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Abstract: Sequential Monte Carlo (SMC) methods are widely used to draw sam-

ples from intractable target distributions. Weight degeneracy can hinder the

use of SMC when the target distribution is highly constrained. As a motivat-

ing application, we consider the problem of sampling protein structures from the

Boltzmann distribution. This paper proposes a general SMC method that prop-

agates multiple descendants for each particle, followed by resampling to maintain

the desired number of particles. A simulation study demonstrates the efficacy of

the method for tackling the protein sampling problem, compared to existing SMC

methods. As a real data example, we estimate the number of atomic contacts for

a key segment of the SARS-CoV-2 viral spike protein.
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1. Introduction

Sequential Monte Carlo (SMC) methods, also known as particle filters,

are simulation-based Monte Carlo algorithms for sampling from a target

distribution. SMC originated from on-line inference problems in dynamic

systems, where observations arrive sequentially and interest lies in the pos-

terior distribution of hidden state variables (Liu and Chen (1998)). Sub-

sequent developments include the Rao-Blackwellised particle filter and its

extensions (Casella and Robert (1996); Chen and Liu (2000); Andrieu and

Doucet (2002); Chen et al. (2010); Johansen, Whiteley, and Doucet (2012))

and the class of particle Markov Chain Monte Carlo algorithms (Andrieu,

Doucet, and Holenstein (2010); Kantas et al. (2015); Chopin and Singh

(2015)). These methods specialize in handling dynamic systems and their

structure of hidden states. SMC has also been adapted as a useful approach

for sampling from general high-dimensional probability distributions (Liu

(2001); Del Moral, Doucet, and Jasra (2006); Wang, Wang, and Bouchard-

Côté (2020)); this is the setting considered in this paper.

We begin with a review of the relevant SMC concepts for general sam-

pling problems following Doucet, De Freitas, and Gordon (2001). Assume

we have a vector of random variables (x0, . . . ,xT ), denoted by x0:T , with

continuous support X T+1, and we wish to draw samples from the target
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distribution p(x0:T ). Let fT : X T+1 → RnfT denote a square integrable

function of interest, then its expectation with respect to p(x0:T ) is given by

Ep {fT (x0:T )} =

∫
fT (x0:T ) p (x0:T ) dx0:T . (1.1)

Since this integration is usually analytically intractable, the goal of SMC is

to produce a set of particles {(x(n)
0:T , w(x

(n)
0:T ))}Nn=1 that is proper with respect

to p(x0:T ) (Liu and Chen (1998); Liu (2001); Liu, Chen, and Logvinenko

(2001)), i.e., E{fT (x
(n)
0:T )w(x

(n)
0:T )} and E{w(x

(n)
0:T )} do not depend on n and

satisfy

E{fT (x
(n)
0:T )w(x

(n)
0:T )}

E{w(x
(n)
0:T )}

= Ep {fT (x0:T )} , (1.2)

then an estimate to (1.1) is given by Êp{fTx0:T )} =
∑N

n=1 fT (x
(n)
0:T )w(x

(n)
0:T )∑N

n=1 w(x
(n)
0:T )

.

Often, p(x0:T ) does not adopt a form from which we can efficiently sam-

ple in practice (e.g., Jacquier, Polson, and Rossi (2002); Carvalho et al.

(2010)). In this case, a sequence of importance distributions η(x0), η(x1 |

x0), . . . , η(xT | x0:T−1) and a set of extended auxiliary distributions {pt(x0:t)}Tt=0,

with pt(x0:t) defined on X t+1 and pT (x0:T ) = p(x0:T ), can be introduced (Liu

(2001)). To then construct {x(n)
0:T}Nn=1, SMC generates particles according

to the auxiliary distributions via a sequence of propagation and resampling

steps, e.g., via the sequential importance sampling with resampling (SISR)

algorithm (e.g., Liu and Chen (1995, 1998), see Section S1 in the Supple-
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mentary Material for a summary).

The motivating application of the SMC method proposed in this paper

is for sampling 3-D structures of proteins. In this context, x0:T is a vector of

dihedral angles (with each angle defined on the space [-180◦, 180◦)) which

corresponds to a conformation, i.e., an arrangement of the protein’s atoms in

3-D space. The sampling target is the Boltzmann distribution (Boltzmann

(1868); Landau and Lifshitz (2013)), defined by

p(x0:T ) ∝ exp {−H(x0:T )/λ} (1.3)

where H is a given energy function, and λ is the effective temperature which

can be taken to be 1 by appropriately scaling H. Based on a properly

weighted Monte Carlo sample, we can estimate Ep{f(x0:T )} with respect

to (1.3), where f is a quantity of interest (i.e., a given function evaluated on

conformations x0:T ); these are known as Boltzmann averages that represent

the conformational equilibrium of the quantity f (Zhou and Berne (1997)).

In practice, much of the space of (1.3) has density zero due to atomic

and geometric constraints, so sampling from the Boltzmann distribution

for protein structures is a challenging task. While related to the famous

protein folding problem, the latter focuses on finding the most likely confor-

mation, i.e., arg max p(x0:T ) (Anfinsen (1973); Onuchic, Luthey-Schulten,

and Wolynes (1997)), and is thus distinct from our goal. The problem of
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estimating Boltzmann averages is traditionally handled by using molecu-

lar dynamics (MD) or Markov chain Monte Carlo (MCMC) simulations

(Adcock and McCammon (2006)). However, these methods tend to be

time-consuming and suffer from being trapped in local modes; an effective

SMC method to circumvent these difficulties has only been proposed for

sampling simplified discrete representations of protein structures (Zhang

et al. (2007)).

SMC is an intuitive strategy for sampling from (1.3) since proteins

are by nature a sequence of amino acids (see Section 3 for scientific back-

ground). However, a simple SISR algorithm suffers from weight degeneracy,

i.e., many of the intermediate particle weights decay to zero as a result of the

highly constrained support of (1.3) (Wong, Liu, and Kou (2018)). Some

general techniques have been developed for handling weight degeneracy.

Different resampling schemes have been proposed to improve the perfor-

mance of SISR (Gordon, Salmond, and Smith (1993); Kitagawa (1996);

Liu and Chen (1998); Li et al. (2022)), but resampling alone cannot thor-

oughly solve weight degeneracy for all situations. The lookahead strategies

considered in Lin, Chen, and Liu (2013) incorporate information from fu-

ture steps into current particles to help reduce weight degeneracy, but our

experiments (Section 4) show only limited success for protein sampling.
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Annealed importance sampling can be adopted within an SMC algorithm

to temper the auxiliary distributions (Neal (2001); Del Moral, Doucet, and

Jasra (2006); Dai et al. (2022)), but tempering is ineffective when many of

the particle weights are exactly zero. Fearnhead and Clifford (2003) pro-

posed to exhaustively explore the space by generating multiple descendants

for each particle and then resampling; this strategy can help circumvent

weight degeneracy but is only applicable to finite spaces.

In this paper, we adopt the idea of generating multiple descendants and

resampling from Fearnhead and Clifford (2003), and extend it to continu-

ous spaces as required for sampling protein conformations from (1.3). The

proper weighting condition is maintained, so that we may obtain consis-

tent estimates of Boltzmann averages. While motivated by the sampling

problem in the protein context, the proposed SMC strategy is generally ap-

plicable for sampling from multivariate continuous distributions to compute

Monte Carlo integrals. It may be especially effective when the support of

the target distribution is highly constrained and weight degeneracy renders

the SISR algorithm inapplicable.

The remainder of the paper is laid out as follows. In Section 2, we

present the construction of our SMC method. In Section 3, we introduce the

scientific background of proteins and the quantities of interest that may be
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computed from protein structures. In Section 4, we implement a simulation

study that illustrates the advantages of the proposed method compared to

existing ones for sampling protein structures. In Section 5, we apply the

proposed SMC method to estimate the number of atomic contacts for a key

segment of the SARS-CoV-2 viral spike protein. In Section 6, we briefly

summarize the paper and its contributions and discuss some potential future

directions. Proofs are provided in the Supplementary Material.

2. Methodology

2.1 Review of Fearnhead and Clifford’s SMC method

To introduce the key ideas, we review the relevant details of the SMC

method proposed by Fearnhead and Clifford (2003), which was developed

from the (partial) rejection control method (Liu, Chen, and Wong (1998);

Liu, Chen, and Logvinenko (2001)). Consider a hidden Markov model

setup with hidden process {xt}Tt=0, each with finite state space X such that

|X | = M <∞, observations {yt}Tt=1, distribution of the initial state p(x0),

transition probability q(xt | xt−1) and observation probability l(yt | xt) for

0 < t ≤ T . Their goal was to sample from the posterior

p(x0:T | y1:T ) ∝ p(x0)
T∏
t=1

q(xt | xt−1)l(yt | xt).
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2.1 Review of Fearnhead and Clifford’s SMC method

Given a set of weighted particles {x(n)
0:t−1}Nn=1 up to index t− 1, each x

(n)
0:t−1

is used to produce M distinct descendants, denoted by x
(n,m)
t , one for each

value of X . The weight of the propagated particle x
(n,m)
0:t = (x

(n)
0:t−1,x

(n,m)
t )

is given by

w(x
(n,m)
0:t ) = w(x

(n)
0:t−1)q(x

(n,m)
t | x(n)

0:t−1)l(yt | x
(n,m)
t ). (2.1)

To resample N particles from the NM candidates, the constant ct in

N∑
n=1

M∑
m=1

min
{
ctw(x

(n,m)
0:t ), 1

}
= N (2.2)

is calculated. Let L be the number of particles with weights greater than

or equal to 1/ct; these L particles are all preserved, and stratified sampling

(Carpenter, Clifford, and Fearnhead (1999)) is used to resample another

N−L particles without replacement. Fearnhead and Clifford (2003) showed

that this downsampling scheme minimizes

E

[
N∑
n=1

M∑
m=1

{
Q(x

(n,m)
0:t )− γ(n,m)

t

}2
]

where γ
(n,m)
t denotes the weight with respect to pt and Q(x

(n,m)
0:t ) is the

stochastic weight of the sampled particle, and thus is optimal among down-

sampling schemes. For a chosen particle size N , the computational com-

plexity of the algorithm is O(NM) since the evaluation of the incremental

weights in (2.1) tends to be the most expensive part of the computation in

practice; in contrast, the cost of SISR is O(N) in this regard.
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2.2 A general upsampling-downsampling SMC framework

As a generalization of these key ideas, we shall, in the following context,

define upsampling to be a propagation step that samplesM ≥ 1 descendants

from each of the N existing particles, and downsampling to be the step of

resampling N particles from the NM total descendants. An upsampling-

downsampling framework shall refer to an SMC algorithm that combines

these upsampling and downsampling features.

2.2 A general upsampling-downsampling SMC framework

Our goal is to sample from a general multivariate distribution p(x0:T ) where

xt is a random vector with continuous support, with the help of an upsampling-

downsampling SMC framework (or UDSMC for short). In this situation, it

is impossible to explore every value of X , so we use importance distributions

η(x0), η(x1 | x0), . . . , η(xT | x0:T−1) to facilitate sampling.

Assume for a chosen particle size N , upsample size M , and t > 0, we

have a set of generated particles {x(n)
0:t−1}Nn=1 with weights {w(x

(n)
0:t−1)}Nn=1.

For each x
(n)
0:t−1, we sample M descendants {x(n,m)

t }Mm=1 from η(xt | x(n)
0:t−1)

and define x
(n,m)
0:t = (x

(n)
0:t−1,x

(n,m)
t ) with

w(x
(n,m)
0:t ) =

w(x
(n)
0:t−1)pt(x

(n,m)
0:t )

pt−1(x
(n)
0:t−1)η(x

(n,m)
t | x(n)

0:t−1)
. (2.3)

These NM propagated particles with the upsampled weights in (2.3) are

then carried to the downsampling step to resample N particles.
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2.2 A general upsampling-downsampling SMC framework

The downsampling step resamples N particles from the set {x(m,n)
0:t , n =

1, . . . , N and m = 1, . . . ,M}; the resampled particles are then denoted by

{x(n)
0:t }Nn=1. There are two possible cases after each upsampling step: (i) at

least N of w(x
(n,m)
0:t )’s are positive and (ii) less than N of w(x

(n,m)
0:t )’s are

positive. (Note that Fearnhead and Clifford (2003) did not need to consider

case (ii) as the Gaussian observation likelihood in their application always

produces positive weights after upsampling.) Handling case (ii) ensures a

valid algorithm when weight degeneracy is very severe.

For case (i), the downsampling step follows the method of Fearnhead

and Clifford (2003). After the t-th upsampling step, the threshold ct in the

equation
N∑
n=1

M∑
m=1

min
{
ctw(x

(n,m)
0:t ), 1

}
= N

is calculated. Let L be the number of particles whose weights are greater

than or equal to 1/ct; these are preserved together with the weights w(x
(n,m)
0:t ).

N−L particles are sampled without replacement from the remaining NM−

L particles proportional to their weights w(x
(n,m)
0:t ) and are assigned new

weights 1/ct. Therefore, after the downsampling step, each x
(n,m)
0:t has a
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2.2 A general upsampling-downsampling SMC framework

stochastic downsampled weight Q(x
(n,m)
0:t ) as

Q(x
(n,m)
0:t ) =


w(x

(n,m)
0:t )/q(x

(n,m)
0:t ) with probability q(x

(n,m)
0:t )

0 otherwise

(2.4)

where q(x
(n,m)
0:t ) = min{ctw(x

(n,m)
0:t ), 1}. This resampling scheme ensures

that the downsampled weights Q(x
(n,m)
0:t ) are proper with respect to pt. This

resampling scheme is optimal in terms of minimizing the expected squared

error loss when resampling N distinct particles from the given collection

of NM upsampled particles. These results are formalized in Propositions

1 and 2 below. The N downsampled particles are then the collection of

those with realizations Q(x
(n,m)
0:t ) > 0, which we set to be {x(n)

0:t }Nn=1 with

corresponding weights {w(x
(n)
0:t )}Nn=1.

Proposition 1. For t ∈ {0, . . . , T} and the auxiliary distribution pt, sup-

pose there are at least N positive upsampled weights for all s ∈ {0, . . . , t}.

Let x0:t be any particle from the space X t+1, then its downsampled particles

{(x(n,m)
0:t , Q(x

(n,m)
0:t ));n = 1, . . . , N,m = 1, . . . ,M} given in Equation (2.4)

are proper with respect to pt.

Proof. See Section S2 in the Supplementary Material.

Proposition 2. For t ∈ {0, . . . , T} and upsampled particles {x(n,m)
0:t ;n =

1, . . . , N,m = 1, . . . ,M}, suppose there are at least N positive upsampled
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2.2 A general upsampling-downsampling SMC framework

Algorithm 1: UDSMC

Require: particle size N , upsample size M ;

Initial upsampling: Sample

{x(n,m)
0 , n = 1, . . . , N and m = 1, . . . ,M} from η(x0), each with

the weight w(x
(n,m)
0 ) = p0(x

(n,m)
0 )/η(x

(n,m)
0 );

Initial downsampling: Resample N particles, denoted by {x(n)
0 }Nn=1,

from {x(n,m)
0 , n = 1, . . . , N and m = 1, . . .M} with weights

{w(x
(n)
0 )}Nn=1 using the proposed scheme;

for t = 1, . . . , T do

Upsampling: Sample {x(n,m)
t }Mm=1 from η(xt | x(n)

0:t−1) and set

x
(n,m)
0:t = (x

(n)
0:t−1,x

(n,m)
t ) for each n, each with a weight

w(x
(n,m)
0:t ) = w(x

(n)
0:t−1)pt(x

(n,m)
0:t )/{pt−1(x

(n)
0:t−1)η(x

(n,m)
t | x(n)

0:t−1)};

Downsampling: Resample N particles, denoted by {x(n)
0:t }Nn=1,

from {x(n,m)
0:t , n = 1, . . . , N and m = 1, . . .M} with weights

{w(x
(n)
0:t )}Nn=1 using the proposed scheme;

end

weights at step t. When each individual downsampled weight Q(x
(n,m)
0:t ) is

assigned by Equation (2.4) with the constraint that no more than N ele-

ments of {Q(x
(n,m)
0:t );n = 1, . . . , N,m = 1, . . . ,M} are positive, then the
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2.2 A general upsampling-downsampling SMC framework

downsampled weights minimize the conditional expected squared error loss

E

[
N∑
n=1

M∑
m=1

{
Q(x

(n,m)
0:t )− γ(n,m)

t

}2

∣∣∣∣∣ {x(n,m)
0:t ;n = 1, . . . , N,m = 1, . . . ,M}

]

where γ
(n,m)
t = {pt(x(n,m)

0:t )/η(x
(n,m)
0:t )}/

∑N
n=1

∑M
m=1{pt(x

(n,m)
0:t )/η(x

(n,m)
0:t )}.

Proof. See Section S3 in the Supplementary Material.

For case (ii), we have less than N particles with positive weights so can-

not preserve N distinct particles via downsampling; instead, resampling N

particles with replacement is needed, similar to the resampling step in SISR.

The rationale for resampling in this case is to effectively duplicate parti-

cles with high weights, thereby retaining more potentially feasible particles

as starting points for the following propagation step. We use multinomial

resampling for simplicity, which mimics the resampling scheme of the boot-

strap filter (Gordon, Salmond, and Smith (1993)), but other schemes can

also be used. The key difference between case (i) and (ii) is that there are

duplicates of particles with equal weights after downsampling for case (ii).

Finally to initialize the algorithm, NM realizations of x0, i.e. {x(n,m)
0 , n =

1, . . . N and m = 1, . . . ,M}, are first sampled from η(x0) (each with impor-

tance weight p0(x0)/η(x0)), followed by a downsampling step to obtain N

properly weighted particles representing p0(x0). Algorithm 1 summarizes

UDSMC.
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Analogously to that described in Section 2.1, UDSMC has computa-

tional complexity O(NM) due to the evaluation of the incremental weights

in (2.3). Thus, our method is best suited for situations where running SISR

with a very large particle size (e.g., larger than NM in Algorithm 1) does

not produce satisfactory results; the subsequent protein application is one

such situation. Moreover, the performance of Algorithm 1 will be influ-

enced by the choice of the upsample size M . For a finite space X , a natural

choice for M can be to take M = |X |; however, there may not be an intu-

itive choice for M for a continuous space X . Thus to choose a reasonable

value of M in a given application, we may run preliminary experiments us-

ing different values of M (with a fixed computational budget, i.e., holding

MN constant), as we subsequently demonstrate.

3. Estimating Protein Structural Quantities

Proteins have a crucial role in carrying out biological processes and their

functions are dependent on their 3-D structures. A protein is composed of a

sequence of amino acids, by which its 3-D structure is essentially determined

(Anfinsen (1973)). However, it is also well-known that protein structures

are not static; some dynamic movement is observed (Fraser et al. (2009,

2011); Bu and Callaway (2011)) and the relative probability of different
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conformations can be characterized by the Boltzmann distribution defined

in (1.3), i.e., conformations with lower energy are more favorable. We focus

on the 3-D structures of key protein segments due to their important bio-

logical functions, e.g., the highly dynamic region of the coronavirus spike

protein that binds with human cells (Lan et al. (2020)). While the Protein

Data Bank (PDB) (Berman et al. (2000)) is the source of known protein

structures obtained from laboratory work, these should be considered as

only static snapshots of a given protein. To study the dynamic movement

of a protein and estimate Boltzmann averages, efficient computational ap-

proaches are needed for sampling conformations, which motivates our cur-

rent work.

The amino acid indexed by t in the sequence is composed of four back-

bone atoms (the nitrogen atom denoted by Nt, the carbon atoms denoted by

Ct
α and Ct, and the oxygen atom denoted by Ot) and a side chain denoted

by Rt. Figure 1 illustrates how these backbone atoms and side chains are

connected, with the solid lines indicating bonds. Successive amino acids

are also connected, e.g., the bond between Ct and Nt+1 connects the amino

acids indexed by t and t+ 1 in Figure 1. The 3-D coordinates of the back-

bone atoms at = (Ct,Ot,Nt+1,Ct+1
α ) can be equivalently specified using a

vector of dihedral angles (φt, ψt, ωt), where φt represents the dihedral an-
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Figure 1: Illustration of connections and dihedral angles in a protein seg-

ment. Solid lines in the figure indicate bonds (connections). Within the

amino acid indexed by t, Nt, Ct
α, Ct and Ot are successively connected,

and the side chain Rt (that distinguishes different amino acid types) is con-

nected to Ct
α; the double lines between Ct and Ot indicate a double-bond

connection. Successive amino acids are connected via a C-N bond, e.g.,

amino acids indexed by t and t+1 are connected with the bond between Ct

and Nt+1. To define the dihedral angle φt, consider the two planes marked

in the figure: Plane A (red) consists of atoms Ct−1, Nt and Ct
α; Plane B

(blue) consists of atoms Nt, Ct
α and Ct. Then φt is the angle between Plane

A and Plane B when looking down the N− Cα bond.
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gle of Ct−1 − Nt − Ct
α and Nt − Ct

α − Ct; ψt represents the dihedral angle

of Nt − Ct
α − Ct and Ct

α − Ct − Nt+1; ωt represents the dihedral angle of

Ct
α−Ct−Nt+1 and Ct−Nt+1−Ct+1

α . Figure 1 demonstrates an example of

how φt is determined, and ψt is determined in a similar way by shifting the

planes up by one atom. Since bond lengths and bond angles are essentially

fixed, φt governs the distance between Ct−1 and Ct; ψt governs the distance

between Nt and Nt+1 and also determines the coordinates of Ot. The bond

connecting Ct and Nt+1 is nearly non-rotatable, and thus the dihedral angle

ωt that governs the distance between Ct
α and Ct+1

α is usually close to 180◦

(Esposito et al. (2005)). In contrast, φt and ψt can take a wide range of

values over the continuous interval [-180◦, 180◦).

Within a given protein, suppose that the segment of interest consists of

the amino acids indexed from j to k, denoted by (aj, . . . , ak). The backbone

structure of the segment can then be parameterized by x0:T = (x0, . . . ,xT )

with T = k − j, where xt, t ∈ {0, . . . , T}, represents the three dihedral

angles for the amino acid aj+t, i.e., xt = (φj+t, ψj+t, ωj+t). To focus on

the properties of the segment, the rest of the protein is held fixed (e.g., at

a static snapshot obtained from the PDB) while sampling conformations

for the backbone of (aj, . . . , ak). For simplicity, the side chains Rt are not

considered in this work.
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The energy function H in (1.3) consists of two components: following

Wong, Liu, and Kou (2018), for a given backbone segment x0:T , the en-

ergy of atomic interactions Ha(x0:T ) is based on pairwise atom distances

(between atoms within the segment, and also atoms between the segment

and the rest of the protein), and the energy of dihedral angles Hθ(x0:T )

is based on empirical distributions derived from historical protein data

(Wong, Liu, and Kou (2017)). The total energy of the segment is H(x0:T ) =

Ha(x0:T ) + Hθ(x0:T ); detailed calculations for Ha and Hθ are presented in

Section S4 of the Supplementary Material. It should be noted that com-

pared to Hθ, Ha is expensive to compute since all pairwise distances be-

tween atoms need to be calculated; moreover, if two atoms violate geometric

constraints (e.g., they are too close together in 3-D space), then the confor-

mation will have Ha = +∞ which implies a zero weight. This property of

Ha leads to a highly constrained support for (1.3), which poses a challenge

for sampling methods.

In protein structure analysis, summary statistics f(x0:T ) can be com-

puted; we call these protein structural quantities. The Cα backbone atoms

are often treated as the representative of each amino acid for such compu-

tations (Simons et al. (1997); Di Lena, Nagata, and Baldi (2012)). Sum-

mary statistics involving atomic contacts, i.e., the number of other atoms
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within a given radius of a selected atom, help determine whether the se-

lected atom is close to the protein’s surface (Karlin, Zhu, and Baud (1999);

Pintar, Carugo, and Pongor (2002)). Within a given protein segment, Cα

atoms with fewer atomic contacts tend to be on the surface of the protein

and therefore more likely to interact with other molecules. To illustrate

our methodology, we consider using the samples from (1.3) to estimate

Ep{f(x0:T )} for the atomic contacts of Cα atoms within a radius of 7 Å.

4. Simulation study

As a simulation study, we consider the length 8 segment from a284 to a291

of the protein with PDB ID 1ds1A. The protein structural quantity of

interest is the atomic contacts for each Cα in the segment, denoted by

n(C285
α ), . . . , n(C292

α ). This protein segment is of sufficient difficulty (the

dimension of the Boltzmann distribution is 24 in this example) to showcase

a comparison of different methods, while at the same time is simple enough

such that the ground truth of the Boltzmann averages can be obtained via

brute force.

To obtain the ground truth for this example, the brute force approach

we used is as follows. We sequentially draw samples from the importance
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distributions η(x0), η(x1 | x0), . . . , η(x7 | x0:6), defined by

η(x0) ∝ exp {−Hθ(x0)}

η(xt | x0:t−1) = η(xt) ∝ exp {−Hθ(xt)} t = 1, . . . 7,

(4.1)

since Hθ is constructed to be independent for each amino acid position

(see Section S4 of the Supplementary Material). Note that any importance

distribution could be used here; Hθ is chosen for this purpose as it is easy

to sample from the empirical distribution of dihedral angles and is more

efficient than drawing xt uniformly. Given that a partial sequence from

x0 to xs with s ∈ {0, . . . , 6} has been generated, we draw descendants

from η(xs+1) until a sample with positive importance weight is obtained,

i.e., H(x0:s+1) < +∞; if it is not possible to obtain such a sample, we

discard the partial sequence and start over. After successfully simulating a

complete conformation, the total energy H(x0:7) is evaluated to obtain its

importance weight.

Table 1 displays the ground truth for the Boltzmann averages of the

eight quantities of interest, as approximated from a total of 108 samples

(with positive importance weights). To verify that 108 samples provide

a good proxy for the ground truth here, we randomly divided them into

two subgroups of 5 × 107 samples, repeating 50 times to form a total of

100 groups of 5 × 107 samples. The same quantities were estimated from
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Table 1: Boltzmann averages of the eight quantities of interest. The 108

samples obtained using our brute force approach were used as a proxy for

the ground truth.

n(C285
α ) n(C286

α ) n(C287
α ) n(C288

α ) n(C289
α ) n(C290

α ) n(C291
α ) n(C292

α )

35.135 43.042 45.313 35.236 38.300 55.303 53.273 65.142

each of the 100 groups. For each quantity, the standard deviations of these

estimates were less than 0.4% of the Boltzmann average computed from

the full (108) sample, which indicates the stability desired. Overall, this

computation of the ground truth was expensive: it required one week of

compute time on a cluster of 300 Intel Xeon CPU cores.

Having established a proxy for the ground truth, we proceed to compare

the performance of three different SMC methods in this section. For a

fair comparison, the importance distributions for the propagation step are

chosen to be the same for each SMC method, namely by adopting η as

defined in (4.1). The first one is UDSMC. We implement UDSMC with

an upsample size M = 20, based on the results of an experiment that

assessed the Monte Carlo variance of different values of M with the overall

computational budget fixed (see details in Section S5 of the Supplementary

Material).
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The second one is the SISR algorithm, as summarized in Section S1 of

the Supplementary Material. SISR is commonly used and easy to imple-

ment, but it can encounter problems when weight degeneracy is severe and

can fail to complete (i.e., all particles have zero weights before any complete

conformations are simulated). Here, if SISR fails to complete, we simply

restart the algorithm from the beginning.

The third one is SISR with the lookahead strategy, or simply lookahead

SISR, as detailed in Section S6 of the Supplementary Material. The looka-

head strategy of Lin, Chen, and Liu (2013) utilizes “future” information for

inference on the “current” states, and this idea was also adapted by Wong,

Liu, and Kou (2018) for exploring protein structures in a finite space; here,

we may apply this strategy in the context of SISR to alleviate the problem

of severe weight degeneracy. After the t-th propagation step (i.e., producing

x0:t), lookahead SISR implements an extra one-step exploration that evalu-

ates multiple (L) “future” descendants (i.e., by generating {(x0:t,x
l
t+1)}Ll=1)

and then implements a resampling step using the marginalized importance

weights (i.e.,
∑L

l=1w(x0:t,x
l
t+1)). In this way, the dead-end particles, i.e.,

where all L “future” descendants have zero weights, are discarded before

resampling. We set L = 20 for lookahead SISR to mimic the upsample size

of UDSMC in this simulation.
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We run 100 repetitions of each method in the following and report the

RMSEs of the estimates in Table 2. For UDSMC, we chose a range of N

values from 5000 to 20,000; the computation speed is fast, e.g., N = 10000

and M = 20 had a time cost of about 200 seconds per repetition on a

single core of a Xeon Gold 6244 3.6 GHz processor. To fairly compare the

three methods, we assess their performance given a similar computational

budget: given the N particles obtained from a resampling step, all three

methods sample the same total number of descendants for the subsequent

propagation step (i.e., by setting NM for UDSMC, N for SISR, and NL

for lookahead SISR to be equal), since the evaluation of the energy function

(specifically, Ha) is the computational bottleneck. For example, UDSMC

with N = 5000 and M = 20 has similar computational cost as SISR with

N = 100, 000 and lookahead SISR with N = 5000 and L = 20.

In Table 2, we observe that RMSEs decrease as the particle size in-

creases for each SMC method; however, this pattern is not uniform across

the amino acids in the segment. The RMSEs tend to be higher for the

amino acids in the middle of the segment; this is sensible because amino

acids further from the anchors tend to be less geometrically constrained

by the rest of the protein. The RMSEs for amino acids in the middle of

the segment also tend to decrease more slowly as particle size increases.
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Table 2: RMSEs of the eight quantities, based on 100 repetitions of UDSMC

(M = 20), SISR and lookahead SISR (L = 20) for the protein segment

x284:291. The corresponding rows of each method have a similar compu-

tational cost: e.g., UDSMC with N = 5000 and M = 20, SISR with

N = 100, 000, and lookahead SISR with N = 5000 and L = 20.

Method N = n(C285
α ) n(C286

α ) n(C287
α ) n(C288

α ) n(C289
α ) n(C290

α ) n(C291
α ) n(C292

α )

UDSMC 5000 0.612 1.576 1.556 1.372 2.794 2.701 1.539 0.576

(M = 20) 10000 0.310 1.291 1.264 1.089 2.133 2.480 1.171 0.416

20000 0.283 0.759 0.773 0.749 1.414 1.626 0.855 0.263

SISR 100000 4.825 8.382 9.638 10.058 15.342 15.236 10.019 3.347

200000 2.988 8.020 7.995 9.115 13.843 14.489 9.546 3.248

400000 1.528 7.773 7.213 8.701 11.944 13.372 9.019 2.404

Lookahead 5000 3.943 5.842 6.790 5.520 8.864 9.262 7.283 6.727

SISR 10000 1.190 2.879 3.858 3.375 5.482 6.070 4.408 1.088

(L = 20) 20000 0.576 1.971 3.176 2.633 5.302 5.386 3.889 0.788
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Comparing the rows that have similar computational cost, we observe that

SISR yields higher RMSEs compared to UDSMC and lookahead SISR (e.g.,

the RMSEs for SISR with N = 200, 000 are substantively higher compared

to UDSMC with N = 10000 and lookahead SISR with N = 10000), while

UDSMC also outperforms lookahead SISR (with > 50% reduction in RMSE

for every amino acid, compared to lookahead SISR for the same value of

N). These simulation results indicate that UDSMC provides a more effi-

cient approach to sampling conformations from the Boltzmann distribution

compared to the two existing strategies. The relative inefficiency of SISR

(even with a large N) makes sense: since when only a small fraction of the

propagated particles have positive weights, there will be many duplicates

among the N particles after a resampling step. This problem is exacerbated

by successive iterations of propagation and resampling. For further discus-

sion and a graphical example of how particle diversity decays, see Section

S7 of the Supplementary Material. Consequently, SISR can give poor esti-

mates or even become entirely stuck in dead ends. Applying the lookahead

strategy partially alleviates this problem, but is not nearly as effective as

UDSMC for a given computational budget.

The protein segment used in this simulation study was short enough

such that the ground truth could be obtained via brute force; in practice,
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target protein segments often have a much longer length (e.g., 12–20 amino

acids long) so that the higher dimension of x poses a substantively more

difficult sampling problem. The brute force approach used to facilitate

benchmarking for this simulation study would no longer be applicable due

to a prohibitive computational cost; e.g., it takes more than one hour to

generate 10 valid samples for a typical length 18 segment (i.e., the length of

our subsequent real data example) on a single core of a Xeon Gold 6244 3.6

GHz processor, and likely more than 108 samples would be needed to obtain

stable estimates for the longer segment. Further, SISR will encounter such

severe weight degeneracy that it cannot be run successfully; this point is also

illustrated by the experiment in Section S5 in the Supplementary Material,

which considers a length 10 segment. The results show that the SISR

algorithm often fails to complete even with N = 1, 000, 000 (i.e., all particles

end up with weight zero), so simply increasing N in SISR does not address

the weight degeneracy problem for longer segments. In contrast, UDSMC

provides stable estimates with a much smaller computational budget: using

N = 5000 and M = 20 works well and costs 10 times less than SISR with

N = 1, 000, 000.
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5. Example: Estimating the atomic contacts in the SARS-CoV-2

spike protein

The COVID-19 pandemic was caused by the novel coronavirus SARS-CoV-

2, with the first identified outbreak in Wuhan, China, in 2019 (Chen, Liu,

and Guo (2020)). This virus binds with a human host cell via an inter-

action between its spike protein’s receptor-binding domain (RBD) and the

host cell’s angiotensin-converting enzyme 2 (ACE2) receptor (Lan et al.

(2020)). The protein segments of the RBD involved in binding have thus

been of scientific interest towards the development of therapeutics. Four key

segments of amino acids have been previously identified as being involved

in RBD–ACE2 binding; of these, several research groups have suggested

that the segment 472–490 (known as Loop 3 ) exhibits the greatest dynamic

movement (Ali and Vijayan (2020); Nguyen et al. (2020); Dehury et al.

(2021); Williams et al. (2022)). The presence of such dynamic movement

has implications for drug design; e.g., a drug could target a specific confor-

mation of the segment to prevent the virus from being able to bind.

Since the initial COVID-19 outbreak, laboratory work (e.g., Wrapp

et al. (2020)) has provided static snapshots for the overall 3-D structure of

the SARS-CoV-2 spike protein, which are publicly available in the PDB.

These static snapshots have been useful as a starting point for studying
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the dynamic movement of key segments; e.g., Williams et al. (2022) used

MD simulations to explore the possible conformations of Loop 3. The im-

portance of Loop 3 was further reinforced by the emergence of the Delta

and Omicron variants of SARS-CoV-2; both of these variants had muta-

tions (i.e., changes to the amino acid sequence) in Loop 3 that could induce

changes to its conformation.

In this example, we took the same starting 3-D structure of the spike

protein as Williams et al. (2022), and applied UDSMC to sample backbone

conformations of Loop 3. We then estimated the Boltzmann averages for

the atomic contacts for each Cα in the segment. Amino acid positions that

have fewer contacts on average tend to be closer to the protein surface,

and hence more likely to be directly involved in binding. We ran UDSMC

with M = 20 and N = 500000, and the estimated Boltzmann averages

for n(C473
α ), . . . , n(C489

α ) are plotted in Figure 2. These results suggest that

on average, position 478 is the most likely to be on the protein’s surface

(among several consecutive positions with a low number of contacts, namely

476–479), while position 483 is the least likely. Interestingly, Williams et al.

(2022) also found that 476, 477, and 478, were among the top four amino

acid positions where mutations occurred; from a biological point of view,

this suggests that these surface amino acids are quite resilient to mutation.
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Figure 2: Estimated Boltzmann averages for the atomic contacts of Cα

atoms at amino acid positions 473 to 489 of the SARS-CoV-2 spike protein,

using the samples obtained from running UDSMC with N = 500000 and

M = 20.

6. Conclusion and Discussion

In this paper, we proposed an SMC method that features an upsampling-

downsampling framework (UDSMC), with an emphasis on sampling back-

bone conformations of protein segments from the Boltzmann distribution.

Existing SMC methods are not effective for this problem: SISR is hindered

by severe weight degeneracy while incorporating a lookahead strategy only

partially alleviates the difficulty of sampling conformations. UDSMC pre-

serves the collection of distinct particles needed for sampling from a highly
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constrained distribution and thereby provides an efficient approach for es-

timating Boltzmann averages. We show that UDSMC generates a properly

weighted sample and illustrate the performance of the method in a sim-

ulation study. As a real data example, we used UDSMC to estimate the

atomic contacts for a key segment of the SARS-CoV-2 spike protein. Our

work is also distinct from methods designed for protein folding; the latter

usually search for conformations with the lowest energy, without regard for

properly weighted samples.

UDSMC provides an approach to estimate Boltzmann averages but

comes with a price: its computational complexity is O(NM). Thus, choos-

ing a value of M involves a tradeoff between computing speed and explo-

ration effort of high-density regions. It is sensible to fix the computational

budget NM before selecting M for a given application. While there is no

universally optimal choice of M for all SMC applications, we can provide

some intuition. When the target distribution is more uniform, a larger N is

preferred; in the extreme case where the target distribution is uniform over

the support, the optimal choice is clearly M = 1 to maximize the number

of samples N for a fixed NM . In contrast, when the target distribution has

many sharp local modes or is highly constrained, a larger M is preferred

to ensure that UDSMC sufficiently explores the regions with positive den-
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sity during propagation steps, and a specific value of M could be chosen

according to Monte Carlo variance. Therefore, while UDSMC is generally

applicable, its efficacy will depend on the target distribution of interest.

When sampling protein segments, geometric constraints lead to a rough en-

ergy surface with many local modes and large regions of zero density. This

situation is well-suited for UDSMC, whereas other SMC methods could fail.

Potential future applied work could involve protein analyses with dif-

ferent structural quantities or energy functions. It is straightforward to

adapt UDSMC for this purpose. The sampling framework could also be

extended to consider both the backbone and the side chains. One approach

would be to sample the side chains after sampling backbone conformations,

effectively applying SMC twice and accumulating the energy contributions.
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