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Abstract: High-dimensional classification is both challenging and of interest in numerous applications.

Componentwise distance-based classifiers, which utilize partial information with known categories,

such as mean, median and quantiles, provide a convenient way. However, when the input features are

heavy-tailed or contain outliers, performance of the centroid classifier can be poor. Beyond that, it

frequently occurs that a population consists of two or more subpopulations, the mean, median and

quantiles in this scenario fail to capture such a structure that can be instead preserved by mode,

which is an appealing measure of considerable significance but might be neglected. This paper thus

introduces and investigates componentwise mode-based classifiers that can reveal important structures

missed by existing distance-based classifiers. We explore several strategies for defining the family of

mode-based classifiers, including the unimodal classifiers, the multimodal classifier and the quantile-

mode classifier. The unimodal classifiers are proposed based on componentwise unimodal distance

and kernel mode estimation, and the multimodal classifier is constructed by identifying all the local

modes of a distribution according to a novel introduced algorithm. We establish the asymptotic

properties of these methods and demonstrate through simulation studies and three real datasets that

the mode-based classifiers compare favorably to the current state-of-art methods.

Key words and phrases: componentwise modal distance, multimodal classifier, multimodality, quantile-
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mode, unimodal classifier.

1. Introduction

In this work, we focus on the problem of classification for high-dimensional data, where the

task is to assign a new observation to one class out of a finite collection of alternatives.

Classification arises frequently from bioinformatics, computer vision, natural language pro-

cessing, and a broad range of other fields, is an indispensable part of artificial intelligence.

Most of the conventional methods depend on sufficient and balanced samples to make classi-

fiers more efficient. More recently, neural networks and ensemble methods like Boosting and

Random Forests have been proposed to solve different problems originated from different

contexts. High-dimensional data poses significant challenges to many existing classification

techniques, whose performance might be poor but computationally heavier due to the “curse

of dimensionality”.

The problem caused by high dimensions can be solved moderately by using distance-

based classifiers which utilize a small portion of information of the population distributions

with known categories. Distance-based classification methods take the distance between

the new observed value and the core of the corresponding distribution as an important

basis for classification. They distinguish themselves from other classifiers in one impor-

tant respect: distance-based classifiers that allow the addition of new classes to existing

classes without any cost is an approach to deal with real-life large scale datasets which are

open-ended and dynamic (Mensink et al., 2013). Standard distance-based classifiers are the

centroid-based classifiers, nearest class mean classifier (Webb, 2002), nearest-neighbor meth-

ods (Cover and Hart, 1967), support vector machines (Cortes and Vapnik, 1995) and so on.

The performance of these classifiers critically relies on the applied distance metrics and the

components of data vector, the predictive power can be very poor if some of the components

of data vector suffer from high variability, which becomes more significant as the number
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of features diverges. To alleviate this problem, componentwise distance-based classifiers

that are established based on a sum of componentwise distances can be good alternatives,

they adapt well to high-dimensional data without the frequently employed feature screening

steps, but research on them is relatively sparse. Hall et al. (2009) introduce a component-

wise median-based classifier, which utilizes the L1-distance in the training set and performs

well in high dimensions. As an extension of the median-based classifier, Hennig and Viroli

(2016) propose a family of componentwise quantile-based classifiers by defining a compo-

nentwise quantile distance, and develop the optimal quantile classifier, in which the optimal

quantile is chosen in the training set by maximizing the correct classification probability.

Although the quantile classifiers are effective for discriminating high-dimensional data, their

performance is limited to assigning each predictor the same importance. Accordingly, Lai

and McLeod (2020) appoint weights to the componentwise distances and produce ensemble

quantile classifier. Another closely related method is the directional quantile classifier that

is built upon directional quantiles to account for possible interdependence among variables

(Farcomeni et al., 2022).

Besides the above-mentioned statistics, i.e., mean, median and quantiles, the mode is

demonstrated to be the most natural metric for describing central tendency in positively

skewed data, and is the only measure that can be used for nominal scale data. This mo-

tivates us to focus on the componentwise mode-based classifiers. Why would we ever use

mode-based classifiers in favor conventional componentwise distance-based classifiers? The

answer, at a high level, is that mode can reveal structure that is missed by other statistics,

and may cover more distributional information relevant for classification. Figure 1 and Ta-

ble 1 give a definitive illustration of this point: we can see that (a) when the input features

are heavy-tailed or contain outliers, the arithmetic mean is not applicable for representing

the central tendency, leading to the poor performance of the componentwise centroid clas-

sifier especially for high-dimensional heterogeneous data. (b) It sometimes happens for two
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distributions that the mean and median are identical or nearly identical, while the shapes

are quite different, in this sense, performance of the componentwise centroid and median

classifiers are similar, but might be unsatisfactory, since the commonly used measures of

central tendency reflect limited information on other important features of underlying dis-

tribution, such as wiggles. (c) Quantile-based classifier is always powerful in the above two

cases in view of the fact that quantiles can better characterize a distribution. However

practically, it frequently occurs that a population consists of two or more subpopulations,

the mean, median, and quantile in this scenario fail to capture such a structure, resulting

in the poor prediction powers. These difficulties make mode attractive, the componentwise

mode-based classifier is an improvement in these regards. By comparing the train and test

error rates in Table 1, all classifiers except for the proposed one suffer from overfitting is

observed. Therefore, the componentwise mode-based classifiers become natural to consider

in this context, they are potentially useful but much neglected tool that can be employed

to complement and advance the existing componentwise distance-based classifiers. To the

best of our knowledge, relatively little has been done for the construction of mode-based

classifiers. It is the intention of this work to fill this gap.
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Figure 1: Examples of mode-based classifier versus centroid, median and quantile-based classifiers. Each

p vectors are generated from two different populations. Panel (a): Xj ∼ 0.8N(0, 1) + 0.2N(5, 102), Yj ∼
N(1, 1); (b) Xj ∼ χ2(4), Yj ∼ exp(9/40); (c) Xj ∼ 0.3N(−10, 1) + 0.4N(0, 1) + 0.3N(10, 1), Yj ∼ Xj + 0.5,

for j = 1, . . . , p.
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Table 1: Classification error rates (%) over 100 replications. Proposed denotes the mode-based

classifier.
p = 10 p = 100

Case Method Centroid Median Quantile Proposed Centroid Median Quantile Proposed

(a) Train error 39.01±3.12 14.81±1.70 13.29±1.33 11.59±1.41 20.71±1.41 0.13±0.14 0.00±0.00 0.00±0.00

Test error 43.00±3.02 16.2±1.61 15.91±1.85 12.36±1.50 35.46±1.46 0.15±0.16 0.27±0.29 0.00±0.00

(b) Train error 40.48±1.60 41.47±2.18 23.63±1.55 26.32±1.86 20.48±1.37 27.99±1.76 3.19±0.61 5.52±0.74

Test error 44.74±1.57 45.37±1.52 26.60±1.94 30.77±1.81 29.25±1.76 43.74±1.89 6.22±1.59 9.19±1.48

(c) Train error 43.51±1.67 38.55±2.07 36.01±1.63 24.53±1.71 26.68±1.46 16.92±1.55 11.92±1.09 2.99±0.68

Test error 49.11±1.95 41.67±1.70 42.28±2.23 27.43±1.50 42.74±2.12 25.20±1.40 20.24±2.01 5.69±0.10

With this motivation in mind, this work develops the family of the componentwise

mode-based classifiers by defining appropriate distances for modes. The mode-based clas-

sifiers have several unusual properties, making the investigation of their properties more

challenging. For instance, the theoretical mode of the sample is not usually equivalent to

the mode of the population from which the data were drawn; the fact that the population

mode is not necessarily unique to a given distribution, whereas the mean and median always

represent a single value, making the mode-based classifier differ largely from the centroid

and median classifiers. The loss function whose expectation is minimized at the mode is

not uniquely defined, leading to the difficulty of choosing an appropriate distance metric.

To address these challenges, this work provides a thorough exploration of the mode-based

classifiers and investigates their properties. We not only focus much attention on unimodal

classifiers, but develop multimodal classifiers. In particular, our contributions are as follows:

1. For unimodal populations, we introduce the family of unimodal classifiers based on

unimodal distance in combination with kernel mode estimation. We propose a method for

defining the optimal unimodal classifier, and prove that it enjoys consistency.

2. To significantly reduce the computational cost or improve the classification accuracy,

alternative approaches for defining unimodal classifiers are also considered. These include

the naive unimodal classifier and the hybrid quantile-mode classifier. The naive unimodal
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classifier is motivated by the relationship between mode, mean and median, and the quantile-

mode classifier is inspired by the nice properties of asymmetric Laplace distribution (ALD).

3. In some cases, there can be clear evidence of multimodality of a population. To

address this, we first propose a novel mode detection algorithm to accurately identify all the

local modes of a predictor and then formulate the multimodal classifiers, which outperform

all the existing classifiers by a large margin in the presence of multimodality.

4. To allow mode-based classifiers for large-scale datasets, we introduce in addition a

mode-diff (MD) filter, a feature screening technique, for speeding up classification.

5. Under the assumption that distributions for alternative populations differ by at most

a location-shift, asymptotic theoretical properties of the mode-based classifier are derived.

Though this assumption may be practically unrealistic, various numerical examples and

real data analysis validate that the mode-based classifiers show competitive performance

and always compare favorably to the current state-of-the-art classifiers in all scenarios in-

cluding the distributions differing by shape and not just by location. We draw enlightening

comparisons to current classifiers.

Generally speaking, the mode-based classifiers are robust and powerful for discriminating

high-dimensional data especially with heavy-tailed, skewed or multimodal inputs. The rest

of the paper is organized as follows. We define the family of mode-based classifiers in Section

2, where several variants are explored and an algorithm for detecting the multimodality is

provided. In Section 3, we discuss the implementation issues associated with the mode-

based classifiers. Section 4 respectively investigates the theoretical properties of unimodal

classifiers for fixed p and p → ∞. We present extensive simulation results in Section 5.

Section 6 illustrates the usefulness of the proposed methods through three real datasets.

Finally, we conclude this paper with some concluding remarks. All technical proofs and

additional simulation results are presented in the Supplementary Material.
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2. Mode-based Classifiers

2.1 Componentwise distance-based classifiers

We consider constructing a mode-based distance discriminant rule for classifying new ob-

servations to one of the two classes. Let C1 and C2 be populations characterized by random

variables X and Y defined on Rp, F1(·) and F2(·) be probability distribution functions for

each population. Define two sets X = {X1, . . . ,Xm} and Y = {Y1, . . . ,Yn} of p-variate

data, given a new observation z = (z1, . . . , zp), componentwise distance-based classifiers

(Tibshirani et al., 2003; Jörnsten, 2004; Hall et al., 2009; Hennig and Viroli, 2016) assign z

to the class that is closest, specifically, assign z to C1 if
p∑

j=1

{d(zj, θYj
)− d(zj, θXj

)} > 0, (2.1)

where θX = (θX1 , . . . , θXp) and θY = (θY1 , . . . , θYp) are p-variate population statistics for C1

and C2, respectively, d(zj, θXj
) denotes a specific measure of distance from the jth component

of z to the statistic of the set Xj = {X1j, . . . , Xmj}. The L2-distance in (2.1) is the most

commonly used distance metric, based on which the centroid classifier (Tibshirani et al.,

2003) is formulated by taking θX = (X̄1, . . . , X̄p) and θY = (Ȳ1, . . . , Ȳp), where X̄j denotes

the jth component of the sample mean, i.e., X̄j = m−1
∑

k Xkj. If θX and θY are taken

to be the componentwise sample medians of X and Y , respectively, d(·) is considered to

be the L1-distance in (2.1), the median-based classifier introduced by Hall et al. (2009) is

obtained. In a similar fashion, given a quantile level τ ∈ (0, 1), if θX and θY are taken to

be the componentwise sample τ -quantiles of X and Y , and d(·) is taken to be the quantile-

loss function, that is, d(zj, θXj
) = ρτ (zj − qXj

(τ)), where ρτ (u) = u{τ − I(u < 0)}, I(·) is

an indicator function and qXj
(τ) is the empirical τ -quantile of Xj, then the quantile-based

classifier defined by Hennig and Viroli (2016) is achieved. The reason why L2 metric is

used for the centroid, L1 metric for the median and the quantile-loss for the quantile is

that the mean is the statistic that minimizes the sum of L2 distances from points to their
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2.2 Unimodal classifiers

centroid, the median minimizes the corresponding L1 distance and the τ -quantile minimizes

the quantile loss function at given τ . Inspired by the above facts, the mode-based classifier

can be defined by proper selection of the distance metric, for which the decision rule is,

p∑
j=1

{d(zj,mode(Yj))− d(zj,mode(Xj))} > 0.

2.2 Unimodal classifiers

We begin with the unimodal classifiers for two unimodal populations. By definition, the

mode δ of a univariate random variable U is the only value at which the probability mass

(density) function takes its maximum value. Literature focuses primarily on mode estima-

tion under nonparametric kernel density estimation (KDE), see Parzen (1962); Eddy (1980);

Birgé (1997); Meyer (2001) among others. Precisely, let FU(u) be the probability distribu-

tion function of U with density fU(u), and L(U ; ·) be the step-loss function (Manski, 1991),

L(U ; δ) = I
(
|U − δ| ≥ σ

)
, where σ > 0 is a bandwidth. If fU(u) is symmetric about δ or if

δ is the middle value of the interval of length 2σ that captures the most probability under

FU(u), then δ̂ = argminδ E{L(U ; δ)} is the mode of U . If fU(u) is highly skewed or it has

multiple local maxima, the loss function of the form (2.2) is usually suggested,

L(U ; δ) = 1− γK

(
U − δ

σ

)
, (2.2)

where K(u) denotes a smooth kernel function and γ = 1/K(0) > 0 is a scaling constant.

If fU(u) is strictly unimodal, the minimizer of (2.2) approaches mode(U) as σ goes to

zero. Many smooth kernels are available here, such as Triangle kernel, Epanechnikov kernel,

Gaussian kernel, and so on. This work mainly focuses on Gaussian Kernel, that is K(u) =

φ(u), where φ(·) is the standard normal density function. The reason why we take Gaussian

kernel in this work is twofold: (i) the Gaussian kernel offers the advantage of generating a

loss function that has both the mode and the mean as minimizers in limiting case (Kemp and

Silva, 2012); (ii) the number of modes in a Gaussian kernel density estimate is nonincreasing

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0014



2.2 Unimodal classifiers

as σ increases (Minnotte, 1997). These two properties are not shared with other kernels.

For observations u1, . . . , un independent and identically distributed (i.i.d.) with U , the

empirical mode of U is the value δ that minimizes the sample analog of the expectation of

(2.2), this is equivalent to maximizing

1

n

n∑
i=1

1

σn

K

(
ui − δ

σn

)
, (2.3)

which is an estimate of the density of ui at δ, σn is a bandwidth related to sample size n such

that σn → 0 as n → ∞. We then utilize equations (2.2) and (2.3) to define the unimodal

classifier. Denote by Frj the marginal distributions of Fr and δrj the unique mode of Frj,

for r = 1, 2 and j = 1, . . . , p. Let δr = (δr1, . . . , δrp), and

Ψrj(zj, σrj) = K

(
zj − δrj
σrj

)
, r = 1, 2, j = 1, . . . , p,

where σrj is the bandwidth specified for estimating δrj. Define the componentwise unimodal

distance as d(zj,mode(Frj)) := 1 − γΨrj(zj, σrj). Given two data sets X and Y each from

populations C1 and C2, and a new observation z = (z1, . . . , zp) ∈ Rp, the unimodal classifier

assigns z to C1, if

λ(z,σ) =

p∑
j=1

{Ψ1j(zj, σ1j)−Ψ2j(zj, σ2j)} > 0, (2.4)

otherwise to C2, where σ = (σ1,σ2) and σr = (σr1, . . . , σrp) for r = 1, 2.

Given classes C1 and C2 with prior probabilities π1 and π2, the probability of the correct

classification for the unimodal classifier based on true modes δ1 and δ2, is

Γ(σ) = π1

∫
I{λ(z,σ) > 0}dF1(z) + π2

∫
I{λ(z,σ) ≤ 0}dF2(z). (2.5)

Let (zi, Ci), i = 1, . . . , n be Rp×{1, 2}-valued i.i.d random variables, where zi = (zi1, . . . , zip)
T

satisfies that F1 = P (zi|Ci = 1) and F2 = P (zi|Ci = 2). Let δ̂rj be the empirical mode

for the subsample defined by Ci = r, and σ̂rjn be the optimal bandwidth for the KDE f̂rj

defined by Ci = r, i = 1, . . . , n. The ordinary unimodal classifier is formulated by assigning
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2.2 Unimodal classifiers

z to C = 1 if

λn(z, σ̂n) =

p∑
j=1

{Ψ1jn(zj, σ̂1jn)−Ψ2jn(zj, σ̂2jn)} > 0, (2.6)

where Ψrjn(z, σn) = K
{
(z − δrj)/σn

}
for r = 1, 2, and the observed rate of correct classifi-

cation is

Γn(σ̂n) =
1

n

[ ∑
i:Ci=1

I{λn(z, σ̂n) > 0}+
∑

i:Ci=2

I{λn(z, σ̂n) ≤ 0}

]
. (2.7)

If p = 1 and further assume bandwidths σ1 = σ2 in (2.5), we obtain a simplified formula

for calculating the probability of correct classification. When δ1 ≤ δ2,

Γ(σ) = π1F1

(
(δ1 + δ2)/2

)
+ π2

{
1−F2((δ1 + δ2)/2)

}
, (2.8)

otherwise,

Γ(σ) = π1

{
1−F1((δ1 + δ2)/2)

}
+ π2F2

(
(δ1 + δ2)/2

)
. (2.9)

Equations (2.8) and (2.9) indicate that in the ideal case the correct population classification

rate for unimodal classifier is irrelevant to the bandwidths. The proof of this formula is

given in the Supplementary Material.

Remark 1. Given two univariate unimodal populations (p = 1), without loss of generality,

assume δ2 ≥ δ1 and let d = δ2 − δ1 be the difference of two modes, a measure for the

location difference in distributions. The two populations are becoming more separable with

the increase of d. To investigate how the unimodal classifier works, we further assume δ1 = 0

if necessary after a shift in location and σ1 = σ2, then the misclassification rate calculated

by (2.9) is 1 − Γ(σ) = 1 − π1F1(d/2) − π2(1 − F2(d/2)), a function of d. Figure 2 depicts

four illustrative examples of how the theoretical classification rate varies across the location

difference for two unimodal populations, assuming π1 = π2 = 0.5. Clearly, as shown in

the second column of Figure 2, with the location shift growing larger, the misclassification

rate diminishes to zero rapidly as expected. However, the assumption of σ1 = σ2 may be

inappropriate for real data, since kernel methods are in principle sensitive to bandwidths.
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2.3 The empirically optimal unimodal classifier

To account for this crucial effects, we take simulated random samples from each pairs of

populations, and denote by c = σ2/σ1 ∈ (0,+∞) a ratio between two bandwidths. For each

c ∈ [0.1, 10], we approximate the misclassification rate by a Monte-Carlo simulation average

of 100 independent 1 − Γ̂(c) obtained by the unimodal classifier determined by (2.4) with

m1 = n1 = 40, 000 training samples and m2 = n2 = 10, 000 testing samples. Results are

depicted in the third column of Figure 2, which conveys several informations: (a) the curve

of the misclassification rate in each scenario exhibits strong convexity; (b) c ≤ 3 always

gives a smaller misclassification rate; (c) the location of the minimum point for each curve

can be estimated accurately by misclassification rates within the training sample when n is

large enough. Consequently, to better implement the unimodal classifier, it is essential to

determine an optimal c value to maximize the correct classification rate.

2.3 The empirically optimal unimodal classifier

In the implementation of the proposed unimodal classifier, two issues are critically impor-

tant. One is the selection of bandwidths, determining which values of bandwidths provide

the optimal degree of misclassification rate is hard. The other is the design of algorithm to

achieve better classification performance while maintaining computational feasibility.

To address this problem and make it scalable to high-dimensional setting, we first define

θ = σ2j/σ1j for j = 1, . . . , p, and then introduce an approach to choose the bandwidths in

the family of possible unimodal classifiers determined by an optimum θ value based on

misclassification rates within the training samples. Take the univariate populations as an

example. When p = 1, σ21 = θσ11, the probability of the correct classification (2.5) becomes

Γ(σ11, θ) = (2.10)

π1

∫
I

{
K
(z − δ1

σ11

)
> K

(z − δ2
θσ11

)}
dF1(z) + π2

∫
I

{
K
(z − δ1

σ11

)
≤ K

(z − δ2
θσ11

)}
dF2(z).

It remains the problem of how to find the two appropriate parameters to maximize the
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2.3 The empirically optimal unimodal classifier
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Figure 2: Misclassification rates in four different settings. The probability density functions of two

populations are shown in each panel of the first column; each panel of the second column depicts the

misclassification rate as the function of d assuming σ1 = σ2; The misclassification rate as a function of

c = σ2/σ1 is shown in the last column. (a) location-shifted Gaussians; (b) a Gaussian distribution and a

chi-squared distribution; (c) location-shifted chi-squared distributions; (d) location-shifted exponentials.
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2.3 The empirically optimal unimodal classifier

correct classification rate. We restrict ourselves to first select σ11 and then choose θ. Once

the “best” σ̂11 is determined, the optimal θ can be subsequently identified by maximizing

Γ(θ, σ̂11). In Supplementary Material, we present an illustrating example to show how to

choose the “best” bandwidth σ11.

Empirically, let πr = P (Ci = r) for r = 1, 2. Let Fr1, . . . , Frp be the marginal unimodal

distributions of Fr for r = 1, 2, and frj are the corresponding density functions. Denote by

δrj the unique mode of Frj. For arbitrarily small 0 < t < 1, define T = [t, 1/t]. Let δ̂rj be

the empirical mode for the subsample defined by Ci = r, and σ̂1jn be the optimal bandwidth

for the KDE f̂1j defined by Ci = 1, i = 1, . . . , n. The empirically optimal unimodal classifier

is formulated by assigning z to C = 1 if

λn(z, θ̂, σ̂1n) =

p∑
j=1

{Ψ1jn(zj, σ̂1jn)−Ψ2jn(zj, θ̂σ̂1jn)} > 0, (2.11)

where Ψrjn(z, σn) = K
{
(z − δrj)/σn

}
for r = 1, 2, and θ̂ = argmaxθ∈T Γn(θ, σ̂1n) is the

estimated optimal θ from (z1, C1), . . . , (zn, Cn), the observed rate of correct classification

for θ in sample (zi, Ci), i = 1, . . . , n is

Γn(θ, σ̂1n) =
1

n

[ ∑
i:Ci=1

I{λn(z, θ, σ̂1n) > 0}+
∑

i:Ci=2

I{λn(z, θ, σ̂1n) ≤ 0}

]
.

Practically, a grid search of θ is in principle possible. If the argmax is not unique like in the

last panel in the third row of Figure 2, any maximizer can be chosen.

Remark 2. We search for the optimal value of θ in a compact interval T . To save com-

putational cost, a small interval, such as [1/3, 3], seems to be appropriate as discussed in

Remark 1. Γn(θ) is thus assessed on a grid of equispaced values between 1/3 and 3.

Remark 3. Especially when the sample size is small, the issue of obtaining the precise

componentwise mode of an “n sample, p-dimensional” data is of comparable difficulty to

selecting the accurate bandwidth. To this end, we provide a fast to implement procedure
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to seek the unique mode for a unimodal distribution but at the cost of some accuracy. This

procedure we term as naive unimodal classifier is based on the formula

mode = 3×median− 2×mean. (2.12)

The above relation holds directly for a symmetric distribution, and also holds approxima-

tively for a wide range of asymmetric distributions Stuart (1994). The naive unimodal

classifier assigns z to C1, if
∑p

j=1{K(zj − δ1j) − K(zj − δ2j)} > 0, where the modes δrj

are determined by (2.12) for r = 1, 2. Actually, we have tried various distance metrics

and kernel functions, but the results vary slightly, therefore we still use Gaussian kernel for

naive unimodal classifier. Even though this naive method might be problematic in practice,

as it overlooks the intrinsic relationship between the mode and the datasets, at least the

computational cost can be reduced considerably.

2.4 Multimodal classifiers

One more feature of mode-based classifiers that makes them differ largely from their com-

petitors is that the mean, median and quantile always serve as a single value, whereas the

density of a random variable U can have several modes (local maxima). To develop the

multimodal classifiers, we first provide an algorithm to search for the multiple modes.

1. Multiple modes detector for multimodal distributions. The local modes can be inter-

preted as δlocal = argmaxu∈I fU(u), where I is a closed interval and the maximum is taken

from the interior of the interval. Formally, the local mode set of U is defined as

M(U) =
{
u : f ′

U(u) = 0, f ′′
U(u) < 0

}
,

which may consist of several points. Note that fU is required to be twice differentiable.

It is assumed that M(U) has g distinct points. Given observations U1, . . . , Un
i.i.d∼ U ,

the KDE of fU using Gaussian kernel is f̂U(δ) =
1
n

∑n
i=1 φσ(Ui − δ), where φσ = σ−1φ(·/σ).
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2.4 Multimodal classifiers

Algorithm 1 MeanShift Algorithm: local modes detection

Input: data {Ui}ni=1, bandwidth σ > 0.

Initialize: t = 0, δ
(1)
0 < . . . < δ

(G)
0 .

Output: the local mode set M(U) = {δ(1)m , . . . , δ
(G)
m }.

while not converge do

1. Compute δ
(l)
t+1 = µ(δ

(l)
t ) for l = 1, . . . , G.

2. Set t := t+ 1.

end while

Hence, the local modes of U satisfy the following equation

df̂U(δ)

dδ
=

1

nσ3

n∑
i=1

φ

(
Ui − δ

σ

)
(δ − Ui) = 0.

It follows that the local mode estimator δm has an equivalent expression,

δm =
n∑

i=1

φ

(
Ui − δm

σ

)
Ui/

n∑
i=1

φ

(
Ui − δm

σ

)
. (2.13)

However, equation (2.13) cannot be solved analytically, so we obtain the solution δm iter-

atively using a MeanShift tool. Set µ(δm) :=
∑n

i=1 φσ

(
Ui − δm

)
Ui/

∑n
i=1 φσ

(
Ui − δm

)
, then

µ(u)−u, the so-called mean shift, takes value zero at mode δm by (2.13). Define δt+1 = µ(δt),

the sequence {δt}t=0,1,2,... is shown to converge to a nearby local mode δm, which is a fixed

point of δt+1 = µ(δt), for a given starting point δ0 (Comaniciu and Meer, 2002). To detect

all local modes for a multimodal distribution, we provide the MeanShift Algorithm 1.

In Algorithm 1, the starting points can be chosen as the G quantiles of {Ui}ni=1, and

the values δ
(l)
m in M(U) are not necessarily distinct. The set M̂(u) is ordered, i.e. δ̂

(1)
m ≤

. . . ≤ δ̂
(G)
m . The choice of the number G of starting points depends on the number of modes

one expects, it can be decided roughly by counting the number of possible peaks of the

KDE of U . However, kernel density estimates may result in different conclusions about

the number of modes via different bandwidth selectors. As a consequence, we advocate
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conducting a mode testing procedure before employing the MeanShift algorithm. The mode

testing procedure is elaborated in Remark 4. To ensure that all the (local) modes of U can

be detected, we suggest using a sufficiently large number of starting points, that is G ≥ g.

The choice of G > g certainly implies that some branches will be found more than once,

however, with an adequately high number of iterations (usually 30 is enough) all estimates

belonging to the same branch are approximately equal.

2. Multimodal classifier. With the above preparation work, we next introduce the

multimodal classifier that allows the number of local modes to vary across the marginal

distributions Frj. Denote by δ
(1)
rj < . . . < δ

(grj)
rj the grj local modes of Frj for r = 1, 2 and

j = 1, . . . , p. Let Ψ
(l)
rj (zj, σrj) = K{(zj − δ

(l)
rj )/σrj} for l = 1, . . . , grj. Define the multimodal

distance between the jth component of z and the modes of Frj by

d(zj,mode(Frj)) := min
1≤l≤grj

{
1− γΨ

(l)
rj (zj, σrj)

}
, r = 1, 2, j = 1, . . . , p,

where σrj is the bandwidth for estimating density frj. Given two data sets X and Y from

populations C1 and C2, and a new observation z, z is assigned to C1, if

λ∗(z,σ) =

p∑
j=1

[
max

1≤l≤g1j

{
Ψ

(l)
1j (zj, σ1j)

}
− max

1≤l≤g2j

{
Ψ

(l)
2j (zj, σ2j)

}]
> 0, (2.14)

otherwise to C2. Given classes C1 and C2 with prior probabilities π1 and π2, the probability

of the correct classification for the multimodal classifier based on the true modes is

Γ(σ) = π1

∫
I{λ∗(z,σ) > 0}dF1(z) + π2

∫
I{λ∗(z,σ) ≤ 0}dF2(z). (2.15)

The observed rate of correct classification is

Γ∗
n =

1

n

[ ∑
i:Ci=1

I{λ∗
n(z, σ̂) > 0}+

∑
i:Ci=2

I{λ∗
n(z, σ̂) ≤ 0}

]
.

Remark 4. (mode testing procedure) It is desirable to identify multimodality when it exists.

As is shown, detecting the number of local maxima of the marginal distributions is consid-

erably important to accurately implement the multimodal classifier. A variety of tests are
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accessible to decide whether a data set is distributed bimodally or in a multimodal fashion,

while different techniques have designed for different goals. Denote by j the true number of

modes of a random variable X, given k ∈ R+, the testing problem is formulated as

H0 : j ≤ k versus H1 : j > k.

Numerous procedures to this problem have been recommended, many of them can be classi-

fied into several collections: tests based on critical smoothing bandwidth (Silverman, 1981;

Hall and York, 2001; Fisher and Marron, 2001); tests based upon the excess mass (Hartigan

and Hartigan, 1985; Müller and Sawitzki, 1991; Cheng and Hall, 1998); tests based on the

combination of smoothing and excess mass (Ameijeiras-Alonso et al., 2019). In addition

to the above-mentioned formal testing procedures, a complementary step to identify the

number of modes in a data distribution is the exploration of a nonparametric kernel density

estimator, as stated in Section 2.4.

2.5 Alternative quantile-mode classifier

A disadvantage of the mode-based classifier is that it is sensitive to bandwidth selectors espe-

cially for the small sample size. This issue makes it accessible and appealing by employing

the quantile-mode classifier, which is also a complement of the quantile-based classifiers

proposed by Hennig and Viroli (2016). The quantile-mode classifier is motivated by the

attractive feature that the mode is the most informative quantile for some distributions, for

instance, asymmetric Laplace distribution (ALD). Specifically, the ALD takes the form as

f(y;µ, τ, α) =
1

α
exp

{
− 1

α
ρτ (y − µ)

}
,

where τ ∈ (0, 1) and α is a scale parameter. By maximizing the likelihood in ALD with

respect to µ, the parameter µ is not only the τ -quantile but the mode of the ALD. Thereby,

the selection of the most likely quantile of a distribution provides a convenient solution to

the search for its mode. Any one of the classifiers decided by (2.11) and (2.14) can be made
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even more powerful and robust by replacing the modes of the summands in the sums with

the respective informative quantiles.

Denote by qU(τ) = F−1
U (τ) the τ -quantile of U , which is the value q that minimizes

E{ρτ (U − q)}. Given τ ∈ (0, 1), define the quantile-mode (qm) distance as

d(zj, qm(Frj)) := 1− γΨrj(zj, τ), r = 1, 2, j = 1, . . . , p,

where Ψrj(zj, τ) = K
(
zj − qrj(τ)

)
and qrj(τ) = F−1

rj (τ) for r = 1, 2 and j = 1, . . . , p. We

assign z to C1 if

λ̃(z, τ) =

p∑
j=1

{Ψ1j(zj, τ)−Ψ2j(zj, τ)} > 0, (2.16)

the empirically optimal quantile-mode classifier is determined by assigning z to C1 if

λ̃n(z, τ̂) =

p∑
j=1

{Ψ1jn(zj, τ̂)−Ψ2jn(zj, τ̂)} > 0,

where τ̂ = argmaxτ∈T̃ Γn(τ), T̃ = [t, 1 − t] for arbitrarily small t > 0 and the empirical

correct classification rate for quantile-mode classifier is

Γn(τ) =
1

n

[ ∑
i:Ci=1

I
{
λ̃n(z, τ) > 0

}
+

∑
i:Ci=2

I
{
λ̃n(z, τ) ≤ 0

}]
.

3. Some Implementation Issues

We discuss in this section some implementation issues on the mode-based classifiers, includ-

ing the unimodal classifiers, the multimodal classifier and the quantile-mode classifier.

1. (Multi-class extension) Distance-based classifiers can readily allow themselves for

R-class (R > 2) extensions. The rule of mode-based classifiers assigns any point z ∈ Rp

to the population that has the largest modal distance. Although the discussion of this

work is primarily restricted to binary classification problems, multi-class extensions are

straightforward. A multi-class real data example is analyzed in Section 6.

2. (Correction of the modal distance) Different distance metrics (losses) result in dif-

ferent classifiers. Mode-based classifiers assign an observation to a class based upon the
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componentwise distance of equal weights. Take the unimodal classifier (2.4) as an illustra-

tion, the two quantities
∑p

j=1Ψ1j(zj, σ1j) and
∑p

j=1 Ψ2j(zj, σ2j) in (2.4) contribute equally

to the classification rule. If the shapes of marginal distributions for two populations are

largely different, say F11 is symmetrically distributed and F21 is highly skewed, the equal

weighting scheme seems to become inappropriate. A better option is to assign some weights

to the distance metrics, i.e.,
∑p

j=1 ωrjΨrj(zj, σrj), where ωrj > 0 is the weight for r = 1, 2.

The mode-based classifiers can be modified by reweighting the compenentwise distance met-

rics, for convenience, we choose ωrj = 1/σrj. Then, an analog of the unimodal classifier is

constructed in a modified modal distance fashion. We classify z to C1 if

p∑
j=1

(
1

σ1j

Ψ1j(zj, σ1j)−
1

σ2j

Ψ2j(zj, σ2j)

)
> 0. (3.1)

Similarly, the optimal unimodal classifier with distance correction is obtained by replac-

ing σ2j with θσ1j in (3.1), the reweighted multimodal classifier is attained by replacing

max1≤l≤grj

{
Ψ

(l)
rj (zj, σrj)

}
with σ−1

rj max1≤l≤grj

{
Ψ

(l)
rj (zj, σrj)

}
for r = 1, 2. These modified

classifiers generally show better performance especially in the analysis of real data that is

more sensitive to outliers and in the settings of different types of distributions for predictors.

Interested readers can try any other weights or even seek to derive the optimal weights.

3. (Data scaling) One problem inherent to distance-based classifiers is that the poor

performance of such classifiers can be caused by the differences in the scales of the pop-

ulations, since scale differences can mask location differences (Chan and Hall, 2009). For

approaches that employ distance measures, data scaling is particularly crucial, it is regarded

as an essential step prior to the implementation of the mode-based classifiers.

4. (Dependence structure of predictors) In practice, finding a classifier with both good

prediction accuracy and low computational complexity is challenging especially confronted

with high-dimensional data. Performance of classifiers depends greatly upon the volume of

the input variables and the dependence structure within the data. The mode-based classifiers

may still work empirically well in some situations with dependence, see simulation example
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1 and its explanations.

5. (Feature selection) Though componentwise distance-based classifiers can adapt well

to high-dimensional data without feature screening steps, feature screening is naturally ap-

pealing to practitioners for classifying high-dimensional data, especially under the scenarios

where the information of classification is poorly characterized in the original predictors. To

identify important predictors in the context of mode, we introduce a novel marginal screen-

ing index based on statistical modes and refer to it as mode-diff (MD) filter. The MD filter

is established based on the main idea of Fan and Lv (2008) who use marginal statistics to

filter out many noise features and keep all important ones. Let X1, . . . , Xp be predictors

that are characterized by R populations C1, . . . , CR. The MD filter ∆k is defined by

∆k = min
1≤i<j≤R

{
|mode(Xk|Ci)−mode(Xk|Cj)|

}
, k = 1, . . . , p.

If R = 2, ∆k is reduced to |mode(Xk|C1)−mode(Xk|C2)|. The above MD filter is established

based on the unimodality assumption. When Xk is multimodal, ∆k can be represented as

∆k = min
1≤i<j≤R

{
|Ω(mi)(Xk|Ci)− Ω(mj)(Xk|Cj)|

}
, k = 1, . . . , p,

where Ω(j)(·) = jthlocal-mode(·). A larger ∆k indicates the more discriminative power of

Xk. We suggest determining the contribution of each predictor by applying the MD filter

to the dataset and filter out many noise predictors. The MD filter is model-free and robust,

it captures nonlinear dependence between Y and Xk. This screening step generally results

in improved classification performance and more efficient computation.

6. (Tuning parameter selection) The empirically optimal unimodal classifier is based

on the bandwidths of the first population σ1 and a θ that is optimal for all predictors. In

general, methods for choosing the empirical bandwidth include cross-validation, plug-in and

the bootstrap methods. This paper explores five different data-driven bandwidth selectors:

the least squares cross validation selector (LSCV,Bowman (1984)); the Sheather-Jones plug-

in selector (PI, Sheather and Jones (1991)); the smoothed cross validation selector (SCV,
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Hall et al. (1992)); the normal scale bandwidth selector (NS, Chacón et al. (2011)), and the

Silverman’s rule of thumb selector (Silverman (1986)) σROT = 1.06min{s, IQR/1.34}n−1/5,

where s is the sample standard deviation and IQR is the corresponding interquartile range.

We advocate approximating the “best” σ11 by comparing these five different bandwidth se-

lectors. We also advocate a smoothed bootstrap estimate of bandwidth σ1. For X1, . . . , Xn

be independent observations from a density f , we first construct an initial estimate of the

density f̂n(x;σ0) = n−1
∑n

i=1 φσ0(x−Xi) and then resample from that. This can be accom-

plished by adding a random amount σ0ϵ to each resampled X∗
j , where ϵ is distributed with

density φ(·). So X∗
j → X∗

j +σ0ϵ. The bootstrap choice of bandwidth σ̂b is obtained by min-

imizing BIMSE(σ, σ0) over σ0, where BIMSE(σ, σ0) = B−1
∑B

j=1

∫
(f ∗

nj(x;σ)− f̂n(x;σ0))
2dx,

and f ∗
nj(x;σ) = n−1

∑n
i=1 φσ(x−X∗

i ) for j = 1, . . . , B, B is the number of bootstrap samples.

Additionally, in our proposed procedure, the best value of θ is determined by the training

error. It is also desirable to choose the best θ using the cross-validation method.

4. Theoretical Properties

4.1 Consistency of the unimodal classifier for fixed p

This section considers theoretical properties of mode-based classifiers. For convenience,

we only provide the theoretical results for unimodal classifiers determined by (2.4) and

(2.11). The proof can be adapted in a similar manner for other modal classifiers. Let θ̃ =

argmaxθ∈T Γ(θ,σ1n) be the optimal θ concerning the true optimal unimodal classifier. We

make the following assumptions to facilitate the technical proofs, while these assumptions

may not be the weakest ones.

(A1) Assume the kernel K(·) is continuous and of bounded variation, that is, there exist

positive constants c0 and c1 such that supu∈R |K(u)| = c0 < ∞ and supu∈R |K ′(u)| = c1 < ∞.

(A2) For r = 1, 2 and j = 1, . . . , p, frj is continuous in the neighborhood of the mode
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δrj, and sup{t:|t−δrj |>sj} frj(t) < frj(δrj), for every sj > 0.

(A3) σrj,n is a fixed sequence of numbers such that σrj,n → 0 and nσrj,n/ log(n) → ∞,

for r = 1, 2 and j = 1, . . . , p.

(A4) For all σrj,n > 0, P
{∑p

j=1[Ψ1j(z, σ1j,n)−Ψ2j(z, σ2j,n)] = 0
}
= 0.

(A4’) For all θ ∈ T and σ1j,n > 0, P
{∑p

j=1[Ψ1j(z, σ1j,n)−Ψ2j(z, θσ1j,n)] = 0
}
= 0.

Assumption (A1) is satisfied by majority of kernels used in practice. Assumption (A2)

guarantees that each predictor has a uniquely defined mode. Assumption (A3) or stronger

ones for bandwidths are conventionally imposed in nonparametric kernel density estimators

to derive consistency. Assumptions (A4) and (A4’) are formulated for the unimodal classifier

and the optimal unimodal classifier, respectively. These assumptions that assume the two

populations are well separated are most advantageous for classification.

Theorem 1. (Consistency of ordinary unimodal classifier when p is fixed) Under assump-

tions (A1)-(A4), for any ϵ > 0,

lim
n→∞

P

{∣∣Γ(σ)− Γn(σ̂n)
∣∣ > ϵ

}
= 0,

where Γ(σ) and Γn(σ̂n) are defined in (2.5) and (2.7), respectively.

Theorem 2. (Consistency of optimal unimodal classifier when p is fixed) Under assumptions

(A1)-(A3) and (A4’), for any ϵ > 0,

lim
n→∞

P

{∣∣Γ(θ̃,σ1n)− Γn(θ̂n, σ̂1n)
∣∣ > ϵ

}
= 0.

Theorem 1 indicates in large samples, the true correct classification probability can

be obtained by using the recommended bandwidth selection procedures, and Theorem 2

further implies by using the empirically optimal θ̂n in unimodal classifiers, the true correct

classification probability is achieved. Both Theorems demand more stringent assumptions

on the kernel functions and bandwidths in comparison to the quantile classifiers, which

reflects the fact that the mode-based classifier is more difficult to handle theoretically than
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the quantile classifier, since determining the mode accurately is inherently challenging. In

addition to the consistency property, we also investigate the rate of convergence of our

unimodal classifiers. Results and proofs are provided in the Supplementary Material.

4.2 A theoretical result for p → ∞

Theorem 2 handles the case of fixed finite p. Below we will present theoretical results

for unimodal classifiers when p approaches to infinity. In contrast to results for mode-

based classifiers, Hall et al. (2009) have proven that the misclassification probability for the

median classifier, under certain conditions, diminishes to zero as n, p → ∞. Hennig and

Viroli (2016) demonstrate that the performance of the quantile classifier is nearly the same

as that of the median classifier regarding p → ∞, under much stronger conditions than those

of Hall et al. (2009), while for finite n, the quantile classifier can be superior to the median

classifier. For our mode-based classifiers, we establish that the misclassification probability

for the unimodal classifiers converges to zero as n, p → ∞. The results require not only

the assumptions of Hall et al. (2009) with some modifications but the restrictions on kernel

functions and bandwidths.

Let T = [t, 1/t] for arbitrarily small 0 < t < 1. Let U = (U1, U2, . . .) denote an infinite

sequence of random variables each with a uniquely defined mode, equal to 0 if necessary after

a shift in location, and the corresponding density functions are fU(u) = (f1(u), f2(u), . . .).

Let (νX1 , νX2 , . . .) and (νY1 , νY2 , . . .) be infinite sequences of constants. Assume that for each

p, the p-vectors X1, . . . , Xm are identically distributed as (νX1+U1, . . . , νXp+Up), Y1, . . . , Yn

are identically distributed as (νY1 + U1, . . . , νYp + Up). Denote by Ψk(Uk, σk) = γK(Uk/σk),

where γ = 1/K(0). Let C be a [1, 2]-valued random variable, and assume Z to be distributed

as X1 if C = 1 and as Y1 if C = 2. Further assume that X1, . . . , Xm, Y1, . . . , Yn and (Z,C)

are totally independent. The following conditions are needed:

(A5) limλ→∞ supk≥1E{|Uk|I(|Uk| > λ)} = 0.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0014



4.2 A theoretical result for p → ∞

(A6) For each c > 0, infk≥1 inf |x|≥c

[
E{Ψk(Uk, σk)} − E{Ψk(Uk + x, σkx)}

]
> 0.

(A6’) For each c > 0, infk≥1 inf |x|≥c infθ∈T
[
E{Ψk(Uk, σk)} − E{Ψk(Uk + x, θσk)}

]
> 0.

(A7) For each ϵ > 0, infk>1{supu:|u|>ϵ fk(0)− fk(u)} > 0.

(A8) With B denoting the class of Borel subsets of the real line,

lim
k→∞

sup
k1,k2:|k1−k2|≥k

sup
B1,B2∈B

|P (Uk1 ∈ B1, Uk2 ∈ B2)− P (Uk1 ∈ B1)P (Uk2 ∈ B2)| = 0.

(A9) |νXk
− νYk

| are uniformly bounded. For sufficiently small ϵ > 0, the proportion of

values k ∈ {1, . . . , p} for which |νXk
− νYk

| > ϵ is bounded away from zero as p diverges.

Assumption (A5) ensures that the first moment of Uk is uniformly bounded, so that

variables like Cauchy variable are not theoretically applicable here; Assumptions (A6), (A6’)

and (A7) are assumed to assure that variables Uk’s have uniquely defined mode, equal to

0, and these assumptions are required to hold uniformly in k; Assumption (A6’) is similar

to (A6), but requires the condition (A6) uniformly holds for θ ∈ T . Specifically, (A6) is

designed for the unimodal classifier, and (A6’) is assumed for the optimal unimodal classifier;

Assumptions (A8) and (A9) are the same as in Hall et al. (2009), but have slightly different

sense. (A8) implies that the approximate independence of variables, and (A9) requires that

the componentwise differences of modes are bounded away from zero, and this proportion

cannot be neglected. For each p ≥ 1, let Z denote a random variable drawn from either the

X or the Y population. Let M(Z) denote the unimodal classifier determined by (2.4), and

Mopt(Z) denote the empirically optimal unimodal classifier determined by (2.11), we have

the following Theorem 3. The proof is built following a strategy similar to that used in Hall

et al. (2009) and Hennig and Viroli (2016), although our premises require more assumptions

on kernel functions and bandwidths. The proof given by them has been adapted to take

into account the additional parameters {δrj, σrj,n : r = 1, 2, j = 1, . . . , p} and the change of

distance metrics from quantile-loss to the unimodal distance.

Theorem 3. Assume that conditions (A1)-(A3) and (A5)-(A9) hold, both m and n diverge

as p → ∞. Then with probability converging to 1 as p increases, the unimodal classifier M1
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makes the correct decision, that is

P{M(Z) = 2|C = 1}+ P{M(Z) = 1|C = 2} = 0.

Assume that conditions (A1)-(A3), (A5), (A6’) and (A7)-(A9) hold, both m and n diverge

as p → ∞. Then with probability converging to 1 as p increases, the optimal unimodal

classifier M2 makes the correct decision, that is

P{Mopt(Z) = 2|C = 1}+ P{Mopt(Z) = 1|C = 2} = 0.

5. Numerical Experiments

This section carries out simulations to evaluate the performance of the proposed mode-based

classifiers. We first consider the case of unimodal populations to investigate the performance

of the three introduced componentwise unimodal classifiers, that is, the optimal unimodal

classifier, the quantile-mode classifier and the naive unimodal classifier. We next design an

example to examine the behavior of mulitmodal classifiers via multimodal populations, and

the third example gives particular attention to the mixture of unimodal and multimodal

populations. The MD filter is demonstrated in the last example on an artificial dataset. We

further include 11 other successful classifiers in the literature for comparison, specifically,

the centroid classifier, the median classifier, the quantile classifier, the ensemble quantile

classifier (EQC), the Fisher’s linear discriminant analysis (LDA), the naive Bayes classifier

(nBayes), the nearest neighbor classifier (1-NN), the support vector machine (SVM), the

adaptive Boosting (AdaBoost), the Gradient Boosted Decision Trees (GBDT), and the

eXtreme Gradient Boosting (XGBoost). In all examples, we simulate two data sets X =

{X1, . . . , Xm} and Y = {Y1, . . . , Yn} of p-variate data coming from two different populations

characterized by FX and FY , where X1 = (X11, . . . , X1p) and Y1 = (Y11, . . . , Y1p). We set

n = 50, 100, 200 and p = 50, 200, 1000 to mimic high-dimensional scenario and consider the

balanced and imbalanced design, respectively. In the case of balanced design, we set m = n
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for each dataset; while for imbalanced setting, we set m = 2n. Within each replication,

each dataset is randomly and equally partitioned into a training set and a testing set,

the training set contains m/2 samples simulated from population FX and n/2 samples

simulated from population FY . The prior probability πr can either be specified by user

or estimated directly from the training data. We estimate π1 and π2 by π̂1 = m
m+n

and

π̂2 =
n

m+n
in our simulation studies. The experiment is replicated 100 times, we report the

mean misclassification error rate and the standard deviation (SD) of the mean as well as

the median of misclassification error rate with its associated robust estimate of standard

deviation (RSD=IQR/1.34) obtained from the classification results for the testing tests. We

also report the mean computational time (in seconds) required by each classifier to perform

100 repeated classifications. The following four examples are considered in this section:

Example 1. (Performance of unimodal classifiers) The two data sets X = {X1, . . . , Xm}

and Y = {Y1, . . . , Yn} of p-variate data are simulated from the following cases.

Case 1: Uj ∼ t2 independently for j = 1, . . . , p; Xj ∼ Uj and Yj ∼ Uj + 0.5;

Case 2: Uj ∼ exp(3) independently for j = 1, . . . , p; Xj ∼ Uj and Yj ∼ Uj + 0.2;

Case 3: Uj ∼ F (a1j, b1j), Vj ∼ F (a2j, b2j), a F -distribution with parameters a1j, a2j, b1j, b2j

randomly sampled in the range from 1 to 10; Xj ∼ Uj and Yj ∼ Vj for j = 1, . . . , p;

Case 4: Uj ∼ N(0, 1) independently for j = 1, . . . , p, and p is splitted into four balanced

blocks to which we apply various transformations: (i) Xj ∼ Uj and Yj ∼ Uj + 0.5; (ii)

Xj ∼ U2
j and Yj ∼ U2

j + 0.5; (iii) Xj ∼ exp(Uj) and Yj ∼ exp(Uj) + 0.5; (iv) Xj ∼ |Uj|0.5

and Yj ∼ |Uj|0.5 + 0.5;

Case 5: the same as Case 4 except that a dependence structure among variables is

considered, that is, (U1, . . . , Up)
T ∼ Np(0,Σp×p) with Σ = (σij)p×p and σij = ρ|i−j|. We

consider ρ = 0.2, 0.5 and 0.8 in this case;

Case 6: Uj ∼ χ2
3 independently for j = 1, . . . , p. We divide p into five balanced blocks

to which we apply equispaced location-shifts: (i) Xj ∼ Uj and Yj ∼ Uj + 0.25; (ii) Xj ∼ Uj
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and Yj ∼ Uj + 0.5; (iii) Xj ∼ Uj and Yj ∼ Uj + 0.75; (iv) Xj ∼ Uj and Yj ∼ Uj + 1.0; (v)

Xj ∼ Uj and Yj ∼ Uj + 1.25;

Case 7: Uj ∼ χ2
3 and Vj ∼ N(3, 1) independently for j = 1, . . . , p. Xj ∼ Uj and Yj ∼ Vj.

Case 1 is designed to investigate the performance of the introduced unimodal classifiers

in two location-shifted populations with symmetric and heavy-tailed distributions. Case 2

devotes more attention to the highly skewed data within two location-shifted populations.

Case 3 examines different distributional shapes and levels of skewness for different popula-

tions; Case 4 deals with different transformations of standard normal distributions across

p variables, and the dependence structure is further taken into account in Case 5; Case

6 addresses the problem of location-shifted populations with distinct location shifts across

p variables. Case 7 finally analyzes two different populations with one of the populations

being symmetric and the other being highly skewed.

The optimal unimodal classifier determined by (2.11) is implemented with R code. In

each setting, we respectively adopt the normal scale bandwidth selector (NS,Chacón et al.

(2011)) and the rule of thumb bandwidth selector (ROT, Silverman (1986)) to determine

the proper σ1jn, we evaluate the unimodal classifiers on a grid of equispaced θ values in

T = [1/3, 3]. The optimal θ is chosen in each training set. For comparison purpose, the

quantile-mode classifier determined by (2.16) and the naive unimodal classifier discussed in

Remark 3 are taken into consideration. Results for misclassification rates of each classifier

are displayed in the panel (b) of Figure 3, for a total of 162 different settings. Detailed

results are provided in the Supplementary Material.

Example 2. (Performance of multimodal classifier) We study the following cases:

Case 1: Uj ∼ Beta(α, β), a beta distribution with parameters α and β, independently

for j = 1, . . . , p. We set α = β = 0.5; Xj ∼ Uj and Yj ∼ Uj + 0.2;

Case 2: Uj ∼ wjN(10, 1) + (1 − wj)N(−10, 1), a mixture normal distribution, inde-

pendently for j = 1, . . . , p, wj is randomly sampled from a uniform distribution on interval
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[0.4, 0.7]; Xj ∼ Uj and Yj ∼ Uj + 1;

Case 3: Uj ∼ 0.3N(10, 1)+0.3N(−10, 1)+0.4t3 independently for j = 1, . . . , p, Xj ∼ Uj

and Yj ∼ Uj + 0.5;

Case 4: Uj ∼
∑3

k=1 0.25N(µk, 1)+0.25t3 independently for j = 1, . . . , p, we set µ1 = 10,

µ2 = −10 and µ3 = −5; Xj ∼ Uj and Yj ∼ Uj + 1;

Case 5: Uj ∼
∑4

k=1 0.2N(µk, 1) + 0.2t3 independently for j = 1, . . . , p, we set µ1 = 10,

µ2 = −10, µ3 = 5, µ4 = −5; Xj ∼ Uj and Yj ∼ Uj + 1;

Case 1 and Case 2 deal with location-shifted populations with bimodal distributions,

while the other cases consider the multimodal distributions with three or more modes of each

marginal distribution. We apply the introduced multimodal classifier in this example by first

determining the local modes using Algorithm 1 and then calculating the misclassification

rate by classification rule (2.14). Hereafter we employ the ROT bandwidth selector to fit a

multimodal classifier, since by panel (b) of Figure 3 classifiers with ROT selectors outperform

those with NS selectors considerably. Results for misclassification rates of each classifier are

displayed in the panel (c) of Figure 3, for a total of 90 different settings. Detailed results

are provided in the Supplementary Material.

Example 3. (Performance of mode-based classifiers) This example examines the perfor-

mance of mode-based classifiers in the mixture of unimodal and multimodal distributions

for two populations. p is divided into five balanced parts to which we apply different trans-

formations of standard normal distribution: (i) Uj ∼ N(0, 1), Xj ∼ Uj and Yj ∼ Uj + 0.5;

(ii) Uj ∼ 0.5N(10, 1) + 0.5t2, Xj ∼ Uj and Yj ∼ Uj + 0.5; (iii) Uj ∼ N(0, 1), Xj ∼ exp(Uj)

and Yj ∼ exp(Uj)+ 0.5; (iv) Uj ∼ 1/3N(10, 1)+1/3N(−10, 1)+ (1/3)t2, and Yj ∼ Uj +0.5;

(v) Uj ∼ N(0, 1), Xj ∼ U2
j and Yj ∼ U2

j + 0.5. The (i), (iii) and (v) blocks consider

unimodal populations, whereas (ii) and (iv) blocks are correspond to bimodal and trimodal

populations, respectively. We employ the multimodal classifier determined by (2.14), results

for misclassification rates of each classifier are displayed in the panel (d) of Figure 3, for a

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0014



total of 18 different settings. Detailed results are provided in the Supplementary Material.

In addition, results for misclassification rates of all the classifiers across the three examples

are summarized in panel (a) of Figure 3, for a total of 270 different settings.
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Figure 3: Performance of the classifiers for Examples 1-3. The labels denote the different classifiers,

Mode1 is simplified for unimodal classifier with ROT bandwidth selector, Mode2 for unimodal classifier

with NS selector, qMode for quantile-mode classifier, nMode for naive unimodal classifier, MMode for

multimodal classifier, Centr for Centroid classifier, Med for Median classifier, ADAB for AdaBoost and

XGB for XGBoost. Each panel shows the distribution of the misclassification rates for (a) all settings across

three examples; (b) all settings of Example 1; (c) all settings of Example 2; (d) all settings of Example 3,

with the cross indicating the mean.

It can be concluded from Figure 3 and the tables from Supplementary Material that

mode-based classifiers on the whole perform the best among all the classifiers, with lower

misclassification rates and smaller standard errors, especially for the simulated heavy-tailed

data. Specifically, we have the following observations. First, for all the classifiers, the mis-
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classification rates decrease with the increase of sample size, while for fixed sample size,

these methods seem to work better as the dimensionality increases in almost all settings.

Second, for unimodal populations with symmetric and identical distributional shapes vari-

ables, the median and quantile classifiers show comparable performance to the unimodal

classifiers and the naive unimodal classifiers. The chosen optimal values of θ for optimal

unimodal classifiers are on average close to 1. However, the centroid, 1-NN, and XG-

Boost classifiers perform relatively worse at the presence of heavy-tailed features, such as t2

location-shifted populations, by contrast, the unimodal classifiers work reasonably well and

the quantile-mode classifiers are always slightly better in such scenarios. Third, in the cases

of unimodal populations with asymmetric and identical distributional shapes variables, the

unimodal classifiers and the quantile classifier have similar behaviors and outperform all the

other competitors by large margin. As expected, the naive unimodal classifier established

based on the relation between mean, median and mode in these cases are as bad as random

guesses. Note that for case 3 of example 1, since the parameters arj and brj for r = 1, 2 are

randomly sampled, it is possible that Uj has the identical distribution with Vj for some j,

indicating that some predictors may lack discriminating power and do not contribute to the

classification task. While, in such scenarios, the ensemble learning methods, such as GBDT

and Adaboost, are capable of automatically selecting relevant variables during the fitting

process, outperforming individual classifiers like the unimodal classifier. In sum, in terms

of Example 1, unimodal classifiers with ROT bandwidth outperform those with NS band-

widths, the overall results of the AdaBoost and GBDT are comparative to those of unimodal

classifiers, but they are rarely significantly better. Fourth, for multimodal populations, the

multimodal classifier significantly outperforms the other competitors in all scenarios, con-

versely, the centroid, median, LDA, 1-NN and XGBoost behave relatively worse. Fifth, in

the case of mixture of unimodal and multimodal distributions, the mode-based classifier

again has a superior performance, with only the AdaBoost and GBDT achieving better
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results sometimes. Not unexpectedly, the centroid and the median classifiers have unsatis-

factory performance in this setting, and the 1-NN almost fails since it greatly depends on the

similarity of features. Generally speaking, classifiers that compete well with the mode-based

classifiers in one or two cases obviously drop behind in some others. Performances of the

distance-based classifiers do not change much in the balanced and imbalanced design, and

they are relatively insensible of the strength of dependence among components, since the

information that differentiates each category could be collected from the original variables.

As suggested by one referee, we have also compared the computing time of our pro-

posed classifiers with other competitors. As expected, the naive unimodal classifier requires

the least amount of computing time, while the computational costs for both the optimal

unimodal classifier and the multimodal classifier are comparable to that of the quantile clas-

sifier. The ensemble methods, such as GBDT and Adaboost, are relatively time-consuming.

Due to limited space, we include the computational time comparison in Figure S2 and Tables

S1-S24 in the Supplementary Material.

Example 4. (Feature screening) Consider the following two scenarios: (i)Xj ∼ N(3, 1), Yj ∼

χ2
3; (ii) Uj ∼ 0.4N(0, 1)+0.6N(3, 0.25), Xj ∼ Uj and Yj ∼ Uj+0.5, for j = 1, . . . , 100. Apart

from the 100 predictors in the original dataset, 4900 independent noise variables following

standard normal distribution and exponential distribution exp(1)−1 are added respectively.

We include the mode-diff filter (MDF), two-sample t-tests (TT), Kolmogorov filter (KF,

Mai and Zou (2013)), information gain based sure independence screening (IGS, Ni and

Fang (2016)) and Pearson chi-square based sure independence screening (PCS, Huang et al.

(2014)) for comparison. We first investigate whether the screening approaches can separate

the important variables from the noise. For each screening approach, the top 100 predictors

are kept, and in the two-sample t-tests, the 100 most important predictors are preserved in

the sense of highest significance of two-sample t-tests. The proportion of the original 100

predictors captured by various screening methods are reported in Table 2. It is observed that
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Table 2: Comparison of screening methods on the artificial dataset. The numbers (%) are averaged

within 100 replications. Standard errors are in parentheses.
Case (i) Case (ii)

noise MDF TT KF IGS PCS MDF TT KF IGS PCS

Screening performance

N(0, 1) 97.0(0.2) 1.3(0.1) 99.0(0.1) 65.1(0.4) 67.9(0.3) 100(0) 0(0) 93.5(0.2) 83.7(0.3) 83.2(0.3)

exp(1)− 1 99.9(0.0) 1.4(0.1) 98.9(0.1) 66.2(0.4) 67.1(0.4) 100(0) 0(0) 94.2(0.2) 84.7(0.3) 84.2(0.3)

Misclassification rate

N(0, 1) 0.1(0.1) 36.1(0.5) 0(0) 2.0(0.2) 2.0(0.2) 0.2(0.0) 59.2(0.2) 0.3(0.0) 1.8(0.0) 2.0(0)

exp(1)− 1 0(0) 38.0(0.4) 0(0) 0.1(0) 0(0) 0.2(0.0) 49.8(0) 0.3(0.1) 7.3(0.1) 12.5(0.1)

the mode-diff filter and the Kolmogorov filter have clearly better performance in keeping

the true predictors. In particular, the mode-diff filter has a nearly perfect screening result

especially for multimodal distributions. We further evaluate how variable screening can

improve the classification accuracy. Again, we begin with the expanded dataset with the

additional 4900 pure noise variables. The prediction is made by performing a mode-based

classifier after screening. The misclassification rates over 100 replications are listed in Table

2. The mode-based method is observed to outperform all the other methods.

6. Real Data Examples

In this section, we demonstrate the mode-based classifiers on three real datasets, the prostate

cancer dataset (Singh et al., 2002), the multiple myeloma dataset (Tian et al., 2003) and

the DNA methylation dataset (Christensen et al., 2009). The Prostate Cancer dataset

is collected and analyzed by a team of 15 scientists from a dozen institutions and is fur-

ther researched by Efron (2008, 2010); Hall et al. (2009). It comprises p = 6, 033 genes

for m = 50 healthy males and n = 52 prostate cancer patients. This dataset is avail-

able in the R package “sda”. The Multiple myeloma dataset comprises p = 122, 625 genes

for m = 36 patients with multiple myeloma in whom focal lesions of bone could not be

detected and n = 137 patients in whom such lesions are detected. This dataset is avail-

able at https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS531. The DNA methy-
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lation dataset contains 217 human tissues, with n1 = 19 from placenta, n2 = 85 from

blood and n3 = 113 from other solid tissue. Each tissue measures the expression values

of p = 1, 413 autosomal CpG loci associated with 773 genes. This dataset is available at

https://github.com/ramhiser/datamicroarray. Obviously, all the three datasets are “small

n, large p”. The first two datasets are applied to fit binary classification models, while the

third is used for assessing the performance of classifiers in multi-class instances.

To apply mode-based classifiers to these datasets and compare with other competitors,

we first preprocess the data in the following steps: We remove the features that are least

correlated with the target classification problem and then standardize each predictor to have

zero mean and unit variance. For the first two datasets, we apply the proposed MD filter to

the training set to select p = 50, 200, 500, and 1000 predictors by ranking MD values. For

the third dataset, we keep p = 20, 21, . . . , 60 to have a thorough understanding of the effects

of dimensionality on each classifier’s performance with limited sample size. We also include

the centroid, the median, the quantile, EQC, nBayes, LDA, 1-NN, SVM, AdaBoost, GBDT

and XGBoost for contrast analysis. We take πr = 1/R for r = 1, . . . , R for simplicity.

In the prostate cancer data, by a detailed exploration, most of the identified features

are observed to have unimodal distributions and be positively skewed distributed. To get

insight into the data and make sure of the number of modal groups for each predictor, we

conduct mode testing for p = 6, 033 genes via three above-mentioned testing procedures:

SI (Silverman, 1981), FM (Fisher and Marron, 2001) and ACR (Ameijeiras-Alonso et al.,

2019). We first test the null hypothesis of single mode versus the alternative of two or

more modes, and then test the bimodality against more than two modes. The tests are

performed at the nominal level of 0.05. If the null hypothesis is rejected, we continue the

testing process, and test the null hypothesis of j modes versus the alternative of j + 1 or

more modes. Results for testing for multimodality of each group are summarized in Figure

S2 and Table S25 of the Supplementary Material, respectively. Figure S2 displays box plots
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of the number of modes of each predictor for two groups determined by three tests, while the

corresponding descriptive statistics are provided in Table S25. It can be seen that results

of the SI test and ACR test are similar, but largely different from that of FM test. Among

these three tests, SI test is relatively conservative, almost all the predictors are confirmed

to be unimodally distributed by SI test. The median and mean of the number of modes for

each predictor by ACR test is 1.0 and 1.5, respectively, indicating that most of the predictors

are unimodally distributed, while a few predictors have more than two modes. In contrast

to ACR and SI tests, FM test tends to discover larger number of modes, of which spurious

modes caused by outlying data clusters might be also detected. About 27% of the predictors

are tested to be unimodal, and the number of modes on average is around 18 by FM test.

After implementing these testing tools, we apply unimodal classifiers based on the testing

results of SI test and multimodal classifiers based on the results of FM and ACR tests to the

preprocessed dataset. For unimodal classifiers, the optimal unimodal classifier with ROT

bandwidth is implemented. The quantile-mode classifier and the naive unimodal classifier

are also included. We use 10-fold cross-validation to assess the performance of all of the

classifiers. Within each fold, the optimal θ of the optimal unimodal classifier is selected in

the training set. Misclassification error rates for the first dataset are listed in Table 3, from

which we can observe that the mode-based classifiers perform better than or comparably

to the other 11 classifiers especially for larger dimensions, while the multimodal classifier

based on FM test leads to poor results as compared to that based on SI and ACR test.

For the multiple myeloma dataset, a glance at the KDE plots of each identified predictor

reveals that most of the predictors are unimodally or bimodally distributed, as shown in

Figure S1 of the Supplementary Material, in which we provide the density plots for four

randomly selected genes from each group. Thereby, we first naively assume that all the

predictors have unimodal or bimodal distributions, and directly utilize the unimodal and

bimodal classifiers without statistical tests. Next, to accurately decide on the number of
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Table 3: Mean misclassification error rates (%) for the prostate cancer dataset, with standard

errors (%) in parenthese
Classifiers p = 50 p = 200 p = 500 p = 1000

Unimodal classifier (SI test) 14.91 (8.56) 1.00 (3.16) 0.00 (0.00) 0.00 (0.00)

Quantile-Mode classifier (SI test) 17.55 (10.68) 2.91 (4.69) 0.00 (0.00) 0.00 (0.00)

Naive unimodal classifier (SI test) 15.73 (10.75) 3.91 (5.05) 3.00 (6.75) 1.00 (3.16)

Multimodal classifier (FM test) 49.00 (19.24) 48.91 (20.25) 11.64 (5.84) 20.64 (7.21)

Multimodal classifier (ACR test) 10.91 (12.88) 4.00 (6.99) 0.00 (0.00) 0.00 (0.00)

Centroid classifier 7.00 (8.23) 3.91 (5.05) 2.91 (6.65) 2.00 (6.32)

Median classifier 11.82 (9.03) 3.82 (6.54) 1.91 (4.03) 1.00 (3.16)

Quantile classifier 12.55 (12.91) 9.91 (9.43) 15.73 (8.43) 14.73 (7.03)

Ensemble quantile classifier 3.00 (4.80) 2.82 (4.54) 0.00 (0.00) 0.91 (2.87)

Naive Bayes classifier 7.91 (7.87) 3.91 (5.05) 4.00 (5.16) 2.91 (4.69)

LDA 17.82 (9.16) 14.82 (15.04) 20.64 (11.87) 30.36 (18.40)

1-NN 19.45 (8.84) 28.27 (13.95) 48.91 (16.43) 46.73 (16.08)

SVM 47.18 (21.49) 4.00 (6.99) 0.91 (2.87) 2.00 (4.22)

AdaBoost 4.91 (5.18) 4.00 (6.99) 5.91 (5.09) 4.91 (7.01)

GBDT 4.00 (5.16) 1.00 (3.16) 3.82 (8.06) 2.00 (4.22)

XGBoost 14.64 (10.64) 24.45 (13.22) 20.73 (7.58) 24.27 (14.21)

modes of each predictor, we follow the same analysis path as in the first dataset and employ

three mode testing procedures. Testing results are summarized in Table S26 of the Sup-

plementary Material, from which the evidence of j = 1 mode for most of the predictors is

strongly suggested. We subsequently apply our mode-based classifiers to the case where the

number of modes is ascertained by each testing tool. 10-fold cross-validation is still used to

evaluate the performance of the classifiers. Table S27 reports misclassification rates of all

the classifiers. We find the unimodal classifiers are substantially better than other methods,

and a significant performance improvement over bimodal classifiers can be made by using

testing procedures, especially when the number of predictors is large. This suggests that

the unimodal classifier is more applicable.

For the DNA methylation dataset, all the predictors are tested to be unimodal. In Figure

4, we show the performance of the unimodal classifier, where p = [20, 21, . . . , 60] is consid-

ered. For each p, the misclassification rate is obtained by using 10-fold cross-validation. For

comparison purpose, we also include the results of naive unimodal classifier and other 11

competitors. The results show that all the classifiers perform similarly well in this dataset,
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yielding comparable error rates. Performance of nMode, EQC and nBayes are almost identi-

cal, but somewhat worse than the other classifiers, while the unimodal classifier and GBDT

slightly outperform all the others. Notably, the naive unimodal classifier (nMode) shows

inferior performance compared to the centroid classifier as expected, as nMode calculates

the mode using the relationship between the average and the median. By contrast, the uni-

modal classifier (Mode) generally outperforms the centroid classifier, though it can exhibit

greater variability in misclassification rates across dimensionality p. As the dimension gets

larger, more outliers are likely to appear, and the heavy-tailed issue may further be ampli-

fied, this may lead to the significant increase of misclassification error of centroid classifier.

In summary, the proposed mode-based classifiers achieve high degree of robustness against

heavy-tailed predictors, while losing little or no efficiency under normality.
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Figure 4: Box plots of misclassification error rates for DNA methylation dataset.
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7. Concluding Remarks and Discussion

1. In this paper we have studied the componentwise mode-based classifiers for high-

dimensional heterogeneous data. An algorithm that provide a means of detecting all the

local modes of a distribution is also presented. The introduced mode-based classifiers have

many distinctive features: (i) they are robust and can handle a wider range of data dis-

tributions; (ii) they readily allow themselves to multi-class extensions; (iii) they perform

remarkably well when multimodality exists; (iv) they are easy to implement and serve as

complementary tools to the existing componentwise distance-based classifiers. The draw-

back of them, however, is that the computation is alway expensive, since in principle all

pairwise distances between training instances and observations of each dimension are re-

quired to be computed and several smoothing parameters are needed to be tuned. To speed

up classification, dimension reduction techniques can be used, and we introduce a mode-diff

filter to effectively screen out inactive features for the target classification problem.

2. Theoretically, we only investigate the consistency of the proposed classifiers and

establish the rate of convergence for unimodal classifiers when p is fixed. Another question

is about the convergence rate and theoretical probability of misclassification for mode-based

classifiers as both n and p go to infinity. Can the mode-based classifiers attain the optimal

rate of convergence in high-dimensional scenario? What is the behavior of the theoretical

misclassification error for different regimes of prior probabilities πr and distributions of the

predictors Fr? These deserve some further studies.

3. The performance of the optimal unimodal classifier relies heavily on the choice of

θ, which is required to be located in a closed interval mainly for mathematical derivation.

To accurately identify the optimal θ, one could search in a wider range but at the cost of

more computational complexity. In fact, determining the possible range of θ for real data is

pretty hard due to the lack of prior information, thus how to select an appropriate θ with

little computational cost needs further investigating.
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4. To better implement mode-based classifiers, we should have a thorough understand-

ing of the datasets as well as the number of modes of the marginal distributions for each

predictor. Although a number of statistical tests are available to help to decide the number

of modes, the techniques employed in the field of multimodality testing have designed for

different goals and they all shown their own defects. For example, the SI test is confirmed to

be conservative, and the FM test tends to discover larger number of modes. So one may try

other mode-testing procedures to alleviate this problem, but some new testing procedures

that are suitable for the implementation of mode-based classifiers are highly demanded.

5. All results in this paper are based on misclassification probability with symmetric

loss, an improvement over them might be produced by exploiting an asymmetric loss, for

instance, choosing the decision boundary bounded away from zero, i.e., λn(z, θ̂, σ̂1n) > c

instead of λn(z, θ̂, σ̂1n) > 0.

6. Distance-based classifiers are typically powerful in distinguishing between populations

that differ in location. However, scale differences can mask location differences, leading to

the poor performance of classifiers. In consequence, the problem of making scale corrections

for componentwise mode-based classifiers needs more discussion.

7. Results of three real datasets imply that the unimodal classifiers without statistical

tests constantly perform on par with those using statistical tests, and show competitive

performance even if the multimodality exists. For the sake of implementation, the more

brief and feasible strategy in practice is to employ the optimal unimodal classifier directly.

Supplementary Material

In the Supplementary Material, we present additional results for simulation examples and

real data analysis, and provide the technical results of Theorems 1-3.
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Birgé, L. (1997). Estimation of unimodal densities without smoothness assumptions. The

Annals of Statistics 25 (3), 970–981.

Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing of

density estimates. Biometrika 71 (2), 353–360.

Chacón, J., T. Duong, and M. Wand (2011). Asymptotics for general multivariate kernel

density derivative estimators. Statistica Sinica 21 (2), 807–840.

Chan, Y. and P. Hall (2009). Scale adjustments for classifiers in high-dimensional, low

sample size settings. Biometrika 96 (2), 469–478.

Cheng, M. Y. and P. Hall (1998). Calibrating the excess mass and dip tests of modality.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60 (3), 579–

589.

Christensen, B. C., E. A. Houseman, C. J. Marsit, S. Zheng, M. R. Wrensch, and W. et al.

(2009). Aging and environmental exposures alter tissue-specific dna methylation depen-

dent upon cpg island context. PLoS genetics 5 (8), e10006024.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0014



REFERENCES

Comaniciu, D. and P. Meer (2002). Mean shift: A robust approach toward feature space

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (5), 603–

619.

Cortes, C. and V. Vapnik (1995). Support-vector networks. Machine Learning 20 (3), 273–

297.

Cover, T. and P. Hart (1967). Nearest neighbor pattern classification. IEEE Transactions

on Information Theory 13 (1), 21–27.

Eddy, W. F. (1980). Optimum kernel estimators of the mode. The Annals of Statistics 8 (4),

870–882.

Efron, B. (2008). Microarrays, empirical bayes and the two-groups model. Statistical Sci-

ence 23, 1–22.

Efron, B. (2010). The future of indirect evidence. Statistical Science 25, 145–157.

Fan, J. and J. Lv (2008). Sure independence screening for ultrahigh dimensional feature

space (with discussion). Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 70 (5), 849–911.

Farcomeni, A., M. Geraci, and C. Viroli (2022). Directional quantile classifiers. Journal of

Computational and Graphical Statistics 31 (3), 90–916.

Fisher, N. I. and J. S. Marron (2001). Mode testing via the excess mass estimate.

Biometrika 88, 419–517.

Hall, P., J. Marron, and B. U. Park (1992). Smoothed cross-validation. Probability Theory

and Related Fields 92 (1), 1–20.

Hall, P., D. Titterington, and J. Xue (2009). Median-based classifiers for high-dimensional

data. Journal of the American Statistical Association 104 (488), 1597–1608.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0014



REFERENCES

Hall, P. and M. York (2001). On the calibration of silverman’s test for multimodality.

Statistica Sinica 11, 525–536.

Hartigan, J. A. and P. M. Hartigan (1985). The dip test of unimodality. The Annals of

Statistics 13, 70–84.

Hennig, C. and C. Viroli (2016). Quantile-based classifiers. Biometrika 103 (2), 435–446.

Huang, D., R. Li, and H. Wang (2014). Feature screening for ultrahigh dimensional categor-

ical data with applications. Journal of Business and Economics Statistics 32, 237–244.

Jörnsten, R. (2004). Clustering and classification based on the l1 data depth. Journal of

Multivariate Analysis 90 (1), 67–89.

Kemp, G. C. and J. S. Silva (2012). Regression towards the mode. Journal of Economet-

rics 170 (1), 92–101.

Lai, Y. and I. McLeod (2020). Ensemble quantile classifier. Computational Statistics &

Data Analysis 144, 106849.

Mai, Q. and H. Zou (2013). The kolmogorov filter for variable screening in high-dimensional

binary classification. Biometrika 100, 229–234.

Manski, C. F. (1991). Regression. Journal of Economic Literature 29 (1), 34–50.

Mensink, T., J. Verbeek, F. Perronnin, and G. Csurka (2013). Distance-based image clas-

sification: Generalizing to new classes at near-zero cost. IEEE Transactions on Pattern

Analysis and Machine Intelligence 35 (11), 2624–2637.

Meyer, M. C. (2001). An alternative unimodal density estimator with a consistent estimate

of the mode. Statistica Sinica 11, 1159–1174.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0014



REFERENCES

Minnotte, M. C. (1997). Nonparametric testing of the extence of modes. The Annals of

Statistics 25 (4), 1646–1660.

Müller, D. W. and G. Sawitzki (1991). Excess mass estimates and tests for multimodality.

Journal of the American Statistical Association 86 (415), 738–746.

Ni, L. and F. Fang (2016). Entropy-based model-free feature screening for ultrahigh-

dimensional multiclass classification. Journal of Nonparametric Statistics 28 (3), 515–530.

Parzen, E. (1962). On estimation of a probability density function and mode. The annals

of mathematical statistics 33 (3), 1065–1076.

Sheather, S. J. and M. C. Jones (1991). A reliable data-based bandwidth selection method

for kernel density estimation. Journal of the Royal Statistical Society: Series B (Method-

ological) 53 (3), 683–690.

Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. Jour-

nal of the Royal Statistical Society: Series B (Methodological) 43 (1), 97–99.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman &

Hall, London.

Singh, D., P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, and L. et al. (2002). Gene

expression correlates of clinical prostate cancer behavior. Cancer Cell 1 (2), 203–209.

Stuart, A. (1994). Kendall’s advanced theory of statistics. Distribution theory 1.

Tian, E., F. Zhan, R. Walker, E. Rasmussen, Y. Ma, and B. e. a. Barlogie (2003). The role

of the wnt-signaling antagonist dkk1 in the development of osteolytic lesions in multiple

myeloma. New England Journal of Medicine 349 (26), 2483–2494.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0014



REFERENCES

Tibshirani, R., T. Hastie, B. Narasimhan, and G. Chu (2003). Class prediction by nearest

shrunken centroids, with applications to dna microarrays. Statistical Science 18 (1), 104–

117.

Webb, A. R. (2002). Statistical pattern recognition. John Wiley & Sons.

Wei Xiong, School of Statistics, University of International Business and Economics, Beijing,

China

E-mail: xiongwei@uibe.edu.cn
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