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Abstract: Inference on high-dimensional parameters in structured linear models is

an important statistical problem. Focusing on the case of a piecewise polynomial

Gaussian sequence model, we develop a new empirical Bayes solution that enjoys

adaptive minimax posterior concentration rates and improved structure learning

properties than existing methods. Moreover, the conjugate form of the empirical

prior means the posterior computations are fast and easy. Numerical examples

highlight the method’s strong finite-sample performance compared with that of

existing methods in various scenarios.
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1. Introduction

Consider a Gaussian sequence model

Yi ∼ N(θi, σ
2), i = 1, . . . , n, (1.1)

where Y = (Y1, . . . , Yn)
⊤ are independent, the variance σ2 > 0 is known,

and we desire to conduct inference on the unknown mean vector θ =

(θ1, . . . , θn)
⊤. It is common to assume that θ satisfies a sparsity structure,

that is, most θi are zero. Works on these problems include that of Donoho

and Johnstone (1994), and more recently those of Johnstone and Silverman

(2004), Jiang and Zhang (2009), Castillo and van der Vaart (2012), Martin

and Walker (2014), van der Pas et al. (2017), and Martin and Ning (2020).

There has also been recent interest in imposing low-dimensional struc-

tures on high-dimensional parameters, namely, piecewise constant and, more

generally, piecewise polynomial structures. For a fixed positive integer K,

we say that the n-vector θ has a piecewise degree-K polynomial structure

if there exists a simple partition B of the index set into consecutive blocks

B(s) ⊆ {1, . . . , n}, with s = 1, . . . , |B|, such that, for each block B(s), the

corresponding sub-vector {θj : j ∈ B(s)} can be expressed as a degree-K

polynomial of the indices j ∈ B(s). This piecewise polynomial form is de-
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termined by the degree K and the complexity |B| of the block, that is, its

dimension is (K + 1)|B|. When this number is smaller than n, then a θ of

this form clearly has a relatively low-dimensional structure. For example,

the piecewise constant case corresponds to K = 0, so the complexity is

determined completely by the number of blocks |B|.

Compared with sparse Gaussian signals, few studies examine piecewise

constant and piecewise polynomial Gaussian sequence models. Regulariza-

tion methods, such as trend filtering (Kim et al., 2009) and locally adaptive

regression splines (Mammen and van de Geer, 1997), have been proposed

to estimate the signal adaptively and recover the underlying block parti-

tions. For piecewise constant problems, Tibshirani et al. (2005) introduce

a fused lasso based on a penalized least squares problem using the total

variation penalty. Rinaldo (2009) and Qian and Jia (2016) investigate the

convergence rate of the fused lasso estimator and the asymptotic properties

of pattern recovery. For signals with a more general piecewise polynomial

structure, Tibshirani (2014) proposes an adaptive piecewise polynomial es-

timation using trend filtering that minimizes a penalized least squares cri-

terion, in which the penalty term sums the absolute Kth-order discrete

derivatives over the input points. Guntuboyina et al. (2020) show that,

under a strong sparsity setting and a minimum length condition, the trend
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filtering estimator achieves an n−1-rate, up to a logarithmic multiplicative

factor. In the Bayesian domain, methods such as the Bayesian fused lasso

(Kyung et al., 2010) and Bayesian trend filtering (Roualdes, 2015) have

been proposed. However, to the best of our knowledge, no Bayesian studies

have examined the posterior contraction as it relates to adaptive estimation

and asymptotic structure recovery for such piecewise polynomial Gaussian

sequence models. Our goal here is to fill this gap in the literature.

Given the relatively low-dimensional representation of the high-dimensional

θ, the now-standard Bayesian approach would be to assign a prior for the

unknown block configuration B, and a conditional prior on the block-

specific (K + 1)-dimensional parameters that determine the polynomial

form. For the prior on B, the goal is to induce “sparsity” in the sense

that the prior concentrates on block configurations B, with |B| relatively

small. For this, one can mostly follow the existing Bayesian literature on

sparsity structures, such as Castillo and van der Vaart (2012), Castillo et al.

(2015), Martin et al. (2017), and Liu et al. (2021), among others. However,

for the quantities that determine the polynomial form on a given block con-

figuration, the situation is quite different. In classical sparsity settings, it is

reasonable to assume that signals that are not exactly zero are still relatively

small, in which case, a conditional prior centered around zero is effective.
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In this piecewise polynomial setting, there is no obvious fixed center around

which a prior should be concentrated. Of course, one option is to choose a

fixed center and a wide spread, but then the tails of the prior distribution

become particularly relevant. In particular, Theorem 2.8 in Castillo and

van der Vaart (2012) shows that if the fixed-center prior has tails thinner

than Laplace, then the posterior contraction rates are sub-optimal, thus

excluding the computationally convenient conjugate Gaussian priors. An

alternative is to follow Martin and Walker (2019), building on Martin and

Walker (2014) and Martin et al. (2017), using an empirical prior that lets

the data help with correctly centering the prior distribution, relieving the

computational burden from the restrictions on the tails of the fixed-center

prior.

Details of this empirical prior construction are presented in Section 2.

Our theoretical results in Section 3 demonstrate that the corresponding

empirical Bayes posterior distribution enjoys adaptive concentration at the

same rate of trend filtering, adjusting to phase transitions, but requires

weaker conditions than those in Guntuboyina et al. (2020). In addition,

we establish structure learning consistency results that, to the best of our

knowledge, are the first for piecewise polynomial sequence models in the

Bayesian literature. Furthermore, because the proposed empirical priors
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are conjugate, the posterior is relatively easy to compute. The numerical

simulations in Section 5 compare our method with trend filtering, showing

the advantageous performance of our method in terms of signal estimation

and structure recovery under finite-sample settings. In Section 6, we apply

our method to two real-world applications, where the underlying truths

are considered to be piecewise constant and piecewise linear, respectively.

Finally, Section 7 concludes the paper. All technical details and proofs are

presented in the Supplementary Material.

2. Empirical Bayes formulation

2.1 Piecewise polynomial model

Before we introduce our proposed prior and corresponding empirical Bayes

model, we precisely formulate the within-block polynomial. Start with the

case |B| = 1, corresponding to there being only one block. A vector θ being

a degree-K polynomial with respect to B corresponds to θ ∈ S, where

S = span{v0, v1, . . . , vK}, (2.1)

and vk = (1k, 2k, . . . , nk)⊤ ∈ Rn, with k = 0, 1, . . . , K. In other words, if

Z ∈ Rn×(K+1) is a matrix with columns that form a basis for S, then θ
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2.1 Piecewise polynomial model

can be expressed as Zβ, for some vector β ∈ RK+1. More generally, for a

generic simple partition B, if θ is a piecewise degree-K polynomial on the

block configuration B, then it can be expressed as ZBβB, where

ZB =



ZB(1) 0 . . . 0

0 ZB(2) . . . 0

...
... . . .

...

0 0 . . . ZB(|B|)


∈ Rn×|B|(K+1), (2.2)

ZB(s) is the sub-matrix of Z with its row indices included in B(s), and

βB =


βB
1

...

βB
|B|

 ∈ R|B|(K+1), βB
s ∈ RK+1, s = 1, . . . , |B|. (2.3)

The following two examples illustrate the piecewise polynomial formulation.

• When K = 0, the vector θ formed by ZBβB is piecewise constant.

For a specific block segment B(s), we can write ZB(s) = I|B(s)| and,

therefore,

θi ≡ βB
s ∈ R, i ∈ B(s).

Note that in this case, the Gaussian sequence model can be rewrit-
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2.1 Piecewise polynomial model

ten in the form of a one-way analysis of variance model with |B|

treatments and |B(s)| number of replications in each treatment, for

s = 1, . . . , |B|.

• When K = 1, the vector θ formed by ZBβB is piecewise linear. For a

specific block segment B(s), we can write

YB(s) = ZB(s)β
B
s + ε, ε ∼ N|B(s)|(0, σ

2I),

where YB(s) is a sub-vector of Y with its indices in B(s), and βB
s

is a two-dimensional vector. Hence, within each segment, the ob-

served data can be viewed as a random sample generated from a

block-specific simple linear regression model with intercept and slope

βB
s,1 and βB

s,2, respectively.

To summarize, if θ is an n-vector that is assumed to have a piecewise

degree-K polynomial structure, then we can reparametrize θ as (B, θB),

where θB is expressed as ZBβB, for some βB ∈ R|B|(K+1), and ZB is as in

(2.2) for some generator matrix Z with columns that form a basis for S in

(2.1). The matrix Z is not unique and, therefore, βB is not unique either.

However, our interest is in the projection θB, which is independent of the

choice of basis, so this non-uniqueness is not a problem in what follows.
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2.2 Empirical prior

2.2 Empirical prior

Given our representation of a piecewise polynomial mean vector θ using

(B, θB) or (B, βB), a hierarchical representation of the prior distribution

would be most convenient. That is, we first specify a prior for B, and then

a conditional prior for βB, given B; this, in turn, induces a conditional prior

for θB. Here, we follow this general prior specification strategy, but allow

the conditional prior for βB to depend on the data in a particular way.

Then, this empirical prior for (B, βB) immediately induces a corresponding

empirical prior for (B, θB) and θ.

Intuitively, there is no reason to introduce a piecewise polynomial struc-

ture unless we believe there are not too many blocks, that is, that |B| is

relatively small compared to n; see Section 3. This belief can be incorpo-

rated into the prior for B in the following way. Set b = |B|, and introduce

a marginal prior

fn(b) ∝ n−λ(b−1), b = 1, . . . , n, (2.4)

where λ > 0 is a specified constant that controls the severity of the prior’s

penalty against large |B|. Note that this is effectively a truncated geomet-

ric distribution with parameter p = n−λ, which puts most of its mass on

small values of the block configuration size, hence incorporating the prior
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2.2 Empirical prior

information that θ is not too complex. Next, if the configuration size b

is given, the blocks correspond to a simple partition of {1, 2, . . . , n} into b

consecutive chunks, and there are
(
n−1
b−1

)
such partitions. Therefore, for the

conditional prior distribution of B, given |B|, we can use a discrete uniform

distribution. Therefore, the prior distribution for B is given by

πn(B) =
(

n−1
|B|−1

)−1
fn(|B|), (2.5)

where B ranges over all simple partitions of {1, 2, . . . , n} into consecutive

blocks. Next we give the conditional prior for βB, given B. We propose

assigning independent, conjugate normal priors to each βB
s corresponding to

a segment B(s). In light of the results of Castillo and van der Vaart (2012),

assuming this thin-tailed prior for βB
s has a fixed center risks sub-optimal

posterior contraction rates. To avoid this, we make a notable departure

from the traditional Bayesian formulation by following Martin et al. (2017)

and letting the data inform the prior center. Specifically, our conditional

prior for βB, given B, is taken to be

βB
s ∼ NK+1

(
β̂B
s , v

(
Z⊤

B(s)ZB(s)

)−1
)
, s = 1, . . . , |B|, (2.6)
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2.2 Empirical prior

independently, where β̂B
s is the least-squares estimator

β̂B
s = (Z⊤

B(s)ZB(s))
−1Z⊤

B(s)YB(s),

and v > 0 is a constant controlling the prior spread. Write the conditional

density of βB, given B, with respect to the Lebesgue measure on R|B|(K+1),

as

π̃n(β
B | B) =

|B|∏
s=1

NK+1(β
B
s | β̂B

s , v{Z⊤
B(s)ZB(s)}−1),

which is a product of individual (K + 1)-variate normal densities. This in-

duces a prior on θB through the mapping θB = ZBβB that defines it. How-

ever, because this is generally not a bijection, there is no density function

with respect to the Lebesgue measure on Rn. To see this, let θBB(s) denote

the sub-vector of θB with indices included in B(s). Then we observe that

the induced conditional prior on θBB(s) is N|B(s)|(PB(s)YB(s), vPB(s)), where

PB(s) = ZB(s){Z⊤
B(s)ZB(s)}−1Z⊤

B(s) (2.7)

is the matrix that projects onto the space spanned by the columns of ZB(s).

Because PB(s) is a projection, it is not full rank and, therefore, the prior for

θBB(s) is a degenerate normal. Despite this degeneracy, the conditional prior
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2.2 Empirical prior

for θB, given B, still exists; it is just more convenient to express in terms

of the conditional prior for βB. That is, we define the conditional empirical

prior for θB, given B, as

Πn(A | B) =

∫
{βB :ZBβB∈A}

π̃n(β
B | B) dβB, A ⊆ Rn.

Note that while the prior for βB depends on the particular basis in Z, the

prior for θB depends only on the projection, which does not depend on the

choice of basis. Finally, our empirical prior for θ is defined as

Πn(A) =
∑
B

πn(B)Πn(A | B)

=
∑
B

πn(B)

∫
{βB :ZBβB∈A}

π̃n(β
B | B) dβB.

Although we refer to the object Πn defined above as a “prior,” it is of

course not a prior in the traditional Bayesian sense, owing to the data-

driven centering. This also differs from the traditional empirical Bayes

formulation, where the prior depends on the data only through the choice of

a few hyperparameters; here, the “prior” is directly and heavily dependent

on the data. Despite these differences, there is nothing stopping us from

treating this formally as a “prior” and combining it (see below) with the
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2.3 Posterior

likelihood to get a corresponding “posterior.” There are significant practical

advantages to this unorthodox approach. For example, we can enjoy the

theoretically optimal concentration rate properties using a computationally

simple thin-tailed conjugate prior for βB, whereas an orthodox Bayesian

would require a computationally burdensome heavy-tailed prior for βB.

2.3 Posterior

Let Ln(θ) denote the likelihood function based on the model (1.1), that

is, Ln(θ) ∝ exp{− 1
2σ2∥Y − θ∥2}, where ∥ · ∥ denotes the ℓ2-norm on Rn.

We propose combining the empirical data-driven prior Πn, defined above,

with the data as encoded in Ln using (almost) the usual Bayes’s formula.

Specifically, we define our corresponding empirical Bayes posterior as

Πn(A) ∝
∫
A
Ln(θ)

α Πn(dθ), (2.8)

where α ∈ (0, 1) is an additional regularizing factor that down-weights the

influence of the data in the likelihood portion of the posterior; see below.

(Of course, because Πn is a proper prior, Πn is a proper posterior.) This sort

of generalized or pseudo posterior has received considerable attention; see,

for example, Grünwald and Van Ommen (2017), Miller and Dunson (2019),
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2.3 Posterior

Holmes and Walker (2017), Syring and Martin (2019), and Bhattacharya

et al. (2019), though not specifically for the purpose of regularization. To

examine the role α plays, we consider an equivalent formulation. Define a

regularized empirical prior

Πreg
n (dθ) ∝ Ln(θ)

−(1−α)Πn(dθ),

and then the corresponding more-Bayesian-looking posterior

Πn(A) ∝
∫
A
Ln(θ)Π

reg
n (dθ). (2.9)

By comparing the equivalent expressions (2.8) and (2.9), the role of α be-

comes clear. The power α on the likelihood in (2.8) is equivalent to an

ordinary-looking Bayesian update with a regularized prior that effectively

down-weights parameter values with an especially large likelihood, hence

discouraging overfitting. The point is that using a data-driven prior blurs

the line between what is the “prior” part and what is the “likelihood” part

of the posterior. We understand that this might make the reader uncom-

fortable, but remember the practical motivations for incorporating the data

into the prior. The following sections investigate the theoretical convergence

properties and practical performance of Πn in (2.8).
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2.3 Posterior

Whether α = 1 is a valid choice for an analysis depends on what, if

anything, we are willing to give up. In general, the asymptotic consistency

of posterior distributions can be established under weaker conditions when

using α < 1 than when using α = 1; this was the motivation behind the

results in Walker and Hjort (2001). Similarly, in general, faster rates can

be achieved with α < 1 than with α = 1, under the same conditions. It

may be that in a particular application, such as the one considered here,

the additional conditions needed to close the gap between α < 1 and α = 1

can be checked without introducing any practical restrictions, but this is

not true in all cases. For example, in generalized linear models, Jeong

and Ghosal (2021) argue that the conditions needed to establish optimal

concentration rates with α = 1 are much stronger than those needed to get

the same rates with α < 1. Our perspective is that

(a) there is nothing to lose by taking α < 1, because it can be taken

very close to one; for example, we take α = 0.99 in our simulation

examples (Section 5),

(b) and there is nothing to gain by insisting on α = 1, because our con-

centration rates are improvements on the existing Bayesian rates for

this problem (Remark 3) and are optimal in certain cases.
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2.3 Posterior

Therefore we embrace the simplicity and flexibility that α < 1 affords,

rather than apologizing for it and/or insisting on α = 1, solely because it

makes the posterior distribution “look more Bayesian.”

A practical benefit of the simplicity of our formulation is that the poste-

rior distribution is not complicated. Indeed, by combining (2.6) and (2.8),

the posterior distribution Πn for θ is given by

Πn(A) =
∑
B

πn(B)

∫
{βB :ZBβB∈A}


|B|∏
s=1

fn(β
B
s ; s, B)

 dβB, (2.10)

where

fn(β
B
s ; s, B) = NK+1

(
βB
s | β̂B

s ,
σ2v

σ2+αv
{Z⊤

B(s)ZB(s)}−1
)
,

and the marginal posterior for B has mass function

πn(B) ∝ πn(B)(1 + vα
σ2 )

−(K+1)|B|/2e−
α

2σ2

∑|B|
s=1 ∥(I−PB(s))YB(s)∥2 , (2.11)

with PB(s) the projection in (2.7). From the latter expression, there are

three major factors contributing to the log-marginal posterior distribution

of B: the prior distribution of block configuration log πn(B), a penalty term

on the model complexity proportional to −|B|, and a model-fitting measure

proportional to the negative sum of the squared residuals. Therefore, our
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posterior distribution prefers models with fewer blocks and better fitting,

given the observed data Y . Details about how we compute the posterior

distribution are given in Section 4 and in the Supplementary Material.

3. Asymptotic properties

3.1 Setup

For a vector θ ∈ Rn that has a piecewise degree-K polynomial structure,

write Bθ for its block configuration, and let |Bθ| denote its cardinality.

Then, our parameter space corresponds to Θn(K), the set of all n-vectors

with a piecewise degree-K polynomial structure and |Bθ| = o(n). The latter

condition on the size of the block configuration ensures that there are not

too many blocks, that is, that the signal is not too complex.

When K ≥ 1, it is possible that a vector θ has multiple block configu-

rations Bθ. That is, there could be multiple B and βB such that θ = ZBβB.

This does not present a problem when estimating θ, but it does create iden-

tifiability concerns in the context of structure learning, that is, recovering

the underlying block structure. In some cases, the non-uniqueness can be

resolved by defining Bθ as the “most economical” of the candidate B’s. For

example, for an arbitrary signal, any (K+1)-tuple of consecutive points can

be fit perfectly by a degree-K polynomial. Therefore, blocks of size K + 1
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3.1 Setup

(a) Can be resolved (b) Cannot be resolved

Figure 1: Two examples pertaining to the identifiability of Bθ for a given
θ, one where the non-uniqueness of Bθ can be resolved, and one where it
cannot. The two lines on each plot both pass through the marked points;
the small jitter is to help distinguish the groupings corresponding to the
two block configurations.

or smaller are meaningless, and should be ruled out. Figure 1(a) shows

an illustration of this for the case K = 2. However, there are other cases

where the non-uniqueness cannot be resolved by ruling out blocks that are

too small. Figure 1(b) shows an example of this, where the two candidate

block configurations cannot be distinguished by the data. This is not rele-

vant for the results in Section 3.2 below, so we postpone our discussion of

how to resolve this problem to Section 3.3.
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3.2 Posterior concentration rates

3.2 Posterior concentration rates

For x ∈ Rn, define the scaled ℓ2-norm ∥x∥n = n−1/2∥x∥2 and, for θ⋆ ∈

Θn(K), define

ε2n(θ
⋆) =


n−1 if |Bθ⋆| = 1,

n−1|Bθ⋆| log n if |Bθ⋆| ≥ 2.

(3.1)

Note that, in the case |Bθ⋆| = 1, the best estimator of θ⋆ is PSY , where PS is

the projection matrix onto S in (2.1), and its expected sum-of-squared-error

is O(n−1), consistent with (3.1). For the case with |Bθ⋆| ≥ 2, the rate (3.1)

is consistent with others obtained in the literature; see Remark 2 below.

Theorem 1 states that the Πn constructed above attains the rate defined in

(3.1). Because the prior can achieve the rates ε2n(θ
⋆) defined above, without

knowledge of θ⋆ or |Bθ⋆ |, it follows that our posterior concentration results

are adaptive to the unknown complexity of θ⋆.

Theorem 1. Consider the model (1.1) with known σ2 > 0 and, assume that

θ⋆ has a piecewise polynomial structure of degree K ≥ 0, with K known. Let

Πn be the corresponding empirical Bayes posterior distribution for θ ∈ Rn

described above. If ε2n(θ
⋆) is as in (3.1), then for any sequence Mn with
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3.2 Posterior concentration rates

Mn → ∞, there exists a constant G > 0 such that

Eθ⋆Π
n({θ ∈ Rn : ∥θ − θ⋆∥2n > Mnε

2
n(θ

⋆)}) ≲ e−GMnnε2n(θ
⋆),

for all large n, uniformly in θ⋆ ∈ Θn(K). For the latter case in (3.1), the

sequence Mn can be replaced by a sufficiently large constant M > 0.

Remark 1. Given data Y ∼ Nn(θ
⋆, σ2I), an oracle who has access to Bθ⋆

would fit a polynomial of degree K in each of the partitions given by

Bθ⋆ . This would be a linear estimator, and its corresponding oracle risk

is O(n−1|Bθ⋆|). Note that the rate achieved in Theorem 1 is comparable to

the oracle risk. Indeed, our method adaptively learns the underlying block

structure of θ⋆ and, in the case |Bθ⋆| = 1, we can exactly match the oracle

rate; otherwise, the price we pay in terms of the rate is only logarithmic.

Remark 2. The minimax rate, n−1|Bθ⋆| log(en/|Bθ⋆|), can be achieved if

we assume more control on the complexity of θ⋆, that is, if |Bθ⋆| = O(nt),

for some t ∈ [0, 1). The only way this extra assumption fails is if the

signal is extremely complex, for example, if |Bθ⋆| = O(n/ log n). Such cases

effectively have no low-dimensional block structure, and should be rare in

practice. This minimax rate can be achieved by using trend filtering (see

Guntuboyina et al., 2020, Corollary 2.3), but this too requires additional
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3.2 Posterior concentration rates

assumptions. Indeed, their result holds only when their minimum length

condition is satisfied and the tuning parameter is properly chosen within an

unspecified “ideal” range. The former—see Equation (13) in Guntuboyina

et al. (2020)—restricts the length of the minimal block to be no smaller

than O(n|Bθ⋆|−1), which cannot be checked in practice. They also make

a strong sparsity assumption that requires |Bθ⋆| to be “much smaller than

n.” This surely excludes extremely high-complexity cases, such as |Bθ⋆| =

O(n/ log n). Therefore, our empirical Bayes posterior concentration rate

result is no weaker than the results for trend filtering in Guntuboyina et al.

(2020), which the authors argue are stronger than any existing results in

the literature. Chatterjee and Goswami (2021) present some risk-bound

results for multivariate piecewise polynomial estimation based on a dyadic

decision tree approach. Their rate (e.g., their Corollary 3.2 and Theorem

3.4) agrees with ours in Theorem 1, but also requires conditions on the

tuning parameter and the complexity of the tree partition space.

Remark 3. A similar result to Theorem 1 is presented in van der Pas and

Ročková (2017) for the piecewise constant case K = 0, with a rate of

|Bθ⋆| log(n/|Bθ⋆|). However, translating their notation to ours, they assume

bounds on both ∥θ⋆∥∞ and |Bθ⋆|, which we do not require. In addition, from

Theorem 2.8 of Castillo and van der Vaart (2012), we do not expect that
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3.2 Posterior concentration rates

optimal concentration rates can be achieved using their fixed-center normal

prior for θB, given B, without some assumptions on the magnitude of θ⋆.

Another related work is that of Gao et al. (2020), who consider a structured

Bayesian linear model and establish oracle inequalities based on elliptical

Laplace priors on the coefficients. Their result (e.g., Theorem 4) is appli-

cable to the piecewise polynomial model considered here, and it implies

a posterior concentration rate of n−1{(K + 1)|Bθ⋆| + |Bθ⋆ | log(en/|Bθ⋆ |)},

which is virtually the same rate obtained in our Theorem 1. In addition

to the concentration rates in terms of θ, we address the structure learning

problem in Section 3.3, which is not discussed by Gao et al. (2020). More-

over, because the data-driven prior formulation allows us to achieve optimal

concentration rates while using a convenient conjugate prior, we also enjoy

straightforward posterior computation, as shown in Section 4. Although

Gao et al. (2020) do not discuss computational considerations, posterior

computations based on their non-conjugate prior are more difficult than

using our proposed empirical prior-based method.

Next, we show that the posterior mean θ̂ =
∫
θΠn(dθ) is an adaptive

asymptotically minimax estimator.
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Theorem 2. Under the setup in Theorem 1,

Eθ⋆∥θ̂ − θ⋆∥2n ≲ Mnε
2
n(θ

⋆),

for all large n, uniformly in θ⋆ ∈ Θn(K). In the latter case of (3.1),

the diverging sequence Mn can be replaced by a constant M , which can be

absorbed into “≲” above.

3.3 Structure learning

In addition to estimation consistency, it is interesting to consider when the

posterior is able to recover the unknown block structure of the true piece-

wise polynomial signal θ⋆. To the best of our knowledge, this is the first

Bayesian (or empirical Bayesian) investigation into structure learning in the

piecewise polynomial Gaussian sequence model. When K = 0, that is, the

true signal is piecewise constant, learning the underlying block structure

can be viewed as detecting the “change points” or “jump points,” which

has many real-world applications. In the non-Bayesian literature, struc-

ture recovery for piecewise constant and piecewise polynomial signals has

received some attention. Next we compare our results with those available

for trend filtering and binary segmentation, among others.
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As a first result in this direction, Theorem 3 states that the effective

dimension of the posterior is no larger than a multiple of the true block

configuration size; in other words, the posterior is of roughly the correct

complexity. Note that this result pertains only to the size |Bθ| of the block

configurations, which can be determined uniquely, and thus there are no

identifiability issues here. Finally, for this and the other results of this

section, the statements are formulated in terms of the marginal posterior

distribution πn for the block configuration B, as defined in (2.11).

Theorem 3. Under the setup in Theorem 1, for any C > 1 + λ−1, where

λ is as in (2.4), there exists a constant G > 0 such that

Eθ⋆π
n({B : |B| > C|Bθ⋆|}) ≲ e−G|Bθ⋆ | logn,

for all large n, uniformly in θ⋆ ∈ Θn(K).

Block configuration size is important, but we need to identify the un-

derlying block structure. However, first, we need to address the potential

non-identifiability of Bθ⋆ . As mentioned before, there are no such issues in

the piecewise constant case with K = 0, but non-identifiability is possible

for K ≥ 1. On the one hand, if θ⋆ is such that non-uniqueness can be

resolved simply by taking the most economical of the equally well-fitting
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block configurations, then that is how Bθ⋆ is defined. On the other hand,

if θ⋆ has multiple block configurations of the same size, as in Figure 1(b),

then it is not possible to distinguish between these. In such cases, the best

we can hope for is that the posterior distribution will concentrate on the

set B⋆ = {Bθ⋆} of equivalent block configurations corresponding to θ⋆. We

establish that this is the case in the results below.

The first result concerns the event that B is a refinement of Bθ⋆ , de-

noted by B ⊐ Bθ⋆ , for some Bθ⋆ ∈ B⋆. That is, if B ⊐ Bθ⋆ , then every

block in Bθ⋆ can be expressed as a union of blocks in B or, equivalently, no

block in B intersects with more than one block in B⋆. Because refinements

or unnecessary splits of Bθ⋆ are a sign of inefficiency, we hope the posterior

will discourage such cases. Indeed, Theorem 4 shows that the posterior

distribution assigns a vanishing probability to the event “B ⊐ Bθ⋆ ,” which

means that the posterior for B asymptotically avoids those inefficient re-

finements. This is analogous to the “no supersets” theorems in Castillo

et al. (2015, Theorem 4) and Martin et al. (2017, Theorem 4) for variable

selection in a linear regression context. The only additional requirement

here is that the power λ in the prior for |B| in (2.4) is not too small; other-

wise, the prior does not sufficiently penalize block configurations that are

too complex, leaving open the possibility for overfitting. Similar conditions
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appear in the regression setting, for example, the conditions of Theorem 4

in Castillo et al. (2015).

Theorem 4. Under the setup of Theorem 1,

Eθ⋆π
n({B : B ⊐ Bθ⋆ for some Bθ⋆ ∈ B⋆}) → 0, n → ∞,

uniformly in θ⋆ ∈ Θn(K) ∩ {θ : |Bθ| = o(nλ)}, with λ > 0 as in (2.4).

If λ ≥ 1, then the above condition on |Bθ⋆| is satisfied for all θ⋆ ∈

Θn(K). However, for smaller values of λ, such as those with good empirical

performance in Section 5, restricting to a proper subset of the parameter

space is required, but is not severe.

Next we discuss how to exactly recover the true block configuration Bθ⋆

or, more generally, the set B⋆ of equivalent true block configurations. First,

we need some additional notation. Define the 0th- and 1st-order difference

operators as ∆0x = x and

∆1x = (x2 − x1, x3 − x2, . . . , xn − xn−1)
⊤,

respectively, where x = (x1, . . . , xn)
⊤ ∈ Rn. For a generic order K ≥ 2, the

Kth-order difference, ∆K : Rn → Rn−K , is defined recursively as ∆Kx =
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∆1(∆K−1x). Second, a change in the signal θ⋆ from one block to another

can only be detected if the change is sufficiently large, and the definitions

of “change” and “sufficiently large” are related to the properties of the

difference operators applied to θ⋆. In particular, the set of indices where a

change in the (K + 1)st-order occurs is defined as

Jθ⋆ = {j = 1, . . . , n−K − 1 : (∆K+1θ⋆)j ̸= 0}.

In the piecewise constant case, with K = 0, the set {j+1 : j ∈ Jθ⋆} consists

of those indices at which the signal jumps from one value to another. Then,

both the minimal change in θ⋆ on Jθ⋆ and the minimal spacing between

changes are relevant to determining whether a change is sufficiently large

to be detectable. These are defined, respectively, as

δn(θ
⋆) = min

j∈Jθ⋆
|(∆K+1θ⋆)j| and γn(θ

⋆) = min
j,j′∈Jθ⋆ ,j ̸=j′

|j − j′|.

Then, the following theorem states that the block configuration Bθ⋆ can

be recovered exactly if γn(θ
⋆)δ2n(θ

⋆) is sufficiently large, analogous to the

so-called beta-min condition in linear regression (e.g., Bühlmann and Van

De Geer, 2011, Chapter 2).
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Theorem 5. Under the setup in Theorem 1, suppose that

γn(θ
⋆)δ2n(θ

⋆) ≥ 4K+1Mσ2

α(1− α)
log n, (3.2)

with M > 4 + λ and λ ≥ 3, where λ controls the prior (2.4). Then,

Eθ⋆π
n(B⋆) → 1, n → ∞. (3.3)

To the best of our knowledge, only the piecewise constant (K = 0) case,

where the true Bθ⋆ is unique, has been considered in the literature, so we

focus on that version here in our discussion of Theorem 5. In that case,

γn(θ
⋆) and δn(θ

⋆) represent the smallest number of indices between jumps

and the smallest signal jump in θ⋆, respectively. To draw a parallel between

the piecewise constant signal problem and a one-way analysis of variance,

γn(θ
⋆) is like the minimum number of replications across all the treatment

groups, and δn(θ
⋆) is like the minimum effect size. In that classical analy-

sis of variance context, where the number of treatment groups and group

memberships are fixed and known, the F-test has power converging to one if

γn(θ
⋆)δ2n(θ

⋆) is bounded away from zero. The condition γn(θ
⋆)δ2n(θ

⋆) ≳ log n

in (3.2) is only slightly stronger, that is, we pay only a logarithmic price

for not knowing the number of groups or group memberships. Returning
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to the general piecewise constant case, if the minimum block size γn(θ
⋆)

is fixed as n and |Bθ⋆ | go to infinity, the result in Theorem 5 matches the

pattern recovery property of the fused lasso in Qian and Jia (2016), and is

stronger than the corresponding results in Lin et al. (2017) and Dalalyan

et al. (2017). We can also allow the minimum block size γn(θ
⋆) to grow. For

example, the minimum block length condition in Guntuboyina et al. (2020)

states that γn(θ
⋆) can be of order O(n|Bθ⋆|−1), corresponding to equally

partitioning over blocks. In this case, the minimum jump size simply needs

to satisfy δ2(θ⋆) ≳ n−1|Bθ⋆| log n, which is mild, because the right-hand side

typically vanishes. This flexibility makes our result preferable to those for

the fused lasso, and comparable to thoese for the wild binary segmentation

in Theorem 3.2 of Fryzlewicz (2014), which is the best result available in

the literature that we are aware of. Finally, note that Theorems 4–5 are,

to the best of our knowledge, the first results of their kind in the Bayesian

literature.

Recently Fang and Ghosh (2024) considered a high-dimensional lin-

ear regression model with an inverse gamma prior on σ2 and an empirical

prior on the coefficients. They obtained model selection consistency and

a posterior contraction rate for the coefficients. Therefore, we expect our

rate convergence results (e.g., Theorems 1 and 2) can be extended to treat
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unknown σ2. The prior on the coefficients can be changed to

(βB
s | B, σ2) ∼ NK+1

(
β̂B
s , σ

2v{Z⊤
B(s)ZB(s)}−1

)
,

which allows for easy computation (Lee et al., 2019). Whether the structure

learning results hold with unknown σ2 remains an open question.

4. Computation

Genuine Bayesian solutions to high-dimensional problems, ones for which

optimal posterior rates are available, tend to be based on non-conjugate,

heavy-tailed priors, making computation nontrivial. Our empirical Bayes

solution, on the other hand, is based on a conjugate prior for θB, making

computations relatively simple.

Recall that the marginal posterior for B is available in closed form, up

to proportionality, as in (2.11). Furthermore, recall from (2.10) that the

conditional distribution of θB, given B, is determined by a linear transfor-

mation of a normal random variable, which is easy to simulate. Together,

these two observations suggest a Metropolis–Hastings algorithm to draw

Markov chain Monte Carlo (MCMC) samples from the proposed posterior

Πn for θ. We provide more details in Section S4 of the Supplementary
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Material.

5. Simulated data examples

5.1 Methods

In this section, we compare the numerical performance of our proposed

method with that of the adaptive piecewise polynomial trend filtering of

Tibshirani (2014). We use the R package genlasso to implement trend

filtering, and choose the tuning parameter using five-fold cross-validation

or the “one-standard error” rule; see Hastie et al. (2009, Chapter 7).

In order to implement the above sampling procedures, we need to spec-

ify some additional hyperparameters in (2.11). As mentioned before, be-

cause α = 0.99 has little practical difference to the α = 1 case, which

corresponds to the genuine Bayesian model, we plug α = 0.99 into the pos-

terior distribution functions for practical implementation. Next, for model

variance σ2, although the theory in Section 3 assumes it is known, in prac-

tice, it may need to be estimated. Of course, one can take a prior for σ2 and

get a corresponding joint posterior for (θ, σ2); see Martin and Tang (2020).

Here, in keeping with the spirit of our empirical Bayes approach, we opt for
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5.2 Scenarios

a plug-in estimator. Specifically, we consider

σ̂2 =
1

n

n∑
i=1

(Yi − θ̂tfi )2, (5.1)

where θ̂tf is the trend filtering/lasso estimate based on cross-validation.

For the prior variance v, it makes sense to take v to be larger than σ2 and,

for the examples below, with relatively small σ2, we find that v = 1 works

well. Finally, λ controls the penalty against large |B|. In the examples

considered here, we conduct a sensitivity analysis in which λ = 0.2, 0.5, 1

are considered. For every data set, 50, 000 iterations of the aforementioned

MCMC algorithm, with an additional 50, 000 burn-in runs, are used to

generate posterior samples.

5.2 Scenarios

For data generation, we consider six models for the true signal θ⋆. More

details are given in Section S2. For model fitting, we use the true K value

for Models 1–4. For Models 5 and 6, because the data are generated from

trigonometric functions, there is no “true value” of K. Therefore, we use

K = 2, because it already provides an accurate curve approximation.
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5.3 Results

We investigate the numerical performance of the two methods in terms of

their estimation error and block selection accuracy. For Models 1–6, we

compute the squared estimation error loss, ∥θ̂ − θ⋆∥2, where θ̂ is either

our posterior mean or the trend filtering estimator obtained using cross-

validation; see Table S1 in the Supplementary Material. In addition, the

estimated signal θ̂ and the true θ⋆ are plotted in Figures 2 and S7. In

these graphical comparisons, the trend filtering estimator is computed using

the “one-standard error” rule, because it is usually smoother than that

chosen using cross-validation, although it typically suffers from a higher

mean squared error; see Hastie et al. (2009, Chapter 7) for details.

The estimated block partition B̂ for trend filtering is obtained from the

nonzero entries of D(K+1)θ̂, that is, the Kth-order “knots” of θ̂; see Gun-

tuboyina et al. (2020). For our empirical Bayes method, B̂ is the maximizer

of the marginal posterior probability πn(B). Because structure recovery is

most meaningful for lower-order polynomials, we focus on the piecewise con-

stants, namely, Models 1 and 2. The results are displayed in Tables S2–S3

and Figures S8–S9 in the Supplementary Material.

To gain a better understanding of the performance of the two meth-

ods in terms of structure learning, we use multiple criteria to measure the
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change-point detection/block selection accuracy. From the 100 replications

for each model, we estimate the probability that B̂ is equal to the true B⋆

and covers the true B⋆, denoted as P(B̂ = B⋆) and P(B̂ ⊃ B⋆), respec-

tively. We also estimate E|B̂|, the mean size of B̂. In addition, as discussed

in Section 3.3, an equivalent representation of the block partition is the set

of jump locations J , defined in Theorem 5. We can calculate the Hausdorff

distance between J and J⋆ using the following formula

H(J | J⋆) = max
j⋆∈J⋆

min
j∈J

|j − j⋆|+max
j∈J

min
j⋆∈J⋆

|j − j⋆|.

Finally, we consider an (n−K−1)-dimensional binary vector S, with Si = 1

if and only if i ∈ J . The Hamming distance between Ŝ and S⋆ is reported

as a measure of how close Ĵ and J⋆ are to each other.

For the estimation accuracy for θ⋆, in Table S1, our method achieves a

smaller squared error loss than trend filtering, except for Models 3 and 5,

which are the two that are continuous; the Doppler wave function in Model 6

is continuous too, but the high frequency oscillation in [0, 100] makes it “al-

most discontinuous.” Therefore, our method tends to have an advantage

in terms of estimation performance when the underlying θ⋆ has jump dis-

continuities, particularly for the piecewise constant signals. Furthermore,
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our method demonstrates stronger structure recovery for piecewise constant

Models 1 and 2 as shown in Tables S2 and S3 in the Supplementary Mate-

rial. Compared with trend filtering, which tends to select more blocks, when

λ = 0.5, our method detects the exact block number for Model 1. In terms

of the Hamming and Hausdorff distances, our method also outperforms

trend filtering for both models. However, the probabilities of identifying

the true block partition are relatively low for both methods. This is likely

because the jump size, δ⋆ = δ(θ⋆), is borderline too small to be detected.

To investigate this, we redo the simulations for Model 2, but with δ⋆-values

ranging over [0.5, 4.0]; see Figure S8 in the Supplementary Material. On

the one hand, trend filtering has a rapidly increasing probability of covering

B⋆, but the probability of identifying B⋆ is effectively zero. On the other

hand, both probabilities for the empirical Bayes method are increasing at

about the same rate. We conclude that trend filtering is rather conserva-

tive in the context of structure learning, tending to pick too many blocks,

whereas the empirical Bayes method is more aggressive, and hence more

efficient. Furthermore, the plots of the Hamming and Hausdorff distances

versus δ⋆ in Figure S9 in the Supplementary Material confirm that the more

aggressive approach of the empirical Bayes method leads to more accurate

structure learning than when using trend filtering.
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6. Real-data examples

6.1 DNA copy number analysis

We consider a real-data example based on the DNA copy number analysis

in Hutter (2007). In these applications, it is of biological importance to

identify the change points, so the proposed method is useful. Data on the

copy number for a particular gene are displayed in grey dots in Figure 3(a).

We fit the proposed empirical Bayes model to these data, using the plug-in

estimator for the model variance, which in this case is σ̂2 = 0.093, just

like in Table 2 of Hutter (2007). A plot of the posterior mean estimate

is also shown. The fit here appears to be reasonably good, perhaps with

the exception around 600, where the within-group variance seems to be

much larger than in other regions. Interestingly, the distribution of |B| in

Figure 3(b) is concentrated on much smaller values than in Hutter (2007),

who estimates about 15 piecewise constant blocks. However, a simple visual

inspection of the data suggests much fewer blocks, perhaps six or seven,

rather than 15.
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6.2 Eye movement signal analysis

Another interesting application of our method whenK = 1 is eye movement

signal denoising. Eye movement of human and other foveate animals when

scanning scenes is characterized by a fixate-saccade-fixate pattern. During

the fixation phase, gaze position is stable on the order of 0.2–0.3 seconds; in

the saccadic phase, the eye moves quickly on the order of 0.01–0.1 seconds.

The time series of gaze position in terms of the vertical and horizontal

visual angle degree can be well approximated by piecewise linear functions,

assuming the eye moves at an approximately constant velocity during each

phase; see Pekkanen and Lappi (2017).

Noise in eye-movement recording is usually inevitable, ranging from

around 0.01◦ with laboratory optical equipment to well over 1◦ in mobile

recording with moving cameras. Here, we consider the gaze position data

set in Vig et al. (2012), in which participants watch a movie clip. The

noise level is not reported in Vig et al. (2012), so we adopt the procedure

in Pekkanen and Lappi (2017), who investigate the same dataset, and add

a simulated measurement noise with standard deviation 1◦; see the Sup-

plementary Information in Pekkanen and Lappi (2017). Then, for both

vertical and horizontal gaze position data in a 2.5 second excerpt of the full

recording, we fit an empirical Bayes estimator for the mean gaze trajectory,
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with λ = 1 and 50000-length MCMC after burn-in. The posterior mean

estimate and the measurements mimicking mobile recording using a moving

camera are plotted in Figure 4. Based on the fitted vertical gaze position

and horizontal gaze position, an estimated mean gaze path is plotted in

Figure 5.

Our method helps to identify and understand the segmentation of the

fixate-saccade-fixate pattern in eye movements. As shown in Figures 4–5,

in the fixation segments (green), the eye moves slowly and steadily, and

hence the gaze position appears to be linear with a slope close to zero.

In the saccade segments (magenta), the gaze position is still linear, but

much steeper, showing a jump pattern. In addition, segmentation of eye

movements is consistent between vertical gaze signal and horizontal gaze

signal.

7. Conclusion

We have considered inference on a piecewise polynomial signal, where the

degree is known, but the block structure is unknown. We have developed an

empirical Bayes posterior that is simple and fast to compute, and exhibits

several desirable theoretical results, including optimal posterior concentra-

tion rates and block selection consistency. Our general results are new and,
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when applied to cases that have been investigated previously in the liter-

ature, in general, our assumptions are weaker and/or our conclusions are

stronger than those currently available. In addition, as our numerical re-

sults demonstrate, the strong theoretical properties of the proposed method

carry over to real applications, particularly when the underlying function

being estimated is discontinuous, or approximately so, as in Model 6 above.

There has been recent interest in cases where the signal is both piecewise

constant and monotone; see for example, Gao et al. (2020) and Guntuboy-

ina and Sen (2018). Of course, the proposed method can be applied to

such cases, but it is not immediately clear how to incorporate monotonic-

ity into the prior formulation directly. An alternative strategy is to force

the monotonicity constraint by projecting the posterior samples of θ from

Πn onto the space of monotone sequences. That is, if θ ∼ Πn, then set

proj(θ) = argminz∈Θ↑ ∥z − θ∥, where Θ↑ ⊂ Rn is the set of monotone se-

quences. This projection operation is just a function of θ, albeit implicit,

so there is a corresponding posterior distribution for the projection, called

a projection posterior. General details about the projection posterior can

be found in Chakraborty and Ghosal (2021). Aside from inheriting many

of the desirable properties of the original posterior, the projection posterior

is also relatively simple to compute. The R package “Iso” (Turner, 2015)
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contains an implementation of the “pool adjacent violators algorithm,” or

PAVA. Thus we would need to generate samples of the piecewise constant

θ from the posterior Πn, and then apply the pava function to project it

onto the space of monotone sequences. Figure S10 in the Supplementary

Material shows the results of sampling from this projected posterior for

a simulated data set, and the corresponding estimate appears to be quite

accurate.

Another interesting possible extension of our work is related to the

formulation in Fan and Guan (2018). Consider a graph G = (V,E) and,

at each vertex i ∈ V , there is a response Yi ∼ N(θ⋆i , σ
2), but only a small

number of edges (i, j) ∈ E have θ⋆i ̸= θ⋆j . They derive bounds on the

recovery rate analogous to those achieved here in the chain graph/sequence

model. The only obstacle preventing us from extending our analysis to this

more general setting is the need to assign a prior distribution for the block

structure B in this more complex graph. For example, in a two-dimensional

lattice graph, as might be used in imaging applications, one would need a

prior on all possible ways that the lattice can be carved up into connected

chunks, which seems nontrivial. However, given such a prior, we expect

that our theoretical results would hold.
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8. Supplementary Material

Additional technical details, numerical results, and proofs are presented in

the Supplementary Material.
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(a) Model 1: Empirical Bayes (b) Model 1: Trend filtering

(c) Model 2: Empirical Bayes (d) Model 2: Trend filtering

(e) Model 3: Empirical Bayes (f) Model 3: Trend filtering

Figure 2: Plots of the empirical Bayes and trend filtering estimates of the
signal for representative cases under Models 1–3.
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(a) Posterior mean for θ (b) Posterior distribution for |B|

Figure 3: DNA copy number analysis results

(a) Vertical gaze position (b) Horizontal gaze position

Figure 4: Eye movement signal denoising results

Figure 5: Estimated gaze path
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