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Abstract: For the same null hypothesis, there usually exist multiple valid test statistics.

In nearly all cases, any individual statistic is only powerful against specific types of alter-

natives, and could be rather weak in picking up signals of other types. It is thus crucial,

especially in high-dimensional settings, to combine the information contained in different

test statistics in order to maintain robust power against a wide range of alternatives, thus

avoiding the worst-case scenario. Methods have been proposed for similar purposes, but

they are either computationally expensive or lack theoretical justification. In this paper,

we present a general and easy-to-implement procedure for fusing multiple valid statistics

using resampling methods, such as bootstrap or permutation. The consistency of this

procedure is proved for three popular high-dimensional hypothesis testing problems. The

results of numerical studies show that this fusion procedure maintains robust performance

against a wide range of alternatives, whereas individual test statistics often suffer from

extremely low power.

Key words and phrases: two-sample mean comparison; consistency of test; high-dimensional

data; independence test; permutation.

1. Introduction

Testing high-dimensional null hypotheses has been the subject of intensive stud-
ies. One popular approach, which includes the works of Kosorok and Ma (2007),
Bancroft et al. (2013), and Liang (2016), breaks the null hypothesis into multiple
univariate tests, and focuses on the false discovery rate. For studies on power, the
family-wise error, Kim and Akritas (2010) note that for any given null hypothe-
sis, there usually exist multiple valid statistics, each of which may detect certain
types of signals, but suffer from very low power against others. Thus the test
statistic and types of alternatives are connected in terms of power enhancement
or boosting. For example, with the alternative restricted to be sparse, Fan et al.
(2015) shows how a given test statistic can be made consistent and more powerful
for cross-sectional data. This idea of possible power enhancement against specific
alternatives is later examined in a more general framework by Kock and Prein-
erstorfer (2019). We study a similar problem of power boosting from a different,
yet more practical angle. We propose an efficient procedure for fusing statistics
that could ensure robust power performance against arbitrary alternatives, thus
avoiding the worst-case scenario. In this sense, fusing test statistics is particularly
useful in practice when choosing between opposing recommendations made based
on different test statistics.

To formulate the setup, suppose {Tn,k, k = 1, · · · , K} is a collection of statis-
tics, where K is a fixed integer, such that for any given k, H0 is rejected for
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2 EFANG KONG, YU LIU AND YINGCUN XIA

large Tn,k. Note that a naive form of combination, such as a weighted average∑K
k=1 akTn,k, with ak ≥ 0, is not a good choice, because it is difficult to specify

appropriate values for the coefficients ak so that the statistical significance of one
Tn,k is not obscured by trivial variations in other Tn,k of a larger scale. This is one
of the motivating factors behind the monotone transformation of individual statis-
tics to make them relatively comparable before being combined. One example is
Fisher’s combined p-value

Un := −2
K∑
k=1

log(1− Fn,k(Tn,k)), (1.1)

where Fn,k(.) is the null distribution function of Tn,k. Its relative popularity is
largely because it follows a χ2(.) distribution if Tn,k, for k = 1, · · · , K, are inde-
pendent. Another related example is an equivalence of the smallest p-value:

Un := max
k=1,··· ,K

Fn,k(Tn,k), (1.2)

and H0 is rejected whenever the p-value associated with some Tn,k is too small.
Examples of fusion statistics like (1.1) and (1.2) both suggest that transforming
Tn,k using its distribution function into a uniform (0, 1) is a reasonable choice.
However, be it (1.1) or (1.2), in practice, the unknown Fn,k(.) has to be replaced

with their respective estimates first in order to obtain an empirical version Ûn. The
biggest challenge in their use is to obtain an efficient approximation of the null joint
distribution of {Tn,k, k = 1, · · · , K}. Using (1.2) in a high-dimensional setting is
discussed in Xu et al. (2016) for the two-sample mean comparison problem, where
the approximation of the null distribution is obtained using the standard two-
step procedure: first, derive the (asymptotic) form of Fn,k(.) and Fn(.), the latter
being the (null) joint distribution of {Tn,k, k = 1, · · · , K}; second, find the tail
probabilities associated with these asymptotic (null) distributions using numerical
approximations (with plugged-in estimates of the parameters). This classical two-
step approach is not only computationally intensive, but also suffers from low
numerical efficiency.

In this study, we investigate how to use resampling methods, either bootstrap
or permutation, depending on the specific testing problem, to directly approx-
imate the null distributions of Un, or rather Ûn, for the purpose of fusing test
statistics in high-dimensional hypothesis testing, where the dimension of the data
is not negligible relative to the sample size. A streamlined setup is as follows, with
(1.2) as the fusion statistic. Let Xn

1 = {X1, ..., Xn} denote the original sample.

With a sufficiently large number B, X
n,(b)
1 , for b = 1, · · · , B, denotes B new sam-

ples generated using either bootstrap or permutation, for which H0 holds true.

For b = 1, · · · , B and k = 1, · · · , K, let T (b)
n,k denote the values of the test statis-

tic Tn,k calculated from the sample X
n,(b)
1 . For any k = 1, · · · , K, we estimate

Fn,k(.) by F̂n,k(.), the empirical distribution function based on {T (1)
n,k , · · · , T

(B)
n,k }.

An empirical version of (1.2) is then defined as

Ûn := max
k=1,··· ,K

F̂n,k(Tn,k). (1.3)
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POWER BOOSTING VIA RESAMPLING 3

Next, we compare this with the empirical distribution function of its resampling
counterpart:

Û (b)
n := max

k=1,··· ,K
F̂n,k(T

(b)
n,k), b = 1, · · · , B. (1.4)

Lastly, at significance level α, we reject H0 if

B−1

B∑
b=1

I(Û (b)
n ≥ Ûn) ≤ α, (1.5)

where I(.) denotes the indicator function. We say a statistical test is consistent
if its type-I error is identical to the nominal significance level α, at least asymp-
totically. In this paper, we prove the consistency of the above fusion procedure,
namely, (1.3)–(1.5), in the context of three popular high-dimensional hypothesis
testing problems, discussed in, among others Chung and Romano (2016), Cai et
al. (2014), and Heller et al. (2013), for a selection of test statistics. Our main
results are summarized as follows:

(i) we show the consistency of the empirical bootstrap-based fusion procedure for
the one-sample mean test, where K is the number of statistics to be fused,
and can increase with n;

(ii) we show the consistency of the permutation-based fusion procedure for the
two-sample mean comparison, where K can also increase with n;

(iii) we show the consistency of the permutation-based fusion procedure for the
test of independence between two random vectors; as a byproduct, we pro-
vide a theoretical justification for the practice in Heller et al. (2013), where
the permutation distribution of the HHG statistic is used to approximate its
null distribution.

The rest of the paper is organized as follows. Section 2 and Section 3 present
the one-sample mean test and the two-sample mean comparison, respectively. Sec-
tion 4 discusses testing the independence between two (high-dimensional) random
vectors. A brief discussion on possible extensions is given in Section 5. Numerical
results are given in Section 6. Regulation conditions and proofs are gathered in
the Appendix.

2. Test of one-sample mean

Suppose Xi ∈ Rp, for i = 1, · · · , n, are independent copies of X = (X1, · · · , Xp)⊤,
with mean µ and covariance matrix ΣX . Without loss of generality, suppose the
diagonal elements of ΣX are all ones. Testing H0 : µ = 0, referred to as the one-
sample location model in Kock and Preinerstorfer (2019), is based on the sample
mean X̄n, usually standardized by the sample covariance matrix. When p is large,
so that the inversion of a p × p matrix is much less feasible, if at all possible, a
more popular replacement is given by

δn = (δn,1, ..., δn,p)
⊤ = n1/2D̂−1/2

n X̄n,
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4 EFANG KONG, YU LIU AND YINGCUN XIA

where D̂n = diag(σ̂2
nj, j = 1, · · · , p) is a diagonal matrix of the sample vari-

ances. The use of D̂n instead of the sample covariance matrix is to avoid having
to compute the inverse of a high-dimensional matrix; see, for example, Bai and
Saranadasa (1996), Srivastava and Du (2008), and Kong et al. (2022). For any
integer k ≥ 1, let Ak(.) be a function so that for any vector ν ∈ Rp, Ak(ν) re-
turns the average of its largest (in absolute value) k elements. Apparently, for any
k ≥ 1, Ak(δn) is a pivotal statistic, so that we reject H0 if Ak(δn) is too large.
However, as noted in Cai et al. (2014), Kim and Akritas (2010), and Gregory et
al. (2015), no statistic is uniformly more powerful than others (against all possi-
ble alternatives). For example, when the signals are sparse, but strong, A1(δn),
namely, the supremum statistic considered in Chernozhukov et al. (2019) and Cai
et al. (2014), has greater power than Ak(δn) with a large k, because the latter is
not greatly influenced by a small number of large differences. Similarly, in the case
of dense, but weak alternatives, Ak(δn) with a small k is not likely to be extreme
enough to serve as evidence to reject H0. Furthermore, as demonstrated in Kong
et al. (2022), in the latter case, it is also beneficial to consider Ak(δn) with k = sn,
where sn is some positive integer that can increase with n.

Without loss of generality, suppose 1 ≤ l1 ≤ l2 ≤ · · · ≤ lK ≤ sn is a sequence
of positive integers. For k = 1, · · · , K, let

Tn,k = Tn,k(δn) = Alk(δn), (2.6)

be the corresponding sequence of statistics. We now show that they can be
combined using the empirical bootstrap-based fusion procedure (1.3)–(1.5). For

b = 1, · · · , B, let X
n,(b)
1 = {Xn,(b)

1 , · · · , Xn,(b)
n } be an empirical bootstrapped

sample, that is X
n,(b)
i , for i = 1, · · · , n, are independent and identically dis-

tributed (i.i.d) draws (with replacement) from Xn
1 = {Xi, i = 1, · · · , n}. Let

X̄
(b)
n = n−1

∑
iX

n,(b)
i denote the bootstrapped sample mean, and D̂

(b)
n the boot-

strap version of D̂n. Write δ
(b)
n = n1/2(D̂

(b)
n )−1/2(X̄

(b)
n − X̄n),

T
(b)
n,k = Alk(δ

(b)
n ), k = 1, · · · , K, b = 1, · · · , B,

and carry out steps (1.3)–(1.5). For any nondecreasing function Gn,k(.), for k =
1, · · · , K,

I
( K⋂
k=1

{Gn,k(Tn,k(δn)) ≤ u}
)
= I

( K⋂
k=1

{Tn,k(δn) ≤ G−1
n,k(u)}

)
. (2.7)

Thus, the consistency of this bootstrap-based fusion procedure is a direct conse-
quence of the theorem below. Let Fn(.) denote the joint distribution of {Tn,k, k =
1, · · · , K} underH0, and F

∗
n(.|Xn

1 ) denote their joint bootstrap distribution, namely,
the joint distribution of {Tn,k, k = 1, · · · , K}, calculated using the bootstrap sam-
ples derived from Xn

1 , as described above.

Theorem 1. Suppose Conditions (C1)–(C3) in the Appendix hold. Then,

sup
t1,··· ,tk∈R

∣∣∣Fn(t1, · · · , tK)− P
( K⋂
k=1

{Tn,k(Z) ≤ tk}
)∣∣∣ = o(1),

sup
t1,··· ,tk∈R

∣∣∣F ∗
n(t1, · · · , tK |Xn

1 )− P
( K⋂
k=1

{Tn,k(Z) ≤ tk}
)∣∣∣ = op(1),
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POWER BOOSTING VIA RESAMPLING 5

where Z ∼ N(0,ΣX) denotes the multivariate normal distribution with mean zero
and covariance matrix ΣX , and Tn,k(Z) is as defined in (2.6), with δn replaced
with Z.

Remark 1. Chernozhukov et al. (2019) discuss testing H0 based on the supre-
mum statistic, where its null distribution is also approximated using an empirical
bootstrap, with the only difference being that the same sample D̂n, instead of its
bootstrapped version, is used to standardize the bootstrapped sample mean, that

is, δ
(b)
n is defined as n1/2(D̂n)

−1/2(X̄
(b)
n − X̄n). The second identity in Theorem 1

about the bootstrap distribution still holds in this case; nevertheless, a simulation
study indicates that doing so tends to incur larger type-I errors; see Kong et al.
(2022).

3. Two-sample mean comparison

Suppose p-dimensional random vectors X1, · · · , Xm are independent copies of
X ∼ P1(.), with mean µX and variance ΣX , and Y1, · · · , Yn are independent copies
of Y

i.i.d.∼ P2(.), with mean µY and variance ΣY . The null hypothesis of interest
is H0 : µX = µY , which is referred to as the two-sample location model in Kock
and Preinerstorfer (2019). The procedure and the main results in this section are
stated for equal sample sizes, that is, m = n. A brief discussion is given at the
end of this section on how the method can be adapted to the samples of unequal
sizes.

As in the one-sample case, nearly all existing statistics for testing H0 are based
on the sample-mean difference δn = X̄m−Ȳn; see, for example, Xue and Yao (2020),
Cai et al. (2014), and Zhang et al. (2020). For any k = 1, · · · , K, let Tn,k(δn) be
as defined in (2.6), and reject H0 if Tn,k(δn) is too large. For any of these tests
to be consistent, valid approximations to its null distribution are essential. Xue
and Yao (2020) use an empirical bootstrap to determine the critical values for the
supremum statistic. A different option is to use the permutation method. Chung
and Romano (2016) prove that for a multivariate two-sample mean comparison,
certain statistics are proper, in the sense that its permutation distribution function
converges (uniformly) to its null distribution. The permutation method is also
popular in practice; see, for example, Nettleton et al. (2008), Chang and Tian
(2016), and Efron and Tibshirani (2007). Its theoretical properties are examined
in Kong et al. (2022) for the problem of a high-dimensional two-sample mean
comparison, and it is shown to outperform the bootstrap method by a significant
margin.

In the present context, the permutation procedure for fusing the sequence
of statistics {Tn,k(δn), k = 1, · · · , K} goes as follows. Following the notation
used in Chung and Romano (2016), write N = 2n and the pooled-sample ZN =
{Z1, · · · , ZN}, where Zi = Xi, for i = 1, · · · , n, and Zn+j = Yj, for j = 1, · · · , n.
Thus, X̄n can be interpreted as the average of the first half of the sample, {Z1, · · · ,
Zn}, and Ȳn is the average of the second half of the sample, {Zn+1, · · · , ZN}.

LetGN denote the set of all permutations of {1, · · · , N}. For any π = (π(1), ...,
π(N)) ∈ GN , let Z

N
π denote the rearranged ZN through permutation π, and ZN

π(i),

for i = 1, · · · , N , be the ith entry of ZN
π . Recompute X̄n and Ȳn for Z

N
π , and denote

Statistica Sinica: Preprint 
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6 EFANG KONG, YU LIU AND YINGCUN XIA

the difference between them as δn(Z
N
π ). Note that we use the notation δn(Z

N
π ) to

highlight its dependence on the permutated sample ZN
π , whereas the simple δn is

reserved for the sample mean difference calculated for the original (unpermutated)
sample. For any k = 1, · · · , K, let Tn,k(ZN

π ) denote the value of Tn,k(.), as in (2.6),
when evaluated for δn(Z

N
π ); its marginal (permutation) distribution of Tn,k(Z

N
π )

conditional on ZN is thus

F̂n,k(t|ZN) =
1

N !

∑
π∈GN

I
(
Tn,k(Z

N
π ) ≤ t

)
, t ∈ R. (3.8)

In this case, Ûn of (1.3) is given by Ûn = max
k=1,··· ,K

F̂n,k(Tn,k(δn)|ZN). We reject H0

if

1

N !

∑
π∈GN

I
(

max
k=1,··· ,K

F̂n,k(Tn,k(Z
N
π )) < Ûn

)
> 1− α. (3.9)

As a result of (2.7), the consistency of the above procedure (3.8)–(3.9) is a
direct consequence of the next theorem. Let Fn(.) denote the joint distribution of
{Tn,k(δn), k = 1, · · · , K} under H0, and F

∗
n(.|ZN) denote their joint permutation

distribution, that is,

F ∗
n(t1, · · · , tK |ZN) :=

1

N !

∑
π∈GN

I
( K⋂
k=1

{Tn,k(ZN
π ) ≤ tk}

)
, t1, · · · , tK ∈ R,

the joint distribution of {Tn,k(ZN
π ), k = 1, · · · , K} calculated for the randomized

sample derived from ZN(via permutation π uniformly distributed on GN).

Theorem 2. Suppose Conditions (C1)–(C3) in the Appendix hold and that the
same set of conditions also hold when (Y,ΣY ) replaces (X,ΣX). Then,

sup
t1,··· ,tK∈R

∣∣∣F ∗
n(t1, · · · , tK |ZN)− Fn(t1, · · · , tK)

∣∣∣ → 0, in probability. (3.10)

Remark 2. Similarly to Section 2, we can also consider cases where the test
statistics {Tn,k(δn), k = 1, · · · , K} are evaluated for marginal-standardized δn,

that is, δn = n1/2(D̂n)
−1/2(X̄n − Ȳn), where D̂n = diag(Σ̂n), the diagonal matrix

consisting of the diagonal elements of

Σ̂n =
1

2n

n∑
i=1

(Xi − X̄n)(Xi − X̄n)
⊤ +

1

2n

n∑
i=1

(Yi − Ȳn)(Yi − Ȳn)
⊤.

In this case, D̂n is recomputed for each permutated sample, and Theorem 2 con-
tinues to hold if D̂n is accurate enough, as per Assumption (A6) of Kong et al.
(2022).

Remark 3. When the two samples are of unequal sizes (m ̸= n), Kong et al.
(2022) prove that the limit of the permutation distribution of the statistics, be
it Tn,k(δn) or its marginally standardized version, does not coincide with their
respective (null) distributions, unless ΣX = ΣY . One solution is to apply the
binning procedure in Kong et al. (2022) to obtain pseudo samples of equal sizes,
and then proceed as before. If m/(m + n) = c + O(N−1/2), for some c ∈ (0, 1),
then similarly to Theorem 2, we can prove the consistency of the fusion procedure
(3.8)–(3.9) based on these pseudo samples.

Statistica Sinica: Preprint 
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4. Test of vector independence

Let X and Y stand for random vectors of dimension p and q, respectively, with
DX and DY as their respective domains. Suppose we have n independent copies
{(Xi, Yi)}ni=1 of (X, Y ), and we are interested in testing the null hypothesis H0: X
and Y are independent. WriteXn

1 = {X1, · · · , Xn} andYn
1 = {Y1, · · · , Yn}. In the

univariate case, DiCiccio and Romano (2017) consider the test of H0 based on the
sample correlation ρn(.), and prove that its null distribution can be approximated
by random permutations of Yn

1 or Xn
1 .

Compared with ρn(.), the HHG statistic of Heller et al. (2013) is able to identify
nonlinear association. The notion behind it is simple: suppose dX(.) and dY (.) are
two distance metrics, such as the Euclidean distance; if H0 is false, then there must
exist two distinct points (x1,y1), (x2,y2) ∈ D = DX ×DY , so that the two binary
random variables I{dX(X,x1) ≤ dX(x1,x2)} and I{dY (Y,y1) ≤ dY (y1,y2)} are
correlated. The HHG statistic is then based on the Pearson’s correlation for the
corresponding 2× 2 contingency table:

Tn(x1,y1, x2,y2; dX(.), dY (.)) = n1/2(A1,1 − A1.A.1)/(A1.A.1)
1/2, (4.11)

where

A1,1 := A1,1(x1,y1, x2,y2; dX(.), dY (.))

=
1

n

n∑
i=1

I
(
dX(Xi,x1) ≤ dX(x1,x2)

)
I
(
dY (Yi,y1) ≤ dY (y1,y2)

)
,

A1. := A1.(x1, x2; dX(.)) =
1

n

n∑
i=1

I
(
dX(Xi,x1) ≤ dX(x1,x2)

)
,

A.1 = A.1(y1,y2; dY (.)) =
1

n

n∑
i=1

I
(
dY (Yi,y1) ≤ dY (y1,y2)

)
.

(4.12)

In Heller et al. (2013), the null distribution of the statistic (4.11) is approximated
by random permutations of Yn

1 . This practice is intuitively correct, but no theo-
retical justification has been provided yet. Because A1. and A.1, the two marginal
terms in (4.11), are both invariant to permutations (of Yn

1 ), it is the numera-
tor, A1,1 − A1.A.1, that determines the permutation distribution of (4.11). Thus,
henceforth, we do not discriminate between (4.11) and its numerator. Variations
of (4.11), while retaining its contingency-table-derived form, can be constructed
by altering choices for the following two factors:

(i) values specified for (x1,y1) and (x2,y2). Apparently, the statistic (4.11)
associated with any specific values of (x1,y1) and (x2,y2) is more sensitive
to dependency that occurs close to the specified locations. Violations of H0

in locations further away might not be strong enough to yield significant
changes. By combining statistics associated with varied choices of (x1,y1)
and (x2,y2) scattered in D, we can gather evidence (of dependence) from
different locations.

Statistica Sinica: Preprint 
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8 EFANG KONG, YU LIU AND YINGCUN XIA

(ii) types of distance metrics for dX(.) and dY (.). This factor, as noted in Heller et
al. (2013), could be designed to capture the localized dependency between X
and Y . For example, we could consider distance metrics dX(.) that depend
only on a certain sub-vector XS of X, so that the resulting statistic is more
powerful against alternatives when the association between (X, Y ) is largely
due to that between the sub-vector XS and Y .

These variations of (4.11), notwithstanding belong to a general class of statistics
of the following form:

n−1

n∑
i=1

(a(Xi)− ān)(d(Yi)− d̄n), (4.13)

where a(.) and d(.) are both square integrable functions, with d(.) being categorical
(i.e., taking only a finite number of possible values), and ān = n−1

∑
a(Xi) and

d̄n = n−1
∑
d(Yi) are their respective sample averages. To see this is the case, set

a(X) = I
(
dX(X,x1) ≤ dX(x1,x2)

)
, d(Y ) = I

(
dY (Y,y1) ≤ dY (y1,y2)

)
.

Then, (4.13) reduces to the numerator in (4.11).
Without loss of gerality, suppose for k = 1, · · · , K, ak(.) and dk(.) are functions

satisfying the requirements above specified for (4.13). Write

Tn,k(X
n
1 ,Y

n
1 ) = n−1/2

n∑
i=1

(ak(Xi)− ā(k)n )(dk(Yi)− d̄(k)n ), k = 1, · · · , K, (4.14)

where, ā
(k)
n and d̄

(k)
n , for k = 1, · · · , K, are the sample averages of ak(Xi) and

dk(Yi), respectively. In the language of Hajek et al. (1999), ak(Xi) is referred to as
the coefficient, and dk(Yi) are the scores. We focus on the combination of statistics
of this general form using the fusion procedure, where the resampling is done via
random permutations of Yn

1 .
For any π ∈ Gn, let {π(1), · · · , π(n)} denote the rearranged {1, · · · , n} through

permutation π, and Yn,π
1 = {Yπ(1), · · · , Yπ(n)}. For k = 1, · · · , K, evaluate Tn,k(.)

for the permuted sample as

Tn,k(X
n
1 ,Y

n,π
1 ) = n−1/2

n∑
i=1

(ak(Xi)− ā(k)n )(dk(Yπ(i))− d̄(k)n ), (4.15)

with their marginal and joint permutation distributions given by

F̂n,k(t|Xn
1 ,Y

n
1 ) =

1

n!

∑
π∈Gn

I
(
Tn,k(X

n
1 ,Y

π(n)
1 ) ≤ t

)
, t ∈ R, (4.16)

F̂n(t1, · · · , tK |Xn
1 ,Y

n
1 ) :=

1

n!

∑
π∈Gn

I
( K⋂
k=1

{Tn,k(Xn
1 ,Y

π(n)
1 ) ≤ tk}

)
, (4.17)

respectively. Let Ûn be as defined in (1.3), with F̂n,k(.|Xn
1 ,Y

n
1 ) replacing F̂n,k(.),

for k = 1, · · · , K. Similarly to (3.9), we reject H0 if R̂U
n (Ûn|Xn

1 ,Y
n
1 ) ≥ 1 − α,

where

RÛ
n (u|Xn

1 ,Y
n
1 ) :=

1

n!

∑
π∈Gn

I
( K⋂
k=1

{Fn,k(Tn,k(Xn
1 ,Y

π(n)
1 )|Xn

1 ,Y
n
1 ) ≤ u}

)
. (4.18)

Let Fn(.) denote the joint distribution of {Tn,k(Xn
1 ,Y

n
1 ), k = 1, · · · , K} under H0.
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Theorem 3. Under H0, with probability one,

sup
t1,··· ,tK∈R

∣∣F̂n(t1, · · · , tK |Xn
1 ,Y

n
1 )− Fn(t1, · · · , tK)

∣∣ = o(1). (4.19)

Based on Theorem 3, the consistency of the fusion procedure (4.16)–(4.18) is
a straightforward result.

Corollary 1. Under H0, with probability one,

sup
u∈(0,1)

|R̂U
n (u|Xn

1 ,Y
n
1 )− P(Ûn ≤ u)| = o(1).

Remark 4. Based on Theorem 3 and the continuous mapping theorem, it is
straightforward to see that the fusion procedure (4.16)–(4.18) is also consistent
if the fusion statistic Un of (1.2) is replaced with any continuous function of
{Tn,k(.), k = 1, · · · , K}. For example, suppose {(xk,yk) : k = 1, · · · , K} is a
collection of (fixed) grid points in D. We could then consider the summation, or
the maximum, of the squared (4.11) taken over these grid points; that is,

Ũn =
K∑

k,l=1

T 2
n(xk,yk, xl,yl; dX(.), dY (.)), (4.20)

Ũn = max
k,l

T 2
n(xk,yk, xl,yl; dX(.), dY (.)). (4.21)

Note that (4.20) is the Cramér–von-Mises-type of statistic studied in Heller et al.
(2013, 2016). Thus, as a byproduct, Theorem 3 also provides theoretical justi-
fications for the practice in Heller et al. (2013, 2016) of approximating the null
distributions of these aggregations numerically by using their permutation distri-
butions.

For the same reason, the consistency of the fusion procedure (4.16)–(4.18) also
holds for the Kolmogorov–Smirnov-type statistic (4.21), or when Tn(.) in (4.20)
or (4.21) is replaced by the G likelihood-ratio,

A1,1 log
( A1,1

A1.A.1

)
+ A1,2 log

( A1,2

A1.A.2

)
+ A2,1 log

( A2,1

A2.A.1

)
+ A2,2 log

( A2,2

A2.A.2

)
,(4.22)

where Ai,j, Ai,., A.,j, for i, j = 1, 2, are as given in (4.12). These four fused statis-
tics can go through one more round of the fusion procedure, and the resulting test
procedure would still be consistent.

Remark 5. For the proof of Theorem 3, the permutation distribution is derived
based on the notion that when π is uniformly distributed on Gn, π(i) can be
interpreted as the rank of Ui, for i = 1, · · · , n, where U1, · · · , Un are i.i.d. U(0, 1).
In this sense, Tn,k(X

n
1 ,Y

n,π
1 ) of (4.15) falls into the category of simple linear rank

statistics (Hajek et al., 1999). The theoretical tools currently available are enough
to derive the limiting distribution of individual rank statistics, but not for their
joint limiting distributions, as required in our case. It is for this extension to the
multivariate case that we require the function dk(.) to be categorical. Removing
of such restrictions is left to future research.
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5. Extensions

Engaging fusion statistics other than (1.2) is perfectly possible. Indeed, the results
in Theorems 1–3 continue to hold if Fn,k(.) in the definition of (1.3) is replaced
with any monotone function.

As observed in Sections 2 to 4, the consistency of the fusion procedure (1.3)–
(1.5), depends on both the sequence of the test statistics {Tn,k, k = 1, · · · , K}
to be fused and the fusion statistic, Un, itself. For the fusion statistic (1.2), the
fusion procedure is consistent as long as the joint bootstrap (or permutation)
distribution function of {Tn,k, k = 1, · · · , K} is a valid approximation of their
joint null distribution. Were we to consider a sequence of test statistics other than
those studied here, then the consistency of the fusion procedure needs to be re-
evaluated, because the bootstrap (or permutation) distribution is not necessarily
always a valid approximation of the null, even in the non-high-dimensional (fixed-
dimensional) setting; see, for example, Chung and Romano (2013, 2016).

Having said that, certain variations (or extensions) of the proposed procedure
can be verified in a relatively straightforward manner. For example, Fn,k(.) in (1.2)

or F̂n,k(.) in (1.3) can be replaced with an arbitrary monotone function, and the
results in Theorem 1, Theorem 2, and Theorem 3 will continue to hold. Another
possibility is to allow K, the number of statistics to be fused, to also increase
with n. For example, in the two-sample mean comparison problem of Section 3,
we do not known a priori the number of coordinates where µX and µY differ from
each other. Thus, Tn,k(δn) is calculated for as many k as possible, hoping that
one of these k-values is close to the true count. Without loss of generality, for
k = 1, · · · , sn(≤ p), define

Tn,k = Ak(δn);

we can then repeat the fusion procedure (3.8) – (3.9) with K replaced by sn. The
proof of the consistency of the procedure is similar to when K is fixed, if the rate
at which sn → ∞ is slow enough. Specifically, if sn is allowed to be as large as
p, then p is at most of order o(n1/7), rather than the exponential rate implied by
Condition (C3) in the Appendix.

we cannot make general recommendations for choosing between different fusion
statistics, because the existence of an optimal fusion statistic is, to the best of our
knowledge, still an open question. For the sequence of test statistics of (2.6),
a general form of the type of fusion statistic for which the consistency of the
corresponding fusion procedure still holds is

Un = F (fk(Tn,k), k = 1, · · · , K), (5.23)

where F (.) : RK → R and fk(.) : R → R, for k = 1, · · · , K. For the overall
function to be convex, it is sufficient that either

• fk(.) are all convex; F (.) is convex and nondecreasing in each argument, or

• fk(.) are all concave; F (.) : is convex and nonincreasing in each argument.
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As a result, we have for any u ∈ R, there exists some sn-sparsely convex set
A ⊂ Rp (Definition 3.1 of Chernozhukov et al. (2017)), such that

I(Un ≤ u) = I(δn ∈ A).

Write T n = (Tn,k(δn), k = 1, · · · , K), T (b)
n = (Tn,k(δ

(b)
n ), k = 1, · · · , K). Under

certain regularity conditions, we can apply Proposition 3.2 of Chernozhukov et al.
(2017) and prove, similarly to Theorem 1, that

sup
A∈Asp(sn)

∣∣∣P∗
n(T

(b)
n ∈ A|Xn

1 )− P(T n ∈ A)
∣∣∣ = op(1),

where Asp(sn) denotes the class of all sn sparsely convex sets in Rp, and P∗
n(.|.)

denotes the bootstrap distribution conditional on Xn
1 . An analogue of Theorem 2,

and consequently the consistency of the corresponding fusion procedure, can then
be proved similarly.

Asymptotically the empirical version of the aforementioned Fisher’s combined
p-value of (1.1) can be written in the form of (5.23). To see this, first note that,
based on Theorem 1, we have for any given k, Tn,k(.) converges in distribution to
Tn,k(Z), which, as shown in the proof of Theorem 1, is equivalent to the maximum
of a Gaussian vector of dimension 2k

(
p
k

)
. Second, Theorem 1 of Cai et al. (2014)

states that under certain regularity conditions, the maximum of a p-dim Gaussian
vector with unit variances has its limiting distribution as the type-I extreme value
distribution, that is,

exp
(
− π−1/2 exp{−(t2 − 2 log p+ log log p)/2}

)
.

Finally, it is easy to check that

− log
(
1− exp

(
− π−1/2 exp{−(t2 − 2 log p+ log log p)/2}

))
is indeed convex in t.

6. Simulation studies

In this section, we examine the performance of the fusion procedure (1.3)–(1.5),
denoted by fused, when it is applied to the three testing problems discussed in
Sections 2–4.

We use the following notation: Ip, the p × p identity matrix; Np(µ,Σ), the
p-dim normal with mean µ and covariance matrix Σ; and Tp(k, µ,Σ), the p-dim t-
distribution with k degrees of freedom, mean µ, and covariance Σ. The significance
level α is fixed as 5%. Empirical sizes are calculated based on 5000 repetitions,
and the empirical powers are based on 1000 repetitions. Within each repetition,
the bootstrap (or permutation) distributions are calculated based on B(= 10000)
resampling via bootstrap (or permutation).
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12 EFANG KONG, YU LIU AND YINGCUN XIA

6.1 One-sample mean test

In testing H0 : µ = 0, the performance of the fusion procedure is compared with
that of the individual test statistics, namely, Tn,1 and Tn,p of (2.6). Also included
in the comparison are the statistics of Bai and Saranadasa (1996), denoted by
TBS, and Srivastava and Du (2008), denoted by TSD. These two summation-type
statistics were originally proposed for a two-sample mean comparison, and are
now adopted for the current purpose. Their p-values should be decided based on
their asymptotic distributions, but because these tend to be over-inflated, we use
the bootstrap.

The sample size is fixed at 100. We consider two designs forX: Np := Np(µ,Σ)

and Tp := Tp(5, µ,Σ) with Σ = D
1
2RD

1
2 , where D and R are generated as follows:

Σ1 : D = Ip, R = (ρi,j), where ρi,i = 1, and ρi,j = 0.25, if i ̸= j.

Σ2 : D = diag(σ2), where σj, j = 1, · · · , p, i.i.d.∼ U(2, 3); R = (ρi,j) with ρi,j =
0.25|i−j|.

Σ3 : D is the same as in Σ2; R is the same as in Σ1.

The results for the empirical sizes, for different combinations of distributions, Σ
and dimension p, are given in Table 1. The size of fused is fairly close to the nom-
inal size in nearly all settings, and is relatively more stable than its competitors.

Table 1: Empirical sizes(%) of different tests
(Dist.,Σ) p Tn,1 Tn,p fused TBS TSD

(Np,Σ1)

100 4.88 4.88 5.08 5.12 5.60
200 5.20 4.70 5.14 4.92 5.46
500 5.40 5.50 5.24 5.50 6.06
1000 4.98 4.90 4.86 5.06 5.60

(Tp,Σ1)

100 3.48 4.16 3.66 4.22 4.78
200 3.36 4.26 3.66 4.34 4.76
500 3.36 4.32 3.90 4.38 5.00
1000 3.08 4.30 3.58 4.50 4.92

(Np,Σ2)

100 4.88 4.88 4.96 5.30 5.30
200 5.34 5.34 5.44 5.76 5.76
500 5.44 5.44 5.56 6.06 6.06
1000 4.84 4.84 4.88 5.14 5.14

(Np,Σ3)

100 5.22 4.94 5.32 5.16 5.58
200 5.28 4.88 5.12 5.02 5.64
500 5.62 5.44 5.54 5.50 6.02
1000 5.28 4.68 4.88 4.86 5.42

Examples of alternatives are generated by specifying nonzero values for some
entries of µ in the above examples. Specifically, for d = 0.1, 0.5, 0.9, ⌊dp⌋ com-
ponents of µ are randomly selected and are independently assigned values drawn
from U(−s, s), for some s > 0, and the other entries of µ remain zero. Here, d
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controls the sparsity of the signal, and s determines the signal strength. Table 2
reports the empirical power for p = 1000, different combinations of distributions
(Dist), Σ and (d, s), for the four competing methods. What is immediately ob-
vious is that the fused statistics enjoy universally higher power than when using
Tn,1 or Tn,p alone. It also significantly outperforms both TBS and TSD.

Table 2: Empirical powers(%) of different tests
(Dist.,Σ) (d, s) Tn,1 Tn,p fused TBS TSD

(Np,Σ1)

(0.1, 0.31) 89.7 9.9 92.1 10.2 11.7
(0.5, 0.22) 82.7 42.7 92.9 45.1 53.0
(0.9, 0.19) 77.2 85.2 94.3 87.3 91.0

(Tp,Σ1)

(0.1, 0.41) 89.2 10.1 92.7 9.9 11.8
(0.5, 0.28) 78.0 43.4 87.8 39.8 49.4
(0.9, 0.25) 76.2 84.7 91.4 81.7 88.3

(Np,Σ2)

(0.1, 7.20) 92.8 4.4 93.6 5.0 5.0
(0.5, 6.50) 94.8 5.4 94.9 5.9 6.2
(0.9, 6.20) 93.5 7.0 93.5 7.1 7.3

(Np,Σ3)

(0.1, 0.75) 90.0 9.5 92.1 9.7 11.0
(0.5, 0.55) 87.8 50.1 96.8 45.6 59.4
(0.9, 0.45) 77.3 75.2 91.6 70.5 83.0

6.2 Two-sample mean comparison

In this section, in addition to Tn,1 and Tn,p, we compare the proposed fusion
procedure with the statistics considered in Xu et al. (2016) and Chen et al. (2019),
referred to as TXLPW and TCLZ , respectively. The statistics studied in Aoshima
and Yata (2018), Chen and Qin (2010), and Zhang et al. (2020) are similar to
TCLZ in definition, require similar assumptions, and show similar performance,
and thus are excluded from the comparison. Simulation examples are taken from
Xu et al. (2016), where the two p-dim random vectors X and Y are generated
according to

X = (ξ1, ξ2), Y = (η1, η2) + µY , µY = (µY1 , 0);

here, ξ1, η1 are both of length p/2, both with entries being independent U(−1, 1),
and ξ2 and η2 are independent Tp/2(3, 0,Σ), with Σ = (0.6|i−j|). When evaluating
empirical sizes, µY1 = 0; for the empirical power comparison, with any given
β ∈ (0, 1) and s ∈ (0, 1), p0 = min(⌊pβ⌋, p/2) components of µY1 are randomly
selected and set to equal s, so that s is an indicator of the signal strength, and
the sparsity of the signals is controlled by β.

With n = 100, Table 3 shows the results for the empirical sizes of the various
methods for different p. The two columns labelled T aXLPW and T aCLZ are the em-
pirical sizes of TXLPW and TCLZ , respectively, when the critical value is obtained
based on the theoretical asymptotic null distributions, with plugged-in parameter
estimates, as given in Xu et al. (2016) and Chen et al. (2019), respectively. Obvi-
ously, empirical sizes obtained in this manner are unduly high, but if the critical
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values are approximated using permutations, then the results for TXLPW and TCLZ
and the other three statistics are all fairly close to the nominal 5%. Note that
the computation times required by the first three methods are much shorter than
those of TXLPW and TCLZ , especially when p gets larger.

Table 3: Size(%) (computation time in seconds) of different tests
p Tn,1 Tn,p fused TXLPW TCLZ T aXLPW T aCLZ

100
5.26 5.26 5.78 5.22 5.32 7.40 7.02
(0.04) (0.03) (0.29) (1.57) (1.91) (0.66) (0.001)

200
5.28 4.96 5.18 5.22 4.72 7.07 6.94
(0.05) (0.05) (0.43) (5.33) (6.36) (2.56) (0.01)

500
4.70 5.06 4.92 4.50 4.66 9.93 7.65
(0.10) (0.09) (0.93) (31.70) (39.68) (15.55) (0.04)

1000
5.16 4.78 5.18 5.24 4.62 14.81 7.42
(0.19) (0.16) (1.79) (127.73) (164.40) (91.34) (0.24)

With p = 500 and β ∈ {0.9, 0.8, 0.6, 0.5, 0.4, 0.2}, the empirical power of each
method versus the signal strength s is as depicted in Figure 1. For TXLPW and
TCLZ , because of their aforementioned unduly high type-I errors induced by the
asymptotic distributions, we only report their power when the critical value is
obtained using the permutation distribution. The general pattern is that as the
degree of sparsity increases, the best method switches from Tn,p to Tn,1. This is in
line with the observation we made at the beginning of Section 2. In comparison,
fused is always among the top two best methods, regardless of the sparsity of the
signals.

6.3 Independence test of random vectors

The code developed by Heller et al. (2013) calculates four HHG-type statistics:
hhg.sc of (4.20), hhg.mc of (4.21), hhg.sl, and hhg.ml. The first two are defined
as in (4.20) and (4.21), respectively, and the last two are also defined according
to (4.20) and (4.21), but with T 2

n replaced with the G likelihood-ratio of (4.22).
Also included in the comparison is fused of these four statistics, the corresponding
testing procedure based on which, as noted in Section 4, continues to be consistent.
Among the existing tests of independence, we select the two popular methods,
namely, the Hilbert–Schmidt independence criterion (HSIC) of Pfister et al. (2018)
and the distance correlation (DC) of Huo and Székely (2016), for comparison.

Observations of X and Y are generated according to the following models,
some taken from Zeng et al. (2018). M1–M4 are univariate, and M5 and M6
are multidimensional.

M0(independent) X ∼ Np(0, I) and Y ∼ Np(0, I) are independent.

M1(linear with additive noise) Y = X + 2.6ϵ, where X, ϵ
i.i.d∼ N(0, 1).

M2(circle with additive noise) X = sin(2πθ) + 0.35ϵ, Y = cos(2πθ) + 0.35ε,

where ϵ, ε
i.i.d∼ N(0, 1), θ ∼ U(0, 1).
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s
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Figure 1: Power against signal strength s with different sparsity d and dimension
p=500: —•— for Tn,1, —■— for Tn,p, —+— for fused, —▲— for TXLPW , —♦—
for TCLZ .

M3(quadratic with additive noise) Y = (X − 0.5)2 + 0.76ϵ, X, ϵ
i.i.d∼ U(0, 1).

M4(cloud with contaminated noise) (X, Y ) = Z×{0.2µ+0.2(ϵ1, ε1 + 0.5)}+
(1 − Z)(ϵ2, ε2), where Z = 1 or 0 with probability 0.82 and 0.18, respec-
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tively, µ is evenly selected from {µ1 = (0, 0), µ2 = (2, 0), µ3 = (4, 0), µ4 =
(1, 1), µ5 = (3, 1), µ6 = (0, 2), µ7 = (2, 2), µ8 = (4, 2), µ9 = (1, 3), µ10 =

(3, 3)}, ϵ1, ϵ2, ε1, ε2
i.i.d∼ U(0, 1), and are independent of µ and Z.

M5 (multivariate conditional variance) X = (X1, ..., Xp) and ϕ = (ϕ1, ..., ϕp)
are independentNp(0, Ip); with p1 = ⌊0.7p⌋, Yj = ϕj(Xj+0.6), j = 1, · · · , p1,
Yj = ϕj, j = p1, · · · , p.

M6(multivariate cloud with additive noise) ϕ = (ϕ1, ..., ϕp) and ψ = (ψ1, ...,
ψp) are independent Np(0, Ip). With p1 = ⌊0.8p⌋ and µ as specified in (M4),
(Xj, Yj) = µ+0.2(ϕj, ψj), j = 1, · · · , p1, (Xj, Yj) = (ϕj, ψj), j = p1+1, · · · , p.

Table 4: Empirical sizes (%)
(n, p) 1○ 2○ 3○ 4○ 1○∼ 4○ HSIC DC

(100, 1) 5.08 4.48 4.92 4.68 4.78 5.06 5.54
(200, 1) 3.64 3.80 4.26 4.02 4.30 3.36 4.72
(100, 4) 5.32 4.92 3.72 4.58 4.10 5.80 5.42
(100, 12) 5.02 4.76 4.92 5.26 5.52 5.12 5.22
(100, 20) 3.58 3.32 5.12 5.72 4.24 5.14 4.92

1○, · · · , 4○ represent the statistics hhg.sc, hhg.sl, hhg.mc, and hhg.ml, respectively. 1○∼ 4○
represents the fusion of statistic 1○ to statistic 4○.

Table 5: Empirical powers (%)
(n, p) M 1○ 2○ 3○ 4○ 1○∼ 4○ HSIC DC

(100, 1)

1 70.7 69.5 38.2 36.0 62.2 94.6 65.9
2 49.9 54.5 53.3 51.6 53.6 6.4 53.6
3 51.7 49.6 43.1 51.6 52.4 24.7 33.3
4 4.2 3.8 29.4 28.2 24.0 0.0 0.0

(200, 1)

1 96.6 96.3 73.1 75.0 94.3 100.0 94.4
2 93.6 94.6 87.6 89.7 91.7 16.4 93.8
3 90.8 90.5 88.4 95.7 94.7 62.6 72.9
4 60.6 59.4 93.7 95.9 93.8 0.6 0.6

(100, 4)
5 89.7 87.8 53.1 46.2 85.7 48.4 25.4
6 52.2 41.3 88.1 87.9 85.2 0.0 0.0

(100, 12)
5 92.1 90.7 41.0 42.8 87.8 29.4 20.1
6 18.3 11.0 60.6 87.6 74.7 0.0 0.0

(100, 20)
5 91.9 90.8 40.5 41.8 86.5 24.5 20.5
6 20.4 10.0 63.7 96.3 91.5 0.0 0.0

1○, · · · , 4○ represent the statistics hhg.sc, hhg.sl, hhg.mc, hhg.ml, respectively. 1○∼ 4○ stands
for the fusion of statistics 1○ to statistic 4○.

For Model M0, where X and Y are independent, Table 4 contains the empir-
ical sizes of all test statistics. All methods maintain reasonable control over the
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type-I error. For Models M1–M6, their power is given in Table 5. In the uni-
variate case, the fused statistic based on 1○∼ 4○ consistently delivers high power
across all four models, whereas each of its six competitors has strengths and weak-
ness; for example, both HSIC and DC are powerless in detecting the dependency
in M4. As for the multivariate case, HSIC and DC become unreliable for M6.
As for the four HHG-type statistics, the two maximum-type statistics, 3○ and 4○,
perform better with M6 than with M5, and vice versa for the two summation-
type statistics 1○ and 2○. Again, our fused of the four HHG statistics, that is,
1○∼ 4○, maintains satisfactory power for both models, supporting our claim that
when testing against an unknown alternative, the fused statistic is, in general, a
better choice than any individual statistic.

7. Real-data examples

Genome-wide association studies (GWAS) identify risk genetic variants for ma-
jor human diseases by genotyping millions of single nucleotide polymorphisms
(SNPs) in large cohorts. With data collected by the Wellcome Trust Case Control
Consortium (WTCCC), we apply the two-sample mean comparison procedures of
Section 3 to analyze the association between the SNPs and two diseases: type-2
diabetes (T2D), and rheumatoid arthritis (RA). In the case of T2D, there are 1,952
observations with 307,089 SNPs, and for RA, there are 1,969 observations with
305,394 SNPs. For either disease, the data are split into two groups: individuals
with the disease (X), and individuals without the disease (Y ). If the means of
these two groups are different, then this indicates an association between the said
disease and the SNPs. The p-values of the existing methods mentioned in Section
3 are all highly significant, suggesting an overwhelmingly strong association that
it could be picked up by any valid tests, regardless of whether the test is sparse
or dense sensitive.

In order for the data to be suitable for assessing the competitiveness of different
tests, we need to first reduce the strength of the signals by thinning out the SNPs.
This is realized through the following steps. First, calculate the p-value of each
SNP, as in the case of a univariate mean-comparison problem, and rank the SNPs
according to their p-values in ascending order. The now ordered SNPs are then
divided into 1000 roughly equal-sized groups, with about 300 SNPs in each group.
Randomly select one SNP from each group to obtain a total of 1000 SNPs. Finally,
calculate the p-values of all competing methods using data on these 1000 randomly
selected SNPs. Repeat this procedure 200 times. The boxplot of the 200 p-values
for each method is depicted in Figure 2, with the left panel occupied by those
related to T2D, and the right panel by RA.

The first thing revealed by these plots is that the pattern related to the power
of the various methods is largely in line with what we have seen in the simulation
studies. These plots also highlight the potential use of the fusion statistic to
choose between recommendations made by different testing methods. Specifically,
for example, in the case of T2D, with a significance level set anywhere between
5% and 1%, the two statistics Tn,1 and Tn,p make opposite recommendations for
a majority of of the 200 occasions, with Tn,p recommending rejection, and Tn,1
suggesting otherwise. In these occasions, the fused statistic can then be used to
decide which recommendation is more likely to be correct.
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Figure 2: Boxplots of p-values for different statistics; the horizontal gray dashed
line is the significance level.

Appendix: Assumptions and Proofs

A.1 Further notations and regularity conditions for Sections 2 and 3

For any ν = (v1, · · · , vp) ∈ Rp, let |ν|∞ denote the supremum norm and |ν|1 =
(|v1|+ · · ·+ |vp|)/p, the L1 norm.

For ease of exposition, suppose there exists some sequence of constants Bn ≥ 1,
such that |X|∞ ≤ Bn, i = 1, · · · , n, k = 1, · · · , p, with probability one. Moreover,
for any p−dim vector with at most sn nonzero elements being either 1 or −1,
standardize it so that it has unit L1 norm; let C(p, sn) denote the collection of all
such p−dim vectors, obviously with a cardinality no more than (2p)sn .

(C1) The diagonal elements of ΣX are bounded both from below and above. The
minimum eigenvalue of ΣX is bounded from below by some constant c3 > 0.

(C2) there exist finite constants cn,1 > 0 such that for any ν ∈ C(p, sn),

E{exp(|ν⊤X|/cn,1)} ≤ 2, E[|ν⊤X|2+k] ≤ ckn,1, k = 1, 2. (A.24)

(C3) sn = o(p), and Bnsn log p = o(n1/7).

Conditions (C1)–(C3) could be found in Chernozhukov et al. (2017) so that the
high-dimensional central limit theorem holds for simple convex sets; see also Kong
et al. (2022). Among them, (C3) dictates how large sn and P could get relative
to n.
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A.2 Proof of Theorem 1

Let D = diag(Σ) = (σ2
j )j=1,··· ,p, where σ

2
j = V ar(Xj). For a random variable Z,

and any r > 0, let |Z|r = [E(|Z|r)]1/r, and its Orlicz norm be defined as

|Z|ψ = inf{C > 0 : Eψ(|Z/C|) ≤ 1}, where ψ(t) = et − 1.

A useful inequality is that |Z|r ≤ r!|Z|ψ. Condition (C2) implies that |Xj|ψ ≤ cn1,
for all j = 1, · · · , p. Then by Lemma 2.2.2 of van der Vaart and Wellner (1996),
| max
j=1,··· ,p

Xj|ψ ≤ cn1 log p. Consequently, | max
j=1,··· ,p

Xj|4 ≤ cn1 log p, and based on

Lemma D.3 of Chernozhukov et al. (2019), we have for any c ∈ (0, 1) ,

P( max
j=1,··· ,p

|σ̂nj/σj − 1| ≥ n−(1−c)/2c2n1 log
3 p) ≤ n−c,

whence an = supj |σ̂nj − σj| = op((log p)
−1). Let δ̃n = D−1/2X̄n . Then for any

ϵ > 0, and k = 1, · · · , K,

P(Tn,k(δn) ≤ t) ≤ P(Tn,k(X̄n) ≤ t+ ϵ) + P(|X̄n|∞ ≥ ϵ/an), (A.25)

P(Tn,k(δn) ≤ t) ≥ P(Tn,k(X̄n) ≤ t− ϵ) + P(|X̄n|∞ ≥ ϵ/an). (A.26)

Note that I(Tn,k(X̄n)) ≤ t) ⇔ I(n1/2X̄n ∈ A), for some m − generated set A,
namely a set generated by the intersection of m−half spaces (Chernozhukov et al.,
2017), where the half spaces are defined via vectors belonging to C(p, sn), whence
m ≤ (2p)sn . To see this is case, note that for any p−dim vector µ, Tn,k(µ) ≤ t is
equivalent to: for any ν ∈ C(p, sn), µ⊤ν ≤ t, i.e. the intersection of half-spaces
defined via vectors in C(p, sn).

The terms on the RHS of (A.25) and (A.26) concerning Tn,k(X̄n) could then
be dealt with through similar arguments used in proving Theorem 3 of Kong et al.
(2022), mostly involving high-dimensional Gaussian approximation, i.e., Proposi-
tion 2.2 of Chernozhukov et al. (2017), followed by anti-concentration inequalities.
The probability to the RHS of (A.25) or (A.26) concerning |X̄n|∞ is op(1), and
could be similarly proved by making use of the fact that an = op((log p)

−1).

The bootstrapped sample has mean X̄n and variance matrix Σ̂n = n−1
∑

i(Xi−
X̄n)(Xi − X̄n)

⊤. Thus the convergence of the bootstrap distribution could be
proved through similar arguments in conjunction with Proposition 4.3 of Cher-
nozhukov et al. (2017). □

A.3 Proof of Theorem 2

Similar to the arguments below (A.26), with Tn,k(.) as defined in (2.6), we have

I
( K⋂
k=1

{Tn,k(ZN
π ) ≤ tk}

)
= I(n1/2δn(Z

N
π ) ∈ A),

where A ⊂ Rp is some m − generated set with m ≤ (2p)sn . Through arguments
similar to those used in proving Theorem 3 of Kong et al. (2022), we have

sup
A

|P∗(n1/2δn(Z
N
π ) ∈ A)− P(N(0,ΣX + ΣY ) ∈ A)| → 0, in probability

sup
A

|P(n1/2δn(Z
N) ∈ A)− P(N(0,ΣX + ΣY ) ∈ A)| → 0,
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where the supremum is taken over allm−generated set withm ≤ (2p)sn , while the
probability P ∗ is taken conditional on ZN , with respect to π uniformly distributed
on GN . □

A.4 Proof of Theorem 3

Let a = (ak, k = 1, · · · , K)⊤, d = (dk, k = 1, · · · , K)⊤, where ak = E(ak(X)),

dk = E(dk(Y )). ān = (ā
(k)
n , k = 1, · · · , K)⊤; and d̄n = (d̄

(k)
n , k = 1, · · · , K)⊤.

Let (Z1, · · · , Zk) ∼ N(0,Σ), the K−dim Gaussian with covariance matrix Σ =
[σk,lsk,l], where σk,l = Cov(ak(X), al(X)), sk,l = Cov(dk(Y ), dl(Y )).

The proof of Theorem 3 is broken down into the following two lemmas, which
deals with the (joint) null distribution and the joint permutation distribution,
respectively.

Lemma 1.

max
k=1,··· ,K

sup
tk∈R

|Fn,k(tk)− P(Zk ≤ tk)| = o(1),

sup
t1,··· ,tK∈R

∣∣Fn(t1, · · · , tsn)− P
( K⋂
k=1

{Zk ≤ tk
})∣∣ = o(1),

Proof of Lemma 1. For fixed K, the assertion is simply the multivariate CLT.
Here, we prove these two statements under a more general set-up where K = sn,
the number of statistics, is allowed to grow as n increases, while the function
ak(X) and dk(Y ), k = 1, · · · , sn, could be any measurable functions satisfying the
moment conditions (A1)-(A3) below.

(A1) inf
k=1,··· ,sn

E[(ak(X)dk(Y ))2] > 0.

(A2) There exists some sequence of constants Bn ≥ 1, possibly growing to infinity
as n→ ∞, such that for all i = 1, · · · , n, and k = 1, · · · , sn,

E{exp(|ak(X)dk(Y )|/Bn)} ≤ 2, E[|ak(X)dk(Y )|2+l] ≤ Bl
n, l = 1, 2.

(A.27)

(A3) B
1/3
n {log(nsn)}7/6 = o(1).

For ease of exposition, write Tn,k := Tn,k(X
n
1 ,Y

n
1 ), and

Tn,k = Sn,k − n1/2(ā(k)n − ak)(b̄
(k)
n − dk), Sn,k = n−1/2

∑
i

(a
(k)
n,i − ak)(d

(k)
n,i − dk).

For any tk ∈ R, k = 1, · · · , sn, and ϵ > 0

P(Tn,k ≤ t) ≤ P(Sn,k ≤ t+ ϵ2) + P(n1/2|(ān − a)|∞ ≥ n1/4ϵ) (A.28)

+P(n1/2|(d̄n − d)|∞ ≥ n1/4ϵ) (A.29)

P(n1/2|(ān − a)|∞ ≥ n1/4ϵ) = P(|W1|∞ ≥ n1/4ϵ) + o(1) (A.30)

= O(n−1/4(log sn)
1/2/ϵ) + o(1), (A.31)

P(n1/2|(d̄n − d)|∞ ≥ n1/4ϵ) = P(|W2|∞ ≥ n1/4ϵ) + o(1) (A.32)

= O(n−1/4(log sn)
1/2/ϵ) + o(1), (A.33)

sup
t∈R

|P(Sn,k ≤ t+ ϵ2)− P(Zk ≤ t+ ϵ2)| = O(n−1/2B3/2
n ) (A.34)
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where W1 (or W2) is sn−dim zero-mean Gaussian vector with covariance matrix
identical to that of n1/2ān ( or n1/2d̄n), while Zk is N(0, σk,ksk,k); here (A.31) and
(A.33) follow from Proposition 2.1 of Chernozhukov et al. (2017), Lemma D.3 of
Chernozhukov et al. (2015) and the Chebyshev inequality, while (A.34) is a result
of the Berry-Esseen Bounds and (A.27).

Reverse the direction of the inequality in (A.29), we have

P(Tn,k ≤ t) ≥ P(Sn,k ≤ t− ϵ2)− P(n1/2|(ān − a)|∞ ≥ n1/4ϵ)

−P(n1/2|(d̄n − d)|∞ ≥ n1/4ϵ);

for the three terms to the RHS, results parallel to (A.31)-(A.34) could be similarly
proved. Thus

max
k=1,··· ,sn

sup
t∈R

|P(Tn,k ≤ t)− P(Zk ≤ t)| = O(ϵ2 + n−1/2B3/2
n + n−1/4(log sn)

1/2/ϵ) + o(1),

where the right hand side is o(1), if n−1/4(log sn)
1/2 = o(1). This proves the first

assertion on the (null) marginal distribution.
As for the joint (null) distribution, first note that similar to (A.31),

P
( sn⋂
k=1

{Tn,k ≤ tk}
)
≤ P

( sn⋂
k=1

{Sn,k ≤ t+ ϵ2
}
) + P(n1/2|(ān − a)|∞ ≥ n1/4ϵ)

+P(n1/2|(d̄n − d)|∞ ≥ n1/4ϵ).

We could then again apply Proposition 2.1 of Chernozhukov et al. (2017) and
Nazarov’s inequality (Nazarov, 2003) to see that

sup
t1,··· ,tsn∈R

∣∣P( sn⋂
k=1

{Sn,k ≤ tk
}
)− P

( sn⋂
k=1

{Zk ≤ tk
}
)
∣∣ = O((B2

n log
7(nsn)/n)

1/6 = o(1)

sup
t1,··· ,tsn∈R

∣∣P( sn⋂
k=1

{Zk ≤ tk
})

− P
( sn⋂
k=1

{Zk ≤ tk + ϵ2}
)∣∣ ≤ Cϵ2(log sn)

1/2.

The proof is thus complete if ϵ could be chosen such that ϵ = o(n−1/4(log sn)
1/2)

and ϵ = o((log sn)
−1/4). □

Lemma 2. With probability one,

sup
t1,··· ,tK∈R

∣∣Rn(t1, · · · , tK |Xn
1 ,Y

n
1 )− P

( K⋂
k=1

{Zk ≤ tk
})∣∣ = o(1).

Proof of Lemma 2 For ease of exposition, the conclusion will be proved for the case
where {d(k)(.), k = 1, · · · , K} are all binary. The proof could be trivially adapted
for the more general cases, where k = 1, · · · , K, d(k)(.) is categorical taking a finite
number of values.

For k = 1, · · · , K, and i = 1, · · · , n, write

a
(k)
n,i = ak(Xi), c

(k)
n,i = n−1/2(a

(k)
n,i − ā(k)n ), d

(k)
n,i = dk(Yi).
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Re-arrange the n observations {(Xi, Yi) : i = 1, · · · , n} via the following steps:

firstly, move the rows with d
(1)
n,i = 0 ahead of those rows with d

(1)
n,i = 1; secondly,

for rows with the same value of d
(1)
n,i, sort them according to the value of {d(2)n,i, i =

1, · · · , n} (again in ascending order); repeat this process until the last step where

the rows with the same value of d
(k)
n,i , for all k = 1, · · · , K−1, are sorted according

to their respective value of d
(K)
n,i . To illustrate, in the case of K = 3, there are eight

possibilities for the rows of n × 3 matrix, and they are arranged in the following
order:

(1) 0 0 0 (5) 1 0 0
(2) 0 0 1 (6) 1 0 1
(3) 0 1 0 (7) 1 1 0
(4) 0 1 1 (8) 1 1 1

For the re-arranged observations, without loss of generality, we still use c
(k)
n,i

and d
(k)
n,i i = 1, · · · , n, k = 1, · · · , K, to denote the corresponding ‘coefficients’ and

‘scores’. As a result of the strong law of large numbers (SLLN), there exist square
integrable functions ϕk(.), k = 1, · · · , K, on (0,1), such that

sup
n→∞

∫ 1

0

{
ϕk(u)− d

(k)
n,1+[nu]

}2

du = 0, k = 1, · · · , K. (A.35)

For illustration purposes, here we only give the specific forms for ψ1(.) and ψ2(.);
the explicit form of other ϕk(.) could be derived through similar arguments. Let
B1 = {y ∈ Rq : d1(Y ) = 0}, B2 = {y ∈ Rq : d2(Y ) = 0}, q1 = Pr(Y ∈ B1),
q2 = Pr(Y ∈ B2), q1,2 = Pr(Y ∈ B1 ∩ B2). Then ψ1(.) and ψ2(.) could be defined
as:

ϕ1(u) =

{
0, u ∈ (0, q1)
1, o.w.

, ϕ2(u) =


0, u ∈ (0, q1,2)
1, u ∈ [q1,2, q1)
0, u ∈ [q1, q1 + q2 − q1,2)
1, u ∈ [q1 + q2 − q1,2, 1).

For these ‘score’ functions, it holds that for any k, l = 1, · · · , K,

ψ̄k :=

∫ 1

0

ψk(u)du = 1− qk,

∫ 1

0

ϕk(u)ψl(u)du = 1− qk − ql + qk,l, k ̸= l.

In view of (A.35), when π is uniformly distributed on Sn, so that π(i) is the rank
of Ui, with U1, · · · , Un i.i.d. U(0, 1), we could apply Theorem 6.1.6.1 of Hajek et
al. (1999) and claim that for all k = 1, · · · , K,

Tn,k(X
n
1 ,Y

n,π
1 ) =

∑
i

c
(k)
n,id

(k)
n,π(i) =

∑
i

c
(k)
n,i(ψk(Ui)− ψ̄k) + op(1). (A.36)

Thus conditional on (Xn
1 ,Y

n
1 ), {Tn,k(Xn

1 ,Y
n,π
1 ), k = 1, · · · , K} are jointly normal

with covariance matrix given by

Cov
[∑

i

c
(k)
n,iψk(Ui),

∑
i

c
(l)
n,iψl(Ui)

]
=

∑
i

c
(k)
n,ic

(l)
n,i(qk,l − qkql).
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Moreover, by SLLN, with probability one,∑
i

c
(k)
n,ic

(l)
n,i =

1

n

∑
i

(a
(k)
n,i − ā(k)n )(a

(l)
n,i − ā(l)n ) → σk,l,

and the proof is thus complete. □
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