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Abstract: Most existing community discovery methods focus on partitioning all

nodes of the network into communities. However, many real networks contain

background nodes that do not belong to any community. In such a situation,

typical methods tend to artificially split the background nodes and group them

together with communities with relatively stronger connection, hence lead to dis-

torted results. To avoid this, some community extraction methods have been de-

veloped to achieve community discovery with background nodes, which are based

on searching algorithms, hence have difficulties in handling large-scale networks

due to high computational complexity. To this end, in this paper we propose

some algorithms with polynomial complexity to achieve community extraction

of large-scale networks. We rigorously show that the proposed algorithms have

attractive theoretical properties. In particular, the estimators of the community

labels using the proposed algorithms reaches the asymptotic minimax risk under

the community extraction model, a specific stochastic block model. Then, we

illustrate the advantages and feasibility of the proposed algorithms via extensive

˚Corresponding authors.

1

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0372



simulated networks and a political blog network.

Key words and phrases: background nodes, community extraction, refinement

algorithm.

1. Introduction

Networks are widely used to represent and analyze the relationship between

interacting units in complex systems (Goldenberg et al., 2010; Wasserman

and Faust, 1994). In network data analysis, community discovery is a fun-

damental problem, which aims to divide the nodes of the network into

communities, so that the nodes in the same community are closely con-

nected, while the nodes from different communities are loosely connected.

Identifying communities can provide important insights about network or-

ganizations. There is a large number of literature on community discovery

from different research fields, such as computer science (Flake et al., 2002),

social science (Moody and White, 2003) and genetics (Spirin and Mirny,

2003). We refer to Fortunato (2010), Fortunato and Hric (2016) and Zhao

(2017) for comprehensive reviews on this topic.

Most literatures on community discovery study the problem without

“background nodes”, where the background nodes are defined as the weak-

ly connected nodes that have no strong association with any community of
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the network. However, there are indeed many examples where background

nodes exist (Zhao et al., 2011). Applied to networks with background nodes,

typical community discovery methods tend to split up weakly connected n-

odes and group them together with tighter communities. To better handle

such situation, community discovery with background nodes began to re-

ceive much attention, which was specially named “community extraction”,

aiming to recover the communities and extract the background nodes at

the same time (Zhao et al., 2011; Wilson et al., 2017).

Like community discovery, community extraction is also a computa-

tionally challenging problem in large-scale networks, because the number of

possible partitions of nodes into non-overlapping groups is non-polynomial

in the size of a network. For typical community discovery, a huge number

of algorithmic approaches have been proposed (Fortunato, 2010), including

many heuristic algorithms, such as normalized cuts (Shi and Malik, 2000),

modularity optimization (Newman and Girvan, 2004), spectral method-

s (Lei and Rinaldo, 2015) and non-negative matrix factorization (Wang

et al., 2011), to name just a few. In addition, many statistical approach-

es have been proposed based on some probabilistic models (Amini et al.,

2013; Wang et al., 2020), such as the stochastic block model (SBM) (Hol-

land et al., 1983) and degree-corrected stochastic block model (DCSBM)
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(Karrer and Newman, 2011).

In contrast, there are much fewer studies on community extraction.

The problem of community extraction was originally studied by Zhao et al.

(2011). They established a community extraction criterion based on ra-

tio cut (Wei and Cheng, 1989) and proposed a heuristic algorithm, i.e. a

tabu search algorithm, to maximize the extraction criterion over all possi-

ble choices. Then, they derived the asymptotic consistency of the one-step

maximizer of the extraction criterion under a community extraction model

based on SBM. Later, Wilson et al. (2017) extended community extraction

to multi-layer networks and proposed a community extraction method by

maximizing the multi-layer extraction score based on modularity. They

considered the asymptotic consistency of the maximizer of the multi-layer

extraction score based on a multi-layer SBM.

These methods are highly instructive and useful in small-scale network-

s, but unfortunately they are based on searching algorithms, hence are not

computationally efficient to deal with large-scale networks. On this ground,

in this paper, we propose some fast algorithms with polynomial complexi-

ty to achieve community extraction of large-scale networks, and rigorously

show that the proposed algorithms have attractive theoretical properties.

In particular, the estimators of the community labels using some of the
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proposed algorithms reaches the asymptotic minimax risk under the com-

munity extraction model, a specific stochastic block model.

Specifically, we proposed a two-step refinement algorithm for commu-

nity extraction, and present that under certain conditions the proposed

refinement algorithm initialized by two algorithms based on low rank ap-

proximation and spectral clustering, respectively, reaches the established

asymptotic minimax risk under the community extraction model. Hence,

the asymptotic minimax risk specially for community extraction is first es-

tablished in this paper. Then, we illustrate the advantages of the proposed

algorithms for community extraction via extensive simulation studies and

a practical application.

Our study on community extraction has conquered new challenges in

both algorithm and theory. First, existing methods often struggle to find

a suitable initialization method based on spectral clustering to handle net-

works with background nodes. This is because in a network model with

background nodes, the signal-to-noise ratio of the Kth eigenvector of the

adjacency matrix may be significantly low, where K is the number of clus-

ters of network nodes, including K´1 communities and a set of background

nodes. To deal with the first challenge, we propose an initialization method

that is more suitable for identifying background node set considering the
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signal-to-noise ratio problem. Second, in the refinement step of many ex-

isting two-step methods, the fundamental concept is to assign a node to

the cluster with which it has the closest connection. However, this ap-

proach may not effectively handle background nodes. Hence, we propose

a refinement based on the likelihood information of the community extrac-

tion model that we studied. Finally, when establishing the upper or lower

bounds of the asymptotic minimax risk in the network model including

background nodes, many conditions used in existing studies are somewhat

unreasonable and restrictive. This is described in terms of the upper and

lower bounds of the asymptotic minimax risk respectively in Section S.5.3

of the Supplement. Hence, we use new tools to establish the asymptotic

minimax risk under more relaxed conditions.

The rest of this paper is organized as follows. In Section 2, we propose

a refinement algorithm and their initialization algorithms for community

extraction. In Section 3, we establish the theoretical results of the pro-

posed algorithms. Then, we compare the proposed refinement algorithm

with some of its competitors via extensive simulation results in Section 4,

followed by a practical application in Section 5. We conclude this paper

in Section 6, and relegate the technical proofs as well as some additional

simulation results and discussions to the Supplement.
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2. Algorithms for community extraction

In this section, we will propose some algorithms for community extraction.

2.1 Notation

First, we present some general definitions and notation. For any positive

integer n, let rns “ t1, ¨ ¨ ¨ , nu. For any set S, let |S| denote the number

of its elements. For a positive real number x, let txu and rxs denote the

largest integer not greater than x and the smallest integer not less than

x, respectively. For two positive sequences txnu
8
n“1 and tynu

8
n“1, xn Á yn

means that xn ě Cyn for some constant C ą 0; xn À yn means that xn ď

Cyn for some constant C ą 0; xn — yn means that 1
C
yn ď xn ď Cyn for some

constant C ě 1; xn " yn means that yn “ opxnq; xn ! yn means xn “ opynq.

For a vector x “ px1, ¨ ¨ ¨ , xnq
J P Rn, }x}2 “

a

ř

x2
i . For a matrix M “

pMijqnˆn P Rnˆn, }M}F “ p
řn
i“1

řn
j“1 M

2
ijq

1{2 and }M}op “ smaxpM q,

where smaxpM q denotes the largest singular value of M . For two matrices

A “ pAijqmˆn and B “ pBijqmˆn P Rm,n, xA,By “
řm
i“1

řn
j“1AijBij. Note

that in this paper we will use η to represent a sequence that tends to 0 in

some places later, which represents different sequences in different places.
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2.2 SBM for community extraction

2.2 SBM for community extraction

We consider the undirected network G “ pV,Eq with node set V “ rns and

edge set E Ď tpi, jq : i, j P V u, which can be formulated by the adjacency

matrix A “ pAijqnˆn P t0, 1u
nˆn. Here, Aij “ 1 if pi, jq P E, otherwise

Aij “ 0. Suppose that there is no self-loop in network G, i.e. Aii “ 0 for

each node i P V .

For community extraction of network G, the nodes of G can be divided

into two categories: community nodes and background nodes. Specifically,

each community node belongs to one community of G, which generally

has more connections with nodes belonging to the same community than

with nodes belonging to different communities or outside all communities.

On the contrary, a background node does not belong to any community

of G, which has relatively few connections to all communities. Suppose

that network G has K ´ 1 communities and some background nodes. Let

c “ pcp1q, ¨ ¨ ¨ , cpnqqJ denote the community label vector of network G,

where for each i P rns, we let cpiq “ K if i is a background node, otherwise

let cpiq “ k if i belongs to community k for k P rK ´ 1s.

The network G with both community nodes and background nodes can
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2.2 SBM for community extraction

be characterized by the following SBM:

Aij “ Aji
ind
„ Bern

`

Pcpiqcpjq
˘

for all i ă j P rns,

Aii ” 0 for all i P rns,

min
k‰K

Pkk ą max
u‰v

u,vPrK´1s

Puv, min
k‰K

Pkk ą PKl ” q for all l P rKs,

(2.1)

where the edge-probability matrix P “ pPklqKˆK P r0, 1s
KˆK with Pkl ” Plk

and the community label vector c “ pcp1q, ¨ ¨ ¨ , cpnqqJ P rKsn are model

parameters. The constraints min
k‰K

Pkk ą PKl ” q are imposed on P to

ensure that a background node is connected to any other node with a very

low probability, and there is no difference in the connection probability

between a background node and any other node.

Under SBM, the premise that communities can be detected is that

there exists some type of separability between communities in terms of the

probability matrix P . For example, Yun and Proutiere (2016) defined this

separability as the separability between any two rows of P . In fact, the

proposed model in (2.1) and the model studied in Zhang and Zhou (2016)

exhibit such type of separability. Note that both Yun and Proutiere (2016)

and Zhang and Zhou (2016) require that the node numbers of different

communities or groups are of the same order, whereas in this paper, our

study includes situations that allow for significant differences between the

node numbers of different groups. In addition, Yun and Proutiere (2016)
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2.3 Refinement algorithms for community extraction

requires that the values in each row of P are of the same order, but such

requirement is not needed in our study.

2.3 Refinement algorithms for community extraction

In this subsection, we first propose a two-step Refinement Algorithm for

Community Extraction, abbreviated as RACEn and partially inspired by

the algorithm frameworks of Gao et al. (2017) and Gao et al. (2018), where

the symbol n next to RACE means that it need to apply the initialization

algorithm for n times. For each i P rns, let A´i P t0, 1u
pn´1qˆpn´1q denote

the submatrix of the adjacency matrix A, which is obtained by removing

the ith row and column of A.

Algorithm 1. pRACEnq

Input: The adjacency matrix A P t0, 1unˆn, an initialization algorithm

and the specific value of K ě 2.

Output: An estimator č P rKsn of the community label vector c P rKsn.

1. (Initialization) For each i P rns, applying the initialization algorithm

toA´i, we get the output pc0ip1q, . . . , c0ipi´ 1q, c0ipi` 1q, . . . , c0ipnqq
J

,

which is a vector with length n´ 1. Define c0i “ pc0ip1q, . . . , c0ipnqq
J

with c0ipiq “ 0.
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2.3 Refinement algorithms for community extraction

2. (Refinement) For each k, l P rKs, let

P 0i
kl “

$

’

’

’

&

’

’

’

%

ř

uăv
AuvItc0ipuq“k,c0ipvq“ku

1
2
n0i
k pn

0i
k ´1q

, k “ l,
ř

u,vPrns

AuvItc0ipuq“k,c0ipvq“lu

n0i
k n

0i
l

, k ‰ l,

with n0i
k “

ř

jPrns Itc0ipjq “ ku. Let q̂0i “ t
řK´1
k“1 n

0i
k P

0i
Kk ` pn

0i
K ´

1qP 0i
KK{2u{t

řK´1
k“1 n

0i
k ` pn

0i
K ´ 1q{2u, and update P 0i

Kl “ q̂0i for all

l P rKs. For each i P rns, let

čpiq “ argmax
kPrKs

K´1
ÿ

l“1

ÿ

j:c0ipjq“l

!

Aij logP 0i
kl ` p1´ Aijq logp1´ P 0i

kl q

)

.

Assuming that the initial estimator is reasonable and reliable, then for

node i, the refinement step can be viewed as a majority voting decision

based on the initial result c0i. If c0ipjq “ cpjq for each j ‰ i, then čpiq is

the MLE of cpiq.

Obviously, the performance of Algorithm 1 critically depends on the

properties of the initialization algorithm. The output of the initialization

algorithm needs to perform reasonably well. Next, we show that the initial

estimator only needs to satisfy a certain weak consistency criterion, based

on which the refinement step of Algorithm 1 will lead to an output with

optimal misclassification proportion.

Similar to Gao et al. (2018), applying the initialization algorithm for

n times in Algorithm 1 can facilitate the technical proof for establishing
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2.4 Initialization algorithm

the theoretical results of the refinement algorithm. However, when n is

huge, repeating the initialization algorithm for n times may be very time-

consuming. Therefore, in practical applications, we usually use its acceler-

ated version Algorithm S1, abbreviated as RACE, to replace it. We relegate

Algorithm S1 to the Supplement. It is worth mentioning that RACE only

runs the initialization algorithm once, thus accelerating the speed. In fact,

suggested by some numerical results presented in Section S.1.1, the commu-

nity extraction performance of Algorithm 1 and Algorithm S1 is extremely

similar. Hence, in the following simulation study and real data analysis, we

will all use RACE.

Note that the performance of the proposed refinement algorithm may

largely rely on good performance of the initialization algorithm, which we

will study next.

2.4 Initialization algorithm

We propose an initialization algorithm, abbreviated as INIT, based on low

rank approximation, for Algorithms 1 and S1, similar to the initialization

algorithm proposed by Gao et al. (2018) for community discovery without

background nodes, whose output satisfies Condition 1 in Theorem 3.

Algorithm 2. pINITq
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2.4 Initialization algorithm

Input: The adjacency matrix A P t0, 1unˆn, the specific value of K, the

threshold parameter τ and the approximation parameter ξ.

Output: An estimator c0
init “ pc

0
initp1q, ¨ ¨ ¨ , c

0
initpnqq

J P rKsn of the commu-

nity label vector c P rKsn.

1. Define Aτ P t0, 1unˆn by replacing all elements in the i-th row and

column of A with zero, if the sum of the i-th row of A is larger than

τ , for each i P rns.

2. Solve the following low rank approximation problem

M̃ “ arg min
rankpMqďK

MPRnˆn

}Aτ
´M}

2
F (2.2)

by singular value decomposition.

3. For each i P rns, let M̃i denote the transpose of the ith row of M̃ .

Solve the following p1`ξq-approximation K-means optimization prob-

lem: find some c̃0
init “ pc̃

0
initp1q, ¨ ¨ ¨ , c̃

0
initpnqq

J
P rKsn, such that

K
ÿ

k“1

min
νkPRn

ÿ

i:c̃0initpiq“k

}M̃i ´ νk}
2
2 ďp1` ξq min

cPrKsn

K
ÿ

k“1

min
νkPRn

ÿ

i:cpiq“k

}M̃i ´ νk}
2
2.

(2.3)

4. For each k, l P rKs, let

P̃ 0
kl “

$

’

’

’

&

’

’

’

%

ř

iăj
AτijItc̃

0
initpiq“k,c̃

0
initpjq“ku

1
2
ñ0
kpñ

0
k´1q

, k “ l,
ř

i,jPrns

AτijItc̃
0
initpiq“k,c̃

0
initpjq“lu

ñ0
kñ

0
l

, k ‰ l,
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2.4 Initialization algorithm

with ñ0
k “

ř

jPrns Itc̃0
initpjq “ ku. Let

k˚ “ arg min
kPrKs

P̃ 0
kk. (2.4)

Then, for each i with c̃0
initpiq “ k˚, let c0

initpiq “ K; for each i with

c̃0
initpiq “ K, let c0

initpiq “ k˚; and let c0
initpiq “ c̃0

initpiq, for each re-

maining node.

Note that in the first step of Algorithm 2, the elements of the rows and

columns ofA whose sums are too large are replaced with zero to improve the

denoising effect of the proposed algorithm in sparse regime. Such strategy

was previously used in Chin et al. (2015) and Gao et al. (2018). If this

strategy is not adopted, the high probability error bound for the output of

Algorithm 2 would suffer an extra multiplier of order Oplog nq.

Note that to solve the p1 ` ξq-approximation K-means optimization

problem in step 3 of Algorithm 2, some methods have been studied, such

as the p1 ` ξq-approximation algorithm proposed by Kumar et al. (2004).

However, such methods are mainly used for theoretical investigation rather

than practical implementation. Hence, in the later simulation studies and

real data analysis, we will use the classical K-means algorithm in Hartingan

and Wong (1979) to replace a p1 ` ξq-approximation algorithm in step 3

of Algorithm 2, to approximately solve the p1` ξq-approximation K-means

optimization problem.
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2.4 Initialization algorithm

Note that Algorithm 2 (INIT) has some drawbacks: in its K-means

clustering step, it needs to cluster n n-dimensional vectors, which makes

it very time-consuming, especially when n is particularly large. Besides, it

will have poor performance when the signal is relatively small. To this end,

we propose using the following spectral clustering algorithm, abbreviated

as ESC, as the initialization algorithm, which is evolved from the spectral

clustering algorithm proposed by Lei and Rinaldo (2015) but more suitable

for dealing with networks with background nodes.

Algorithm 3. pESCq

Input: The adjacency matrix A P t0, 1unˆn, the specific value of K, the

threshold parameter τ and the approximation parameter ξ.

Output: An estimator c0
esc “ pc0

escp1q, ¨ ¨ ¨ , c
0
escpnqq

J P rKsn of the label

vector c P rKsn.

1. Define Aτ P t0, 1unˆn by replacing all elements in the ith row and

column of A with zero, if the sum of the ith row of A is larger than

τ , for each i P rns.

2. Calculate ÛK´1 P RnˆpK´1q consisting of the leading K ´ 1 eigenvec-

tors (ordered in absolute eigenvalue) of Aτ .

3. For each i P rns, let ÛK´1
i denote the transpose of the ith row of
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2.4 Initialization algorithm

ÛK´1. Solve the following p1` ξq-approximation K-means optimiza-

tion problem: find some c̃0
esc “ pc̃0

escp1q, ¨ ¨ ¨ , c̃
0
escpnqq

J P rKsn, such

that

K
ÿ

k“1

min
νkPRK´1

ÿ

i:c̃0escpiq“k

}ÛK´1
i ´ νk}

2
2

ď p1` ξq min
cPrKsn

K
ÿ

k“1

min
νkPRK´1

ÿ

i:cpiq“k

}ÛK´1
i ´ νk}

2
2. (2.5)

4. For each k, l P rKs, let

P̃ 0
kl “

$

’

’

’

&

’

’

’

%

ř

iăj
AτijItc̃

0
escpiq“k,c̃

0
escpjq“ku

1
2
ñ0
kpñ

0
k´1q

, k “ l,
ř

i,jPrns

AτijItc̃
0
escpiq“k,c̃

0
escpjq“lu

ñ0
kñ

0
l

, k ‰ l,

with ñ0
k “

ř

jPrns Itc̃0
escpjq “ ku. Let

k˚ “ arg min
kPrKs

P̃ 0
kk. (2.6)

Then, for each i with c̃0
escpiq “ k˚, let c0

escpiq “ K; for each i with

c̃0
escpiq “ K, let c0

escpiq “ k˚; and let c0
escpiq “ c̃

0
escpiq, for each remain-

ing node.

From the simulation results presented in Section 4, it can be seen that

the community extraction performance of ESC and INIT is very similar.

However, in terms of running time, ESC significantly outperforms INIT,

because it only needs to cluster n pK ´ 1q-dimensional vectors.
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Note that when applying Algorithms 2 and 3, we choose τ “ 2d̄, where

d̄ “
řn
i“1

řn
j“1Aij{n is the average degree of the network. In addition,

we use the corrected Bayesian Information Criterion (CBIC) proposed by

Hu et al. (2020) for selecting K. In Section S2 of the Supplement, we will

discuss in detail how we select τ and K, and present some simulation results

for model selection.

3. Theoretical guarantee of algorithms

In this section, we investigate the theoretical properties of the two initializa-

tion algorithms INIT and ESC as well as the refinement algorithm RACEn.

3.1 Parameter space and loss function

We consider the case of K “ 2 as in Zhao et al. (2011) and Wilson et al.

(2017), which was regarded as “single extraction”. In the case of K “ 2,

for each c P r2sn and each k P r2s, let nkpcq “
ˇ

ˇ

ˇ
ti P rns : cpiq “ ku

ˇ

ˇ

ˇ
.

Let C0 “ tc : rns Ñ r2snu. We consider the following parameter space for

community extraction:

Θnpp, q, βq “
!

pP , cq : c P C0, n1pcq P
”

tβnu´ 1, rp1´ βqns` 1
ı

,

P “ P J
“ pPklq2ˆ2 P r0, 1s

2ˆ2, P11 “ p ą q “ P12 “ P21 “ P22

)

,

(3.1)
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3.2 Asymptotic minimax risk

where β P p0, 1{2s and p, q P p0, 1q with p ą q. Further, we assume that

β " 1{n and 1{n ! p ă 1´ ε0 for some small constant ε0 P p0, 1q.

Remark 1. The constraint P11 “ p ą q “ P12 “ P21 “ P22 ensures that

a background node have relatively few connections to either community and

background group, where the nodes with label 2 are background nodes.

Next, we present the loss function for defining the asymptotic minimax

risk. Specifically, for any c P C0, the loss function is defined as

`pc, ĉq “
1

n

n
ÿ

i“1

Itcpiq ‰ ĉpiqu, for each ĉ P r2sn, (3.2)

which is the normalized Hamming distance between c and ĉ. This is a

misclassification rate of ĉ if c is considered as the true label vector.

3.2 Asymptotic minimax risk

For any estimator ĉ of c, the maximum risk of the SBM in (2.1) based on

the parameter space Θnpp, q, βq in (3.1) in terms of the loss function ` in

(3.2) and the estimator ĉ is defined as follows:

sup
pP ,cqPΘnpp,q,βq

EP ,c `pc, ĉq. (3.3)

Before deriving the asymptotic minimax risk, we need to give some

definitions and notation. For any t ě 0, define

Itpp, qq “ ´ log
 

qtp1´t
` p1´ qqtp1´ pq1´t

(

. (3.4)
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3.2 Asymptotic minimax risk

Then, Itpp, qq{p1 ´ tq with t P p0, 1q Y p1,`8q is the so-called Rényi-

divergence with order t between two Bernoulli distributions Bernpqq and

Bernppq, and Itpp, qq ” I1´tpq, pq for any t P p0, 1q. Let

t˚ “ t˚pp, qq “
log

”

pp´1qtlogp1´pq´logp1´qqu
pplog p´log qq

ı

log qp1´pq
pp1´qq

. (3.5)

Due to Lemma 1 provided in the Supplement, we have that t˚ is the unique

maximum point of Itpp, qq on r0,`8q.

Next, we introduce an assumption to prepare for the analysis of the

upper and lower bounds of the asymptotic minimax risk.

Assumption 1. As nÑ 8, ´β2nIt˚pp, qq{ log β Ñ 8.

Remark 2. Assumption 1 assumes that as nÑ 8, β can be any constant

in p0, 1{2s. β can also go to zero, but cannot go to zero too fast. β can go to

0 with certain rate, implies that the number of community nodes can have

an order of magnitude difference from the number of background nodes. On

the other hand, Assumption 1 assumes that It˚pp, qq cannot be too smal-

l, indicating that there must be a significant gap between the connectivity

within the community and the connectivity beyond the community.

Assume that network A is generated from model (2.1) with parameter

pP , cq P Θnpp, q, βq. Below, we will use a two-step estimation method to get
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3.2 Asymptotic minimax risk

an upper bound of the maximum risk. Specifically, we use a slightly modi-

fied version of RACEn, where in the refinement step, we replace p̂0i and q̂0i in

RACEn with p and q, respectively. Then, define ĉp,q “ pĉp,qp1q, ¨ ¨ ¨ , ĉp,qpnqq
J

with

ĉp,qpiq “

$

’

’

’

&

’

’

’

%

1, LpAi; c
0i, pq ą LpAi; c

0i, qq,

2, otherwise,

(3.6)

where LpAi; c
0i, xq “

ř

j‰i:c0ipjq“1 tAij log x` p1´ Aijq logp1´ xqu for x P

p0, 1q and Ai denotes the i-th row of A.

Condition 1. For a given positive sequence tγnu, there exists a constant

C0 ą 0, such that

inf
pP ,cqPΘnpp,q,βq

min
iPrns

PP,c
 

`
`

c´i, c
0
´i

˘

ď γn
(

ě 1´ n´p1`C0q, (3.7)

where c´i “ pcp1q, ¨ ¨ ¨ , cpi´ 1q, cpi` 1q, ¨ ¨ ¨ , cpnqqJ, c0 is obtained by an

initialization algorithm, and c0
´i “ pc

0p1q, ¨ ¨ ¨ , c0pi´ 1q, c0pi` 1q, ¨ ¨ ¨ , c0pnqq
J

P r2sn´1 is the output of the initialization algorithm c0 applied to A´i.

Condition 1 requires that in each of the n implementations of the ini-

tialization algorithm, the loss is at most γn almost surely. This requirement

imposes a certain uniform consistency condition on the estimators of the

group labels obtained by the initialization algorithm.

Based on the above definition, we can obtain the following proposition.
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3.2 Asymptotic minimax risk

Proposition 1. Suppose that as n Ñ 8, βnIt˚ Ñ 8 and c0 obtained

by the initialization algorithm satisfies Condition 1 with γn “ opβq when

limnÑ8 p{q ą 1, and with γn “ op´βpp ´ qq{pq when limnÑ8 p{q “ 1. If

limnÑ8 βnIt˚pp, qq{ log n ď 1, then

lim sup
nÑ8

1

βnIt˚pp, qq
log

!

sup
pP ,cqPΘnpp,q,βq

EP ,c`pc, ĉp,qq
)

ď ´1. (3.8)

If limnÑ8 βnIt˚pp, qq{ log n ą 1, then E`pc, ĉp,qq ď n´p1`Cq for some small

positive constant C, which means that ĉp,q exactly restored the label c in the

expected sense.

Based on Proposition 1, we establish the following theorem, which char-

acterizes the asymptotic behavior of ĉp,q in terms of the resulting maximum

risk that it achieves, when we choose Algorithm 2 as our initialization al-

gorithm, i.e, c0 “ c0
init.

Theorem 1. Assume
!

Θnpp, q, βq
)8

n“1
satisfies Assumption 1 and limnÑ8 p{q ą

1. If limnÑ8 βnIt˚pp, qq{ log n ď 1, then

lim sup
nÑ8

1

βnIt˚pp, qq
log

!

sup
pP ,cqPΘnpp,q,βq

EP ,c`pc, ĉp,qq
)

ď ´1. (3.9)

If limnÑ8 βnIt˚pp, qq{ log n ą 1, then E`pc, ĉp,qq ď n´p1`Cq for some small

positive constant C, which means that ĉp,q exactly restored the label c in the

expected sense. When limnÑ8 p{q ą 1 is replaced by limnÑ8 p{q “ 1, if an
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3.2 Asymptotic minimax risk

additional condition ´pp´ qqβ2nIt˚pp, qq{pp log βq Ñ 8 is added, the above

conclusion still holds.

Next, we show that the maximum risk of ĉp,q established in Theorem 1

is the best we can hope to achieve, i.e., it matches the asymptotic minimax

lower bound. To do this, we first establish the minimax lower bound in

Theorem 2.

Theorem 2. Assume the parameter space sequence
!

Θnpp, q, βq
)8

n“1
satis-

fies Assumption 1. Then, when p — q,

lim inf
nÑ8

1

βnIt˚pp, qq
log

!

inf
ĉ

sup
pP ,cqPΘnpp,q,βq

EP ,c `pc, ĉq
)

ě ´1. (3.10)

When p — q is replaced by p " q, if additional conditions

p log3
´p

q

¯

ă 8, lim
nÑ8

log
log p

q

p

log n
ă 1 and lim

nÑ8

log βnp

log log p
q

ą 3

are added, (3.10) still holds.

Then, combining Theorems 1 and 2, we immediately obtain the asymp-

totic minimax risk for community extraction, which is presented in the

following corollary.

Corollary 1. Assume the parameter space sequence
!

Θnpp, q, βq
)8

n“1
sat-

isfies both the conditions of Theorem 1 and Theorem 2. Then,

inf
ĉ

sup
pP ,cqPΘnpp,q,βq

EP ,c `pc, ĉq “ exp
!

´
`

1` op1q
˘

βnIt˚pp, qq
)

. (3.11)
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3.3 Theoretical guarantee of RACEn

Remark 3. It can be seen that the asymptotic minimax risk rate for com-

munity extraction, i.e. It˚pp, qq, and that for community discovery, i.e.

2I1{2pp, qq, are very different by the fact I1{2pp, qq ă It˚pp, qq ă 2I1{2pp, qq.

The reasons of this difference are listed as follows: p1q when K “ 2, P11 “ p

and P12 “ P22 “ q, the most unfavorable scenario for c in our parameter

space is the case that n1pcq “ βn. However, in Zhang and Zhou (2016),

P11 “ P22 “ p and P12 “ q, and the most unfavorable scenario for c is

the case that n1pcq “ n2pcq “ n{2, where the node numbers of differen-

t groups are balanced. p2q We do not have the symmetry property that

pP11, P12q “ pp, qq and pP21, P22q “ pq, pq. These two differences not only

lead to the difference of the minimax risk rates, but also make the work of

establishing the theoretical results for community extraction more difficult.

3.3 Theoretical guarantee of RACEn

Below, we ill establish the property that the output č of Algorithm 1

achieves the asymptotic minimax risk in (3.11).

Theorem 3. Suppose that βnpp ´ qq4{p Ñ 8, βnIt˚pp, qq Ñ 8, p — q as

nÑ 8, and the initialization algorithm in Algorithm 1 satisfies Condition

1 with

γn “ o

"

´
β

log β
pp´ qq

*

. (3.12)
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3.4 Consistency property of the initial algorithms

Then, there is a sequence η Ñ 0, such that

sup
pP ,cqPΘnpp,q,βq

PP ,c
“

`pc, čq ě exp
 

´ p1` ηqβnIt˚pp, qq
(‰

Ñ 0, (3.13)

where č is the output of Algorithm 1. When p — q is replaced by p " q, if

an additional condition

γn “ o

˜

´
β

log β
q

log log p
q

log p
q

¸

(3.14)

is added, (3.13) still holds.

Theorem 3 shows that the community extraction result of Algorithm

1 reaches the asymptotic minimax risk of community extraction we estab-

lished.

3.4 Consistency property of the initial algorithms

First, we establish the consistency property of Algorithm 2 (INIT).

Theorem 4. Let K “ 2. Suppose that as nÑ 8, ´β2npp´qq2{pp log βq Ñ

8. Let τ “ C1pnp ` 1q for some sufficiently large constant C1 ą 0. Then,

the output of Algorithm 2, i.e. c0
init, satisfies

inf
pP ,cqPΘnpp,q,βq

PP,c
"

n`
`

c, c0
init

˘

ď Cp1` ξq
np` 1

βnpp´ qq2

*

ě 1´ n´p1`C
1q,

for constants C,C 1 ą 0, where ξ comes from the p1 ` ξq-approximation

K-means optimization in step 3 of Algorithm 2.
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Below, we will establish the consistency property of ESC.

Theorem 5. Let pP , cq P Θnpp, q, βq and assume that as nÑ 8, ´β∆2pλ1´

λ2q
2{pp log βq Ñ 8, where λ1 and λ2 are the first and second largest eigen-

values of M 1 “ pPcpiqcpjqqnˆn, respectively, and

∆2
“

1

px̃` zq2 ` y2

#

1
a

n1pcq
px̃` zq ´

1
a

n2pcq
y

+2

with

x̃ “
n1pcqp´ n2pcqq

2
, y “

a

n1pcqn2pcqq and z “
a

x̃2 ` y2.

Then, there exist two constants C,C 1 ą 0, such that

PP,c
"

`
`

c, c0
esc

˘

ď Cp1` ξq
p

∆2pλ1 ´ λ2q
2

*

ě 1´ n´p1`C
1q,

where c0
esc is the output of Algorithm 3, and ξ comes from the p1 ` ξq-

approximation K-means optimization in step 3 of Algorithm 3.

By simple calculation, we see that limnÑ8 p{q ą 2p1´βq{β is a sufficient

condition for ∆ ą 0.

4. Simulation studies

In this section, we compare the performance of the refinement algorith-

m RACE initialized with the two initialization algorithms INIT and ESC,
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respectively, with some of their competitors, including a multilayer extrac-

tion algorithm based on modularity that was proposed by Wilson et al.

(2017) (abbreviated as M-E), a spectral clustering on ratios-of-eigenvectors

that was proposed by Jin (2015) (abbreviated as SCORE), a convexified

modularity maximization approach for estimating the communities under

degree-corrected block models that was proposed by Chen et al. (2018) (ab-

breviated as CMM), and a two-stage algorithm to deal with the community

detection under degree-corrected block models that was proposed by Gao

et al. (2018) (abbreviated as Gao). To make Gao comparable to our algo-

rithms, we have made it have the same initialization algorithms, i.e. INIT

and ESC, as ours, and the resulting two-stage algorithms are abbreviated as

Gaoinit and Gaoesc, respectively. Similarly, RACEinit and RACEesc denote

the refinement algorithms based on RACE and initialized with INIT and

ESC, respectively. All methods are implemented in software R and run on

a single processor with an Intel(R) Xeon(R) E5-2620 CPU of 2.10 GHz.

We consider the simulation setting used in Li et al. (2020) under the

framework of stochastic block model, where all simulations are repeated 100

times. Specifically, we generate a network with n nodes containing K ´ 1
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communities. For any nonnegative constants p0, q0 and q10, let

P0 “

»

—

—

–

PK´1 q01K´1

q01
J
K´1 q0

fi

ffi

ffi

fl

,

where PK´1 “ pPK´1,klqpK´1qˆpK´1q with PK´1,kk “ p0 and PK´1,kl “ q10 for

k ‰ l P rK ´ 1s and 1K´1 “ p1, ¨ ¨ ¨ , 1q
J P RK´1. Let P “ dP0{

`

nωJP0ω ´

ωJdiagpP0q
˘

, where diagpP0q is a K-dimensional vector composed of the

diagonal elements of the matrix P0, d P R` is the expected average degree

of the network and ω “ pω1, ¨ ¨ ¨ , ωKq
J P r0, 1sK with

řK
k“1 ωk “ 1 is

the proportional vector composed of the proportions of the network nodes

belonging to the communities as well as the background nodes. Given

the label vector c “ pcp1q, ¨ ¨ ¨ , cpnqqJ , the edges Aij’s are generated as

independent Bernoulli variables with probabilities proportional to Pcpiqcpjq’s,

respectively.

First, we consider the case of only one community, i.e. K “ 2. Let

n “ 100, d “ 8 and ω “ p1 ´ s, 1 ` sqJ{2. Note that q0 ” q10 when K “ 2,

and hence, we consider the following four settings:

(I) q10 “ q0 “ 1, p0 “ r1 q0, r1 varies from 3 to 7 and s “ 0;

(II) d varies from 8 to 26, p0 “ 4, q0 “ q10 “ 1 and s “ 0;

(III) s varies from 0 to 0.4, p0 “ 4 and q0 “ q10 “ 1;
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Figure 1: The performance of community extraction in case of K “ 2 for

Settings (I)-(IV).
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Figure 2: The running times of community extraction in case of K “ 2 for

Settings (I)-(IV).

(IV) log10 n varies from 2 to 2.6, p0 “ 4, q0 “ q10 “ 1, d “ 12 and s “ 0.

In Settings (I)-(IV), we investigate the community extraction perfor-

mance of the proposed methods and their competitors by varying the val-

ues of some involved parameters, respectively. The simulation results are
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summarized in Figures 1 and 2. From Figure 1, we can see that INIT, ESC,

RACEinit and RACEesc outperform M-E, SCORE, CMM, Gaoinit and Gaoesc

for all the above settings in terms of the extraction loss defined in (3.2). We

notice that for Setting (IV), the performance of M-E deteriorates with the

increase of the expected average degree d. According to our experience, this

is because M-E tends to extract all the network nodes when d is relatively

large. Besides, note that even though Gaoinit and Gaoesc used the same ini-

tialization algorithms as RACEinit and RACEesc, respectively, they still did

not perform very well because the existence of background nodes was not

considered in the refinement step of Gao et al. (2018). Similarly, without

considering the presence of background nodes in the network, SCORE and

CMM also perform poorly in community extraction, which demonstrates

the necessity of developing algorithms for community extraction.

Figure 2 suggests that M-E and CMM are much more time consuming

than the other algorithms. For Setting (IV) in Figure 2, the running time

of M-E and CMM increases rapidly with the increase of n. Overall, SCORE,

ESC, Gaoesc and RACEesc are in the first tier of running speed.

To further demonstrate the advantages of the proposed methods in com-

putational efficiency for dealing with large-scale networks, such as the net-

works with n P r104, 106s, below we only compare the following algorithms:
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Figure 3: The performance for large networks in the case of K “ 2.

ESC, Gaoesc and RACEesc. Specifically, set K “ 2, p0 “ 4, q0 “ q10 “ 1,

s “ 0, d “ 5 log10 n and let log10 n vary from 4 to 6. The obtained re-

sults are summarized in Figure 3, which suggest that all these algorithms

can deal with large-scale networks with millions of nodes, and RACEesc has

much higher community extraction accuracy than ESC and Gaoesc.

Moreover, we also compare the performance of RACE initialized with

the two initialization algorithms INIT and ESC, respectively, with some of

their competitors in situation of K “ 3, which is included in Section S4 of

Supplementary Materials.
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5. Application

We apply RACEinit to the political blog network, which is commonly studied

in the community literatures (Adamic and Glance, 2005; Wang et al., 2020).

The nodes of this network are blogs related to US politics and the edges are

hyperlinks between blogs. The original network contains 1, 490 nodes. We

ignored the directions of the hyperlinks and focused on the largest connected

component of the original network as in Karrer and Newman (2011), hence

obtained a pre-disposed network of blogs containing 1, 222 nodes and 16, 714

edges. By using the method “corrected Bayesian information criterion”

(CBIC) proposed by Hu et al. (2020), we select K as 3.

As shown in Figure 4(1), all blogs in the pre-disposed network were

manually labeled as liberal or conservative. In many studies on community

discovery of this network, such as Amini et al. (2013) and Wang et al. (2020),

researchers often regard the political party labels as the ground truth com-

munity labels. In contrast, in this paper, we adopt a new perspective, the

perspective of community extraction, to re-explore the community struc-

ture of this network. From Figure 4(2), we can see that the blogs labeled as

either liberal or conservative can be clearly divided into two groups: core

members and non-core members, in which core members have strong inter-

nal connections, but non-core members have very weak connections with
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4(a) Liberal group v.s. conservative group 4(b) Apply RACEinit to the whole network

with K “ 3

Figure 4: Visualization of the whole network

both core members and other non-core members.

Indeed, such situation is a suitable example for the community ex-

traction framework studied in this paper. By applying RACEinit to the

sub-network composed of the members of each political party with K “ 2

respectively, we can extract one community from each sub-network, pre-

sented in Figure 5, where the community nodes can be viewed as the core

members, while the background nodes can be viewed as non-core members.

Furthermore, we plot the adjacency matrices of the two sub-networks in

Figures 6(1)-(2), where the rows/columns are sorted with respect to the

community nodes versus the background nodes. These reordered adjacency

matrices can demonstrate significant differences between community nodes
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5(a) Apply RACEinit to the liberal sub-

network with K “ 2

5(b) Apply RACEinit to the conservative

sub-network with K “ 2

Figure 5: Visualization of the sub-networks

and background nodes.

The above analysis indicates that there may be a large number of back-

ground nodes in the political blog network that should not be ignored, hence

we decide to use the proposed community extraction method to analyze the

network. Recalling that in the above analysis, we extracted one community

from each sub-network, hence here we set K “ 3, which means that there

may be two communities plus additional background nodes. The commu-

nity extraction results obtained by applying RACEinit to the whole network

are presented in Figure 4(2) from the network visualization view and Figure

6(3) from the adjacency matrix view, respectively. In Figure 4(2), Commu-

nities 1 and 2 are the extracted communities by RACEinit, which overlap

much with the two communities extracted in the sub-networks in Figure 5,
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6(a) Apply RACEinit to the

liberal sub-network with

K “ 2

6(b) Apply RACEinit to the

conservative sub-network

with K “ 2

6(c) Apply RACEinit to the

whole network with K “ 3

Figure 6: The adjacent matrices of the sub-networks and the whole network

i.e. the two core groups extracted from the two sub-networks correspond to

the two political parties, respectively. In addition, the background nodes

are mainly composed of the non-core members of the two sub-networks.

In addition, we plot the adjacency matrix of the whole network in Figure

6(3), where the rows/columns are sorted in the order of community 1, the

group of background nodes and community 2. Figure 6(3) suggests that

each of the extracted communities has a much stronger connection within

itself than with the remaining nodes.

In addition, Table 1 suggests that Communities 1-2 roughly correspond

to the core groups of the two subgraphs in Figure 6, and Backgrounds

roughly correspond to the corresponding non-core groups.
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Table 1: Relationship between Communities 1, 2, backgrounds, and the

core groups and the non-core groups obtained from the two sub-networks

based on RACEinit.
Liberal group Conservative group

Core Non-core Core Non-core

Community 1 146 78 0 2
Community 2 0 3 186 49
Background 3 356 3 396

6. Conclusion

In this paper, we proposed some algorithms for community extraction,

which are applicable to large-scale networks. We established the asymp-

totic minimax risk of the SBM for community extraction, based on a spe-

cific parameter space with weaker constraints than the parameter space

studied in Zhao et al. (2011). Under certain conditions, the proposed algo-

rithm reaches the asymptotic minimax risk, when it is initialized by a low

rank approximation algorithm or a spectral clustering algorithm. Then,

we demonstrated the advantages of the proposed algorithms via extensive

simulation results and a practical application.

Like existing theoretical studies on community extraction (Zhao et al.,

2011; Wilson et al., 2017), the theoretical results in this paper is established

in the case of K “ 2. Indeed, establishing the theoretical results for com-
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munity extraction in the case of K ą 2 is much more challenging, where

nodes in different communities need to be distinguished, in additional to

the need to distinguish the community nodes from the background nodes.

We leave this challenge as future work.
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Supplementary Material

Below we have listed the contents of Supplementary Material. In Section

S1, we propose an accelerated refinement algorithm RACE and indicate that

the performance of RACE and RACEn is very similar via some simulation

results. In Section S2, we demonstrate in detail how we select the tuning pa-

rameters τ and K. In Section S3, we explain and compare the assumptions

of the main theorems and corollary imposed. In Section S4, we compare the

performance of RACE initialized with the two initialization algorithms INIT
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and ESC, respectively, with some of their competitors in situation of K “ 3.

In Section S5, we make some additional discussions. Then, in Section S6,

we present the proofs of Theorems 1-5, Proposition 1 and Corollary S1.
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