 0.625 0.966 0.605 0.960 0.625 0.988 0.824

8 173 52 1.000 1.503 0.949 0.580 0.941 0.564 0.944 0.580 0.974 0.666

9 191 57 1.000 1.435 0.956 0.555 0.953 0.541 0.957 0.555 0.980 0.638

10 225 68 1.000 1.313 0.953 0.506 0.950 0.496 0.944 0.506 0.978 0.588

11 232 70 1.000 1.298 0.951 0.499 0.949 0.490 0.948 0.499 0.980 0.580

12 240 72 1.000 1.273 0.950 0.493 0.943 0.484 0.949 0.493 0.975 0.573

13 252 76 1.000 1.244 0.940 0.480 0.938 0.471 0.937 0.480 0.975 0.559

14 253 76 1.000 1.241 0.944 0.479 0.941 0.471 0.943 0.479 0.975 0.559

15 302 91 1.000 1.139 0.962 0.438 0.960 0.432 0.965 0.438 0.982 0.513

terial. Finally, we included an interval (Direct) based on the area mean (a direct es-

timator) and its variance under a homogeneous model for each area (equivalently,

under simple random sampling without replacement).

For each simulation setting, we report the size Ni and the sample size ni for

each small area. For each interval, for every small area we computed the empirical

coverage probabilities (Cvge) and the average half-length of the interval divided

by 1.96 (Alen). Alen is therefore also the average of the root mean squared error

estimates.

The full set of results with the average population mean and median across

populations for each area is given in the Supplementary Material; we present and

discuss illustrative cases below. Table 1 shows the empirical coverage and the rel-
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Table 2: Simulated coverage and length of prediction intervals when αi has a mix-

ture distribution and ei j has a normal distribution with variances σ̇2
α = 64 and

σ̇2
e = 100, respectively.

Method Direct sam-LW sam-RM clp-LW clp-PR

Area N_i n_i Cvge Alen Cvge Alen Cvge Alen Cvge Alen Cvge Alen

1 191 4 0.970 7.049 0.968 4.945 0.910 3.439 0.967 4.945 0.901 3.425

2 61 8 0.983 4.918 0.965 3.294 0.924 2.718 0.965 3.294 0.918 2.791

3 114 8 0.984 5.156 0.961 3.408 0.929 2.759 0.959 3.408 0.921 2.792

4 48 16 0.992 3.150 0.962 2.040 0.945 1.876 0.942 2.040 0.945 2.173

5 40 18 0.993 2.681 0.964 1.747 0.942 1.642 0.940 1.747 0.949 2.075

6 119 36 0.999 2.171 0.954 1.391 0.938 1.329 0.949 1.391 0.956 1.554

7 201 60 0.996 1.684 0.952 1.081 0.947 1.051 0.954 1.081 0.971 1.238

8 209 63 0.998 1.637 0.954 1.053 0.952 1.025 0.952 1.053 0.977 1.211

9 212 64 0.998 1.622 0.953 1.044 0.947 1.017 0.950 1.044 0.978 1.202

10 245 74 0.997 1.509 0.956 0.971 0.948 0.950 0.954 0.971 0.978 1.125

11 279 84 0.996 1.417 0.941 0.912 0.933 0.895 0.939 0.912 0.973 1.061

12 299 90 0.994 1.374 0.947 0.881 0.943 0.866 0.944 0.881 0.972 1.028

13 311 93 0.996 1.354 0.949 0.868 0.945 0.854 0.947 0.868 0.977 1.012

14 346 104 0.997 1.275 0.955 0.820 0.954 0.809 0.960 0.820 0.987 0.961

15 382 115 0.998 1.222 0.951 0.779 0.950 0.771 0.949 0.779 0.978 0.917

ative length of the five intervals for the setting with variances σ̇2
α = 4 and σ̇2

e =

25 when αi and ei j have normal distributions; Table 2 shows the results for the

setting with variances σ̇2
α = 64 and σ̇2

e = 100 when αi has a mixture distribution

and ei j has a normal distribution; results for the remaining 48 simulation settings

are similar. The areas are presented and labeled in order of increasing sample

size. Simulation standard errors for the coverage probabilities can be obtained as

{Cvge(1−Cvge)/1000}1/2; they are approximately 0.008 or smaller.

The simulation results show that our asymptotic results based on both g and

nL going to infinity provide useful approximations that work well. The empirical

coverages of the intervals are close to the nominal level and tend to the nominal
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level as g and nL increase, confirming our large g and nL asymptotic results. For

sample sizes from 4 to 8, sam-LW and clp-LW conservative in coverage and wider

than sam-RM (Rao and Molina, 2015) and clp-PR (Prasad and Rao, 1990) which are

optimistic and narrower. However, beyond sample size 10, sam-LW and sam-RM

perform similarly and effectively; the mean squared error estimator PR typically

exceeds LW, making clp-PR more conservative than clp-LW. The simple direct in-

tervals are very conservative and much wider than the other intervals for all sam-

ple sizes. So, while the direct intervals can be used in this context, even when the

sample size is large, they lose considerable efficiency relative to the model-based

intervals.

5. Design-based simulations

We obtained data from the Dairy Survey component of the 2002 Consumer Ex-

penditure Survey conducted by the U.S. Bureau of the Census for the U.S. Bu-

reau of Labor Statistics; the data are available from https://www.bls.gov/cex/

pumd_data.htm. We treated the consumer expenditure on fresh milk products

(MILKPROD) as the survey variable of interest and considered the problem of es-

timating the average consumer expenditure on fresh milk products in different

states (small areas). We used the total expenditure on food (FODTOT), the num-

ber of persons under age 18 in the family (PRSLT18) and the total family income

before taxes in the last 12 months (FINCBFX) as the auxiliary variables. This data
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set is similar to that used in Arora and Lahiri (1997); they used the earlier 1989

survey, focussed on the expenditure on fresh whole milk, and potentially used dif-

ferent auxiliary variables. If we knew the means of the auxiliary variables for each

state, we could use our methods to estimate the average expenditure on fresh milk

products in 2002 in each state. As we do not have this information, we instead

treated the data set as a pseudo-population and sampled from it. We repeated

this sampling 1000 times, implementing a design-based simulation from our fixed

population to evaluate the design-based properties of our proposed model-based

methods.

In creating the population, we discarded 6 states with fewer than 10 obser-

vations, leaving us with N = 4022 observations from g = 34 states with between

NL = 36 and NU = 397 observations from each state. We centered the auxiliary

variables about their area means (adding cent to their variable name) and then

included the area means (adding av g to the variable name) as between state vari-

ables so that we have pb = 3 plus pw = 3 auxiliary variables. The area means give

the average per family of each variable for each state. We selected the 1000 sam-

ples independently by simple random sampling without replacement from each

state with nL = 20 by setting ni = 20 if Ni < 50, ni = b0.5∗Ni c if 50 ≤ Ni ≤ 100, and

ni = b0.25∗Ni c if Ni > 100, where b c is the integer part function. In each sample,
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we fitted the model (5.1)

M I LK PRODi j (5.1)

=β0 +β1FODT OTav gi +β2PRSLT 18av gi +β3F I NC BF X av gi

+β4FODT OT centi j +β5PRSLT 18centi j +β6F I NC BF X centi j +αi +ei j ,

using lmer and computed the 95% model-based prediction intervals (2.9) and (2.10),

as well as sam-RM, clp-PR and the direct interval based on the small area mean. As

in the model-based simulation, we report the empirical design-coverage (Cvge)

and the relative design-expected length (Rlen) of the prediction intervals; the re-

sults over 1000 samples together with the standardised population EBLUPs α̂i /σ̂α

for each state are shown in Table 3. The relative design-bias and the design RMSEs

of sam and clp, together with the design-averages of the LW, RM and PR estimators

of the RMSEs are available in the Supplementary Material.

To interpret the results, we partition the states into three groups: Group 3 with

three states {2,9,27} for which the design-coverage of all four model-based inter-

vals is well below the nominal level; Group 2 with six states {8,22,24,32,37,50} for

which at least one model-based interval has design-coverage below the nominal

level, but not all model-based intervals perform poorly; and Group 1 with the re-

maining twenty-five states for which the design-coverage of all four model-based

intervals is above the nominal level.

For Group 1, the design-coverages are mostly conservative and similar across
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Table 3: Simulated design-coverage and design-expected length of nominal 95%

confidence intervals for the average consumer expenditure on fresh milk products

in each state in 2002. ∗ identifies states in Group 3 and † identifies states in Group

2.

Method Direct sam-LW sam-RM clp-LW clp-PR

STATE N_i n_i α̂i /σ̂α Cvge Alen Cvge Alen Cvge Alen Cvge Alen Cvge Alen

16 36 20 0.123 0.964 0.383 0.998 0.441 0.992 0.370 1.000 0.441 0.993 0.376

50† 37 20 0.526 0.912 0.677 0.902 0.449 0.825 0.373 0.917 0.449 0.696 0.375

31 42 20 -0.332 0.991 0.405 1.000 0.479 0.994 0.386 1.000 0.479 0.957 0.375

22† 43 20 -0.489 0.908 0.227 1.000 0.484 1.000 0.388 1.000 0.484 0.845 0.375

21 44 20 -0.188 0.998 0.421 1.000 0.489 0.999 0.389 1.000 0.489 0.980 0.375

15 45 20 0.087 0.976 0.414 0.998 0.493 0.996 0.391 1.000 0.493 0.992 0.376

32† 46 20 0.737 0.909 0.637 0.930 0.498 0.815 0.392 0.849 0.498 0.497 0.375

37† 47 20 -0.486 0.999 0.376 1.000 0.502 0.979 0.393 1.000 0.502 0.843 0.375

1 52 26 -0.010 0.993 0.254 1.000 0.410 1.000 0.343 1.000 0.410 0.998 0.362

45 53 26 0.047 0.944 0.454 0.979 0.414 0.936 0.346 0.996 0.414 0.979 0.362

2∗ 58 29 1.180 0.866 0.524 0.781 0.389 0.676 0.328 0.395 0.389 0.356 0.355

9∗ 59 30 -1.094 0.575 0.281 0.741 0.379 0.655 0.324 0.385 0.379 0.347 0.354

41 65 32 0.128 0.966 0.434 0.993 0.373 0.982 0.317 1.000 0.373 0.996 0.349

49 67 34 0.004 0.987 0.361 0.996 0.356 0.984 0.306 1.000 0.356 0.996 0.345

18 71 36 -0.265 0.951 0.466 0.979 0.346 0.932 0.299 0.998 0.346 0.987 0.341

27∗ 76 38 1.317 0.935 0.560 0.765 0.340 0.691 0.294 0.463 0.340 0.474 0.338

8† 82 41 0.666 0.900 0.498 0.866 0.327 0.797 0.285 0.845 0.327 0.826 0.332

13 93 46 -0.088 0.988 0.333 0.992 0.310 0.984 0.273 0.999 0.310 1.000 0.324

24† 94 47 -0.907 0.950 0.285 0.947 0.305 0.893 0.270 0.795 0.305 0.799 0.324

29 98 49 -0.265 0.991 0.249 0.999 0.299 0.999 0.265 1.000 0.299 0.999 0.319

53 99 50 0.242 0.984 0.264 1.000 0.294 0.998 0.262 1.000 0.294 0.998 0.318

55 119 30 -0.462 0.998 0.424 0.997 0.467 0.970 0.354 1.000 0.467 0.940 0.353

51 122 30 0.022 0.994 0.472 1.000 0.469 0.994 0.355 1.000 0.469 0.998 0.353

25 126 32 0.074 0.991 0.396 1.000 0.452 1.000 0.347 1.000 0.452 1.000 0.349

4 133 33 0.133 0.982 0.480 0.997 0.447 0.988 0.344 0.998 0.447 0.995 0.347

26 139 35 -0.325 0.988 0.411 0.998 0.433 0.990 0.337 1.000 0.433 0.989 0.343

34 160 40 -0.160 0.988 0.401 0.996 0.405 0.987 0.323 0.998 0.405 0.996 0.334

17 161 40 -0.301 0.996 0.330 1.000 0.406 0.996 0.323 1.000 0.406 0.997 0.334

39 229 57 -0.155 0.984 0.308 0.997 0.340 0.992 0.287 1.000 0.340 1.000 0.307

42 261 65 -0.538 0.993 0.327 0.977 0.318 0.945 0.274 0.983 0.318 0.952 0.297

36 280 70 0.019 0.974 0.362 0.978 0.306 0.961 0.267 0.985 0.306 0.984 0.291

12 283 71 0.594 0.946 0.321 0.977 0.304 0.947 0.265 0.978 0.304 0.949 0.290

48 305 76 -0.430 0.990 0.286 0.983 0.294 0.963 0.259 0.989 0.294 0.985 0.284

6 397 99 0.595 0.975 0.291 0.966 0.258 0.951 0.235 0.966 0.258 0.965 0.262
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all intervals. The design-biases for sam are smaller than for clp except in state

49 where the design-biases are very similar. There is no simple relationship be-

tween the design-average of the direct variance estimates and the design-averaged

LW, RM or PR estimates. The design-averaged LW estimator is larger than the

design-averaged RM estimator; the design-averaged LW estimator is larger than

the design-averaged PR estimator in all except 4 states (6, 13 , 29 and 53) where PR

has a slightly smaller design-average than LW.

Group 3 comprises the three states for which all four model-based intervals

(sam-LW, sam-RM, clp-LW and clp-PR) have design-coverage well below the nom-

inal level. The direct intervals perform relatively well for states 2 and 27, but poorly

for state 9. It turns out that state 9 has at least one large outlier and the accu-

racy of the predictions depends heavily on whether the outlier is included in the

sample or not; failure to include the outlier leads to direct intervals with poor

design-coverage, lowering the overall design-coverage of the intervals. The out-

lier also affects the the model-based intervals. Among the model-based intervals,

sam-LW has the best design-coverage, followed by sam-RM, and then clp-PR and

clp-LW. Both point estimates sam and clp are design-biased, clp more than sam.

The design-averaged RMSE estimator LW is greater than the design-averaged RM

(or PR), explaining why sam-LW has better design-coverage than sam-RM.

Group 2 comprises the states for which at least one but not all four model-

based intervals (sam-LW, sam-RM, clp-LW and clp-PR) have design-coverage be-
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Table 4: Parameter estimates (REML) for modelling the consumer expenditure on

fresh milk products population.

Effect β0 β1 β2 β3 β4 β5 β6 σα σe

Estimate 2.623 1.163 0.924 0.016 4.793 0.710 0.002 0.176 8.560

Std Error 0.762 5.087 0.553 0.008 0.366 0.040 0.001

NOTE: lmer does not compute standard errors for the variance components.

low the nominal level. Usually, sam-LW has the best design-coverage of the model-

based intervals (although it has below nominal design-coverage in state 8) and

similar design-coverage to the direct intervals. The sam-LW intervals are narrower

than the direct intervals in states 50, 32 and 8 while the direct intervals are nar-

rower than sam-LW in states 22, 37 and 24. Usually clp-PR has the lowest design-

coverage, but clp-LW has lowest design-coverage in state 24 and sam-RM has the

lowest design-coverage in state 8. Clp has larger design-bias than sam for Group 2.

These results show that the sam-LW intervals generally have better design-

based properties than the clp intervals in our consumer expenditure on fresh milk

products population. Nonetheless, we did not expect to see results like those in

Group 3 so we explored why these results occur.

As we have access to the whole population (which is unusual in practice), we

are able to explore the population. We used lmer from the R package lme4 to fit

the nested error regression model (5.1) to the population data. Figure 1 shows a

normal QQ-plot of the EBLUPs (with approximate 95% prediction intervals com-
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puted as in Lyu and Welsh (2022a)) and a normal QQ-plot of the errors from the

fitted model. Figure 1 shows that it is plausible to treat the random effects as ap-

proximately normally distributed, but the errors have an asymmetric long-tailed

distribution and it is less plausible to treat the errors as normally distributed. In

a model-based analysis, rather than simply relying on the asymptotic theory, we

could consider using transformations to improve the fit, make predictions on the

transformed scale and then invert the prediction intervals (possibly adjusting for

back-transformation bias). However, for our design-based analysis, as is arguably

usual in practice, we keep the data on the raw scale. Table 4 shows the parameter

estimates and standard errors for the fitted model. Although some coefficients are

not significant, we retain them in the model. We see that σ̂2
e /σ̂2

a = 48.72 is large so

that the within area correlation is very small (approximately 0.02).

The normal QQ-plot of the EBLUPs in Figure 1 shows that the Group 3 states

have extreme EBLUPs and the Group 2 states have EBLUPs in the tails of the distri-

bution but these are mixed in with some EBLUPs from Group 1 states. This mixing

suggests that the EBLUPS alone do not identify the group to which a state belongs.

Another potentially important value is the sample size ni in each state. Figure 2

shows the population standardised EBLUPS α̂i /σ̂α plotted against the sample size

ni for each state; these variables are also included in Table 3. States plotted in

the top and bottom left of the plot (high standardised EBLUPs and small to mod-

erate sample size) are in Groups 2 and 3; states at the top or bottom right (small
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Figure 1: Normal QQ-plots for the EBLUPs α̂i and estimated errors êi j from the

model (5.1) fitted to the consumer expenditure on fresh milk products in 2002 data.

standardised EBLUPs or large standardised EBLUPS with large sample sizes) are in

Group 1 with all the others states. Specifically, states 6, 12 and 42 have relatively

extreme EBLUPs but larger sample sizes so are in Group 1. This suggests that both

the magnitude of the standardised EBLUPs and the sample size determine the dif-

ficulty of estimating a particular state.

We cannot rule out the possibility that the results of the design-based simu-

lation using the consumer expenditure on fresh milk products data are at least in

part due to failures of the model (5.1). However, we can explore whether similar

results occur when the model is correct by carrying out a set of additional design-

based simulations. We used the same 48 settings as in our model-based simula-

tion, but we generated a single population for each setting and then selected 1000
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Figure 2: Plot of the population standardised EBLUPS α̂i /σ̂α against sample size

in each state for the consumer expenditure on fresh milk products. Group 1 states

are plotted as circles, Group 2 as triangles and Group 3 as crosses. Selected states

are labelled by state number.

samples from it by simple random sampling without replacement. We fitted the

model and computed the same 95% prediction intervals as before and evaluated

their design-based properties. The full set of results are available in the Supple-

mentary Material. The overall conclusion is that when σ̇2
e /σ̇2

α is large, areas with

extreme EBLUPs and small to moderate sample sizes are difficult to estimate well

in the design-based framework.

Why does the size of the random effect for an area matter in the design-based

framework but not in the model-based framework? In the model-based frame-

work, the population and hence the random effect for an area is generated anew for

each replication. This means that in each sample we are estimating a realisation of
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an independent and identically distributed random variable so, over model-based

replications, we are estimating the expected value of the random variable which

is zero under the model. In the design-based framework, the population is fixed

and the replication is over independent samples from this fixed population. Once

generated, the random effects are fixed so, in areas with extreme random effects,

the EBLUPs are estimating the expected values of extreme order statistics which are

not zero and difficult to estimate. This flows through into estimating the area mean

of the survey variable for areas with large random effects. In our design-based sim-

ulation, we used the population EBLUPs to assess the difficulty in estimation, but

in practice, as shown in Lyu and Welsh (2022a), we would use the sample EBLUPs

to estimate the population random effects.

The above discussion suggests that when we want to achieve good (model-

assisted) design-based rather than model-based performance, we should treat the

random effects in the model as fixed. To check this intuition (and indirectly con-

firm the argument above), we repeated our design-based simulations treatingαi as

fixed and examined the empirical design coverage and the relative design-expected

length of the model-based prediction intervals constructed under the fixed area ef-

fects model. Details and results are included in the Supplementary Material. The

design-coverage results for both composite and synthetic methods are generally

good, confirming our intuition.
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6. Discussion

In this paper, we considered model-based small area estimation under the nested

error regression model. We discussed two targets of interest, the small area means

and the conditional linear predictors of the small area means, and the construction

of mixed model estimators (EBLUPs) of these two targets. We established asymp-

totic linearity results and central limit theorems for these estimators which allow

us to establish asymptotic equivalences between estimators, to approximate their

sampling distributions, obtain simple expressions for and construct simple esti-

mators of their asymptotic mean squared errors, and justify asymptotic prediction

intervals. Our new results are established under the asymptotic framework of in-

creasing numbers of small areas and increasing numbers of units in each area; we

report model-based simulations that show that these results are applicable in quite

small, finite samples, establishing that they fill important theoretical gaps and are

useful in practice. In particular, our mean squared error estimator performs as well

or better than the widely-used Prasad and Rao (1990) and Rao and Molina (2015)

estimator and is much simpler, so it is easier to interpret and consequently pro-

vides more insight. We also carried out a design-based simulations using real data

on consumer expenditure on fresh milk products. This simulation produced some

surprising results which we explained and interpreted through analysis of the pop-

ulation and further design-based simulations. The simulations together highlight
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under-appreciated differences between the model- and design-based properties

of mixed model estimators in small area estimation.

Following the suggestion of a referee, we also applied our proposed method to

the Iowa corn data presented in Battese et al. (1988). This is a challenging data set

for both fixed and increasing area size methods because there are only 12 areas,

three of which have sample size 1, and the largest sample size is 6. Details of our

analysis are reported in the Supplementary Material. We observe that the sam and

clp predictors are very similar in this example. The LW estimator of the MSE pro-

posed in this study is larger than both the RM and PR estimators when the sample

size is very small, specifically in the range from 1 to 4. Nevertheless, the difference

between the proposed LW estimator and both RM and PR estimators tends to de-

crease with increasing sample size. Notably, when the sample size reaches 6, the

proposed LW estimator is smaller than both the RM and PR estimators. There is

no simple pattern in the relationship between the sample mean and the sam/clp

predictors or between the variance of the sample mean and the other MSE estima-

tors. With only a single sample and no knowledge of the true values, it is difficult

to reach any conclusions about the validity of the methods in this application.

Given the extensive literature on small area estimation, it is important to ac-

knowledge that in this paper we have considered only one of many interesting

and important scenarios. Future work should include applying the asymptotic ap-

proach to area level models, outlier robust estimators and the extensions to the
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basic nested error regression model.

Supplementary Material

The online Supplementary Material includes other prediction intervals, a simula-

tion result for the Chatterjee et al. (2008) prediction interval, additional findings for

the consumer expenditure population, and prediction intervals treating random

effects as fixed, along with design-based simulation and analysis of Corn data.
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