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Abstract: For large covariance matrices and the corresponding precision matrices

with banding structures, this paper develops a criterion to identify the bandwidth.

The new method is based on an objective function that is discontinuous at the

true bandwidth to show a “valley-cliff” pattern so that the identification of this

location can be visualized and easily implemented. We offer the estimation con-

sistency and the estimation error bound of the estimated covariance matrix and

precision matrix with this estimated bandwidth. Numerical studies demonstrate

the finite sample validity of the method, and a real data validity analysis is used

for illustration.
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1. Introduction

Estimating covariance matrix and its inverse, precision matrix, is one

of the fundamental problems in multivariate data analysis. Many classic

statistical problems, including principal component analysis (PCA), stud-

ies of independence or conditional independence of graphical models, and

confidence interval construction for parameters in linear regression, require

the knowledge of covariance structure or some aspect thereof. In many

cases, precision matrix can infer the conditional dependence structure of

random variables. Application areas include gene expression array analysis,

functional magnetic resonance imaging, text retrieval, image classification,

spectroscopy, climate studies, risk management, and portfolio allocation.

The sample covariance matrix is the most commonly used covariance ma-

trix estimator, and its properties are well understood. However, it tends to

be inconsistent when the dimension p is large. For more explanation about

the limiting spectrum theory of large dimensional sample covariances, see

Bai and Yin [1993], Johnstone [2001], Geman [1980], Wachter [1978].

Several proposals are available in the literature on covariance estima-

2

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0337



tion with high-dimensional data. Among them, some methods handle the

studies in which variables with a natural order or the concept of distance

between variables (see, e.g., Rothman et al. [2009b]). The implicit regu-

larization assumption is that involved variables are weakly correlated when

they are distant from each other. This is equivalent to giving a covariance

matrix under a distinct banding or tapering structure. Consistent estima-

tor of covariance matrix is often constructed, for high-dimensional data,

through regularization such as shrinkage: Fan et al. [2008], Maurya [2016]

and Furrer and Bengtsson [2007]; banding: Bickel and Levina [2004, 2008]

and Qiu and Chen [2015]; tapering: Cai et al. [2010], Xue and Zou [2014]

and Qiu and Chen [2015]. Some other methods handle the studies with

no notion of distance between variables, such as arrays of gene expressions.

These studies require estimators that remain constant under variable per-

mutations. Thresholding the sample covariance matrix is a solution such

as Bickel and Levina [2009], Karoui [2008] and Qiu and Liyanage [2019].

Random matrix theory presented recently is another shrinkage estimation

method (Zhang et al. [2013], Wang and Daniels [2014], Wang et al. [2015]).

For precision matrix, we can also assume that the variables of interest

have a natural order that there is no partial correlation between two random

variables when the distance between them is large enough. In this case, the
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Cholesky decomposition is often used for regularization analysis to define an

estimator, see, e.g. (Pourahmadi [1999], Wu and Pourahmadi [2003], Huang

et al. [2006a]). A comprehensive review of high-dimensional covariance and

precision matrix estimation under different model structures can be found

in Cai et al. [2016].

Suppose we observe p-dimensional independent identically distribut-

ed random variables X1, . . . ,Xn with an unknown covariance matrix Σ =

V ar(X1) = (σij)p×p and define Ω = Σ−1. Data with natural order generally

have an important parameter, the bandwidth K, which defines the number

of subdiagonals that are not all zero. Take Σ as an example, i.e. σij = 0 for

all |i − j| > K. Moreover, banding and tapering estimators for covariance

matrix or its inverse relies on good bandwidth estimators when the band-

width K is unknown. Several methods have been proposed for estimating

the bandwidth. Cross-validation (Bickel and Levina [2008]) is a way, but

time-consuming. When K is relatively large, this estimation is often un-

stable, and estimation accuracy is an issue. Qiu and Chen [2012] proposed

a non-parametric test for banding covariance matrix without assuming a

parametric distribution of the high-dimensional data, and they also pre-

sented a consistent estimator of the band size. The tests in Cai and Jiang

[2011] and Qiu and Chen [2012] are respectively powerful for sparse and
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dense alternatives. Another class of methods minimiz objective functions

to estimate the bandwidth (Cai et al. [2010], Qiu and Chen [2015]). For

example, Yi and Zou [2013] and Li and Zou [2016] treated bandwidth as a

tuning parameter, gave a criterion by using Stein’s unbiased risk estimation

(SURE) optimal point, and offered the estimation consistency. However,

these estimators are susceptible to sample effects. As pointed out by Chen

et al. [2018], even if only one outlier exists in the entire data set, the sta-

tistical performance of the estimator may be completely impaired. These

methods in practical use may result in underestimation. One reason behind

this is that for the sum of squares of the subdiagonals of covariance ma-

trix, the values of estimator tend to be close to each other, except for some

maximum dominance, whether or not they are non-zero at the global level.

Thus the global minimum (or maximum) value of a criterion at all indices

is usually smaller than the true value. The hypothesis testing methods

are also helpful as they can provide a practical statistical guide to whether

the underlying covariance matrix is of the ‘bandable’ class (Cai and Jiang

[2011], Qiu and Chen [2012], Shao and Zhou [2014]). But the estimation

consistency and robustness against ‘outlier’ samples are still the issues we

must handle. Qiu and Chen [2012] considered an estimator based on the

difference between continuous statistics to enhance the robustness. Howev-
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er, the objective values vary from infinity to zero at the true bandwidth,

which makes it challenging to choose a suitable threshold for estimation.

To address the above issues, we propose a ridge ratio thresholding

method and prove the estimation consistency. We understand that almost

all existing criteria in the field follow the idea of constructing continuous

convex/concave objective function such that the global minimum/maximum

can be used as an estimator of the bandwidth K. To achieve convexi-

ty/concavity, the objective function usually contains a penalty term. AIC

and BIC are the two representatives of such methods. The approaches in

this area include Qiu and Chen [2015]. However, as these criteria may be

difficult to separate well from nearby values, they often product ,under-

or ovproducemation at the sample level. In other words, distinguishing the

value at the dedicated bandwidth from others is crucial for estimation. The

current paper then proposes a general criterion motivated from Zhu et al.

[2020]. To enhance the separation of the value at K from other values,

instead of considering a continuous convex-concave objective function, we

construct a sequence of ridge ratios as an objective function that is discon-

tinuous at the point K. It drops significantly to zero at K, followed by

a sudden rise to 1 for all indices q > K. That is, the key feature of our

method is that the objective function exhibits a “valley-cliff” pattern at the
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true bandwidth. Therefore, at the sample level, We can quickly determine

an estimator of K by using the maximum index of the values smaller than

a threshold τ with 0 < τ < 1.

This paper is organized as follows. Section 2 contains the criterion

construction and the associated asymptotic properties. In Section 3, the

method is extended to deal with the bandwidth selection of the precision

matrix. Section 4 includes the selection of ridges, simulation results, and

analysis of a real data set. The first part of Supplementary Materials dis-

cusses how to obtain the estimators of the covariance matrix under banding

and tapering structure, the precision matrix, and the corresponding order of

the matrices. The second part contains all proofs of the theoretical results.

2. Criterion Construction

2.1 Motivation and Construction

Let Xi = (Xi1, . . . , Xip)
> ∈ Rp for i = 1, · · · , n be independent and

identically distributed (i.i.d.) random variables with the mean vector µ

and covariance matrix Σ = (σij)p×p. Define

h(k) := 1
p−k
∑p−k

l=1 σ
2
ll+k, for 0 ≤ k ≤ p− 1.
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2.1 Motivation and Construction

We presume that Σ is banded with the true bandwidth K, i.e., the following

assumption:

Assumption 2.1. σij = 0 for all |i− j| > K and h(K) > 0.

Under this assumption, h(0) > 0, h(1) ≥ 0, · · · , h(K − 1) ≥ 0 and

h(K) > 0, but h(K + 1) = · · · = h(p − 1) = 0. Consider the following

sequence: defining h(p) = h(p+ 1) = 0,

h(k + 1)

h(k)
, for 0 ≤ k ≤ p. (2.1)

We can see that this sequence has a useful pattern: when 0 ≤ k < K,

h(k + 1)/h(k) ≥ 0; when k = K, h(k + 1)/h(k) = 0; and when K < k ≤ p,

h(k + 1)/h(k) = 0/0 = 1 if we temporarily define 0/0 as 1. To avoid this

undefined ratio, denote the ridge ratio sequence by adding a ridge value

cn > 0 to both the numerator and denominator, where cn tends to zero at

a certain rate when n, p tends to infinity. Let s(k) = h(k+1)+cn
h(k)+cn

. It has the

following property: as n and p→∞

s(k) =



h(k+1)+cn
h(k)+cn

≥ 0, for 0 ≤ k < K,

cn
h(k)+cn

→ 0, for k = K,

1, for K + 1 ≤ k ≤ p.

The sequence presents a good pattern to identify K: regardless of the

ratio before the true K, K is the maximum index of the ratios whose values
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2.1 Motivation and Construction

are smaller than one over all k in 0 ≤ k ≤ p. This looks like a valley-cliff

pattern where at the location K with the value of 0 can be regarded as the

valley floor and then faces a cliff with the value of one at the location K+1.

It remains flat after the position K + 1. At the sample level, we replace

h(k) with the estimators ĥ(k) and define ĥ(p) = ĥ(p + 1) = 0. Then the

corresponding estimator of s(k) is

ŝ(k) =
ĥ(k + 1) + cn

ĥ(k) + cn
, for 0 ≤ k ≤ p, (2.2)

where the ridge value cn tends to zero at a certain rate to be specified later.

To this end, we define an estimator of h(k) as (see, e.g. Qiu and Chen

[2015]):

ĥ(k) = 1
p−k

p−k∑
l=1

{
1
A2

n

∗∑
i,j

(XilXil+k)(XjlXjl+k)

− 2
A3

n

∗∑
i,j,m

XilXml+k(XjlXjl+k)

+ 1
A4

n

∗∑
i,j,m,q

XilXjl+kXmlXql+k

}
, (2.3)

where
∗∑

denotes summation over all involved subscripts and Abn = n!/(n−

b)! with 0 ≤ b ≤ n. Qiu and Chen [2015] has shown that it is an unbiased

estimator that is a linear combination of multiple U-statistics, so we can
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2.2 Asymptotic Properties

easily derive its consistency.

Once cn is determined, we have the following result in probability,

limn→∞ ŝ(k) =


0, for k = K,

1, for K + 1 ≤ k ≤ p− 1.

Asymptotically, the sequence ŝ(k)’s has the same pattern as the se-

quence s(k)’s. Note that K is the maximum index of s(k)’s smaller than 1.

Therefore, the bandwidth K can be estimated as: for any τ with 0 < τ < 1

K̂ = arg max
0≤k≤p

{k : ŝ(k) ≤ τ}. (2.4)

This determination is not seriously affected even when the sequence may

have multiple local minima.

2.2 Asymptotic Properties

Throughout this paper, ‖·‖ψ2 and ‖·‖ denote the Orilcz norm defined as

‖X‖ψ2 = supp≥1 p
−1/2 (E|X|p)1/p and the l2 norm of a vector, respectively.

To investigate the consistency of this estimator, we state the following two

assumptions.

Assumption 2.2. log p = o(n1/5), as min{n, p} → ∞.
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2.2 Asymptotic Properties

Assumption 2.3. Σ is a positive definite matrix. Let Zk = Σ−1/2Xk. Vari-

ables Xil, 1 ≤ l ≤ p and Zk’s are sub-Gaussian vectors with sup
1≤l≤p

‖Xkl‖ψ2 <

K0 and E(exp(α>Zk)) ≤ exp(K2
z‖α‖2) for some constants 0 < K0, Kz <

∞.

Remark 2.1. Assumption 2.2 controls the sample size and dimensionality.

As ‖ · ‖ψ2 in Assumption 2.3 is a sub-Gaussian norm, the class of sub-

Gaussian random variables on a given probability space is the normed space.

Classic examples of sub-Gaussian random variables satisfying Assumption

2.3 contain Gaussian, Bernoulli, and all bounded random variables (see,

e.g., Vershynin [2010]). In particular, when Zk is standard normal, Kz = 1,

Assumption 2.3 implies that max1<j<p σjj < C for some C > 0. These

assumptions are similar to those in Zhao et al. [2018].

The following theorem states the convergence rate of ĥ(q) to h(q).

Theorem 2.1. Under Assumptions 2.2 and 2.3, when Kz ≤ 1, as min{n, p}

→ ∞, we have

P

(
max
0≤k≤p

|ĥ(k)− h(k)| > C0qn

)
= o(1),

where C0 is a constant depending on K0 and qn = O

(√
log5(p ∨ n)/n

)
.

Remark 2.2. Here the value of C0 is unknown, and therefore the result

is mainly used for the theoretical investigation. In Section 2.3, to estimate

11

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0337



2.3 Tuning Parameter Selection

the bandwidth of the covariance matrix, we suggest using the ridge value

cn without involving the unknown constant C0. Moreover, under the same

conditions of Lemma A.1 in Qiu and Chen [2015], the conclusion in Theorem

2.1 can be improved to be

P

(
max

0≤k≤M
|ĥ(k)− h(k)| > C0qn

)
= o(1),

where C0 is some constant and qn = O
(√

K log(p ∨ n)/(np)
)

. It is worth

mentioning that Lemma A.1 in Qiu and Chen [2015] requires that the com-

ponents of Zk are independent with identical first four moments. These

conditions are different from Assumption 2.3 in the current paper.

The following theorem states the consistency of the estimator K̂ deter-

mined by the criterion in (2.4).

Theorem 2.2. Under Assumptions (2.1),(2.2) and (2.3), if cn satisfies

cn → 0, cn/h(K) → 0 and qn/cn = o(1) with qn defined in Theorem 2.1,

then we have P (K̂ = K)→ 1 as n, p→∞.

2.3 Tuning Parameter Selection

This subsection presents some discussions and suggestions for selecting

the tuning parameters cn and τ and an estimation algorithm.

For cn the selection range is quite wide in theory. As we do not have a

full data-driven algorithm to select it, it is often the case to recommend a
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2.3 Tuning Parameter Selection

value based on the rule of thumb, like any correlation method with penalties

(e.g., the BIC criterion). But if some prior information on the upper bound

of the true value K is available, we propose the following semi-data-driven

algorithm. From Theorem 2.1, we can see that.

max
0≤k≤p

|ĥ(k)− h(k)| log(p · n) = Op(qn log(p · n)).

Note that if for two large integers M1 < M2 such that K < M1, M2 has

the same order as p, we then have max
M1≤k≤M2

|ĥ(k)− h(k)| = max
M1≤k≤M2

|ĥ(k)|,

which has the same rate of convergence as max
0≤k≤p

|ĥ(k) − h(k)|. Therefore,

we can define a ridge cn as

cn = δ log(p · n) max
M1≤k≤M2

|ĥ(k)| = Op(qn log(p · n)), (2.5)

where δ ∈ (0,∞) is an adjustment parameter. Hence cn satisfies all as-

sumptions in Theorem 2.2 and is adaptive to the data.

Thus, to use this data-driven ridge, we need prior information on the

upper bound of the true bandwidth K. Assume that the true bandwidth

K may diverge to infinity at a rate slower than p and n. Then we can

use M1 = min{[n/2], [p/4]} such that K/M1 → 0. To balance between

computational complexity and approximation, we in numerical studies use

M2 = min{[λM1], p} for a λ > 2 and to ensure M1 large enough in finite

sample scenarios, we use M1 = max{min{[n/2], [p/4]}, 20}.
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2.3 Tuning Parameter Selection

Note that δ is used to adjust the size of cn. In practice, when p and n

are not large, max
M1≤k≤M2

|ĥ(k)| will not be close to zero, so cn will be large

and the ratio will quickly reach 1, leading to an underestimation. In the

numerical studies in this paper, we recommend a value of δ as

δ =


1
5
, if n ≤ 50, p ≤ 50,

1, otherwise.

(2.6)

The next issue is about the selection of the threshold τ . This issue

is relatively less important because of the fairly wide range of choices in

the interval (0, 1). As a compromise, the median value τ = 0.5 could be

recommended to handle the overestimation and underestimation. However,

we note that the term log(p · n), when p and n are large, could result in a

relatively large cn such that the curve of the sequence would become flatter

than that with smaller cn. In this case, choosing τ = 0.5 would more likely

cause underestimation. Additionally, an underestimated bandwidth value

would cause the covariance matrix estimator to be less accurate. Therefore,

for the problem studied in this paper, we recommend a relatively large

threshold value τ = 0.75. The details can be found in Supplementary

Material showing that this value produces stable results.
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3. Application to the Precision Matrix

When the variables of interest have a natural order, it is usually assumed

that partial correlation between two random variables is zero when their

distance is large enough. Specifically,

Assumption 3.1. ωij = 0 for all |i− j| > K and 1
p−K

∑p−K
l=1 |ωll+K | > 0.

The bandwidth of the precision matrix Ω = Σ−1 = (ωij)p×p is K. Sim-

ilarly to the covariance matrix case, let Xi = (Xi1, . . . , Xip)
> ∈ Rp for

i = 1, · · · , n be the observations collected from the ith subject. Here, Xi

is independent and normally distributed with mean zero and covariance

matrix Σ. The Cholesky decomposition of Σ is

Σ = LDL>,

where L is a lower triangular matrix whose diagonal elements are all equal

to 1 and D is a diagonal matrix. Let T = L−1 = (tij)1≤i,j≤p, then the

precision matrix Ω = Σ−1 can be written as

Ω = T>D−1T.

Let εi = TXi. An et al. [2014] showed that if the bandwidth of Ω is K,

then

Xij =


εij, for j = 1,

j−1∑
q=(j−K)1

(−tjqXiq + εij), for j > 1,
(3.7)
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where (j −K)1 = max{1, j −K}, the elements of εi are independent and

normally distributed with mean zero, and the covariance matrix of εi is D.

When the precision matrix Ω has a band structure, Rothman et al. [2009a]

showed that the Cholesky factor T has the same bandwidth K as Ω. We

can then turn to estimate the bandwidth of T .

Let M be an upper bound of K, t
(k)
j = (tj,(j−k)1 , . . . , tj,j−1)

>, χ =

(X1, . . . ,Xn)>, and χj be the jth column of χ, χ
(k)
j = (χ(j−k)1 , . . . , χj−1).

By fitting the regression equation (3.7), we can define an estimator t̂
(M)
j of

t
(M)
j as:

t̂
(M)
j = −(χ

(M)
j

>
χ
(M)
j )−1χ

(M)
j

>
χj. (3.8)

Let l(k) = 1
p−k
∑p−k

l=1 |tl+k,l|. Then an estimator of l(k) is defined as

l̂(k) =
1

p− k

p∑
j=k+1

|t̂(M)
j,j−k|, k = 0, . . . ,M, (3.9)

where t̂
(M)
j,j−k stands for the (j − k − (j −M)1 + 1)th element of t̂

(M)
j .

Remark 3.1. Without the band structure of Ω, the regression equations

are Xi1 = εi1 and Xij =
j−1∑
q=1

(−tjqXiq + εij) for j > 1. In the case of

large p and small n, the estimates of T obtained by fitting these regression

equations may not work well, some regularization of T is often imposed

(Levina et al. [2008], Huang et al. [2006b]). However, if Assumption 3.1

holds and M < n, a good estimator of T can be constructed in the large p
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and small n setting.

The following two theorems state the estimation consistency of relevant

statistics.

Theorem 3.1. Suppose that Xi, for i = 1, . . . , n, are independent identi-

cally normally distributed. Under Assumption 3.1, if K ≤M < n, then

P

(
max

0≤k≤M
|l̂(k)− l(k)| > C1γn

)
= op(1),

as min{n, p} → ∞, where C1 is a constant and γn = O(
√

log p/n).

Based on Theorem 3.1, we can similarly define an objective function as

that in (2.2):

r̂(k) =
l̂(k + 1) + c̃n

l̂(k) + c̃n
, for 0 ≤ k ≤M − 1, (3.10)

where the choice of c̃n is discussed in the following theorem. Thus, the

bandwidth K of the precision matrix can be estimated as: for 0 < τ < 1,

K̂ = arg max
0≤k≤M−1

{k : r̂(k) ≤ τ} . (3.11)

Like that in Subsection 2.3, we also recommend the thresholding value τ =

0.75, and the bandwidth upper bound M1 = max{min{[p/4], [n/2]}, 20}.

The ridge c̃n is similarly defined as:

c̃n = δ log(n) max
M1≤k≤M2

|l̂(k)|, (3.12)
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where δ is the same value defined in (2.6) and M2 = min{[λM1],M − 1}

with λ ∈ (2, 3). The following theorem states the estimation consistency.

Theorem 3.2. Under the normality assumption of Xi and Assumption

(3.1), when c̃n → 0, c̃n/l(K) → 0 and c̃n
√
n/ log p → ∞, then P (K̂ =

K)→ 1, as n, p→∞.

We have obtained bandwidth estimators of the covariance matrix and

precision matrix with band structure using the proposed ridge ratio thresh-

olding method. We also discuss how to apply the estimated bandwidth to

estimating the covariance matrix and precision matrix and give the prop-

erties of the corresponding estimators in Supplementary Materials.

4. Numerical Studies

In this section, we will utilize several numerical studies first to select the

appropriate value of λ and then assess the finite sample performance of the

proposed method and compare it with some state-of-the-art approaches.

4.1 Selection of λ

Consider two covariance structures similarly to the examples in Qiu

and Chen [2015]. The data generation process used in this experiment is as

follows:
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4.1 Selection of λ

Xi = Σ1/2Zi, with Zi = (Zi1, . . . , Zip)
>,

where Zij are generated i.i.d. from N(0, 1) and Σ = (σij)1≤i,j≤p is the

covariance matrix. Consider the two designs as:

1. σij = 3−|i−j|/2I(|i− j| ≤ K), for K = 4,

2. σij = I(i = j) + 0.2I(0 < |i− j| ≤ K), for K = 8.

In this example, we consider the true bandwidth to be K = 4, 8 in two

scenarios: n = 50, p = 300; and n = 200, p = 100. We search for a value

of λ by maximizing the correct rate of the determined bandwidth in the

interval [1, 3] with the grid points 1 : 0.2 : 3. For each λ, we performed 50

replications to obtain the mean and correct rate. Figures 1 and 2 plot the

mean values and the correct rates of the determined bandwidth for different

λ.

Obviously, from these two figures, the proposed method is not very

sensitive to the choice of λ when it is within the interval [2, 3], and its

correct rate well keeps equal to 100%. The numerical studies not reported

in this paper indicate that when λ > 3, the correct ratio also keeps equal

to 100%. Therefore it is sensible to recommend the median value of 2.5 as

a suitable value of λ.
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4.2 Simulation Study
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Figure 1: The results of λ and the estimated bandwidth mean under the
covariance structure (1).

4.2 Simulation Study

In this subsection, we consider two sets of numerical experiments below.

The first set, including Examples 1–3, is used to compare our method with

Qiu and Chen’s estimator in Qiu and Chen [2015] and Bickel and Levina’s

estimator in Bickel and Levina [2008].

Write our method and their methods as VCC, QC, and BL, respec-

tively, and use “True” to indicate the true bandwidth K. To make a

fair comparison between QC and VCC, we adopt the same upper bound
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Figure 2: The results of λ and the estimated bandwidth mean under the
covariance structure (2).

M1 = max{min{[n/2], [p/4]}, 20} of K. We search for the minimum value

point for BL and QC method in 0, . . . ,M1. The second set, including Ex-

ample 4, forces on precision matrix and compares VCC with the hypothesis

testing procedure (Backward-Forward procedure) in An et al. [2014]. Each

experiment is repeated 100 times for QC and VCC throughout this sub-

section. Compared with the Backward-Forward procedure, the replication

time is 1000, so the Type I error can be well controlled.

The data are generated from

Xi = Σ1/2Zi, with Zi = (Zi1, . . . , Zip)
>,
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where Zij are i.i.d. respectively from N(0, 1) and t5 that denotes the stan-

dardized t-distribution with degrees 5 of freedom.

Example 1. Consider the following example similarly to that in Qiu

and Chen [2015] but with truncated covariance matrix Σ = (σij)1≤i,j≤p as:

A. σij = θ−|i−j|I(|i− j| ≤ K), with K = 5 and θ = 0.7−1;

B. σij = I(i = j) + ξ|i − j|−βI(0 < |i − j| ≤ K), with K = 2, ξ = 0.5

and β = 1.5.

We design the same samples sizes and dimensions as those in Qiu and

Chen [2015], which are n = 40, 60 and p = 40, 200, 400, 1000, respectively.

Tables 1 and 2 report the mean and standard deviations of the estimated

Table 1: Mean and standard deviation of the estimated bandwidth by VCC,
QC, and BL under the covariance structure A in Example 1.

Covariance (A) with θ−1 = 0.7
Normal t-distribution

n p True VCC QC BL True VCC QC BL
40 40 5 4.72(1.301) 6.34(1.387) 5.56(1.833) 5 4.80(0.876) 6.32(1.377) 5.56(2.392)
40 200 5 4.75(0.956) 6.56(1.343) 8.70(4.446) 5 5.12(0.782) 6.76(1.386) 8.76(5.142)
40 400 5 4.86(0.492) 6.39(1.392) 9.94(5.199) 5 4.80(0.568) 6.46(1.396) 9.90(5.390)
40 1000 5 5(0) 6.21(1.402) 10.64(5.524) 5 5(0) 6.36(1.375) 10.74(5.677)
60 40 5 4.97(1.086) 6.35(1.359) 5.34(1.683) 5 4.94(0.565) 6.39(1.355) 5.94(2.182)
60 200 5 4.77(0.583) 6.28(1.386) 10.85(6.428) 5 4.80(0.538) 6.24(1.319) 11.89(8.128)
60 400 5 5(0) 6.68(1.385) 11.64(6.844) 5 5(0) 6.44(1.366) 16.54(7.830)
60 1000 5 5(0) 6.62(1.316) 14.14(8.600) 5 5(0) 6.38(1.376) 16.96(8.856)

bandwidth by these three methods. The results show that VCC has the

best performance with less deviation among the three contenders, and QC

has a better performance than BL.
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Table 2: Mean and standard deviation of the estimated bandwidth by VCC,
QC, and BL under the covariance structure B in Example 1.

Covariance (B) with ξ = 0.5, β = 1.5
Normal t-distribution

n p True VCC QC BL True VCC QC BL
40 40 2 2.35(1.225) 3.51(1.322) 3.46(2.346) 2 2.35(1.086) 3.38(1.316) 4.10(2.576)
40 200 2 1.91(0.795) 3.34(1.307) 6.67(4.803) 2 1.83(0.377) 3.39(1.286) 9.48(5.926)
40 400 2 2(0) 3.79(1.258) 8.20(4.872) 2 1.98(0.140) 3.47(1.283) 10.79(6.256)
40 1000 2 2(0) 3.29(1.274) 9.20(5.737) 2 2(0) 3.61(1.263) 10.42(5.919)
60 40 2 2.29(0.795) 3.37(1.308) 3.36(1.967) 2 4.63(0.847) 3.20(1.310) 2.49(2.977)
60 200 2 2(0) 3.40(1.223) 7.45(6.195) 2 1.97(0.171) 3.46(1.329) 10.86(7.702)
60 400 2 2(0) 3.22(1.307) 9.41(7.354) 2 2(0) 3.52(1.306) 14.93(9.305)
60 1000 2 2(0) 3.23(1.302) 11.03(9.220) 2 2(0) 3.30(1.291) 15.13(10.051)

As the dimension p increases, the deviation and standard deviation

decrease, while QC and BL do not. When p = 1000, VCC’s deviation and

standard deviation are equal to 0. This means that VCC always makes the

correct decision in this simulation.

Example 2. This model with normal data is similar to the example in

Bickel and Levina [2008]: Σ = (σij)1≤i,j≤p with

σij = 1
2

[
||i− j|+ 1|2H − 2|i− j|2H + ||i− j| − 1|2H

]
I(|i− j| ≤ K).

Table 3: Mean and standard deviation of the estimated bandwidth by VCC
and BL for Example 2.

Mean(Std)
p H True(K) VCC BL QC
10 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0)
10 0.7 5 5(0.0) 5.0(2.8) 2.6(0.7)
100 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0)
100 0.7 4 4(0.0) 4.9(3.2) 17.0(9.8)
200 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0)
200 0.7 3 3(0.0) 4.5(2.7) 24.6(16.1)

The sample size and the dimension are n = 100 and p = 10, 100, 200
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respectively. The results are summarized in Table 3. The results clearly

show the superiority of VCC to BL and QC.

Example 3. To further check the performance of VCC under banding

structures, consider the following covariance structure:

σij = I(i = j) +
∑K

l=1 ξl
−β/2I(|i− j| = l), with ξ = 0.5 and β = 0.9

with larger bandwidths K = 4, 13, 19. The sample sizes and dimension

are n = 50, 100 and p = 50, 500, 1000, respectively. Table 4 reports the

averages, standard deviations, and frequencies of the bandwidth estimators

by QC and VCC. Some findings from Table 4 are as follows.

First, when K = 4, VCC has stable results and a high frequency of

correct decisions, while QC tends to mate the bandwidth grossly. Moreover,

except for the cases of p = 50 and n = 50, in more detail, QC has a lower

proportion of correct decisions, less than 35%. Except for the cases of

n = 50 and p = 50, VCC can have more than 75% of correct decisions,

and when K = 4, the proportion of correct decisions of VCC is 100%. The

performance of VCC is significantly better than QC. Secondly, as the value

of K increases, the standard deviation of VCC increases reasonably, and

the proportion of correct decisions decreases.

Let Mn(k) = 1
p

∑
|l1−l2|>k σ

2
l1l2

+ 1
np

∑
|l1−l2|≤k σl1l1σl2l2 and M̂n(k) denote

the estimator of Mn(k) defined in Qiu and Chen [2015]. Figures 3 and 4
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plot the curves of the objective functions of QC and VCC at the population

level and their box plots at the sample level, respectively. The box plots

in Figures 3 and 4 show the advantage of discontinuity of the objective

function we defined and the results of QC. We can observe that for k > K,

almost all values of ŝ(k) are above the threshold 0.75 and ŝ(K) is much

smaller than 0.75. Further, when p = 100, p = 1000 and K = 19, ĥ(1)

attains the global minimum. But the discontinuity at the true bandwidth

K greatly separates ŝ(K) from all consecutive ratios. This explains why

VCC performs better than QC and BL.
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Figure 3: The true curves of s(k) and boxplots of ŝ(k) for Example 3 with
K = 4, 19.

25

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0337



4.2 Simulation Study

0 5 10 15 20 25 30k
0

0.2

0.4

0.6

0.8

1

1.2
n=100, p=1000, K=4

0 5 10 15 20 25 30k
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
n=100, p=1000, K=19

0

0.2

0.4

0.6

0.8

1

1.2

m
ea

n

k

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

0.5

1

1.5

2

m
ea

n

k

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 4: The true curves of Mn and boxplots of M̂n for Example 3 with
K = 4, 19.
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In summary, VCC works better than QC and BL; in some cases, the

advantage is very significant.

Table 4: Mean, standard deviation, and frequencies of the estimated band-
width by VCC and QC for Example 3.

Example 3
Mean(Std) frequencies under VCC frequencies under QC

n p true(K) VCC QC K̂ < K K̂ = K K̂ > K K̂ < K K̂ = K K̂ > K
50 50 4 4.35(1.120) 11.36(5.943) 2 92 6 0 24 76
50 500 4 4(0) 13.73(7.802) 0 100 0 0 22 78
50 1000 4 4(0) 14.13(8.553) 0 100 0 0 24 76
100 50 4 4(0) 12.37(6.350) 0 100 0 0 22 78
100 500 4 4(0) 24.08(17.176) 0 100 0 0 14 86
100 1000 4 4(0) 27.33(17.044) 0 100 0 0 16 84
50 50 13 11.43(6.627) 15.91(2.878) 28 61 11 0 36 64
50 500 13 13.95(2.396) 18.98(4.948) 7 85 8 0 26 74
50 1000 13 13.31(1.361) 18.74(4.898) 0 94 6 0 26 74
100 50 13 13.11(4.364) 16.26(2.953) 0 100 0 0 31 69
100 500 13 13.34(1.430) 31.53(14.239) 0 94 6 0 14 86
100 1000 13 13(0) 29.06(14.083) 0 100 0 0 19 81
50 50 19 12.89(1.100) 19.41(0.9331) 58 34 8 0 39 61
50 500 19 19.28(0.792) 22.36(2.5605) 0 86 14 0 26 74
50 1000 19 19.21(0.795) 21.65(2.532) 0 93 7 0 35 65
100 50 19 11.72(3.662) 19.41(0.494) 17 77 6 0 59 41
100 500 19 19.44(1.929) 33.78(12.387) 0 94 6 0 22 78
100 1000 19 19(0) 33.79(12.194) 0 100 0 0 21 79

Now we examine the finite sample performance of VCC for precision

matrix and compare it with the hypothesis testing procedures (Backward

and Forward procedure) developed in An et al. [2014]. We write them as

BackE and ForE. Because of an inverse matrix involved in their computing

process, An et al. [2014] considered the upper bound M = 2K in their

estimating algorithm. Again, we adopt the model used in An et al. [2014]

for a fair comparison.

Example 4: Consider the following precision matrix Ω = (ωij) with

Ωij = I(i = j) +
∑K

l=1 3−l/2I(|i− j| = l),
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where K = 2, 4, 6, 8. The results are reported in Table 5.

The results of the three methods in Table 5 clearly show that when

K ≤ 6, BackE performs well, and VCC works similarly to BackE. ForE is

not as good as VCC and BackE. When K = 8, the performance of BackE

is much worse than VCC.

Table 5: Percentages (%) of correct identifications of K by our proposed
method(VCC) and Backward and Forward estimators (AGL) for the nor-
mally distributed data in Example 4.

p
30 100 200 500 1000

n VCC Backward Forward VCC Backward Forward VCC Backward Forward VCC Backward Forward VCC Backward Forward
K = 2

50 100 97.5 99.8 97.3 98.9 99.5 99.2 98.6 99.7 99 99 99.8 100 98.8 99.7
200 99.1 97.4 99.9 100 98.6 99.8 100 99.2 99.7 100 98.8 99.8 100 99.1 100
400 100 97.3 99.6 100 98.4 99.8 100 99 99.8 100 98.8 100 100 99.3 100

K = 4
50 92.4 73.6 7.5 100 99 52 99.5 99.2 83.8 99.7 99.5 99.8 99.8 99.7 99.9
200 98.3 98.8 98 99 99.2 99.7 100 99.5 99.8 100 98.9 99.8 100 99.7 99.7
400 100 98.6 99.6 100 99.4 99.9 100 99.1 99.8 100 99.7 99.7 100 99.4 99.9

K = 6
50 17.7 1.5 0 39.3 2.4 0 75.1 4.9 0 100 16.2 0.4 100 47.9 0.2
200 59.3 18.7 0.4 94.1 72.7 5.7 100 96.4 14.5 99.2 99.8 47.6 100 100 84.7
400 83.5 67.1 7.6 100 99.8 38.7 99 99.6 70.8 100 99.5 99.3 100 99.8 99.6

K = 8
50 11.1 0 0 3 0 0 6 0 0 31.1 0 0 59.4 0 0
200 5 0 0 11.3 0 0 35 0 0 76.5 0 0 98 0 0
400 18.3 0 0 23.2 0 0 64.3 0 0 96 10 20 100 4 2

4.3 Two Real Data Examples

In this subsection, we illustrate the application of VCC to the sonar

data and the ionospheric data. Both datasets are available in the UCI

database.
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4.3.1 Sonar Dataset

This data set was analysed in Yi and Zou [2013] and Qiu and Chen

[2015]. There are 218 observations, 60 input variables, and one output

variable. The output target is mine or rock, of which 97 are from rock and

111 from mine. They were considered two data sets, and two corresponding

matrices were estimated. Yi and Zou [2013] found that the values on the

diagonal of the sample covariance matrix decayed significantly along the

direction away from the diagonal. This finding shows the banding structure

that combines the sample covariance matrix with the estimated bandwidth

yields better results. Figure 5 plots the curves of the function ĥ(k) on the

covariance matrix defined in (2.3) and the function l̂(k) on the precision

matrix defined in (3.9). It can be found that the covariance matrix has a

clear hierarchical nature and the accuracy matrix has a large variation in the

subdiagonal. Thus, assuming that the covariance matrix has a potentially

bundleable structure is reasonable.

Different methods yielded different estimated bandwidths for the co-

variance matrix. Qiu and Chen [2015] and Bickel and Levina [2008] derived

bandwidth estimators of 26 and 37 (QC) and 35 and 44 (BL) for the rock

and mine classes, respectively. The proposed VCC gives values of 3 and 27

for the rock and metal groups, respectively. The estimated ŝ(k) are shown
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in Figure 6.
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Figure 5: The value of the estimated ĥ(k) and l̂(k) under two types of Sonar
data
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Figure 6: The value of the estimated ŝ(k) under two types of Sonar data

To examine the estimation efficiency of these three methods, we used

linear discriminant analysis for data classification. Here, the sample co-

variance matrix used in the linear discriminant analysis is replaced with a

banding sample covariance matrix that combines the estimated bandwidth-

s obtained by the above methods. The output correct rates were 0.6394

(VCC), 0.5769 (QC), and 0.5337 (BL), respectively. The performance of
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the three classifiers demonstrates the superiority of VCC concerning QC

and BL.

4.3.2 Ionospheric dataset

Ionospheric data are mainly used to predict atmospheric structure based

on radar echoes of free electrons in a given ionosphere. This is a binary

classification problem. The data set consists of 351 observations, 34 input

variables, and ,one output variable, including two types of labels, ”g” and

”b” for ”good” and ”bad,” respectively. Similarly, Figure 8 plots the line

graphs of the function ĥ(k) defined in (2.3) and the function l̂(k) defined

in (3.9). It is clear that as k increases, ĥ(k) gradually approaches zero, but

l̂(k) does not. Therefore, it is reasonable to consider the frequency banding

assumption on the covariance matrix. Then we estimate the bandwidth

to obtain an effective classifier. The estimator based on VCC is 26. The

classifier for the sonar data is obtained using linear discriminant analysis.

The corresponding accuracy is 0.8666. When applying QC and BL, the es-

timated bandwidths are 29 and 20, and the accuracies of the corresponding

classifier is 0.8547 and 0.8575, respectively. The estimated ŝ(k) is shown in

Figure 8
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Figure 8: The value of the estimated ŝ(k) under ionosphere data

5. Conclusion

This paper proposes a novel approach called “valley-cliff criterion” (VC-

C) to determine the band sizes of the large-dimensional covariance matrix.

It can also apply to the bandwidth selection problem of the precision ma-

trix. The new approach is computationally efficient, and the resulting es-

timation is consistent. Unlike the traditional methods that construct a

convex/concave objective function to search for a minimizer/maximizer as
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an estimator, the key feature of the new criterion is its discontinuity of the

objective function at the true bandwidth such that the corresponding value

of the objective function can be significantly stood out for identification.

Our method can be nested in a class of regularized estimators of covari-

ance and precision matrices. This methodology should have the potential

to be applied to other order determination problems with large-dimensional

covariance matrices. The research is ongoing.

6. Supplementary Material

In the online supplementary material, we discusses how bandwidth esti-

mation can be applied to the estimation of covariance matrices and precision

matrices. This supplementary material also contains the part of numerical

studies and all proofs of the theoretical results.
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