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Abstract: To identify funds skilled in both stock picking and market timing, we develop a

test for the zero product of these two skills to first single out funds with at least one zero

skill. Our simulations confirm the test’s accurate size and good power. We apply our test to

active U.S. equity mutual funds to exclude zero-skill funds, and classify the remaining funds

based on stock picking and market timing. We find that the 1% of funds with both skills are

the only group with significant risk-adjusted performance. We also provide evidence for stock

picking and market timing trade-offs along multiple dimensions.
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1. Introduction

Following the seminal works of Jensen (1968), Treynor and Mazuy (1966), and Hen-

riksson and Merton (1981), numerous studies evaluate mutual fund performance us-

ing measures of stock picking and market timing skills inferred from fund returns

and common risk factors. On the one hand, if such measures are rooted in funds’

superior human capital, then top funds should exhibit skills in both stock picking

and market timing. Back et al. (2018) also focus on the trade-offs faced by mutual

funds. On the other hand, top funds may face trade-offs when applying the two

types of skills. For example, Kon (1983), Henriksson (1984), Jagannathan and Ko-

rajczyk (1986), and Goetzmann et al. (2000) empirically find a negative association

between market-timing and stock-picking skills. One economic explanation for this

negative association is proposed by Kacperczyk et al. (2014, 2016), who argue that

stock picking and market timing are not talents, but tasks that trade off each other.

They present evidence consistent with mutual fund managers allocating their time to

focusing on either stock picking or market timing, depending on economic conditions.

This negative association implies we need to identify mutual funds with both skills,

if such funds exist.

Our approach is motivated by the well-known underperformance of the majority

of the active management industry relative to passive index benchmarks. Thus, most

mutual funds have zero skill in either stock picking or market timing, and the results

of studies of average investment performance can be misleading when including such

funds. To address this issue, we propose a new approach that tests whether a fund

has zero skill in either stock picking or market timing.
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This hypothesis test is equivalent to a composite test for a zero product between

the two skill parameters. We show that such a test is nontrivial to implement, because

a naive test that independently estimates either skill may theoretically fail. Instead,

our proposed direct inference for the product of these two skills leads to a unified test,

regardless of whether both skills are zero or only one skill is zero. Our framework

starts with a general factor model for both skills, based on observed fund returns.

To incorporate the econometric features of daily data, we model errors by using a

GARCH sequence to account for heteroscedasticity and an ARMA-GARCH sequence

for serial correlation and heteroscedasticity. ARMA-GARCH models have become

standard in modeling heteroscedasticity since the works of Engle (1982) and Bollerslev

(1986). We further develop a weighted inference to reduce the heavy-tail effect of

daily returns. Because the proposed inference avoids estimating a GARCH model, it

is robust against heteroscedasticity, and is applicable to monthly returns. We quantify

the inference uncertainty using a random weighted bootstrap method. Our simulation

studies confirm our test’s accurate size and good power across various settings.

Empirically, using our test, we quantify the prevalence of stock-picking and

market-timing skills among all actively managed mutual funds in the United States

in a formal econometric way. Although Kacperczyk et al. (2014) find that the top

25% of managers exhibit stock-picking and market-timing skills at different times,

our novel statistical test finds that the co-existence of both skills is far less prevalent,

at about 1%. Overall, our proposed test and findings may prove to be a valuable aid

for mutual fund investment allocation decisions.

The rest of the paper is organized as follows. Section 2 introduces the proposed
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methodologies. Section 3 reports on the simulation study results. Section 4 describes

our data analysis and main findings. Other supporting results and an extension

to correlated and heteroscedastic errors are provided in the online Supplementary

Material. Section 5 concludes the paper. All theoretical proofs are available the

appendix.

2. Models, Tests, and Theoretical Results

Suppose Yt is a fund’s excess return (i.e., net returns minus the risk-free rate) at

time t, X t = (Xt,1, · · · , Xt,d)
τ represents common factors, with Xt,1 being the market

excess return, and Aτ denotes the transpose of the matrix or vector A. To evaluate

fund performance, the literature employs the following model:

Yt = α + βτX t + γH(Xt,1) + εt, t = 1, · · · , n, (2.1)

where α and γ measure a fund’s stock-picking and market-timing skills, respectively,

and H is a known function related to the market volatility. For example, Treynor

and Mazuy (1966) use H(Xt,1) = X2
t,1, Henriksson and Merton (1981) use H(Xt,1) =

max(0, Xt,1), Busse (1999) uses the conditional standard deviation of Xt,1 as H(Xt,1),

and Goetzmann et al. (2000) use H(Xt,1) as a monthly quantity computed from daily

returns when the above model is applied to monthly data. We refer readers to Bollen

and Busse (2001) for a comparison of these measures.

Previous studies, such as Carhart (1997), report that most funds have zero skill

in either stock picking or market timing. Thus, including zero-skill funds in a study

introduces noise or even bias into the process of identifying funds using stock-picking

and market-timing skills and any analysis of fund skill trade-offs. The effects of

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0416



EVALUATING STOCK PICKING & MARKET TIMING SKILLS

estimation uncertainty suggest that excluding funds with at least one zero skill is

important to more meaningfully evaluate mutual fund performance. To do so, we

note that identifying and then excluding funds with at least one zero skill is equivalent

to testing the composite null hypothesis,

H0 : α = 0 or γ = 0. (2.2)

Put θ = αγ. Then, H0 is equivalent to H0 : θ = 0. Therefore, one may use

the naive estimator θ̂LSE = α̂LSE γ̂LSE, where α̂LSE and γ̂LSE are the least squares

estimators for model (2.1), that is,

(α̂LSE, β̂
τ

LSE, γ̂LSE)τ = arg min
α,β,γ

n∑
t=1

{Yt − α− βτX t − γH(Xt,1)}2.

However, this estimator’s asymptotic limit depends on whether one skill or both are

zero. When α = 0 and γ = 0, θ̂LSE not only has a convergence rate of n−1, rather

than the standard n−1/2 rate, but also has a limiting distribution that is nonnormal.

Conversely, when only one of α or γ is zero, θ̂LSE has the standard convergence

rate with a normal limit. Thus, it is challenging to test H0 based on θ̂LSE without

distinguishing between these two cases. This difficulty is noted by Nguyen and Jiang

(2020) in a different context. To develop a test for H0 with the asymptotically correct

size, we propose estimating θ directly by constructing a model with the parameter θ.

Put Zt = Yt − βτX t, for t = 1, · · · , n. Then, model (2.1) implies that

Z2
t = α2 + E(ε2t ) + 2αγH(Xt,1) + γ2H2(Xt,1) + 2εt{α + γH(Xt,1)}+ {ε2t − E(ε2t )},

which motivates directly estimating θ = αγ by minimizing

n∑
t=1

{Ẑ2
t,LSE − α∗ − θ2H(Xt,1)− γ∗H2(Xt,1)}2, (2.3)
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where α∗ = α2 + E(ε2t ), γ
∗ = γ2, and

Ẑt,LSE = Yt − β̂
τ

LSEX t for t = 1, · · · , n.

Note that ε2t −E(ε2t ) = σ2
t (η

2
t − 1) + σ2

t −E(σ2
t ), which means that minimizing (2.3)

can lead to an inconsistent inference if 1√
n

∑n
t=1{σ2

t − E(σ2
t )} does not converge in

distribution because of a lack of finite moments.

To avoid the higher moments of Z2
t , we propose splitting the data into two parts,

and using a product to directly estimate θ by noting that

εtεt+m = {Zt − α− γH(Xt,1)}{Zt+m − α− γH(Xt+m,1)}

= ZtZt+m − {α + γH(Xt,1)}Zt+m − {α + γH(Xt+m,1)}Zt

+α1 + θ{H(Xt,1) +H(Xt+m,1)}+ γ1H(Xt,1)H(Xt+m,1),

for t = 1, · · · ,m, where m = [n/2], α1 = α2, and γ1 = γ2. Unfortunately, when

heteroscedasticity exists, the asymptotic normality of the above inference requires

E(σ4
t σ̄

4
t,1) <∞, which may need E(ε8t ) <∞ and E(X8

t,1) <∞. To avoid these higher

finite moment requirements caused by heteroscedasticity, we propose employing the

following weighted inference that models the risk factors using the ARMA-GARCH

models
Xt,l = µl +

∑sl
i=1 φi,lXt−i,l +

∑rl
j=1 ψj,lε̄t−j,l + ε̄t,l, ε̄t,l = η̄t,lσ̄t,l,

σ̄2
t,l = wl +

∑pl
i=1 ai,lε̄

2
t−i,l +

∑ql
j=1 bj,lσ̄

2
t−j,l, l = 1, · · · , d,

(2.4)

and assumes that the regression errors follow the GARCH model

εt = ηtσt, σ
2
t = w +

p∑
i=1

aiε
2
t−i +

q∑
j=1

bjσ
2
t−j, (2.5)

where {(ηt, η̄t,1, · · · , η̄t,d)>}nt=1 is a sequence of independent and identically distributed(i.i.d.)

random vectors with means zero and variances one.
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First, we estimate α,β, and γ using the weighted least squares:

(α̂WLSE, β̂WLSE, γ̂WLSE)τ = arg min
α,β,γ

n∑
t=1

{Yt − α− βτX t − γH(Xt,1)}2wt,1,

where

w−1t,1 = 1 + max{||X t||, H(Xt,1)} with ||X t|| = max
1≤i≤d

|Xt,i|. (2.6)

Next, we define Ẑt,WLSE = Yt − β̂
τ

WLSEX t, for t = 1, · · · , n, and estimate θ by

(α̂1,w, θ̂w, γ̂1,w)τ

= arg minα1,θ,γ1

∑m
t=1[Ẑt,WLSEẐt+m,WLSE − {α̂WLSE + γ̂WLSEH(Xt,1)}Ẑt+m,WLSE

−{α̂WLSE + γ̂WLSEH(Xt+m,1)}Ẑt,WLSE + α1 + θ{H(Xt,1) +H(Xt+m,1)}

+γ1H(Xt,1)H(Xt+m,1)]
2wt,2,

where

w−1t,2 = 1 + max{|Yt|, ||X t||, ||X t+m||, H(Xt,1), H(Xt+m,1), H(Xt,1)H(Xt+m,1)}. (2.7)

Following Ling (2007), we use the weight functions of (2.6) and (2.7) to reduce the

heavy-tail effect due to heteroscedasticity and bound the factors in the score equations

to ensure a normal limit when E(η2t ) <∞. There are many different choices of weight

functions, but our simulation study confirms the good finite-sample performance of

using (2.6) and (2.7).

To establish the asymptotic behavior of the estimator, we employ the following

regularity conditions:

• C1) {εt} and {X t} are strictly stationary and ergodic with finite variance; see

the conditions in Theorem 3.1 of Basrak et al. (2002).

• C2) {(ηt, η̄t,1, · · · , η̄t,d)>} is a sequence of i.i.d. random vectors with mean zero

and variance one.
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• C3) Assume

E(ηt|η̄t,1, · · · , η̄t,d) = 0, (2.8)

and there exists δ > 0 such that E|ηt|2+δ <∞.

• C4) Assume the covariance matrices of {wt,1εt(1,Xτ
t , H(Xt,1))

τ}nt=1 and

[wt,2εtεt+m{1, H(Xt,1) +H(Xt+m,1), H(Xt,1)H(Xt+m,1)}τ ]mt=1

are positive definite.

Theorem 1. Suppose models (2.1), (2.4), and (2.5) hold, with conditions C1)–C4).

Then, as n→∞,
√
n(θ̂w − θ)

d→ N(0, σ2
0), where σ2

0 has a complicated formula given

in the proof.

To avoid estimating the complicated σ2
0, we adopt the random weighted bootstrap

method of Jin et al. (2001) and Zhu (2016), as follows. Note that the conventional

residual-based bootstrap method (see Hall (1992)) does not apply to our approach,

because we do not infer the GARCH model of the regression errors.

• Step Ai) Draw a random sample of size n from the standard exponential distri-

bution. Denote these random draws by ξb1, · · · , ξbn.

• Step Aii) Compute

(α̂bWLSE, β̂
bτ

WLSE, γ̂
b
WLSE)τ = arg min

(α,βτ ,γ)τ

n∑
t=1

ξbt{Yt−α−βτX t− γH(Xt,1)}2wt,1.

• Step Aiii) Define

Ẑb
t,WLSE = Yt − β̂

bτ

WLSEX t, t = 1, · · · , n,
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and calculate

(α̂b1,w, θ̂
b
w, γ̂

b
1,w)τ

= arg minα1,θ,γ1

∑m
t=1 ξ

b
t+m[Ẑb

t,WLSEẐ
b
t+m,WLSE − {α̂bWLSE + γ̂bWLSEH(Xt,1)}Ẑb

t+m,WLSE

−{α̂bWLSE + γ̂bWLSEH(Xt+m,1)}Ẑb
t,WLSE + α1 + θ{H(Xt,1) +H(Xt+m,1)}

+γ1H(Xt,1)H(Xt+m,1)]
2wt,2,

• Step Aiv) Repeat the above three steps B times to get {θ̂bw}Bb=1, and estimate

the asymptotic variance of θ̂w by

σ̂2
0 =

n

B

B∑
b=1

(θ̂bw − θ̂w)2.

Theorem 2. Under the conditions of Theorem 1, σ̂2
0/σ

2
0 converges in probability to

one as B →∞ and n→∞.

Using Theorems 1 and 2, we reject the null hypothesis of (2.2) at level a if

θ̂2w/σ̂
2
0 > χ2

1,1−a, where χ2
1,1−a is the (1 − a)th quantile of a chi-squared distribution

with one degree of freedom. The Supplementary Material generalizes this method

to correlated and heteroscedastic εt. Alternatively, we can compute the p-value for

testing H0 in (2.2) by 1
B

∑B
b=1 I(|θ̂w| < |θ̂bw − θ̂w|), which leads to the asymptotically

correct size by taking B →∞ and then n→∞.

3. Simulation Study

In this section, we investigate the finite-sample performance of the proposed test in

terms of its size and power. To mimic the results of realistic mutual fund investing,

we simulate fund returns under a factor model fitted to the empirical features of

the mutual funds in the data set that we study in Section 4. We then analyze the
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doi:10.5705/ss.202022.0416



EVALUATING STOCK PICKING & MARKET TIMING SKILLS

test’s performance for different simulated settings, depending on the stock-picking

skill (α), market-timing skill (γ), sample size, and data-generating process. As a

benchmark, we also compare the performance of our proposed estimator with that of

the naive ordinary least squares estimator θ̂LSE = α̂LSE γ̂LSE. To be more comparable,

we employ a similar random weighted bootstrap method to estimate the asymptotic

variance of the naive estimator θ̂LSE.

We draw random samples from the following four-factor model:

Yt = α + βτX t + γH(Xt,1) + εt, t = 1, · · · , n, (3.1)

where X t = (Xt,1, · · · , Xt,4)
τ represents the four factors from Carhart (1997): the

market excess return (MKT), size (SMB), book-to-market (HML), and momentum

(UMD) factors, and H(Xt,1) = X2
t,1, as defined by Treynor and Mazuy (1966). We

set β = (0.9757290,−0.1010977, 0.1064889,−0.2045018)τ based on the vector of em-

pirical regression estimates of the four-factor model for a representative fund in our

data set. We set the true stock-picking (α) and market-timing (γ) parameters to be

0, 0.01, or 0.05.

We model the factors Xt,1, · · · , Xt,4 by independent AR(1)-GARCH(1,1) pro-

cesses. We generate εt in (3.1) independently from these four factors using three

different scenarios: a sequence of independent random variables with normal distri-

butions, a GARCH(1,1) process, and an AR(1)-GARCH(1,1) process. To make our

simulation more realistic, the coefficients of these models are obtained from actual

data. Specifically, we use the fGarch R package to fit an ARMA(1,0)-GARCH(1,1)

model to each of the four factors and the residuals from model (3.1) using a repre-

sentative fund in our data set for the period from September 1, 1998, to December
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31, 2018. Tables 1 and 2 summarize the coefficients of the four factors Xt,1, · · · , Xt,4

and the errors εt in the three scenarios.

Table 1: ARMA-GARCH Coefficients for the Four Factors

µ φ ω a b

Xt,1 0.10467535 -0.07631574 0.04075129 0.14544129 0.7657024

Xt,2 -0.00238095 0.01933178 0.01296749 0.06118342 0.8908670

Xt,3 -0.04445163 0.00072542 0.02254173 0.09856252 0.7906360

Xt,4 0.05034941 0.01640715 0.02024227 0.14370110 0.8036767

Table 2: Coefficients for Error

εt µ φ ω a b

Scenario 1: i.i.d. N(0, 0.1) 0 0 0 0 0

Scenario 2: GARCH(1,1) 0 0 0.03155241 0.11454071 0.61573066

Scenario 3: AR(1)-GARCH(1,1) 0 -0.08733819 0.03155241 0.11454071 0.61573066

We conduct the hypothesis test of H0 : θ = 0 (i.e., H0 : αγ = 0) at the 10%

significance level. Using 1000 repetitions and B = 1000 bootstrap iterations for the

random weighted bootstrap method, we compute and compare the simulated size and

power of the hypothesis tests using our proposed estimator θ̂w and the naive estimator

θ̂LSE. Tables 3 and 4 report the size and power, respectively. We make the following

observations:

• i) In general, the test using the naive estimator θ̂LSE has distorted size, consis-

tent with its asymptotic limit being a nonnormal distribution when both α and
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γ are close to zero. The test size is below 0.01 across all our simulation settings,

except when the sample size is large at 1000, and α is nonzero at 0.05.

• ii) The test using the proposed estimator θ̂w has accurate size for all cases we

consider. The proposed estimator is also a meaningful improvement relative to

the naive estimator.

• iii) The power of the test using the proposed estimator θ̂w increases with the

sample size or when α and γ are greater than zero. The test under Scenario 1

has much higher power than under the other two scenarios.

• iv) Our approach of splitting the data affects the test’s power when the sample

size is small.

In summary, it is challenging to test H0 : α = 0 or γ = 0, as exemplified by the

naive ordinary least squares estimator. The proposed technique of splitting the data

to test the product of the skill parameters provides a test with accurate size and good

power. However, it does affect the test power when the sample size is small.

4. Data Analysis

This section applies our test to identify mutual funds with stock-picking and/or

market-timing skills. We start by describing our data set of actively managed equity

mutual funds. Then, we apply our test to exclude zero-skill funds from the sample,

and classify the remaining funds into skill groups. We use these classifications to

examine each skill group’s prevalence and returns and if there are skill trade-offs.
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Table 3: Simulation Study for Comparing Test Size

This table reports the results of our simulation study comparing the test sizes of the pro-

posed estimator and the naive estimator at a significance level of 10%.

Case α γ Sample Size Method Scenario 1 Scenario 2 Scenario 3
One 0.00 0.00 100 Naive 0.002 0.001 0.002

100 New 0.107 0.114 0.119
200 Naive 0.000 0.002 0.001
200 New 0.106 0.088 0.094
1000 Naive 0.000 0.000 0.000
1000 New 0.107 0.101 0.116

Two 0.00 0.01 100 Naive 0.003 0.002 0.002
100 New 0.130 0.083 0.109
200 Naive 0.000 0.004 0.000
200 New 0.100 0.110 0.099
1000 Naive 0.002 0.003 0.000
1000 New 0.094 0.108 0.118

Three 0.00 0.05 100 Naive 0.001 0.007 0.003
100 New 0.120 0.101 0.091
200 Naive 0.000 0.004 0.007
200 New 0.099 0.113 0.109
1000 Naive 0.002 0.051 0.057
1000 New 0.099 0.086 0.104

Four 0.01 0.00 100 Naive 0.000 0.003 0.003
100 New 0.110 0.083 0.107
200 Naive 0.000 0.004 0.001
200 New 0.104 0.093 0.098
1000 Naive 0.000 0.002 0.002
1000 New 0.097 0.111 0.120

Five 0.05 0.00 100 Naive 0.001 0.009 0.008
100 New 0.094 0.099 0.100
200 Naive 0.002 0.014 0.015
200 New 0.090 0.116 0.093
1000 Naive 0.002 0.086 0.084
1000 New 0.093 0.101 0.110
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Table 4: Simulation Study for Comparing Test Power

This table reports the results of our simulation study comparing the test power of the

proposed estimator at a significance level of 10%.

Case α γ Sample Size Scenario 1 Scenario 2 Scenario 3
One 0.05 0.05 100 0.292 0.095 0.099

200 0.479 0.110 0.113
1000 0.962 0.125 0.127

Two 0.05 0.10 100 0.580 0.113 0.097
200 0.829 0.103 0.118
1000 1.000 0.165 0.201

Three 0.10 0.05 100 0.573 0.125 0.103
200 0.791 0.130 0.109
1000 1.000 0.171 0.210

Four 0.10 0.10 100 0.893 0.126 0.130
200 0.987 0.143 0.156
1000 1.000 0.366 0.394

Five 0.20 0.20 100 1.000 0.442 0.451
200 1.000 0.631 0.696
1000 1.000 0.998 0.993
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4.1 Data and Implementation of Test

We obtain U.S. open-end mutual fund returns and their characteristics from CRSP

(the Center for Research in Security Prices) Survivor-Bias-Free US Mutual Fund

Database. Funds’ daily and monthly returns are value-weighted averages across all

fund share classes (using the total net assets of the share class as the weight). We

collect the risk-free rate and risk factor data from the Ken French data library.

The actively managed mutual funds sample is constructed following Kacperczyk

et al. (2008). We begin by using the investment objective codes from CRSP. We

exclude ETFs, annuities, and index funds, based on their indicator variables or fund

names from CRSP, following Busse et al. (2021). Because we focus on equity funds,

we require 80% of the assets under management to be invested in common stocks.

We restrict our sample to funds at least one year old and that have at least USD 15

million in assets under management. We address incubation bias as in Evans (2010).

Our final sample includes 3,569 U.S. actively managed domestic equity funds for the

period January 1980 to December 2018.

To test the null hypothesis of zero skill, H0 : α = 0 or γ = 0, we use daily

data available from 1998 to 2018 to fit model (2.1) for each fund. To be consistent

with our simulation study, we estimate (2.1) based on the four-factor specification of

Carhart (1997), which includes the daily market excess return (MKT), size (SMB),

value (HML), and momentum (UMD) factors. We also run our tests using the CAPM

one-factor model, as in Jensen (1968). We find qualitatively similar results, with a

slightly lower number of funds with both stock-picking and market-timing skills. Our

tests are based on the AR-GARCH model, where we use the AIC to select the best

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0416



EVALUATING STOCK PICKING & MARKET TIMING SKILLS

AR model. Then, we use 1000 bootstrap iterations for each fund to compute the

p-values against the null hypothesis.

To create our mutual fund skill classifications, at the 10% level, we first sort

funds with either zero stock-picking or zero market-timing skill, based on a failure

to reject the null, into a benchmark zero-skill group. Then, we classify funds with

either nonzero picking or market-timing skills into four groups: (1) the “Both” group,

comprising funds with positive picking (α > 0) and timing (γ > 0) skills; (2) the

“Picking” group, comprising funds with positive picking and negative timing skills;

(3) the “Timing” group, comprising funds with positive timing and negative picking

skills; (4) the “Neither” group, comprising funds with negative picking and timing

skills; and (5) the “Zero Skill” group, comprising all other funds that fail to reject

H0. Our estimates of stock picking and market timing come from the weighted least

squares estimation given in Theorem S1, with the weight function described in (S2)

in the Supplementary Material. Lastly, note that, although we use daily data to

implement the test, the conclusions also apply at the fund level, some of which have

monthly returns back to 1980. Thus, to minimize survivorship bias, we also include

funds that failed before 1998 in the zero-skill group.

4.2 Empirical Results

The first line of Table 5 reports the results of our classification of funds into mutually

exclusive skill groups. At the 10% level, we find that 3,159 out of 3,569 funds have zero

skill in either stock picking or market timing. Conversely, a very small subset of 36

funds have positive stock-picking and market-timing skills. We also find that a larger
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group of funds have one skill, but not the other: 120 funds have a positive (negative)

stock-picking (market-timing) skill, and 146 funds have a positive (negative) market-

timing (stock-picking) skill. Lastly, 108 funds have neither stock-picking nor market-

timing skills. As a result, funds that possess both abilities are rare, occurring only

1.0% of the time. This is in contrast to the finding of Kacperczyk et al. (2014) that

the top 25% of managers exhibit both abilities.

Table 5: Risk-Return Summary Statistics

This table presents summary statistics for the return distribution of the gross monthly

excess returns over the risk-free rate for active funds in each skill group. The sample

period is from 1980 to 2018.

Zero Skill Both Picking Timing Neither
Number of Funds 3159 36 120 146 108
Annualized Mean Return (%) 8.09 9.81 9.20 7.42 8.31
Annualized Std. Dev. (%) 15.64 14.29 16.78 15.45 16.34
Annualized Sharpe Ratio 0.52 0.69 0.55 0.48 0.51
Skewness -0.80 -0.87 -0.75 -0.68 -0.88
Kurtosis 5.62 6.15 5.82 4.90 5.67
Beta 1.01 0.89 1.05 1.00 1.04
Worst Monthly Return (%) -24.03 -21.55 -25.57 -21.53 -25.23
% of Months w/ Negative Return 38.68 37.18 39.53 38.89 38.89
Annualized Mean Return in Bear Markets (%) -97.34 -84.54 -100.12 -96.59 -102.21
Annualized Std. Dev. in Bear Markets (%) 13.08 13.75 14.83 11.89 14.14
Beta in Bear Markets 1.05 1.01 1.14 0.96 1.12

Table 5 displays the returns distribution for each skill group, computed by sum-

marizing the equally weighted average monthly returns of all funds in each group.

We expect funds with stock-picking skills to exhibit better performance, based on

risk-return trade-offs. Indeed, funds with both skills have the highest Sharpe ratio

at 0.69, followed by pure stock-picking funds at 0.55, zero-skill funds at 0.52, neither

skill group at 0.51, and pure market-timing funds at 0.48. Funds with market-timing
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skills should adjust their market exposure during market expansions and downturns.

We define bear market states as the 10% of months with the lowest market return,

during which we find that funds in the timing-skill group reduce their overall market

beta from 1.00 to 0.96. We find that funds in the timing-skill group reduce their

overall market beta from 1.00 to 0.96 during bear market states, where we define

bear market states as the 10% of months with the lowest market return. In contrast,

the other four skill groups have a higher market beta during bear market states. We

further find that pure market-timing funds have the lowest volatility (i.e., standard

deviation) during bear market states, the least negative return skewness, and the

smallest kurtosis among all the skill groups. Hence, pure market-timing funds appear

to manage downside risks as well.

Given that our novel test appears to classify funds well based on their skill,

we next examine whether there are stock-picking and market-timing trade-offs. We

approach this question from three perspectives. First, comparing pure stock-picking

and pure market-timing funds in the third and fourth columns, respectively, of Table

5, we do observe such a trade-off. Pure market timing sacrifices the higher risk-return

profile of pure stock picking to have better market and downside risk management.

Furthermore, these two skill groups appear to generate different types of value for

investors, because pure stock picking has higher Sharpe ratios than those of zero-skill

funds. In contrast, pure market timing manages risk during downturns better than

zero skill funds do.

Second, our evidence suggests that funds with both skills favor stock picking over

market timing. We observe that the return distributions for funds with stock-picking
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and market-timing skills are similar to that of the pure stock-picking funds. The

funds with both skills generate by far the best Sharpe ratios, but fail to scale back

their market exposure (i.e., market beta) during bear market states. They also incur

the most negative skewness and the highest positive kurtosis, meaning they are more

exposed to heavy-tailed outcomes. At the same time, relative to the funds in the

other groups, those with both skills appear to have some market-timing skill and

the overall lowest volatility. Compared with pure market-timing funds, they also

have lower market exposure during bear market states than the other groups have.

Finally, they manage downside risks a bit better than pure stock pickers do, because

their volatility during bear market states is lower.

Third, we do not find stock-picking and market-timing trade-offs for funds with

negative stock-picking and market-timing skills. While neither group has a risk profile

in terms of volatility and market beta similar to the pure stock-picking group, they do

not generate similarly high returns. They also fail to decrease their market exposure

and overall volatility during bear states. Finally, they exhibit higher tail risks, with

the most negative skewness and return during bear markets.

Stock picking is heavily weighted over market timing by funds with both skills,

because funds with both skills excel at stock picking. Of the four groups, they generate

the highest return, at 9.81% per year, with the lowest volatility, at 14.29% per year.

To examine this stock-picking ability further, we explore whether standard factor

exposures can explain this risk-return profile. In Table 6, we regress the average

monthly excess return of each skill group on either 1) the market excess return (MKT),

or 2) the market excess return, plus the size (SMB), value (HML), and momentum
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(UMD) factors, following Carhart (1997). Because both the independent and the

dependent variables in these regressions are returns, we can interpret the constant,

that is, alpha, as the average abnormal return unexplained by factor exposures. At

the 1% level, we find funds with both skills are the only group generating statistically

significant and positive alphas, earning 3.0% or 2.7% per year, relative to the market

or Carhart factor models. In sharp contrast, the alphas of the other four groups are

statistically insignificant.

Table 6: Factor Exposures of Different Funds

This table presents the factor exposures of the gross monthly excess returns over the risk-

free rate for active funds in each skill group. All returns are annualized by multiplying by

12. In the parentheses below the coefficient estimates, we report Newey and West (1987)

t-statistics with 12 lags. The sample period is from 1980 to 2018, with N representing the

number of months. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10%

levels, respectively.

Zero Skill Both Picking Timing Neither

Dep Var: Rt

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

MKTt 1.008∗∗∗ 0.980∗∗∗ 0.887∗∗∗ 0.885∗∗∗ 1.052∗∗∗ 1.000∗∗∗ 0.997∗∗∗ 0.972∗∗∗ 1.040∗∗∗ 1.007∗∗∗

(96.923) (105.322) (30.475) (46.793) (61.618) (70.425) (87.595) (74.150) (0.012) (0.009)

SMBt 0.194∗∗∗ 0.136∗∗∗ 0.275∗∗∗ 0.169∗∗∗ 0.241∗∗∗

(10.563) (4.850) (9.064) (10.456) (0.014)

HMLt 0.002 0.127∗∗∗ −0.064 −0.004 −0.007
(0.088) (4.314) (−1.339) (−0.201) (0.015)

UMDt 0.008 −0.035∗∗ 0.020 0.012 0.032∗∗∗

(0.587) (−2.448) (0.847) (0.989) (0.009)

Constant 0.327 0.263 2.982∗∗∗ 2.701∗∗∗ 1.100 1.244 −0.264 −0.332 0.297 0.080
(0.556) (0.624) (2.963) (3.379) (1.026) (1.533) (−0.609) (−0.861) (0.625) (0.483)

N 468 468 468 468 468 468 468 468 468 468
R2 0.967 0.983 0.897 0.913 0.915 0.948 0.970 0.983 0.944 0.969

Overall, our novel test points toward a meaningful classification of funds based
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on stock-picking and market-timing skills. We can then identify funds with either

skill relative to zero-skill funds. Importantly, these are the only funds that generate

attractive risk-adjusted returns. The Supplementary Material reports additional anal-

yses to validate these skill classifications based on each group’s active management

characteristics and stock-holding styles.

5. Conclusion

We have proposed a novel statistical test for at least one zero skill in stock picking and

market timing, because a direct inference for the product of these two skills is infeasi-

ble. Applying the developed test to actively managed U.S. mutual funds, we exclude

zero-skill funds, and find clear trade-offs between stock picking and market timing

among the remaining funds along multiple dimensions related to a fund’s risk-return

profile, market timing, active management, and stock-holding style. Importantly, we

find that only 1% of funds optimize these trade-offs and possess both skills. These

funds are the only group that generate abnormal risk-adjusted returns, at around 3%

per year, while also managing their market risk exposure.
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Appendix: Theoretical Proofs

Define Ft as the σ-field generated by {ηu, η̄v,1, · · · , η̄v,d : u ≤ t, v ≤ t + 1}, 0d as the

d-dimensional zero vector, and put

W n =
1√
n

n∑
t=1

wt,1εt{1,Xτ
t , H(Xt,1)}τ ,

Γn =
1

n

n∑
t=1

wt,1


1 Xτ

t H(Xt,1)

X t X tX
τ
t X tH(Xt,1)

H(Xt,1) Xτ
tH(Xt,1) H2(Xt,1)

 ,

Γ =


E(wt,1) E(wt,1X

τ
t ) E(wt,1H(Xt,1))

E(wt,1X t) E(wt,1X tX
τ
t ) E(wt,1X tH(Xt,1))

E(wt,1H(Xt,1)) E(wt,1X
τ
tH(Xt,1)) E(wt,1H

2(Xt,1))

 ,

Σ =


E(w2

t,1ε
2
t ) E(w2

t,1ε
2
tX

τ
t ) E(w2

t,1ε
2
tH(Xt,1))

E(w2
t,1ε

2
tX t) E(w2

t,1ε
2
tX tX

τ
t ) E(w2

t,1ε
2
tX tH(Xt,1))

E(w2
t,1ε

2
tH(Xt,1)) E(w2

t,1ε
2
tX

τ
tH(Xt,1)) E(w2

t,1ε
2
tH

2(Xt,1))

 ,

Ht = H(Xt,1) +H(Xt+m,1), H̃t = H(Xt,1)H(Xt+m,1),
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W̃m =
1√
m

m∑
t=1

wt,2εtεt+m(1, Ht, H̃t)
τ ,

Γ̃m =
1

m

m∑
t=1

wt,2


1 Ht H̃t

Ht H2
t H̃tHt

H̃t HtH̃t H̃2
t

 ,

Σ̃ =


E(w2

t,2ε
2
t ε

2
t+m) E(w2

t,2ε
2
t ε

2
t+mHt) E(w2

t,2ε
2
t ε

2
t+mH̃t)

E(w2
t,2ε

2
t ε

2
t+mHt) E(w2

t,2ε
2
t ε

2
t+mH

2
t ) E(w2

t,2ε
2
t ε

2
t+mHtH̃t)

E(w2
t,2ε

2
t ε

2
t+mH̃t) E(w2

t,2ε
2
t ε

2
t+mH̃tHt) E(w2

t,2ε
2
t ε

2
t+mH̃

2
t )

 ,

Γ̃ =


E(wt,2) E(wt,2Ht) E(wt,2H̃t)

E(wt,2Ht) E(wt,2H
2
t ) E(wt,2H̃tHt)

E(wt,2H̃t) E(wt,2H̃tHt) E(wt,2H̃
2
t )

 ,

S̃1 = E{wt,2εt(1,Xτ
t , H(Xt,1))

τ (1, Ht, H̃t)
τ},

S̃2 = E{wt,2(2α + γHt,0
τ
d, αHt + 2γH̃t)

τ (1, Ht, H̃t)
τ}.

Throughout, we use
p→ and

d→ to denote the convergence in probability and in dis-

tribution, respectively.

Lemma 1. Define ξ = (α,βτ , γ)τ and ξ̂ = (α̂WLSE, β̂
τ

WLSE, γ̂WLSE)τ . Under condi-

tions of Theorem 1, as n→∞, we have

Γn
p→ Γ, W n

d→ N(0d+2,Σ),
√
n(ξ̂ − ξ) = −Γ−1W n + op(1). (5.1)

Proof. It follows from ergodicity of {X t} that Γn
p→ Γ as n → ∞. Use (2.8) and

the fact that {(ηt, η̄t,1, · · · , η̄t,d)τ} is a sequence of independent and identically dis-

tributed random variables, we have E(W t|Ft−1) = 0d+2. Hence, it follows from
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the central limit theorem for martingale differences in Hall and Heyde (1980) that

W n
d→ N(0d+2,Σ). Because

√
n(ξ̂ − ξ) = −Γ−1n W n, we have

√
n(ξ̂ − ξ) = −Γ−1W n + op(1).

Lemma 2. Define ξw = (α1, θ, γ1)
τ and ξ̂w = (α̂1,w, θ̂w, γ̂1,w)τ . Under conditions of

Theorem 1, α1 = α2, θ = αγ, and γ1 = γ2, as n→∞, we have

Γ̃m
p→ Γ̃, W̃m

d→ N(03, Σ̃), (5.2)

√
m(ξ̂w − ξw) = −Γ̃

−1
{W̃m +

1√
2

(S̃1 + S̃2)Γ
−1W n}+ op(1), (5.3)

W nW̃
τ

m =
√

2E{wt+m,1wt,2εtε2t+m(1,Xτ
t+m, H(Xt+m,1))

τ (1, Ht, H̃t)}+ op(1). (5.4)

Proof. Proofs of (5.2) and (5.4) follow the same arguments in proving (5.1). For

proving (5.3), write

Ẑt,WLSEẐt+m,WLSE − {α̂WLSE + γ̂H(Xt,1)}Ẑt+m,WLSE

{α̂ + γ̂H(Xt+m,1)}Ẑt,WLSE + α1 + θHt + γ1H̃t

= {Ẑt,WLSE − α̂WLSE − γ̂WLSEH(Xt,1)}{Ẑt+m,WLSE − α̂WLSE − γ̂WLSEH(Xt+m,1)}

−(α̂2 − α2)− (α̂γ̂ − αγ)Ht − (γ̂2 − γ2)H̃t

= εtεt+m − {(α̂WLSE − α) + (β̂WLSE − β)τX t + (γ̂WLSE − γ)H(Xt,1)}εt+m

−{(α̂WLSE − α) + (β̂WLSE − β)τX t+m + (γ̂ − γ)H(Xt,1)}εt

−{(α̂2
WLSE − α2) + (α̂γ̂ − αγ)Ht + (γ̂2 − γ2)H̃t}+ op(1/

√
n)

= εtεt+m +Rt,1 +Rt,2 +Rt,3 + op(1/
√
n).
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Hence,

√
m(ξ̂w − ξw) = −Γ̃

−1
{W̃m +

3∑
j=1

1√
m

m∑
t=1

wt,2Rt,j(1, Ht, H̃t)
τ}+ op(1).

Using (2.8), (5.2), and ergodicity, we have

1√
m

∑m
t=1wt,2Rt,1(1, Ht, H̃t)

τ

= − 1
m

∑m
t=1wt,2εt+m(1, Ht, H̃t)

τ (1,Xτ
t , H(Xt,1))

√
m(ξ̂ − ξ)

= op(1),

1√
m

∑m
t=1wt,2Rt,2(1, Ht, H̃t)

τ

= − 1
m

∑m
t=1wt,2εt(1, Ht, H̃t)

τ (1,Xτ
t , H(Xt,1))

√
m(ξ̂ − ξ)

= −E{wt,2εt(1, Ht, H̃t)
τ (1,Xτ

t , H(Xt,1))}
√
m(ξ̂ − ξ) + op(1)

= −S̃1

√
m(ξ̂ − ξ) + op(1),

1√
m

∑m
t=1wt,2Rt,3(1, Ht, H̃t)

τ

= − 1
m

∑m
t=1wt,2(1, Ht, H̃t)

τ (2α + γHt,0
τ
d, αHt + 2γH̃t)

√
m(ξ̂ − ξ) + op(1)

= −S̃2

√
m(ξ̂ − ξ) + op(1).

Therefore, (5.3) follows from the equations above.

Proof of Theorem 1. The theorem follows from Lemmas 1 and 2 and the fact that

θ̂w − θ = (0, 1, 0)(ξ̂w − ξw), where σ2
0 can be calculated explicitly, which we skip

deriving the formula as we will use the random weighted bootstrap method to estimate

it later.

Proof of Theorem 2. Define ξ̂
b

= (α̂bWLSE, β̂
bτ

WLSE, γ̂
b
WLSE)τ , ξ̂

b

w = (α̂b1,w, θ̂
b
w, γ̂

b
1,w)τ ,

W b
n =

1√
n

n∑
t=1

(ξbt − 1)wt,1εt(1,X
τ
t , H(Xt,1))

τ ,
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Γb
n =

1

n

n∑
t=1

ξbtwt,1


1 Xτ

t H(Xt,1)

X t X tX
τ
t X tH(Xt,1)

H(Xt,1) Xτ
tH(Xt,1) H2(Xt,1)

 ,

W̃
b

m =
1√
m

m∑
t=1

(ξbt+m − 1)wt,2εtεt+m(1, Ht, H̃t)
τ .

Therefore,
√
n(ξ̂

b
− ξ)

= −(Γb
n)−1 1

n

∑n
t=1 ξ

b
twt,1εt(1,X

τ
t , H(Xt,1))

τ

= −Γ−1 1
n

∑n
t=1 ξ

b
twt,1εt(1,X

τ
t , H(Xt,1))

τ + op(1),

implying that

√
n(ξ̂

b
− ξ̂) = −Γ−1W b

n + op(1).

Similarly,

√
m(ξ̂

b

w − ξ̂w) = −Γ̃
−1
{W̃

b

m +
1√
2

(S̃1 + S̃2)Γ
−1W b

n}+ op(1). (5.5)

We can show that

W b
n

d→ N(0d+2,Σ), W̃
b

m
d→ N(03, Σ̃),

W b
n(W̃

b

m)τ =
√

2E{wt+m,1wt,2εtε2t+m(1,Xτ
t+m, H(Xt+m,1))

τ (1, Ht, H̃t)}+ op(1).

Hence, both
√
m(θ̂w−θ) and

√
m(θ̂bw− θ̂w) have a normal limit with the same asymp-

totic variance. Further, we can show that m
B

∑B
b=1(θ̂

b
w − θ̂w)2 converges in probability

to the asymptotic variance of
√
m(θ̂w − θ) as B → ∞ and n → ∞ by using the

independence between {ξbt} and {X t, Yt}. That is, the theorem follows.
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Supplementary Material

The online Supplement Material generalizes the method to correlated and heteroscedas-

tic εt and reports an additional data analysis that validates our classification of mutual

funds based on stock picking and market timing skills.
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