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Abstract: We develop directional tests to compare incomplete undirected graphs in the general context

of covariance selection for Gaussian graphical models. The exactness of the underlying saddlepoint

approximation is proved for chordal graphs, and leads to exact control of the size of the tests, given

that the only approximation error involved is from the numerical calculation of two scalar integrals.

Although exactness is not guaranteed for non-chordal graphs, the ability of the saddlepoint approxi-

mation to control the relative error means the proposed method outperforms its competitors even in

these cases. The accuracy of our proposal is verified using simulation experiments under challenging

scenarios in which inference via standard asymptotic approximations to the likelihood ratio test and

some of its higher-order modifications fails. The directional approach is used to illustrate the assess-

ment of Markovian dependencies in a data set from a veterinary trial on cattle. A second example

with microarray data shows how to select the graph structure related to genetic anomalies due to

acute lymphocytic leukemia.

Key words and phrases: Covariance selection, exponential family, higher-order asymptotics, likelihood

ratio test, saddlepoint approximation, undirected graph.

1. Introduction

Undirected graphical models have gained considerable success in a variety of fields, including

medicine, social sciences, and physics, owing to their flexibility and easy interpretation.
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Typically, these probabilistic graphs describe complex multivariate distributions of variables

(nodes) using the product of simpler submodels, each referred to a low-dimensional subset of

the graph (clique). Book-length expositions on the topic can be found in Lauritzen (1996),

Borgelt and Kruse (2002), and Whittaker (2009).

Today, applications of graphical models are challenged by the growth in size and sophis-

tication of modern data. An important question is inferring the structure of large graphs,

that is the underlying connections (edges) between the variables under examination. This

task is well known in the literature as covariance selection. A popular class of graphical

models is that of decomposable models, which describe graphs that contain no chordless

cycles of length greater than three. These are called chordal, decomposable, or triangulated

graphs (Lauritzen (1996, Sect. 2.1)).

For convenience, a graphical model is often expressed using the exponential family

form. The Gaussian distribution is particularly suitable for continuous responses, because

conditional independence in the graph can be characterized easily in terms of assumptions

on model parameters (see Section 3.1).

Likelihood-based inference for covariance selection is discussed in Salgueiro, Smith, and

McDonald (2005) in the context of testing exclusion of single edges in complete graphs, that

is fully saturated models. Córdoba, Bielza, and Larrañaga (2020, Sect. 7) review general

edge exclusion tests, acknowledging the poor quality of the usual chi-squared approximation

to the distribution of the likelihood ratio statistic. They mention that, when testing the re-

moval of r edges, the exact distribution is the product of r Beta random variables (Lauritzen,

1996, Prop. 5.14). However, this result has not received much attention in the literature
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and seems of limited practical utility. Another strategy is to iteratively perform exclusion

tests for single edges based on partial correlation coefficients, with some adjustment needed

to account for multiple comparisons.

In this paper, we develop likelihood-based directional tests for covariance selection in

Gaussian graphical models, possibly incorporating a priori restrictions on the graph struc-

ture. Specifically, our method allows one to test hypotheses that involve removing sub-

graphs with multiple edges from complete or incomplete graphs. We prove the exactness

of the underlying saddlepoint approximation for chordal graphs, and run extensive Monte

Carlo simulations to show the null uniform distribution of the directional p-value in chal-

lenging scenarios, even when the number of nodes is larger than the sample size. In those

settings, the classical approach based on the likelihood ratio statistic or some of its higher-

order modifications (Skovgaard (2001)) breaks down. We also show results for a non-chordal

graph, where the directional inference is confirmed to be more accurate than that of its com-

petitors. A much simpler problem in covariance selection, limited to testing an incomplete

graph versus the saturated model, is studied by Davison et al. (2014, Sect. 5.3), and is

shown to be exact in Huang, Di Caterina, and Sartori (2022). Our extension involves both

theoretical and computational innovations.

Directional inference on a vector-valued parameter of interest was introduced by Fraser

and Massam (1985) in nonnormal linear regression models, and then generalized in Skov-

gaard (1988). Substantial progress from both a methodological and computational perspec-

tive was made by Davison et al. (2014), where the computation of the directional p-value by

one-dimensional numerical integration proved especially accurate in several settings. The
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procedure was extended from linear exponential families to nonlinear parameters of inter-

est in general continuous models by Fraser, Reid, and Sartori (2016). In addition to its

accuracy, the directional approach has been found to coincide with exact results in several

classical situations (McCormack et al. (2019)).

Section 2 reviews the technique of directional inference for exponential family models.

Section 3 presents the new directional testing method for covariance selection. Here, we

prove the exactness of the saddlepoint approximation for decomposable Gaussian graphical

models in chordal graphs, and develop specific notation also valid in the non-chordal case.

A number of computational innovations are presented in Section 4. Simulation results

comparing the accuracy of the various methods are shown in Section 5, and Section 6

reports applications to data from a veterinary trial and from a microarray study of altered

gene expressions in acute lymphocytic leukemia. Section 7 concludes the paper.

2. Background

2.1 Likelihood ratio tests

Assume that y follows a parametric distribution f(y; θ), with θ ∈ Rp. The log-likelihood

function ℓ(θ) = ℓ(θ; y) = log f(y; θ) is maximized by the maximum likelihood (ML) esti-

mator θ̂ = θ̂(y). Possibly after a reparameterization, the model parameter can be typically

expressed as θ = (ψ, λ), where ψ(θ) is the d-dimensional component of interest involved

in the hypothesis Hψ : ψ(θ) = ψ. We write θ̂ψ = (ψ, λ̂ψ) to denote the constrained ML

estimator of θ when the null Hψ is true.

Under usual regularity conditions (see, e.g., Cox and Hinkley (1974, Sect. 9.3)), the first-
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2.1 Likelihood ratio tests

order approximation to the distribution of θ̂ is normal with mean θ and estimated covariance

matrix j(θ̂)−1, with j(θ) = −∂2ℓ(θ)/∂θ∂θ⊤ the observed Fisher information matrix. The

hypothesis Hψ can be tested using the likelihood ratio statistic

w(ψ) = 2{ℓ(θ̂)− ℓ(θ̂ψ)} , (2.1)

which is invariant to reparameterizations, and has an approximate χ2
d distribution under

the null hypothesis Hψ, where d is the dimension of the parameter of interest ψ.

Skovgaard (2001) introduced two modifications to (2.1),

w∗(ψ) = w(ψ)

{
1− log γ(ψ)

w(ψ)

}2

and w∗∗(ψ) = w(ψ)− 2 log γ(ψ) , (2.2)

and showed that the limiting distribution of both test statistics based on the correction

factor γ(ψ) is also χ2
d. These modifications were obtained by analogy with the derivation

for scalar parameters of interest of modifications to the square root of w(ψ), the so-called r∗

approximation of Barndorff-Nielsen (1986), further discussed in Fraser, Reid, andWu (1999).

Skovgaard (2001) emphasized not only the simplicity of computation of the adjustment,

especially when compared with Bartlett (1937) correction using moments, but also its large-

deviation properties.

Tests based on w(ψ), including w∗(ψ), w∗∗(ψ), and the Bartlett-corrected w(ψ), provide

omnibus measures of departure of the data from Hψ: the resulting p-value averages the

deviations from the null hypothesis in all potential directions of the parameter space. In

the next section, we review the approach of Davison et al. (2014, Sect. 3) for measuring

the departure from Hψ only in the direction indicated by the observed data. For a more

complete exposition of the difference between omnibus and directional tests, see Fraser and

Reid (2006).
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2.2 Directional tests in linear exponential families

2.2 Directional tests in linear exponential families

Focusing on hypotheses that are linear in the canonical parameter θ of an exponential family

model, we summarize here the procedure detailed in Davison et al. (2014, Sect. 3), which

involves two steps of dimensionality reduction.

Denoting by u = u(y) the sufficient statistic for the p-dimensional vector parameter

θ, we can consider the marginal density of u and the corresponding log-likelihood function

ℓ(θ;u) = θ⊤u −K(θ), which takes the standard exponential family form. Consistent with

the notation established by Davison et al. (2014) and Fraser, Reid, and Sartori (2016), we

define the observed data y0 = (y01, . . . , y
0
n) and the corresponding observed value of the

sufficient statistic u0 = u(y0). Given the centered statistic s = u − u0 with observed value

s0 = u0 − u0 = 0, the tilted log-likelihood function is

ℓ(θ; s) = θ⊤s+ ℓ0(θ) , (2.3)

where ℓ0(θ) = ℓ(θ;u = u0).

When the linearity in θ applies to both the interest and the nuisance parameters, mean-

ing θ = (ψ, λ), expression (2.3) can be written as

ℓ(θ; s) = ψ⊤s1 + λ⊤s2 + ℓ0(ψ, λ) , (2.4)

where ψ and s1 have dimension d. The first dimensionality reduction from p to d follows

directly from conditioning on the component of the statistic sufficient for λ. Indeed, the

conditional distribution of s1 given s2 depends on ψ only, and is still of exponential family

form (cf., Lehmann and Romano (2005, Lemma 2.7.2)). Such a conditioning translates into

fixing θ̂ψ = (ψ, λ̂ψ) at the observed value θ̂0ψ = (ψ, λ̂0ψ).
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2.2 Directional tests in linear exponential families

The saddlepoint approximation for this conditional distribution is typically very accu-

rate (Barndorff-Nielsen and Cox (1979)). Following, for instance, Pace and Salvan (1997,

Sect. 10.10.2), we can illustrate how the saddlepoint approximation is obtained as the ratio

of the saddlepoint approximation for the joint density of s = (s1, s2) and the saddlepoint

approximation for the marginal density of s2. Indeed, the former can be expressed as

exp[{θ − θ̂(s)}⊤s+ ℓ0(θ)− ℓ0{θ̂(s)}]
(2π)p/2| − ℓ0θθ{θ̂(s)}|1/2

=
exp[ℓ(θ; s)− ℓ{θ̂(s); s}]
(2π)p/2|jθθ{θ̂(s)}|1/2

, (2.5)

where θ̂(s) solves in θ the score equation from the log-likelihood (2.4), s = −ℓ0θ(θ) =

−∂ℓ0(θ)/∂θ, jθθ(θ) = −∂2ℓ(θ; s)/∂θ∂θ⊤ = −∂2ℓ0(θ)/∂θ∂θ⊤ = −ℓ0θθ(θ), and |A| denotes

the determinant of the square matrix A. Similarly, the saddlepoint approximation for the

marginal distribution of s2 is

exp[{λ− λ̂ψ(s2)}⊤s2 + ℓ0(θ)− ℓ0{θ̂ψ(s2)}]
(2π)(p−d)/2| − ℓ0λλ{θ̂ψ(s2)}|1/2

=
exp[ℓ(θ; s)− ℓ{θ̂ψ(s2); s}]
(2π)(p−d)/2|jλλ{θ̂ψ(s2)}|1/2

, (2.6)

where θ̂ψ(s2) = (ψ, λ̂ψ(s2)) is the solution to the score equation from the log-likelihood

(2.4), seen as a function of λ for fixed ψ, s2 = −ℓ0λ(θ) = −∂ℓ0(θ)/∂λ, and jλλ(θ) =

−∂2ℓ(θ; s)/∂λ∂λ⊤ = −∂2ℓ0(θ)/∂λ∂λ⊤ = −ℓ0λλ(θ). The ratio of (2.5) and (2.6) when s2 = 0

gives the following saddlepoint approximation for the density of s1 given s2 = 0, also called

double saddlepoint approximation, for the reduced model in Rd:

h(s;ψ) = c exp[ℓ(θ̂0ψ; s)− ℓ{θ̂(s); s}] |jθθ{θ̂(s)}|
−1/2

, s ∈ L0 , (2.7)

where the normalizing constant c includes all factors not depending on s1, and L0 is the

d-dimensional plane described by setting s2 = 0, or equivalently θ̂ψ = θ̂0ψ. The relative

error of the approximation (2.7) is typically of order O(n−1), with n denoting the number of
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2.2 Directional tests in linear exponential families

independent observations, but it reduces to O(n−3/2) after re-normalization. For a compre-

hensive review of saddlepoint approximations and their statistical applications, see Butler

(2007). The following example with a scalar parameter of interest (d = 1) illustrates the use

of the tilted log-likelihood function (2.4) in the derivation of the saddlepoint approximation

(2.7).

Example 1 (Univariate normal distribution). Let y1, . . . , yn be a random sample from a

N(µ, σ2) distribution. The log-likelihood function in exponential family form is

ℓ(θ) = ℓ(ψ, λ) = ψu1 + λu2 +
n

2
log (−2ψ) +

nλ2

4ψ
,

where θ = (ψ, λ) = (−1/2σ2, µ/σ2) is the canonical parameter and u = (u1, u2) = (
∑

i y
2
i ,∑

i yi) is the minimal sufficient statistic with observed value u0 = (u01, u
0
2). The tilted

log-likelihood (2.4), expressed as a function of the centered sufficient statistic s = u− u0, is

ℓ(θ; s) = ℓ(ψ, λ; s) = ψ(s1 + u01) + λ(s2 + u02) +
n

2
log (−2ψ) +

nλ2

4ψ
.

After some algebra, the unnormalized saddlepoint approximation (2.7) in L0 = {(s1, s2) :

s1 > −u01 + (u02)
2/n, s2 = 0} can be written as

h(s;ψ) ∝ exp

{
ψ

[
s1 + u01 −

(u02)
2

n

]}{
s1 + u01 −

(u02)
2

n

} (n−1)
2

−1

, (2.8)

where u01 − (u02)
2/n is n times the unadjusted sample variance. In this simple case, the

saddlepoint approximation is exact: (2.8) coincides with the kernel of a χ2
n−1/(−2ψ) distri-

bution, which is the exact conditional distribution of s1 = u1 − u01 given s2 = u2 − u02 = 0.

This is consistent with the more general result in McCormack et al. (2019).

The second dimensionality reduction from d to one, not needed in the previous example,

consists of constructing a one-dimensional conditional distribution for s along the direction
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2.2 Directional tests in linear exponential families

indicated by the data. With this aim, denote by sψ the expectation of s under model (2.7)

if Hψ holds, that is, the value of s for which θ = θ̂0ψ is the constrained ML estimate

sψ = −ℓ0θ(θ̂0ψ) =

−ℓ0ψ(θ̂0ψ)

0

 , (2.9)

depending on the observed data point y0. The line L∗ in L0, which joins the observed value

s0 = 0 and the expected value sψ, can be parameterized by a scalar t ∈ R as follows:

s(t) = sψ + t(s0 − sψ) = (1− t)sψ ,

and, consequently, the ML estimate θ̂(s) in (2.7) can vary with s(t). The approximation

(2.7) constrained to L∗ is used to compute the p-value, the probability that s(t) is as far or

farther from sψ than is the observed value s0 = 0. The directional p-value, which measures

the deviation from Hψ along the line L∗, is thus

p(ψ) =

∫ tsup
1

td−1h{s(t);ψ} dt∫ tsup
0

td−1h{s(t);ψ} dt
, (2.10)

where t = 0 and t = 1 correspond respectively to s = sψ and to the observed value s0 = 0.

The factor td−1 results from the Jacobian of the transformation from the variable s ∈ L0

to polar coordinates (∥s∥, s/∥s∥) (Davison et al. (2014, Sect. 3.2)). The upper limit of the

integrals in (2.10) is the largest value of t for which the ML estimator corresponding to s(t)

exists, and in some situations can be determined analytically. The directional p-value in

one dimension gives the probability to the right of the observed value, conditional on the

observed value being to the right of the expected value under Hψ, that is, the probability

in the right tail of the distribution. In higher dimensions the p-value is the probability of

being “further out” on the line connecting the expected value under Hψ to the observed

value, conditional on being on that line (Davison et al. (2014, Sect. 2)).
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As in Davison et al. (2014, Sect. 3.2), the relative error of formula (2.10) inherits that

of the saddlepoint approximation (2.7) after re-normalization, so is typically O(n−3/2) in

continuous models. When the re-normalized saddlepoint approximation is exact, then the

directional test is also exact, because the re-normalization is automatically incorporated

in (2.10). McCormack et al. (2019) established this exactness for a number of tests for

multivariate normal models, and Huang, Di Caterina, and Sartori (2022) were able to prove

exactness for the case of testing a saturated Gaussian graphical model in Davison et al.

(2014, Sect. 5.3). The exactness in our setting is shown in Section 3.3 for chordal graphs. In

addition, numerical results in the last simulation scenario of Section 5 illustrate the extreme

accuracy of the directional approach, even when the alternative graph is non-chordal.

Using the notation established in this section, we also give the form of the term γ(ψ)

appearing in (2.2) under exponential family models. Specifically, equation (13) in Skovgaard

(2001) is

γ(ψ) =
{(s− sψ)

⊤j−1
θθ (θ̂ψ)(s− sψ)}d/2

wd/2−1(θ̂ − θ̂ψ)⊤(s− sψ)

{
|jθθ(θ̂ψ)|
|jθθ(θ̂)|

}1/2

, (2.11)

evaluated at s = 0 when computing the corresponding observed p-value.

3. Directional tests for Gaussian graphical models

3.1 Notation and setup

Gaussian graphical models are very useful for describing normal multivariate distributions

using the nodes and edges of a related graph. The nodes correspond to variables, and the

lack of an edge between two nodes models the conditional independence of the two variables,

given the remaining ones. This corresponds to a zero entry in the concentration (inverse
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3.1 Notation and setup

covariance) matrix (Lauritzen (1996)), and covariance selection involves identifying these

conditional independencies.

Let y1, . . . , yn be a random sample from the q-variate normal distribution Nq(µ,Ω
−1),

where the mean is µ ∈ Rq and the q × q concentration matrix Ω is positive definite. The

log-likelihood function for (µ,Ω) is

ℓ(µ,Ω; y) =
n

2
log |Ω| − 1

2
tr(Ωy⊤y) + 1⊤n yΩµ− n

2
µ⊤Ωµ , (3.1)

where y denotes the n× q matrix with lth row vector y⊤l , and 1n is a n× 1 vector of ones.

The ML estimates of µ and Ω are

µ̂ = y⊤1n/n, Ω̂ = (y⊤y/n− y⊤1n1
⊤
n y/n

2)−1 .

For covariance selection, the mean parameter is not of direct interest, so we focus

instead on the marginal distribution of the ML estimator for the covariance matrix Ω̂−1 ∼

Wq(n−1,Ω−1/n), where Wq denotes the Wishart random variable of order q. The marginal

log-likelihood function for Ω

ℓ(Ω; y) =
n− 1

2
log |Ω| − n

2
tr(ΩΩ̂−1) ,

sometimes referred to as restricted log-likelihood or REML, can then be used to carry out

inference just on the concentration matrix. The directional p-value for testing constraints on

Ω in Section 3.3 is equal to that obtained from the full log-likelihood function (3.1), because

of the independence between µ̂ and Ω̂. It is also convenient to exploit the symmetry of the

concentration matrix, and express the restricted log-likelihood as

ℓ(ω;u) =
n− 1

2
log |Ω| − n− 1

2
ω⊤Ju , (3.2)
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3.2 Likelihood quantities for unsaturated models

where ω = vechΩ, u = n/(n − 1)vech Ω̂−1, and the matrix J = G⊤G is diagonal with

elements equal to either one or two. If A is a q × q symmetric matrix, vecA is the q2 × 1

vector that stacks the columns of A, whereas vechA retains only the q∗ = q(q+1)/2 entries

in the lower triangle of A. The two vectors are linked by the relationship vecA = G vechA,

which also gives the q2×q∗ duplication matrix G (see, e.g., Abadir and Magnus (2005, Sect.

11.3)).

In the saturated case addressed by Davison et al. (2014, Sect. 5.3), that is, a complete

graph in which Ω has no particular a priori structure, the condition n > q is required for

the existence of Ω̂ (Lauritzen (1996, Theorem 5.1)). On the other hand, if the graph is

incomplete, with some zero off-diagonal entries in Ω, the ML estimate exists if n is larger

than the maximal clique size of the hypothesized graph or its decomposable version (Buhl

(1993); Lauritzen (1996, Sect. 5.3.2)). In what follows, we focus on comparing nested

unsaturated models corresponding to nested incomplete graphs. Therefore, we allow the

sample size n to be smaller than the number of nodes q, but large enough for the ML

estimate of the concentration matrix to exist under the alternative model under study (cf.,

Section 3.2).

3.2 Likelihood quantities for unsaturated models

Suppose some off-diagonal elements Ωij, for 1 ≤ i < j ≤ q, in the concentration matrix

are known to be zero, meaning that the underlying graph is known to be incomplete. As

in Roverato and Whittaker (1996), we can rearrange the elements of ω, u and the leading
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3.2 Likelihood quantities for unsaturated models

diagonal of J to simplify the calculations. Specifically, defining the edge sets

k = {(i, j) : Ωij ̸= 0, i ≤ j} and h = {(i, j) : Ωij = 0, i < j} , (3.3)

and giving any ordering to k and h such that

k = {k1, k2, . . . , kp} and h = {h1, h2, . . . , hw} ,

it is possible to define

ω =

ωk
ωh

 , u =

uk
uh

 , J =

Jkk 0

0 Jhh

 .

Because in unsaturated models ωh = 0, we can write Ω = Ωk = Ω(ωk). Thus, the log-

likelihood (3.2) becomes

ℓ(ωk;uk) =
n− 1

2
log |Ωk| −

n− 1

2
ω⊤
k Jkkuk , (3.4)

which is a function of the p-dimensional canonical parameter θ = ωk only, with p > q.

Differentiation of (3.4) with respect to ωk leads to the score function

ℓωk
(ωk) =

n− 1

2
Jkk(σk − uk) ,

where σk is the partition of σ = vechΩ−1
k obtained from (3.3). Solving the score equation

leads to σ̂k = uk and to the corresponding ML estimate ω̂k, usually derived numerically (see

Davison et al. (2014, Sect. 5.3)).

Because the observed and expected information matrices are equal in canonical expo-

nential families, from the results in Roverato and Whittaker (1996, Sect. 3) it follows that

jωkωk
(ωk) =

n− 1

4
JkkIss(Ω

−1
k )kkJkk , (3.5)
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3.3 Comparison of nested unsaturated models

where Iss(Ω−1
k )kk is a p× p partition of the Isserlis matrix of the covariance matrix Σ = Ω−1

k

(Isserlis (1918)). The entries of Iss(Σ)kk are

Cov(uij, urs) = ΣirΣjs + ΣisΣjr ,

with (i, j), (r, s) ∈ k.

3.3 Comparison of nested unsaturated models

Consider now the partition ωk = (ψ, λ) of the canonical parameter, where ψ is the com-

ponent of interest with dimension d ≤ p − q. The null hypothesis H0 : ψ = ψ0 = 0 tests

whether d additional off-diagonal entries Ωij, for i < j, are zero. Hence, the reduced null

model is nested in the alternative unsaturated model of Section 3.2. Starting from (3.4),

the log-likelihood ratio statistic for testing H0 is

w(ψ0) = −(n− 1) log |Ω̂−1
k Ω̂0| , (3.6)

where Ω̂k = Ω(ω̂k) is the ML estimate of Ω obtained from (3.4), and Ω̂0 = Ω(ω̂k0) is its

constrained ML estimate under H0, with ω̂k0 = (0, λ̂0). The null asymptotic distribution of

w(ψ0) is χ
2
d, assuming p and d fixed with n that goes to infinity.

For the directional p-value that discriminates between two nested Gaussian graphical

models, as specified in (2.9), we first find the expected value of s under H0:

sψ0 = −ℓωk
(ω̂k0) =

n− 1

2
Jkk(uk − σ̂k0) ,

where σ̂k0 = vech Ω̂−1
0 . Then, the log-likelihood function (2.3) along the line s(t) = (1−t)sψ0

follows from (3.4):

ℓ{ωk; s(t)} =
n− 1

2
log |Ωk| −

n− 1

2
ω⊤
k Jkk{σ̂k0 + t(uk − σ̂k0)} . (3.7)
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3.3 Comparison of nested unsaturated models

The maximization of (3.7) entails that σ̂k{s(t)} = σ̂k(t) = σ̂k0+ t(uk− σ̂k0) or, equivalently,

Ω̂−1
k {s(t)} = Ω̂−1

k (t) = tΩ̂−1
k + (1− t)Ω̂−1

0 . (3.8)

Given that Ω̂k(t) = Ω{ω̂k(t)}, by taking the inverse of the matrix from the left-hand side of

(3.8), the value of ω̂k(t) is obtained accordingly. The replacement of ωk in (3.7) with ω̂k(t)

and ω̂k0, respectively, delivers the result

exp[ℓ{ω̂k0;s(t)}−ℓ{ω̂k(t);s(t)}] ∝ |Ω̂k(t)|−
n−1
2 exp

[
n− 1

2
{ω̂k(t)−ω̂k0}⊤Jkkσ̂k(t)

]
∝ |Ω̂k(t)|−

n−1
2 ,

because the function {ω̂k(t)− ω̂k0}⊤Jkkσ̂k(t) is zero (see proof in Appendix A.2.). By (3.5),

we obtain |jωkωk
(ωk)| ∝ |Iss(Ω−1

k )kk| and, consequently,

|jωkωk
{ω̂k(t)}|−1/2 ∝ |Iss{Ω̂−1

k (t)}kk|−1/2 .

Thus, following expression (2.7), the directional test is based on p(ψ0) in (2.10), with

h{s(t);ψ0} ∝ |Ω̂−1
k (t)|

n−1
2 |Iss{Ω̂−1

k (t)}kk|−1/2 , (3.9)

and the analytical value of tsup is calculated as in Section 4.2. If the alternative model were

saturated, with q∗-vector ωk = ω, then

|Iss{Ω̂−1
k (t)}kk| = |Iss{Ω̂−1

k (t)}| = 2q|Ω̂−1
k (t)|q+1 ,

according to the general expression for computing the determinant of the Isserlis matrix

(Roverato and Whittaker (1998, Sect. 2)). In this case, (3.9) reduces to

h{s(t);ψ0} ∝ |Ω̂−1
k (t)|

n−1
2 |Ω̂−1

k (t)|−
q+1
2 = |Ω̂−1

k (t)|(n−q−2)/2 ,
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3.3 Comparison of nested unsaturated models

which agrees with the simpler result obtained by Davison et al. (2014, Sect. 5.3) for testing

the absence of some connections in a complete graph.

Expression (3.9) gives the unnormalized saddlepoint approximation to the distribution

of s(t) in L∗. The following theorem, the proof of which is deferred to Appendix A.1., states

when (3.9) is also the unnormalized exact null conditional density of s(t) in L∗.

Theorem 1. Let Y ∼ Nq(µ,Ω
−1) denote a Gaussian graphical model with log-likelihood

(3.4). If the induced incomplete graph is chordal, then (3.9) gives the unnormalized exact

conditional density of s(t) in L∗ under H0 : ψ = ψ0 = 0.

The normalizing constant simplifies in the ratio of integrals in (2.10), so the approximation

error when calculating the directional p-value stems only from the one-dimensional numer-

ical integrations. Thus, in Gaussian graphical models that describe chordal graphs, the

saddlepoint approximation to the null conditional density of the sufficient statistic is exact.

Consequently, when we test for a reduced graph, the resulting directional p-value is exactly

uniformly distributed under the null hypothesis H0 : ψ = ψ0 = 0.

Monte Carlo experiments in Section 5 support this theoretical result, and empirically

show that the directional p-value stays remarkably accurate in the last simulation scenario

based on non-chordal graphs. When the exactness does not hold, the relative error of the

saddlepoint approximation is still of order O(n−3/2), as opposed to the absolute error of

order O(n−1) of the chi-squared approximation to the distribution of w(ψ0).

Finally, we give the term γ(ψ) in (2.11) from Skovgaard’s (2001) modified likelihood

ratio statistics (2.2):

γ(ψ0) =
2{(σ̂k0 − σ̂k)

⊤Iss(Ω̂−1
0 )−1

kk (σ̂k0 − σ̂k)}d/2

{− log |Ω̂−1
k Ω̂0|}d/2−1(ω̂k − ω̂k0)⊤Jkk(σ̂k0 − σ̂k)

{
|Iss(Ω̂−1

0 )kk|
|Iss(Ω̂−1

k )kk|

}1/2

. (3.10)

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0394



4. Computational aspects

4.1 Calculation of the determinant of the Isserlis matrix

When the dimension p of the canonical parameter ωk under the alternative model is smaller

than q∗, but still relatively large, calculating the determinant of the matrix Iss{Ω̂−1
k (t)}kk in

(3.9) can be computationally quite demanding. It is then advisable to exploit some useful

results on the Isserlis matrix in order to speed up the computing time for the directional

p-value.

Let A be a q× q symmetric invertible matrix. Roverato and Whittaker (1998, (15)), for

any partition (k′, k′′) of the edge set k in (3.3) such that k′ ∪ k′′ = k and k′ ∩ k′′ = k̄, show

that

|Iss(A)kk| =
|Iss(A)k′k′||Iss(A)k′′k′′|

|Iss(A)k̄k̄|
,

which gives a convenient way to reduce the dimensions of the matrices. If, moreover, the

graph induced by k is chordal with a vertex set decomposable into cliques C1, . . . , CK and

separators S2, . . . , SK , according to the definitions in Lauritzen (1996, Sect. 2.1), this can

be further simplified to

|Iss(A)kk| = 2q
∏K

i=1 |ACi
|nCi

+1∏K
i=2 |ASi

|nSi
+1

, (4.1)

where nCi
and nSi

denote the number of nodes in the ith clique and ith separator, respec-

tively, and ACi
and ASi

are submatrices of A with rows and columns corresponding to the

relative nodes (Roverato and Whittaker (1998, (17))).
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4.2 Numerical integration

4.2 Numerical integration

The upper bound tsup in (2.10) is the largest value of t such that the ML estimate Ω̂k(t)

is positive definite. By the same arguments as in Huang, Di Caterina, and Sartori (2022,

Lemma 4.1), this upper bound can be obtained explicitly as tsup = 1/(1− ν(1)), where ν(1)

is the smallest of the q eigenvalues of Ω̂0Ω̂
−1
k .

Moreover, writing the integrand in (2.10) as exp{ḡ(t;ψ)}, where ḡ(t;ψ) = (d−1) log t+

log h{s(t);ψ}, we can improve the numerical stability of the calculations using the equivalent

formula

p(ψ) =

∫ tsup
1

exp{ḡ(t;ψ)− ḡ(t̂;ψ)}dt∫ tsup
0

exp{ḡ(t;ψ)− ḡ(t̂;ψ)}dt
, where t̂ = arg sup

t∈[0, tsup]
ḡ(t;ψ) .

We have also found that the integrand function can be concentrated around its mode, taking

nonzero values in a shorter interval [tmin, tmax] ⊆ [0, tsup]. To address this, and deliver more

stable numerical results, we use the Gauss–Hermite quadrature (Liu and Pierce (1994)) and

integrate over [tmin, tmax] only. As a result, we compute the directional p-value as

p(ψ)
.
=

∫ tmax

1
exp{ḡ(t;ψ)− ḡ(t̂;ψ)}dt∫ tmax

tmin
exp{ḡ(t;ψ)− ḡ(t̂;ψ)}dt

. (4.2)

The choice tmin = max{0, t̂− c/q(t̂;ψ)} and tmax = min{t̂+ c/q(t̂;ψ), tsup}, where q(t;ψ) =

−∂2ḡ(t;ψ)/∂t2 and c is a constant to be chosen, is reliable (cf., Huang, Di Caterina, and

Sartori (2022, Sect. S1.3)). The second derivative of the Isserlis determinant in the last

factor of the integrand in (3.9) cannot be derived explicitly, and its numerical approximation

may be unstable. In order to choose the width of the integration interval [tmin, tmax], we

then set the function q(t;ψ) equal only to the second derivative of the first factor in (3.9),
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that is,

q(t;ψ) = −∂
2|Ω̂−1

k (t)|n−1
2

∂t2
=
d− 1

t2
+
n− 1

2

q∑
i=1

(1− νi)
2

(1− t+ tνi)2
.

In our numerical experiments, the value of c is chosen for each pair (n, q) by performing

preliminary checks to ensure that the integration from tmin to tmax is equal to that over

[0, tsup], and then fixed for further simulations. This simplification was found useful only

in settings when n > q, and cannot be applied if ḡ(t;ψ) is monotonic in [0, tsup]. The

directional p-value in that case has to be calculated directly using formula (2.10), but this

happened only 21 times in the Monte Carlo experiments discussed below.

5. Simulation studies

The performance of the directional approach in terms of covariance selection for Gaussian

graphical models is examined here using simulation-based experiments. In the first scenario,

the focus is on a small chordal graph with q = 6 nodes, similar to that in Dawid and

Lauritzen (1993, Ex. 7.3). The two models under comparison, differing only by d = 3

edges, are presented in Figure 1. Monte Carlo simulations use 100 000 samples of size

n = 8, generated under the null hypothesis. The empirical p-value distribution of the tests

based on w(ψ0), w
∗(ψ0), w

∗∗(ψ0), and the directional procedure is shown in the left plot of

Figure 2 with respect to the reference uniform distribution, focusing on the interval (0, 0.1).

The right plot compares the relative errors of the three most accurate methods. Despite the

simplicity of the example, the likelihood ratio statistic leads to too many rejections of the

null hypothesis, because n is relatively small. The higher-order modifications remedy this,

but the directional approach allows an exact control of the size of the test, up to numerical
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Figure 1: Graphs for the first simulation scenario, where the dimension of the parameter

of interest is equal to d = 3. The alternative model for the chordal graph on the left is

compared against the null model on the right.

and Monte Carlo errors.

The inferential benefits of our proposal over the omnibus likelihood-based competitors

are particularly evident with high magnitudes of q and d. The second scenario is based on

the data of Kenward (1987, Tab. 1), from a study on intestinal parasites of 60 calves, where

the weight in kilograms of each bovine was recorded on 11 occasions during the grazing

season. To enable a comparison with the findings of Davison et al. (2014, Sect. 5.3), who

could only test the saturated model, we draw 100 000 samples of size n = 60 from a q-variate

Gaussian random variable under the hypothesis of first-order Markovian dependence MD(1),

with a tridiagonal concentration matrix. For each q ∈ {11, 30, 50}, the null hypothesis

H0 : MD(1) is tested against four alternative unsaturated structures, also using w(ψ0),

w∗(ψ0), and w
∗∗(ψ0). These Markovian dependence models of order m under H1 : MD(m)

with 1 < m < q − 1 correspond to so-called band concentration matrices, the nonzero

entries of which are confined to m diagonals on either side of the main one. The orders

m are chosen to check the behavior of the various methods for a wide range of dimensions

d of the parameter of interest, and consequently of the nuisance component. Because the
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Figure 2: Results based on 100 000 samples simulated under the null model displayed on

the right side of Figure 1, with n = 8 and q = 6. On the left, ordered empirical p-values

p̂(i) (i = 1, . . . , 100 000) smaller than 0.1 are compared with the uniform distribution on

the diagonal for w (dot-dashed), w∗ (dashed), w∗∗ (long-dashed), and the directional test

(solid). On the right, the corresponding relative errors {p̂(i) − (i/n)}/(i/n) are plotted in a

similar fashion only for w∗, w∗∗, and the directional method.

Markovian structure induces a chordal graph, the simplification (4.1) is particularly useful

for computing the directional p-values with such a high-dimensional parameter of interest.

Table 1 reports our experimental results obtained when q = 11, as in the original

data set, and Tables 2 and 3 refer to cases with data simulated using a larger covariance

matrix, q = 30 and q = 50, respectively. In line with our theoretical findings, the empirical

distribution of the directional p-values is essentially uniform in all settings, and almost

unaffected by the size of q and d. The usual likelihood ratio statistic w(ψ0) is highly sensitive

to the dimension of both ψ and λ; its adjustments w∗(ψ0) and, particularly, w
∗∗(ψ0) seem to

suffer from the increasing dimension d of the parameter of interest. Tables 2 and 3 clearly

indicate that, as d grows, the test based on w(ψ0) becomes too liberal, and those based on
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w∗(ψ0) and w
∗∗(ψ0) become too conservative. For the intermediate case q = 30, the leftmost

panels of Figure 3 compare the null empirical distribution of the directional p-values with

those from w(ψ0), w
∗(ψ0), and w

∗∗(ψ0). The almost perfect agreement of our proposal with

the benchmark uniform distribution given by the diagonal of the panels is apparent.

Before proceeding, we focus on the implementation of formula (4.1) to obtain the de-

terminant of the Isserlis matrix of Ω−1
k , estimated under the alternative hypothesis. When

multiplying the determinants of many square matrices of moderate order, some propagation

of numerical errors can occur. In our experiments, this is visible, to a certain extent, in the

intermediate sections of Tables 2 and 3, when the performance of the directional tests seems

slightly worse than in the remaining sections. Indeed, when the null is tested against more

extreme Markovian models, the matrices in (4.1) are either many, but small (top section)

or large, but few (bottom section). Thus, the final product of their determinants is not

overly affected by numerical errors. That being said, note that in all settings the directional

approach remains remarkably accurate, significantly improving on the competing testing

procedures.

The third simulation scenario considers a block-diagonal configuration of the concen-

tration matrix under the null hypothesis. Here, 100 000 samples of size n ∈ {40, 60, 90, 120}

were drawn from a normal distribution with q = 50 components and covariance matrix

Σ0 = diag{Σ01,Σ01}, with Σ01 a 25× 25 sub-matrix with diagonal entries equal to one, and

off-diagonal entries equal to 0.5. This condition clearly implies that Ω0 = Σ−1
0 is also block

diagonal, so that the first 25 nodes are conditionally (as well as unconditionally) indepen-

dent of the last 25 nodes in the graph. On the other hand, our alternative model admits
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the existence of some conditional dependence between the two subsets of nodes. Specifi-

cally, in addition to the nonzero elements defined in Ω0, we also suppose Ωij = Ωji ̸= 0, for

i = 16, . . . , 25 and j = 26, . . . , 50. It follows that the dimension of the parameter of interest

is d = 250, and (4.1) can be used to speed up calculations of the Isserlis matrix associated

with the chordal alternative incomplete graph.

Simulation results in this framework are presented in Table 4. Given the notable size

of d, the relative performance of the approximations under comparison, in terms of the

empirical p-value distribution, is analogous to that in the previous experiment, with the

only exception that here the version w∗∗(ψ0) appears to be, in general, more reliable than

w∗(ψ0). Although the increase in sample size generates some accuracy improvements for

all the competitors, as expected, the empirical directional p-value guarantees an almost

perfect agreement with its theoretical uniform distribution for all values of n considered.

The extreme liberality of the standard likelihood ratio test persists, Skovgaard’s w∗(ψ0)

does not correct it enough, and the version w∗∗(ψ0) overcorrects it. As before, the rightmost

panels of Figure 3 show the p-values obtained using the likelihood ratio statistic, its modified

versions, and the directional procedure.

As an empirical check of the accuracy of our proposal for non-decomposable models, in

the fourth simulation scenario, we consider a small non-chordal graph with q = 4 nodes, as

in Eriksen (1996, Sect. 4). Figure 4 displays the two models under comparison, which differ

only by d = 2 edges. Setting the sample size to n = 7, 100 000 artificial samples are simulated

under the null hypothesis. As for the first scenario, the results are presented in the two

panels of Figure 5. Because n is small with respect to q and d, the chi-squared approximation
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to the distribution of the likelihood ratio statistic is misleading. The improved versions

of w, especially w∗ here, are more reliable. However, even in this application to a non-

chordal graph, the superiority of the directional approach based on the accurate saddlepoint

approximation is evident in terms of the relative error.

6. Applications

First, we examine the data set introduced in the second simulation scenario of Section 5

from the experiment about the control of intestinal parasites in cattle (Kenward (1987,

Tab. 1)). However, here we focus separately on the two treatment groups with equal size

n = 30 to investigate differences in the underlying temporal dynamics of growth. Recalling

that each animal was weighed q = 11 consecutive times, we start by assuming a Markovian

dependence of order m = 3, the simplest model accepted in a test against the saturated

one by all the procedures under analysis and in both groups. This model is then compared

against the null hypothesis of first-order dependence, implying d = 17. For the calves

randomly assigned to the first treatment, the likelihood ratio statistic is w(ψ0) = 28.384

with p-value = 0.041, Skovgaard’s modifications are w∗(ψ0) = 22.977 with p-value = 0.150

and w∗∗(ψ0) = 22.691 with p-value = 0.160 and the directional p-value is 0.111. For the

second group, we get instead w(ψ0) = 31.895 with p-value = 0.016, w∗(ψ0) = 30.055 with p-

value = 0.026, w∗∗(ψ0) = 30.028 with p-value = 0.026 and directional p-value = 0.029. The

standard likelihood ratio test is the only one to reject the MD(1) model at a 5% significance

level for both treatments. Conversely, the other statistics recognize a different time pattern

and indicate a more complex dependence of the weights in the second group.
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We now consider microarray data from the biostatistical literature (see, e.g., Massa,

Chiogna, and Romualdi (2010)) that characterize gene expression signatures in acute lym-

phocytic leukemia cells associated with genotypic abnormalities in adult patients. The

normalized version of such data, available in the package topologyGSA (Massa and Sales

(2016)) of the R software (R Core Team (2020)), is especially useful for analyzing the B-

cell receptor (BCR) signaling pathway, composed of q = 35 gene products. The observed

samples are classified according to the presence of molecular rearrangements in their genetic

profile.

The conversion of biological pathways into graphical models has become standard prac-

tice in biostatistics to separate and compare specific portions of the genetic process under

examination. Based on the findings of Massa, Chiogna, and Romualdi (2010), it is of interest

to investigate whether the graph resulting from the well-known BCR signaling pathway in

Figure 6 can be simplified further. The restricted graphical model under the null hypothesis

in our analysis corresponds to the identified path starting from nodes CD22 and CD72 and

ending at AP1, going through RasGRP3, Ras, Raf, MEK1/2, and ERK enzymes. This

comparison implies testing the lack of d = 12 edges, and can be carried out on the subset of

patients not suffering from so-called BCR/ABL rearrangements. With n = 41, we obtain

w(ψ0) = 33.520 with p-value = 8.028×10−4, w∗(ψ0) = 32.172 with p-value = 13.018×10−4,

w∗∗(ψ0) = 32.158 with p-value = 13.083 × 10−4, and directional p-value = 13.941 × 10−4.

Although all four methods indicate that the data are not consistent with the shorter biolog-

ical path, the p-value from the usual likelihood ratio test w(ψ0) is relatively much smaller

than the other three, and in these types of problems very small p-values are relevant. The
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agreement of Skovgaard’s approximations with the directional p-value is consistent with our

simulation results for small values of d with respect to n.

7. Discussion

We have provided theoretical and computational considerations for a likelihood-based ap-

proach to covariance selection in unsaturated Gaussian graphical models. The directional

test is based on the saddlepoint approximation to the conditional distribution of sufficient

statistics in exponential family models. The saddlepoint approximation to the conditional

density was derived explicitly, and proved to be exact within the important class of decom-

posable models for chordal graphs. Moreover, the computation of the directional p-value

using one-dimensional numerical integration is made especially fast, as discussed in Section

4. Simulations in several scenarios, including situations with a high-dimensional parameter

of interest and a large number of nuisance parameters, illustrate that the p-values from

the directional test are uniformly distributed, up to the approximation error from the one-

dimensional numerical integrations. These results confirm the theoretical exactness of the

saddlepoint-type method with chordal graphs, even if the number of nodes is greater than

the sample size. Our empirical findings suggest also that the saddlepoint approximation,

despite not being exact, retains at least the usual accuracy for continuous models when

non-chordal graphs are tested.

The likelihood ratio test and its improvements considered here (Skovgaard (2001)) are

omnibus tests: the implicit alternative hypothesis is multidimensional. In contrast, the

directional test uses information in the data to simplify the testing problem to one dimen-
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sion. The saddlepoint approximation to this distribution incorporates an adjustment for the

estimation of the nuisance parameters that has been found to be very effective in simpler

problems (Pierce and Peters (1992); Tang and Reid (2020)).

A natural question about directional tests is whether they entail a loss of power (Jensen

(2021)). This is difficult to assess in simulations, because the alternative hypotheses are very

high dimensional. We have concentrated on evaluating the size of the test, which Tables

1–4 show is very well controlled at conventional 0.05 and 0.01 levels, and well into the tails

(Figures 2–3). We are not aware of other detailed discussions on the power of the likelihood

ratio test for these complex Gaussian graphical models with high-dimensional alternatives.

For high-dimensional normal distributions with q/n → (0, 1], Huang, Di Caterina, and

Sartori (2022, Sect. 5.3) evaluate the unconditional power of the directional test under a

few settings. The performance strongly depends on the specific alternative hypothesis under

analysis, so it is impossible to draw generally valid conclusions. Still, in those settings, the

directional test proved to be uniformly more powerful than the likelihood ratio test and its

modifications considered here. Note too that for simpler testing problems in the multivariate

normal model, McCormack et al. (2019) showed that the directional test is equivalent to the

uniformly most powerful invariant test based on the F -statistic or Hotelling’s T 2-statistic.

The directional approach detailed here can be extended to graphical models for discrete

data, such as those in Roverato (2017). However, because discreteness prevents the saddle-

point approximation from being exact, even upon normalization, one might reasonably not

expect the same accuracy of directional p-values observed in this work, at least in the most

challenging testing problems.
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A.1. Proof of Theorem 1

The present methodology applies only to situations in which the number of observations

is such that the ML estimate exists with probability one under the alternative hypothesis. In

particular, the sample size must be greater than the maximal clique size of the hypothesized

graph or its decomposable version (Buhl (1993)). The development of reliable likelihood-

based testing procedures, omnibus or directional, in circumstances where the number of

nodes is much larger than the number of observations is still an open problem, and thus left

to future research.

Supplementary Materials

Supplementary materials available at https://github.com/cdicaterina/DirTestGGM.git

provide the data and the R code to reproduce all numerical results in the paper.
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Appendices

A.1. Proof of Theorem 1

We want to show that the saddlepoint approximation equals the exact conditional distri-

bution of the sufficient statistic under H0, up to some constant. The sufficient statistic in

our setting is s = uk, i.e. the partition corresponding to the non-zero elements in Ωk of
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A.1. Proof of Theorem 1

u = n/(n− 1)vech Ω̂−1 where Ω̂−1 = y⊤y/n− y⊤1n1
⊤
n y/n

2 is the sample covariance matrix.

Substituting in the log-likelihood (3.4) the ML and constrained ML estimates of the

canonical parameter ωk obtained in Section 3, we get

exp[ℓ(ω̂0; s)− ℓ(ω̂k; s)] =

(
|Ω̂0|
|Ω̂k|

)n−1
2

exp

[
n− 1

2
{ω̂k − ω̂k0}⊤Jkkσ̂k

]

=

(
|Ω̂0|
|Ω̂k|

)n−1
2

,

since the exponential equals 1 (see Appendix A.2.). Given equation (3.5) in Section 3.2 for

jωkωk
(ωk), we can then write the expression for the saddlepoint approximation (2.7) in our

setting as

h(s;ψ0) ∝

(
|Ω̂0|
|Ω̂k|

)n−1
2

|Iss(Ω̂−1
k )kk|−1/2 . (A.1)

Consider now the density of s = uk. This is the marginal density of p entries in Ω̂−1,

the sample covariance matrix with joint Wishart distribution Wq(n − 1,Ω−1/n). Solving

the likelihood equation in Section 3.2 implies that σ̂k = uk = s, hence these entries are

the same as those in the corresponding entries of the matrix Ω̂−1
k . We can obtain such

a density for chordal graphs with vertex set decomposable into cliques C1, . . . , CK and

separators S2, . . . , SK with cardinality nCi
and nSi

, respectively. Combining the results on

the factorization of the joint density of Ω̂−1 (Lauritzen (1996, (5.45))) and on the marginal

Wishart distributions for the sub-matrices Ω̂−1
kCi

= (Ω̂−1
k )Ci

and Ω̂−1
kSi

= (Ω̂−1
k )Si

(Dawid and

Lauritzen (1993, Sect. 7.3.1)), under the null hypothesis H0 : ωk = (ψ, λ) = (0, λ) the true
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A.1. Proof of Theorem 1

concentration matrix is Ω0 and so we have:

f(s; Ω−1
0 ) =2−

n−1
2

(
∑K

i=1 nCi
−
∑K

i=2 nSi
)

∏K
i=1 ΓnCi

(
n−1
2

)
|Ω−1

0Ci
|−n−1

2 |Ω̂−1
kCi

|(n−2−nCi
)/2∏K

i=2 ΓnSi

(
n−1
2

)
|Ω−1

0Si
|−n−1

2 |Ω̂−1
kSi

|(n−2−nSi
)/2

· exp

{
−n
2

[
K∑
i=1

tr
(
Ω̂−1
kCi

Ω0Ci

)
−

K∑
i=2

tr
(
Ω̂−1
kSi

Ω0Si

)]}
.

Rearranging the factors in the previous formula and neglecting the constants, we can write

f(s; Ω−1
0 ) ∝

(∏K
i=1 |Ω

−1
0Ci

|∏K
i=2 |Ω

−1
0Si

|

)−n−1
2
(∏K

i=1 |Ω̂
−1
kCi

|∏K
i=2 |Ω̂

−1
kSi

|

)n−1
2
∏K

i=1 |Ω̂
−1
kCi

|−(nCi
+1)/2∏K

i=2 |Ω̂
−1
kSi

|−(nSi
+1)/2

· exp

{
−n
2

[
K∑
i=1

tr
(
Ω̂−1
kCi

Ω0Ci

)
−

K∑
i=2

tr
(
Ω̂−1
kSi

Ω0Si

)]}
.

We now use the decomposition of the graph (Lauritzen (1996, p. 145)) to re-express the

first two factors as a ratio of determinants, the result by Roverato and Whittaker (1998)

mentioned in Section 4.1 to re-express the third factor as the determinant of the Isserlis

matrix, and finally the property of the trace operator to re-express the fourth factor. Hence

we have

f(s; Ω−1
0 ) ∝

(
|Ω0|
|Ω̂k|

)n−1
2

|Iss(Ω̂−1
k )kk|−1/2

· exp

{
−n
2

[
K∑
i=1

tr
(
Ω0Ci

Ω̂−1
kCi

)
−

K∑
i=2

tr
(
Ω0Si

Ω̂−1
kSi

)]}

∝

(
|Ω0|
|Ω̂k|

)n−1
2

|Iss(Ω̂−1
k )kk|−1/2 exp

{
−n
2

[
tr
(
Ω0Ω̂

−1
k

)]}
,

where in the last step we have applied again the decomposition property based on the factor-

ization of the density in chordal graphs (Lauritzen (1996, (5.45))) to find the final expression

in the exponential of the last factor. The null conditional density of the sufficient statistic

in L0 is given by setting ωk = ω̂k0 = (0, λ̂0), or equivalently by fixing the concentration
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A.2. Proof of tr[{ω̂(t)− ω̂0}⊤Jσ̂(t)] = 0

matrix under the null hypothesis Ω0 at its constrained ML estimate Ω̂0, i.e.

f(s; Ω̂−1
0 ) ∝

(
|Ω̂0|
|Ω̂k|

)n−1
2

|Iss(Ω̂−1
k )kk|−1/2 exp

{
−n
2

[
tr
(
Ω̂0Ω̂

−1
k

)]}

∝

(
|Ω̂0|
|Ω̂k|

)n−1
2

|Iss(Ω̂−1
k )kk|−1/2 . (A.2)

In the last step we have used tr(Ω̂0Ω̂
−1
k ) = tr(Ω̂0Ω̂

−1
0 ) = tr(Iq) = q (see Appendix A.2.).

Equation (A.2) equals equation (A.1), up to some constant. The normalizing constant

of f(s; Ω̂−1
0 ) simplifies in the ratio of integrals in (2.10) for computing the directional p-

value. The one-dimensional integration is allowed by further restricting on the line L∗ in

L0, identified by Ω̂−1
k (t) = tΩ̂−1

k +(1− t)Ω̂−1
0 . As the observed value Ω̂0 of the concentration

matrix under H0 does not depend on t, we can integrate in the numerator and denominator

of (2.10) the function

h(s(t);ψ0) ∝ |Ω̂−1
k (t)|

n−1
2 |Iss{Ω̂−1

k (t)}kk|−1/2 ,

which was given in (3.9).

A.2. Proof of tr[{ω̂(t)− ω̂0}⊤Jσ̂(t)] = 0

We show that the scalar function

f(t) = {ω̂k(t)− ω̂k0}⊤Jkkσ̂k(t)

equals zero. Since f(t) = tr{f(t)} and the two models under comparison are nested, it is

equivalent to prove that tr[{ω̂(t)− ω̂0}⊤Jσ̂(t)] is constant in t, where

ω̂(t) =

ω̂k(t)
0

 , ω̂0 =

ω̂k0
0

 , σ̂(t) =

σ̂k(t)
σ̂h(t)

 ,
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are all vectors of dimension q∗. Letting Ω̂−1
k (t) = Σ{σ̂(t)}, we have:

tr[{ω̂(t)− ω̂0}⊤Jσ̂(t)] = tr[vech {Ω̂k(t)− Ω̂0}⊤G⊤G vech Ω̂−1
k (t)]

= tr[{Ω̂k(t)− Ω̂0}⊤Ω̂−1
k (t)]

= tr[Iq − Ω̂0{tΩ̂−1
k + (1− t)Ω̂−1

0 }]

= tr(Iq)− ttr(Ω̂0Ω̂
−1
k )− (1− t)tr(Iq)

= q − tq − (1− t)q = 0 .

This uses basic matrix algebra (see, for instance, Abadir and Magnus (2005)) and the

equality tr(Ω̂0Ω̂
−1
k ) = tr(Ω̂0Ω̂

−1
0 ) = tr(Iq) = q. The latter is due to the fact that the trace

of the product of two symmetric matrices is the sum of the element-wise products and, by

the ML equation, Ω̂−1
k differs from Ω̂−1

0 only when the corresponding entries of Ω̂0 are zero

(cf. also Eriksen (1996, p. 278)).

In order to derive the same result for the scalar f(1) = {ω̂k − ω̂k0}⊤Jkkσ̂k, the above

calculations can be carried out imposing t = 1.
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Table 1: Empirical p-value distributions (%) based on 100 000 replications. The first-order

Markovian model under H0 : MD(1) is tested against different Markovian models of orders

m ∈ {2, 3, 6, 9} under H1 : MD(m), when n = 60 observations of a graph with q = 11 nodes

are available.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

vs MD(2), d = 9

Likelihood ratio, (3.6) 1.4 3.3 6.3 12.0 28.4 53.7 77.5 91.2 95.6 97.8 99.1

Skovgaard’s w∗, (3.10) 1.0 2.5 5.1 10.0 25.1 50.2 75.1 89.9 94.9 97.4 99.0

Skovgaard’s w∗∗, (3.10) 1.0 2.5 5.1 10.0 25.1 50.2 75.1 89.9 94.9 97.4 99.0

Directional, (4.2) 1.0 2.5 5.1 10.0 25.2 50.3 75.2 90.1 95.0 97.5 99.0

vs MD(3), d = 17

Likelihood ratio, (3.6) 1.8 3.9 7.2 13.5 30.4 56.1 79.3 92.0 96.0 98.1 99.2

Skovgaard’s w∗, (3.10) 1.1 2.6 5.0 10.0 24.6 49.6 74.6 89.6 94.7 97.3 98.9

Skovgaard’s w∗∗, (3.10) 1.0 2.5 5.0 9.9 24.5 49.5 74.5 89.5 94.7 97.2 98.9

Directional, (4.2) 1.0 2.6 5.1 10.1 25.0 50.3 75.4 90.2 95.0 97.5 99.0

vs MD(6), d = 35

Likelihood ratio, (3.6) 2.5 5.5 9.8 17.4 36.2 62.2 83.3 94.0 97.2 98.6 99.5

Skovgaard’s w∗, (3.10) 0.8 2.1 4.3 8.8 22.4 46.4 71.7 87.8 93.6 96.6 98.5

Skovgaard’s w∗∗, (3.10) 0.8 2.1 4.2 8.6 22.0 45.9 71.2 87.5 93.4 96.4 98.5

Directional, (4.2) 1.0 2.5 4.9 10.0 25.0 50.3 75.3 90.2 95.1 97.5 99.0

vs MD(9), d = 44

Likelihood ratio, (3.6) 3.3 6.9 12.0 20.6 40.8 66.2 85.9 95.2 97.8 99.0 99.6

Skovgaard’s w∗, (3.10) 0.7 1.8 3.7 7.8 20.7 43.7 69.1 86.3 92.6 96.1 98.2

Skovgaard’s w∗∗, (3.10) 0.7 1.8 3.6 7.5 20.1 42.8 68.2 85.7 92.2 95.8 98.1

Directional, (4.2) 1.0 2.4 4.9 9.9 25.2 50.0 75.0 90.1 95.1 97.5 99.0

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0
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Table 2: Empirical p-value distributions (%) based on 100 000 replications. The first-order

Markovian model under H0 : MD(1) is tested against different Markovian models of orders

m ∈ {2, 9, 18, 28} under H1 : MD(m), when n = 60 observations of a graph with q = 30

nodes are available.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

vs MD(2), d = 28

Likelihood ratio, (3.6) 1.6 3.8 7.2 13.4 30.5 56.4 79.4 92.2 96.2 98.1 99.3

Skovgaard’s w∗, (3.10) 1.0 2.5 5.0 10.0 24.9 50.0 75.1 90.1 95.0 97.5 99.0

Skovgaard’s w∗∗, (3.10) 1.0 2.5 5.0 10.0 24.9 50.0 75.0 90.0 95.0 97.5 99.0

Directional, (4.2) 1.0 2.4 4.9 10.0 24.9 50.1 75.2 90.2 95.1 97.5 99.0

vs MD(9), d = 196

Likelihood ratio, (3.6) 11.1 19.1 28.4 41.5 64.6 84.6 95.3 98.7 99.5 99.8 99.9

Skovgaard’s w∗, (3.10) 0.3 0.9 2.0 4.4 13.3 32.3 57.9 78.5 87.1 92.5 96.4

Skovgaard’s w∗∗, (3.10) 0.3 0.8 1.7 3.9 12.1 30.2 55.4 76.5 85.7 91.4 95.7

Directional, (4.2) 0.9 2.3 4.8 9.7 24.7 50.3 75.8 90.5 95.4 97.7 99.1

vs MD(18), d = 340

Likelihood ratio, (3.6) 53.8 66.9 76.9 86.0 95.0 98.8 99.8 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.1 0.3 0.7 3.0 10.7 27.4 48.8 62.1 72.8 82.9

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.1 0.4 1.7 6.9 19.5 38.2 51.2 62.5 74.3

Directional, (4.2) 0.8 2.2 4.6 9.5 24.7 50.2 76.0 90.8 95.6 97.8 99.2

vs MD(28), d = 405

Likelihood ratio, (3.6) 86.2 92.3 95.6 97.9 99.5 99.9 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.0 0.0 0.2 0.9 4.3 13.8 30.0 42.5 53.9 67.0

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.0 0.0 0.2 1.4 5.9 15.5 24.5 33.9 46.4

Directional, (4.2) 1.0 2.4 5.1 10.1 25.2 50.1 75.1 90.1 95.1 97.5 99.0

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0
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Figure 3: Results based on 100 000 simulated samples. In all eight panels, the empirical p-

values obtained via w (dot-dashed), w∗ (dashed), w∗∗ (long-dashed), and the directional test

(solid) are compared with the uniform distribution given by the diagonal. Leftmost panels:

the model under H0 : MD(1) assumes first-order Markovian dependence, with n = 60 and

q = 30. The four panels correspond to different Markovian models under the alternative

hypothesis H1 and related dimensions of ψ: MD(2) and d = 28 (top left), MD(9) and

d = 196 (top right), MD(18) and d = 340 (bottom left), and MD(28) and d = 405 (bottom

right). Rightmost panels: the null model assuming a block-diagonal concentration matrix

with q = 50 is tested against the same alternative hypothesis implying d = 250. The four

panels correspond to different sample sizes: n = 40 (top left), n = 60 (top right), n = 90

(bottom left), and n = 120 (bottom right).
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Table 3: Empirical p-value distributions (%) based on 100 000 replications. The first-order

Markovian model under H0 : MD(1) is tested against different Markovian models of orders

m ∈ {2, 16, 32, 48} under H1 : MD(m), when n = 60 observations of a graph with q = 50

nodes are available.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

vs MD(2), d = 48

Likelihood ratio, (3.6) 1.8 4.2 7.8 14.5 32.4 58.2 80.9 93.0 96.7 98.4 99.4

Skovgaard’s w∗, (3.10) 1.0 2.5 5.0 9.9 25.1 50.1 74.9 90.0 95.1 97.5 99.0

Skovgaard’s w∗∗, (3.10) 1.0 2.5 5.0 9.9 25.0 50.0 74.9 89.9 95.1 97.5 99.0

Directional, (4.2) 1.0 2.5 4.9 9.9 25.0 50.1 75.1 90.1 95.2 97.6 99.1

vs MD(16), d = 615

Likelihood ratio, (3.6) 77.9 86.7 92.1 96.0 99.0 99.8 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.0 0.1 0.2 1.1 5.1 15.9 33.3 46.2 57.9 70.6

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.0 0.1 0.5 2.6 9.3 22.2 33.2 44.2 57.4

Directional, (4.2) 0.8 2.0 4.3 9.1 24.4 50.4 76.3 91.4 96.1 98.1 99.3

vs MD(32), d = 1023

Likelihood ratio, (3.6) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.7 3.4 6.7

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2

Directional, (4.2) 0.5 1.4 3.4 8.0 23.5 51.7 78.6 92.8 96.9 98.7 99.5

vs MD(48), d = 1175

Likelihood ratio, (3.6) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.0 2.0 4.0

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Directional, (4.2) 0.8 2.2 4.7 9.8 25.4 51.1 76.2 90.9 95.5 97.8 99.2

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0394



REFERENCES

Table 4: Empirical p-value distributions (%) based on 100 000 replications. The two-block

diagonal structure of the concentration matrix for a graph with q = 50 nodes is tested

against a more complex structure including d = 250 additional edges.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

n = 40

Likelihood ratio, (3.6) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 27.1 39.1 50.6 63.5 81.7 93.7 98.5 99.7 99.9 100.0 100.0

Skovgaard’s w∗∗, (3.10) 0.7 1.7 3.4 7.2 19.3 42.0 68.0 85.9 92.5 96.1 98.3

Directional, (4.2) 1.0 2.5 5.0 10.1 25.2 50.2 75.2 90.0 94.9 97.4 98.9

n = 60

Likelihood ratio, (3.6) 98.4 99.3 99.7 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 2.4 5.3 9.6 17.3 36.6 62.9 84.2 94.6 97.6 98.9 99.6

Skovgaard’s w∗∗, (3.10) 0.6 1.7 3.5 7.5 20.4 43.9 70.3 87.4 93.5 96.7 98.6

Directional, (4.2) 1.0 2.5 5.0 10.0 25.1 50.1 75.2 90.2 95.1 97.6 99.0

n = 90

Likelihood ratio, (3.6) 65.9 77.1 85.0 91.5 97.3 99.4 99.9 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 1.3 3.2 6.1 12.0 28.5 54.2 78.2 91.7 96.0 98.1 99.2

Skovgaard’s w∗∗, (3.10) 0.8 2.1 4.3 8.9 23.0 47.6 73.2 89.0 94.5 97.2 98.8

Directional, (4.2) 0.9 2.5 5.0 10.1 25.0 50.1 75.1 90.1 95.1 97.6 99.0

n = 120

Likelihood ratio, (3.6) 36.6 50.0 61.6 73.6 88.6 96.7 99.3 99.9 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 1.1 2.9 5.6 11.0 26.8 52.2 76.5 90.9 95.5 97.8 99.1

Skovgaard’s w∗∗, (3.10) 0.9 2.3 4.6 9.4 24.0 48.7 73.9 89.4 94.6 97.3 98.9

Directional, (4.2) 1.0 2.5 5.0 10.1 25.1 50.1 75.0 90.0 95.0 97.5 99.0

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0
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Figure 4: Graphs for the fourth simulation scenario, where the dimension of the parameter

of interest is equal to d = 2. The alternative model for the non-chordal graph on the left is

compared against the null model on the right.
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Figure 5: Results based on 100 000 samples simulated under the null model represented by

the right graph of Figure 4 with n = 7 and q = 4. On the left, ordered empirical p-values

p̂(i) (i = 1, . . . , 100 000) smaller than 0.1 are compared with the uniform distribution on

the diagonal for w (dot-dashed), w∗ (dashed), w∗∗ (long-dashed), and the directional test

(solid). On the right, the corresponding relative errors {p̂(i) − (i/n)}/(i/n) are plotted in a

similar fashion only for w∗, w∗∗, and the directional method.
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Figure 6: BCR signaling pathway involving q = 35 gene products. The interest is in testing

whether a simpler path without the d = 12 gray edges can be identified.
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