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1. Introduction

Consider modeling the output of a designed experiment as:

yi = f(xi,θ) + εi, i = 1, . . . , n, (1.1)

where yi is the response variable observed at design point xi ∈ S, for

S ⊆ Rp, θ ∈ Rq is a vector of unknown regression parameters, and εi

are independent random errors, with E[εi] = 0 and Var(εi) = σ2. An

optimal design chooses values of xi to answer the experimental questions

of interest as precisely as possible. This problem is often formulated as a

single-objective optimal design problem, where optimality is defined with

respect to a single summary measure of the information, obtained by fitting

a single model to the experimental data. For example, for a particular choice

of regression function f(·, ·) in (1.1) and estimator θ̂, an A-optimal design

minimizes the average variance of θ̂1, . . . , θ̂q.

However, experimenters sometimes have complex goals that cannot be

captured fully by a single-objective optimal design criterion. For example,

an experimenter may fit a single model for inference and prediction, but

there is little overlap between the single-objective optimality criteria that

measure inferential and predictive power. Furthermore, depending on the

parameters being examined, an inference answers different research ques-
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tions, with varying importance to the experimenter (e.g., main effects are

more important than interaction terms, or vice versa). Single-objective op-

timal design criteria do not reflect this variation. Another consideration

is that experimenters may be uncertain about the functional form of the

relationship between yi and xi. Thus, they may want a design with good

inferential or predictive power for multiple models, rather than a single

model, of the form (1.1).

Multi-objective optimal designs combine several single-objective opti-

mal design criteria. Here, common formulations include the compound,

efficiency-constrained, and maximin formulations. The compound formu-

lation optimizes the weighted sum of the criteria for a set of user-specified

weights. The efficiency-constrained formulation optimizes one criterion,

while requiring the design efficiency with respect to the other criteria to be

higher than user-specified values. The maximin formulation maximizes the

minimum efficiency across the set of optimality criteria (Wong, 1999; Wong

and Zhou, 2023). Here, we focus on the efficiency-constrained and maximin

formulations, because it is difficult to interpret the practical significance

of the weights in a compound formulation. Numerous algorithms exist

for finding efficiency-constrained and maximin optimal designs (Huang and

Wong, 1998; Imhof and Wong, 2000; Cheng and Yang, 2019). Wong and
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Zhou (2023) provide a particularly flexible algorithm. They formulate many

efficiency-constrained and maximin optimal design problems as convex op-

timization problems, and then apply an off-the-shelf convex optimization

solver, such as the MATLAB package CVX (Grant and Boyd 2014).

We formulate efficiency-constrained and maximin problems as convex

optimization problems, following Wong and Zhou (2023). We then consider

how to verify the optimality of an efficiency-constrained or a maximin op-

timal design obtained from CVX, providing a complete characterization of

optimality for efficiency-constrained and maximin efficiency designs on a

discrete design space. Related results appear in the literature for efficiency-

constrained optimal designs (see, e.g., Cook and Wong 1994 and Clyde

and Chaloner 1996). To the best of our knowledge, our characterization

of optimality for minimax efficiency designs is new, although there are re-

lated works on minimax and maximin single-objective optimization prob-

lems (see, e.g., Müller and Pázman 1998 and Dette et al. 2007).

Characterizations of optimality for many popular single-objective opti-

mal design criteria (e.g., D- and A-) require that the optimal design satisfies

a set of easily computable inequalities. In contrast, our characterizations

of optimality for efficiency-constrained and maximin designs posit the ex-

istence of a set of quantities that satisfy a set of equalities and inequalities
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involving the optimal design. These types of results are thought to be im-

practical for optimality verification, because it is unclear how to find a suit-

able set of quantities efficiently. Previous works on efficiency-constrained

optimal design problems search for a suitable set of quantities using a grid

search and bisection search. However, the computational complexity of such

methods grows exponentially in the number of objective functions (Cheng

and Yang, 2019). We overcome this challenge of finding a suitable set of

quantities by solving linear programming problems (Luenberger and Ye,

2016), which are a cornerstone of mathematical optimization, and can be

solved accurately and efficiently using off-the-shelf software.

The rest of the paper is organized as follows. In Section 2, we review

concepts related to single-objective optimality criteria, including the nec-

essary and sufficient conditions for optimality. In Sections 3 and 4, we

describe how to solve efficiency-constrained and maximin optimal designs,

respectively, including verifying the optimality of the obtained solutions.

Several theoretical results are derived. We apply our approach to several

examples in Section 5. Section 6 concludes the paper. Proofs are provided

in the Appendix.
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2. Single-objective optimal designs

We consider a discrete design space SN = {u1, . . . ,uN} ⊆ S with N

points, where u1, . . . ,uN and S are user-specified. If S is a continuous

design space, then SN approximates S. We denote a design ξ on SN by

ξ(w) =

 u1 u2 · · · uN

w1 w2 · · · wN

 , where w is an N -vector, with the ith

entry wi representing the proportion of design points with value ui, for

i = 1, 2, . . . , N . Let Ω ≡
{

w ∈ RN :
N∑
i=1

wi = 1, wi ≥ 0

}
.

2.1 Optimality criteria

Let zf (x) be the q-vector with jth entry ∂f(x,θ)
∂θj

∣∣∣
θ=θ∗

, where θ∗ is the true

value of θ. The asymptotic covariance matrix of the ordinary least squares

estimator of θ in model (1.1) with regression function f(·, ·) at design ξ(w)

is proportional to I−1
f (w), where

If (w) =
N∑
i=1

wizf (ui)z
T
f (ui) (2.2)

is the expected information matrix for model (1.1) with regression function

f(·, ·), under the assumption of normally distributed errors. If f(x,θ) is

nonlinear in θ, then If (w) may depend on θ∗. If If (w) depends on θ∗,

then optimizing the design criteria involving If (w) yields locally optimal

designs. In practice, θ∗ is typically unknown, so we must replace it with a
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2.1 Optimality criteria

“guess” about its value, for example, an estimate of θ from a small pilot

study.

Many single-objective optimal design criteria on SN can be transformed

into convex optimization problems of the form min
w∈Ω

Φ(w), where Φ(w) =

φ[If (w)] for a convex function φ defined on the set of all q × q positive-

definite matrices; see, for example, Table 1. Note that the function Φ(w)

is convex as a composition of a convex function and a linear function. We

measure the quality of a design w using its efficiency relative to the optimal

design, denoted as Eff(w).

Table 1: Single-objective optimality criteria that solve min
w∈Ω

Φ(w), where

Φ(w) = φ[If (w)] for a convex function φ defined on the set of all positive-

definite matrices. We use λmin(M) to denote the smallest eigenvalue of M.

Criteria D- A- c-, for c ∈ Rq L-, for L ∈ Rq×q′ E-

φ(M) − log det(M) trace(M−1) cTM−1c trace(LTM−1L) −λmin(M)

Eff(w)

 exp

{
min
w′∈Ω

Φ(w′)

}
exp{Φ(w)}

1/q
min
w′∈Ω

Φ(w′)

Φ(w)

min
w′∈Ω

Φ(w′)

Φ(w)

min
w′∈Ω

Φ(w′)

Φ(w)
Φ(w)

min
w′∈Ω

Φ(w′)

The MATLAB package CVX (Grant and Boyd, 2014) is a user-friendly

option for solving a special subclass of convex optimization problems that

includes the convex optimization problems described in Table 1; further

details on CVX are provided in Section 3.1. The CVX package has previously
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2.2 Necessary and sufficient conditions for optimality

been applied to solve many single-objective optimal design problems; see,

for example, Gao and Zhou (2017) and Wong and Zhou (2019).

2.2 Necessary and sufficient conditions for optimality

All of the criteria in Table 1 lead to convex objective functions, but these

objective functions are not all differentiable everywhere. For example, the

E-optimal design criterion leads to a convex objective function that is non-

differentiable at designs w, such that the smallest eigenvalue of If (w) has

geometric multiplicity greater than one. Thus, the optimality conditions in

this setting rely on subdifferentials, which generalize derivatives to the class

of convex functions. We denote the subdifferential of a convex function

Φ : RN → R at a point w as ∂Φ(w). The following result describes basic

properties of subdifferentials (Chapter 2, Mordukhovich and Nam 2013).

Lemma 1. Suppose that Φ and Φ′ are two finite-valued convex functions

defined on RN . Then, for any w ∈ RN :

1. If Φ is differentiable at w, then ∂Φ(w) = {∇Φ(w)}, where ∇Φ(v) is

the N-vector with ith entry ∂Φ
∂wi

∣∣
w=v

.

2. If a ≥ 0, then ∂(aΦ)(w) = a∂Φ(w) ≡ {ag : g ∈ ∂Φ(w)}.

3. ∂(Φ+Φ′)(w) = ∂Φ(w)+∂Φ′(w) ≡ {g+g′ : g ∈ ∂Φ(w),g′ ∈ ∂Φ′(w)}.
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2.2 Necessary and sufficient conditions for optimality

Let ei denote the N -vector with ith entry equal to one and all other en-

tries equal to zero. The following result characterizes optimality for convex

single-objective optimal design criteria on a discrete design space.

Theorem 1. Suppose that Φ : RN → R is a convex function. Let w∗ ∈ Ω.

Then, w∗ ∈ arg min
w∈Ω

Φ(w) if and only if

∃ g ∈ ∂Φ(w∗) such that gT (w∗ − ei) ≤ 0, for all i = 1, 2, . . . , N. (2.3)

The rest of this subsection is devoted to results that help us evaluate

condition (2.3) in the special case where Φ(w) = φ[If (w)] for a convex

function φ. First, if φ is convex and differentiable at If (w∗), then Lemma

1 states that ∂Φ(w∗) = {∇Φ(w∗)}, and condition (2.3) simplifies to

[∇Φ(w∗)]T (w∗ − ei) ≤ 0 for all i = 1, 2, . . . , N. (2.4)

The following result follows from the matrix chain rule (Section 2.8.1 of

Petersen and Pedersen 2012), and characterizes the left-hand side of (2.4).

Lemma 2. Let w∗ ∈ Ω. If Φ(w) = φ[If (w)] for a convex function φ and

a regression function f(·, ·), and φ is differentiable at If (w∗), then

[∇Φ(w∗)]T (w∗ − ei) = dφ,f (ui,w
∗), for all i = 1, 2, . . . , N,

where for all i = 1, 2, . . . , N , we define

dφ,f (ui,w
∗) ≡ trace

(
[∇φ(If (w∗))]T

[
If (w∗)− zf (ui)z

T
f (ui)

])
, (2.5)
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2.2 Necessary and sufficient conditions for optimality

and where ∇φ(M∗) is the q × q matrix with (j, j′)th entry ∂φ
∂Mjj′

∣∣
M=M∗

.

It follows from Theorem 1 and Lemma 2 that characterizing optimality

for single-objective optimality criteria with Φ(w) = φ[If (w)] for a differen-

tiable convex function φ amounts to checking whether dφ,f (ui,w
∗) ≤ 0, for

all i = 1, 2, . . . , N . Furthermore, dφ,f (ui,w
∗) is straightforward to compute,

given the formula for ∇φ(M∗); see Table 2.

Table 2: Optimality criteria that solve min
w∈Ω

φ(Af (w)) for all differentiable

convex functions φ given in Table 1. The formulae for ∇φ(M) are from

Petersen and Pedersen (2012).

Criteria D- A- c-, for c ∈ Rq L-, for L ∈ Rq×q′

φ(M) − log det(M) trace(M−1) cTM−1c trace(LTM−1L)

∇φ(M) −M−1 −M−2 −M−1ccTM−1 −M−1LLTM−1

Combining Theorem 1, Lemma 2, and Table 1 yields various classical

equivalence theorems on a discrete design space; see, for example, Kiefer

(1974).

In the case of E-optimality, we have Φ(w) = φ[If (w)] for a non-

differentiable convex function φ (Table 1); thus Lemma 2 does not always

apply. We address this with the following result.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0328



Lemma 3. Suppose that Φ(w) = −λmin(If (w)) for a regression function

f(·, ·). Let w∗ ∈ Ω and r∗ be the geometric multiplicity of λmin(If (w∗)).

1. If r∗ = 1, then ∂Φ(w∗) = {∇Φ(w∗)}, and

[∇Φ(w∗)]T (w∗−ei) = [(v∗)Tzf (ui)]
2−λmin(If (w∗)), for all i = 1, 2, . . . , N,

where v∗ denotes an arbitrary unit eigenvector associated with λmin(If (w∗)).

2. If r∗ > 1, then for any g ∈ ∂Φ(w∗), there exist a1, . . . , ar∗ ≥ 0 such

that
∑r∗

j=1 aj = 1 and

gT (w∗ − ei) = d−λmin,f,a(ui,w
∗), for all i = 1, 2, . . . , N,

where for all i = 1, 2, . . . , N , we define

d−λmin,f,a(ui,w
∗) ≡

r∗∑
j=1

aj[(v
∗
j )
Tzf (ui)]

2 − λmin(If (w∗)), (2.6)

where v∗1, . . . ,v
∗
r∗ denotes an arbitrary set of orthonormal eigenvectors

associated with λmin(If (w∗)).

Combining Theorem 1 with Lemma 3 yields the equivalence theorem

for E-optimality on a discrete design space (Kiefer, 1974).

3. Efficiency-constrained optimal designs

Suppose that an experimenter is interested primarily in optimizing one par-

ticular single-objective optimality criterion Φ1, without losing too much effi-
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3.1 Convex optimization problem

ciency with respect to the other criteria Φ2, . . . ,ΦK , for K ≥ 2. Let Effk(w)

denote the efficiency of the design ξ(w) with respect to criterion Φk, for

k = 1, . . . , K. Given experimenter-specified constants m2, . . . ,mK ∈ (0, 1),

an efficiency-constrained optimal design on SN solves

min
w∈RN

Φ1(w)

subject to: Effk(w) ≥ mk, k = 2, . . . , K,

N∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , N.


. (3.7)

All designs may fail to satisfy the constraints in (3.7) when the desired

minimum efficiencies m2, . . . ,mK are large.

3.1 Convex optimization problem

Suppose that Φk(w) = φk[Ifk(w)] for all k = 1, . . . , K, where φ1, . . . , φK are

continuous convex functions chosen from Table 1, and Ifk(w) in (2.2) is the

expected information matrix for a model of the form (1.1) with regression

function fk(x,θ) for θ ∈ Rqk at design ξ(w). We use the definitions of

Effk(w) in Table 1 to rewrite (3.7) as the following problem:

min
w∈RN

Φ1(w)

subject to: Φk(w) ≤ hk(mk), k = 2, . . . , K,

N∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , N.


, (3.8)
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3.2 Necessary and sufficient conditions

where we define hk(m) as

hk(m) =



(
min
w′∈Ω

Φk(w
′)

)
− qk log(m), if Φk(w) = − log det(Ifk(w)),

m

(
min
w′∈Ω

Φk(w
′)

)
, if Φk(w) = −λmin(Ifk(w)),

1
m

(
min
w′∈Ω

Φk(w
′)

)
, otherwise.

(3.9)

For all k = 1, 2, . . . , K, Φk(w) = φk[Ifk(w)] is a convex function, because

φk is a convex function and Ifk is a linear function. Thus, (3.8) is a con-

vex optimization problem. Note that our formulation differs from that of

Wong and Zhou (2022) because we use Φk(w) = − log det(Ifk(w)) for D-

optimality, rather than Φk(w) = [det(Ifk(w)]−1/qk .

In fact, (3.8) is a convex optimization problem that can be solved by

using CVX (Grant and Boyd, 2014), a MATLAB package that works with a

special subclass of optimization problems; see Grant and Boyd (2008) for

details on this subclass. CVX converts (3.8) to a form solvable by a numerical

convex optimization solver (e.g., SDPT3 or SeDuMi), and then translates

the numerical results back to the original form.

3.2 Necessary and sufficient conditions

The following result characterizes optimality for (3.8), under the assumption

that the minimum efficiency inequality constraints can be strictly satisfied.
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3.2 Necessary and sufficient conditions

Theorem 2. Suppose that there exists w ∈ Ω satisfying Effk(w) > mk, for

all k = 2, . . . , K. Let w∗ be a feasible solution for problem (3.8). Then, w∗

solves problem (3.8) if and only if there exist η2, . . . , ηK ≥ 0 such that

1. ηk (Φk(w
∗)− hk(mk)) = 0, for all k = 2, . . . , K, and

2. w∗ ∈ arg min
w∈Ω

[
Φ1(w) +

K∑
k=2

ηkΦk(w)

]
.

Theorem 2 is related to the results of Lee (1988), Cook and Wong

(1994), and Clyde and Chaloner (1996).

We now discuss how to use the results in Section 2.2 to rewrite The-

orem 2. First, suppose that φ1, . . . , φK all correspond to D-, A-, c-, or

L-optimality. Then, it follows from Theorem 1 and Lemma 2 that we can

replace Condition 2 in Theorem 2 with

dφ1,f1(ui,w
∗) +

K∑
k=2

ηkdφK ,fK (ui,w
∗) ≤ 0, for all i = 1, 2, . . . , N, (3.10)

for dφ,f (ui,w
∗) defined in (2.5). Table 2 provides formulae for ∇φk(M).

Otherwise, we must apply Theorem 1 with Lemma 1 and Lemma 3 to

rewrite Condition 2 in Theorem 2, as shown in the following example.

Example 1. Suppose that φ1(M) = −λmin(M), and φ2, . . . , φK all corre-

spond to D-, A-, c-, or L-optimality. Then, it follows from Theorem 1 and

Lemma 1 that Condition 2 in Theorem 2 holds if and only if there exists
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3.3 Optimality verification using linear programming

g ∈ ∂Φ1(w∗) such that

gT (w∗ − ei) +
K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ 0, for all i = 1, 2, . . . , N, (3.11)

for dφ,f (ui,w
∗) defined in (2.5). Let r∗ be the geometric multiplicity of

λmin(If1(w∗)). It further follows from Lemma 3 that

• Case 1 (r∗ = 1): Condition 2 in Theorem 2 holds if and only if

[(v∗)Tzf1(ui,w
∗)]2−λmin(If1(w∗))+

K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ 0,∀ i = 1, . . . , N,

(3.12)

where v∗ denotes an arbitrary unit eigenvector of λmin(If1(w∗));

• Case 2 (r∗ > 1): Condition 2 in Theorem 2 holds if and only if there

exist a1, . . . , ar∗ ≥ 0 such that
∑r∗

j=1 aj = 1 and

d−λmin,f1,a(ui,w
∗) +

K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ 0, ∀ i = 1, . . . , N, (3.13)

where d−λmin,f,a(ui,w
∗) is defined in (2.6).

3.3 Optimality verification using linear programming

Suppose we have obtained w∗ by solving (3.8) numerically, where φ1, . . . , φK

all correspond to D-, A-, c-, or L-optimality. We know from Theorem 2

that w∗ is optimal if we can find η2, . . . , ηK ≥ 0 such that Conditions 1–2 in

Theorem 2 are satisfied. However, w∗ is an approximate numerical solution,
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3.3 Optimality verification using linear programming

and is thus unlikely to satisfy Conditions 1–2 exactly. Instead, we check

whether w∗ is “close enough” to optimal by searching for η2, . . . , ηK ≥ 0

such that

ηk (Φk(w
∗)− hk(mk)) ≤ δ, k = 2, . . . , K, (3.14)

−ηk (Φk(w
∗)− hk(mk)) ≤ δ, k = 2, . . . , K, (3.15)

dφ1,f1(ui,w
∗) +

K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ δ, i = 1, 2, . . . , N, (3.16)

where δ is a small positive constant (e.g., δ = 10−4). Here, (3.14)–(3.15)

relax Condition 1 in Theorem 2, (3.16) relaxes Condition 2 in Theorem 2,

and δ controls our definition of “close enough” to optimal. Similar ideas

appear in single-objective optimal designs (Wong and Zhou, 2019).

We propose solving the following optimization problem:
min

η∈RK−1
1TK−1η

subject to: η ≥ 0K−1, BT
1 η ≤ b1, C1η ≤ δ1K−1,−C1η ≤ δ1K−1.

 ,(3.17)

where ≤ and ≥ denote component-wise inequality; 1K−1 is a (K − 1)-

vector with every entry equal to one, B1 is a (K − 1) × N matrix with

(k, i)th entry dφk+1,fk+1
(ui,w

∗), where dφ,f (ui,w
∗) is defined in (2.5), for k =

1, 2, . . . , K − 1; b1 is an N -vector with ith entry equal to δ− dφ1,f1(ui,w
∗),

and C1 = diag(Φ2(w∗)− h2(m2), . . . ,ΦK(w∗)− hK(mK)).

If we are able to find a solution η∗ to (3.17), then we know that w∗
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3.3 Optimality verification using linear programming

and η∗ jointly satisfy (3.14)–(3.16). This would mean that the conditions in

Theorem 2 (approximately) hold, and, thus w∗ is optimal for (3.8). Further-

more, (3.17) is a linear programming problem (Luenberger and Ye, 2016):

its objective function and constraints are all linear. Thus, we can solve

(3.17) by simply applying an off-the-shelf linear programming solver, such

as the linprog function in the Optimization Toolbox of MATLAB.

If one or more of φ1, . . . , φK correspond to E-optimality, then the fol-

lowing example shows that we can still verify the conditions in Theorem 2

using linear programming.

Example 1 (continued). Consider Example 1 in Section 3.2, where φ1(M) =

−λmin(M) and φ2, . . . , φK all correspond to D-, A-, c-, or L-optimality. Re-

call that we defined r∗ to be the geometric multiplicity of λmin(If1(w∗)).

We previously showed that if r∗ = 1, then Condition 2 in Theorem 3 is

equivalent to (3.12), which defines a set of N linear equalities in η2, . . . , ηK .

Thus, we can minimize
K∑
k=2

ηk subject to the 2(K − 1) linear inequalities

defined in (3.14)–(3.15) and the following relaxed version of (3.12):

[(v∗)Tzf1(ui,w
∗)]2−λmin(If1(w∗))+

K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ δ, ∀ i = 1, . . . , N.

If we can find a solution to this linear programming problem, then we know

that w∗ is an optimal solution.
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We also showed in Section 3.2 that if r∗ > 1, then Condition 2 holds

if and only if there exist a1, . . . , ar∗ ≥ 0 and η2, . . . , ηK ≥ 0 such that

r∗∑
j=1

aj = 1 and (3.13) holds. Thus, Theorem 2 says that w∗ is optimal for

(3.8) if and only if there exists a1, . . . , ar∗ ≥ 0 and η2, . . . , ηK ≥ 0 such that

ηk(Φk(w
∗)−hk(mk)) = 0 for all k = 2, . . . , K and (3.13) holds. Observe that

(3.13) defines N linear inequalities in η2, . . . , ηK and in a1, . . . , ar∗ . Thus,

we can minimize
K∑
k=2

ηk +
r∗∑
j=1

aj subject to the 2(K − 1) linear inequalities

defined in (3.14)–(3.15) and the following relaxation of (3.13),

d−λmin,f1,a(ui,w
∗) +

K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ δ, ∀ i = 1, . . . , N.

Once again, if we are able to find a solution to this linear programming

problem, then we know that w∗ is an optimal solution.

4. Maximin optimal designs

Suppose that an experimenter requires a design that yields reasonable ef-

ficiency for all K single-objective optimality criteria. We formulate this

maximin design problem as
max
w∈RN

min{Eff1(w), . . . ,EffK(w)}

subject to:
N∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, . . . , N.

 . (4.18)
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4.1 Convex optimization problem

4.1 Convex optimization problem

Problem (4.18) is hard to solve directly, because the objective function

involves a minimization. However, we can formulate (4.18) equivalently as

max
w∈RN ,t∈R

1/t

subject to: Effk(w) ≥ 1/t, k = 1, . . . , K,

t ≥ 0, wi ≥ 0, i = 1, . . . , N,
∑N

i=1 wi = 1


. (4.19)

This formulation eliminates the minimization from the objective function

by introducing an additional optimization variable (t). Furthermore, when

Φk(w) = φk[Ifk(w)], with φ1, . . . , φK chosen from the convex functions in

Table 1, (4.19) is equivalent to

min
w∈RN ,t∈R

t

subject to: Φk(w) ≤ hk(1/t), k = 1, . . . , K,

t ≥ 0,
∑N

i=1wi = 1, wi ≥ 0, i = 1, . . . , N.


, (4.20)

where hk(·) is defined in (3.9). This is a convex optimization problem,

because hk(1/t) is a concave function of t and Φk(w) is a convex function

of w. Furthermore, we can solve (4.19) using CVX, because it fits into the CVX

modeling framework described in Grant and Boyd (2008). Note that our

formulation is more general than that of Wong and Zhou (2023), because

we allow the user to select any combination of the criteria in Table 1.
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4.2 Necessary and sufficient conditions for optimality

4.2 Necessary and sufficient conditions for optimality

The following result characterizes optimality for (4.20).

Theorem 3. Suppose that (w∗, t∗) are feasible for problem (4.20). Then,

(w∗, t∗) solves (4.20) if and only if there exist η1, . . . , ηK ≥ 0 satisfying

1.
K∑
k=1

ηk

(
d
dt
hk(1/t)

∣∣∣
t=t∗

)
= 1.

2. ηk(Φk(w
∗)− hk(1/t∗)) = 0, for all k = 1, 2, . . . , K.

3. w∗ ∈ arg min
w∈Ω

{
K∑
k=1

ηkΦk(w)

}
.

We now show how to use the results in Section 2.2 to rewrite The-

orem 3. First, suppose that φ1, . . . , φK all correspond to D-, A-, c-, or

L-optimality. Then, it follows from Theorem 1 and Lemma 1 that we can

replace Condition 3 in Theorem 3 with

K∑
k=1

ηkdφk,fk(ui,w
∗) ≤ 0 for all i = 1, 2, . . . , N, (4.21)

where dk(ui,w
∗) is given in (2.5), and the formulae for ∇φk(M) are given

in Table 2. Otherwise, we need to apply Theorem 1 with Lemma 1 and

Lemma 3 to rewrite Condition 3, as shown in the following example.

Example 2. Suppose that φ1(M) = −λmin(M), and φ2, . . . , φK all corre-

spond to D-, A-, c-, or L-optimality. Then, it follows from Theorem 1 and
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4.3 Optimality verification using linear programming

Lemma 1 that Condition 3 in Theorem 3 holds if and only if there exists

g ∈ ∂Φ1(w∗) such that

η1g
T (w∗ − ei) +

K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ 0, ∀ i = 1, 2, . . . , N. (4.22)

Let r∗ be the geometric multiplicity of λmin(If1(w∗)). Then, based on

Lemma 3, we can consider two cases:

• Case 1 (r∗ = 1): Condition 3 in Theorem 3 holds if and only if

η1[(v∗)Tzf1(ui,w
∗)]2−η1λmin(If1(w∗))+

K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ δ, ∀ i = 1, . . . , N,

(4.23)

where v∗ denotes an arbitrary unit eigenvector corresponding to λmin(If1(w∗)).

• Case 2 (r∗ > 1): Condition 3 in Theorem 3 holds if and only if there

exist a1, . . . , ar∗ ≥ 0 such that
r∗∑
j=1

aj = 1 and

η1d−λmin,f1,a(ui,w
∗) +

K∑
k=2

ηkdφk,fk(ui,w
∗) ≤ 0 for all i = 1, 2, . . . , N,

where d−λmin,f1,a(ui,w
∗) is defined in (2.6).

4.3 Optimality verification using linear programming

Suppose we obtain a candidate solution (w∗, t∗) by solving (4.20) numer-

ically (e.g., using CVX), where φ1, . . . , φK all correspond to D-, A-, c-,
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4.3 Optimality verification using linear programming

or L-optimality. Based on the results in Section 4.2, we need to find

η1, . . . , ηK ≥ 0 such that

K∑
k=1

ηk

(
d

dt
hk(1/t)

∣∣∣
t=t∗

)
= 1, (4.24)

ηk(Φk(w
∗)− hk(1/t∗)) ≤ δ, 1 = 2, . . . , K, (4.25)

−ηk(Φk(w
∗)− hk(1/t∗)) ≤ δ, 1 = 2, . . . , K, (4.26)

K∑
k=1

ηkdφk,fk(ui,w
∗) ≤ δ, i = 1, 2, . . . , N, (4.27)

where δ is a small positive constant. Here, we have relaxed Conditions 2 and

3 in Theorem 3, because w∗ is an approximate solution, along the lines of

the discussion in Section 3.3. We achieve this goal by solving the following

linear programming problem using the linprog function in MATLAB:
min
η∈RK

1TKη

subject to: η ≥ 0K , bT2 η = 1, BT
2 η ≤ δ1N ,C2η ≤ δ1K ,−C2η ≤ δ1K .

 ,(4.28)

where b2 is a K-vector with kth entry equal to
(
d
dt
hk(1/t)

∣∣∣
t=t∗

)
, for hk de-

fined in (3.9), B2 is aK×N matrix with (k, i)th entry equal to dφk,fk(ui,w
∗),

for dφ,f (ui,w
∗) defined in (2.5), and C2 = diag(Φ1(w∗)−h1(m1), . . . ,ΦK(w∗)−

hK(mK)).

When one or more of φ1, . . . , φK correspond to E-optimality, we can

still rewrite Condition 3 in Theorem 3 as a set of linear inequalities; see

Example 2. Thus, we can still verify the conditions in Theorem 3 using
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linear programming. We omit the details, because the linear programming

problem is similar to that in Example 1 in Section 3.3.

5. Applications

In all three of the following applications, we set δ = 10−4 when verifying

optimality using linear programming, as described in Sections 3.3 and 4.3.

Any choice of δ larger than 10−6 yields the same results. All computa-

tions are performed on a 2021 M1 Macbook Pro with 10 cores and 16 GB

memory. We provide the MATLAB code to reproduce all numerical results at

https://github.com/lucylgao/multi-objective-paper-code-2022.

Application 1. Consider a four-parameter compartment model of the

form (1.1), with p = 1, q = 4, f(x,θ) = θ1e
−θ2x + θ3e

−θ4x, and S =

[0, 15], where the response yi represents the concentration level of a drug

in compartments and x denotes the sampling time. This model has been

studied in optimal designs for various optimality criteria, including multi-

objective criteria (Huang and Wong, 1998; Cheng and Yang, 2019).

We seek efficiency-constrained optimal designs that solve (3.7) with

Φk(w) = φk[If (w)], for k = 1, 2, 3. As in Cheng and Yang (2019), we

let φ1 correspond to L-optimality with L = diag
(

1
θ1
, 1
θ2
, 1
θ3
, 1
θ4

)
, φ2 cor-

respond to D-optimality, and φ3 correspond to L-optimality with L =
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[∫ 10

2
zf (x,θ

∗)zTf (x,θ∗)dx
]1/2

, where zf (x,θ) = (e−θ2x,−θ1xe
−θ2x, e−θ4x,−θ3xe

−θ4x)>

and θ∗ = (5.25, 1.34, 1.75, 0.13)>. We discretize the continuous design space

S to form SN with ui = 15(i− 1)/(N − 1), for i = 1, . . . , N .

First, we find the single-objective optimal designs by solving min
w∈Ω

Φk(w)

for each k = 1, 2, 3 using CVX. Then, we solve (3.7) with m2 = 0.9, m3 = 0.8,

and N = 501 using CVX, and denote the solution as w∗m. We report the

single-objective optimal designs and w∗m in Table 3. The efficiencies at

w∗m are close to those reported in Cheng and Yang (2019).

We then verify the conditions for optimality in Theorem 2 for w∗m

by using the linprog MATLAB function to solve (3.17) with δ = 10−4, as

described in Section 3.3. Solving (3.17) yields η∗2 = 36.4870 and η∗3 =

5.0767. Because we obtain a solution, we know that w∗m is the efficiency-

constrained optimal design (Theorem 2). Figure 1 shows that dφ1,f (ui,w
∗m)+

3∑
k=2

η∗kdφk,f (ui,w
∗m) ≤ δ, for all i = 1, 2, . . . , N , showing visually that Con-

dition 2 in Theorem 2 is satisfied for w∗m, η∗2, and η∗3. Figure 1 also shows

that dφk,f (ui,w
∗m) is not uniformly non-negative for all k = 1, 2, 3. Thus,

w∗m is not the single-objective optimal design that minimizes Φ1, Φ2, or Φ3

(Theorem 1 and Lemma 2).

Next, we examine the results of varying m2 and m3; see Table 4. For

m2 = 0.90 and m3 = 0.70, we find that η∗3 = 0, because Φ3(w∗m) < h3(m3)
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Table 3: For Application 1, single-objective optimal designs and the

efficiency-constrained optimal design with m2 = 0.9 and m3 = 0.8.

φ1-optimal φ2-optimal φ3-optimal efficiency-constrained

points (weights) points (weights) points (weights) points (weights)

0 (0.0591) 0 (0.2500) 0 (0.1339) 0 (0.1339)

0.6300 (0.1315) 0.6600 (0.2500) 0.9600 (0.0663) 0.6600 (0.1513)

2.9400 (0.3126) 2.8800 (0.2500) 3.300 (0.4502) 3.0300 (0.2481)

13.2900 (0.4968) 11.0100 (0.2441) 9.7500 (0.2231) 3.0600 (0.0942)

11.0400 (0.0059) 9.7800 (0.2502) 10.8300 (0.0807)

10.8600 (0.2918)

and η∗2, η
∗
3 satisfy Condition 1 in Theorem 2. Similarly, for m2 = 0.70

and m3 = 0.70, we find that η∗2 = η∗3 = 0, because Φk(w
∗m) < hk(mk)

(i.e., Effk(w
∗m) > mk) for k = 2, 3. This implies that the multi-objective

optimal design w∗m is also a single-objective optimal design that maximizes

Φ1 (Theorem 1 and Lemma 2). For m2 = 0.90 and m3 = 0.90, there is no

feasible solution.

Computing the optimal designs for (m2,m3) = (0.9, 0.8) took 19.5,
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(b) 𝜙2-optimality(a) 𝜙1-optimality (c) 𝜙3-optimality

(d) Mulit-objective

optimality

Figure 1: For (m2,m3) = (0.9, 0.8) in Application 1, panels (a)–(c) display

plots of dφk,f (ui,w
∗m) for k = 1, 2, 3, and panel (d) displays dφ1,f (ui,w

∗m)+

3∑
k=2

η∗kdφk,f (ui,w
∗m). In panel (d), the dashed line represents the horizontal

line y = δ, for δ = 10−4.

Table 4: For Application 1, efficiencies and η∗2 and η∗3, for various (m2,m3).

Case (m2,m3) (0.90, 0.80) (0.90, 0.70) (0.70, 0.70) (0.90, 0.90)

η∗2, η
∗
3 36.4870, 5.0767 7.2923, 0 0, 0 NA

Eff1(w∗m) 0.8694 0.9360 1.000 NA

Eff2(w∗m), Eff3(w∗m) 0.9000, 0.8000 0.9000, 0.7035 0.7317, 0.7746 NA

25.6, and 36.2 seconds for N = 101, 501, 1001, respectively. Verifying the

optimality of the efficiency constrained design took less than a second.

Application 2. Several dose response models are popular in clinical dose
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finding studies. We consider the four competing regression models of the

form (1.1) from Bretz et al. (2010) to construct maximin optimal designs,

and to verify the necessary and sufficient conditions in Theorem 3 for the

optimal designs. The four models are: (i) linear model: f1(x,θ) = θ11+θ12x;

(ii) Emax I model: f2(x,θ) = θ21 + θ22x/(θ23 + x); (iii) Emax II model:

f3(x,θ) = θ31 + θ32x/(θ33 + x); and (iv) Logistic model: f4(x,θ) = θ41 +

θ42/ (1 + exp[(θ43 − x)/θ44]). In all models, x ∈ [0, 500] (µg) is the dose

level. Let SN contain N = 501 equally spaced grid points in [0, 500]. As in

Bretz et al. (2010), we assume that the true parameter values for the Emax

I , Emax II, and logistic models are, respectively, (60, 294, 25), (60, 340,

107.14), and (49.62, 290.51, 150, 45.51). (The information matrix for the

linear model does not depend on its true parameter values.)

We let Φk(w) = φk[Ifk(w)], with φk corresponding to D-optimality

(defined in Table 1), for all k = 1, . . . , 4, and then solve problem (4.20) using

CVX, denoting the solution as w∗mm. The single-objective and maximin D-

optimal designs on SN are given in Table 5. We find that t∗ = 1.1712,

Effk(w
∗mm) = 0.8538, for k = 1, 2, 4, and Eff3(w∗mm) = 0.8547. Solving

problem (4.28) using the MATLAB function linprog yielded η∗1 = 0.1983, η∗2 =

0.1291, η∗3 = 0, and η∗4 = 0.0968. Because we obtain a solution, we know

that w∗mm is the maximin D-optimal design (Theorem 3).
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Figure 2 displays plots of dφk,fk(ui,w
∗mm) for k = 1, . . . , 4 and

4∑
k=1

η∗kdφk,fk(uj,w
∗mm). Figure 2(e) confirms that Condition 3 in Theorem

3 is satisfied. Figure 2(a)–(d) show that w∗mm is not the single-objective

D-optimal design for any of the four models (Theorem 1 and Lemma 2).

Table 5: Optimal designs for Application 2.

linear model Emax I Emax II logistic maximin

points (weights) points (weights) points (weights) points (weights) points (weights)

0 (0.5000) 0 (0.3333) 0 (0.3333) 0 (0.2500) 0 (0.2406)

500 (0.5000) 22 (0.3333) 75 (0.3333) 114 (0.2500) 19 (0.1806)

500 (0.3333) 500 (0.3333) 204 (0.1316) 112 (0.1314)

205 (0.2500) 204 (0.1070)

500 (0.2500) 205 (0.0178)

500 (0.3225)

Computing the optimal designs took 18.2, 31.0, and 48.7 seconds for

N = 101, 501, 1001, respectively. Verifying the optimality of the maximin

design took less than a second.

Application 3: Consider the linear model of the form (1.1) with p = 2,

q = 5, f(x;θ) = θ1 + x1θ2 + x2θ3 + x1x2θ4 + x2
2θ5, and S = {0, 1} × [−1, 1].
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(a) 𝜙1-optimality (b) 𝜙2-optimality (c) 𝜙3-optimality

(d) 𝜙4-optimality (e) Mulit-objective optimality

Figure 2: For Application 2, we display plots of (a)–(d) dφk,fk(ui,w
∗mm) for

k = 1, 2, 3, 4, and (e)
4∑

k=1

η∗kdφk,fk(ui,w
∗mm). In panel (e), the dashed line

represents the horizontal line y = δ, for δ = 10−4.

We let S1
N/2 contain 201 equally spaced points on [−1, 1], and discretize

the design space S to form SN = {0, 1} × S1
N/2, for N = 402. Here, the

information matrix does not depend on the true parameter values.

We let Φk(w) = φk[If (w)], for k = 1, 2, 3, with φ1 corresponding to

A-optimality, φ2 corresponding to E-optimality, and φ3 corresponding to

c-optimality with c = (0, 0, 0, 1, 0)T . Then we solve problem (4.20) as de-

scribed in Section 4.1 to obtain the maximin optimal design, and denote the

solution as w∗mmlm . The single-objective and maximin optimal designs on SN
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are given in Table 6. We find that t∗ = 1.2979, Eff1(w∗mmlm ) = 0.9298, and

Eff1(w∗mmlm ) = 0.7705, for k = 2, 3. In this case, the geometric multiplicity

of λmin(If (w∗mmlm )) is equal to one. Thus, to verify the optimality of w∗mmlm ,

we use the linprog MATLAB function to minimize
3∑

k=1

ηk, subject to the lin-

ear inequality constraints in (4.23) and the linear equality and inequality

constraints in (4.24)–(4.26). We find a solution at η∗1 = 0, η∗2 = 0.2445, and

η∗3 = 0.0151. Therefore, the maximin design is optimal.

Table 6: Optimal designs for Application 3.

A-optimal E-optimal c-optimal maximin

points [weights] points [weights] points [weights] points [weights]

(0, -1) [0.1859] (0, -1) [0.2069] (0, -1) [0.2500] (0, -1) [0.1926]

(1, -1) [0.1399] (1, -1) [0.1379] (1, -1) [0.2500] (1, -1) [0.1926]

(0, 0) [0.2287] (0, 0) [0.2414] (0, 1) [0.2500] (0, 0) [0.1679]

(1, 0) [0.1197] (0, 1) [0.0690] (1, 1) [0.2500] (1, 0) [0.0616]

(0, 1) [0.1859] (1, 1) [0.2069] (0, 1) [0.1926]

(1, 1) [0.1399] (1, 1) [0.1926]

Computing the optimal designs took 11.2, 14.5, and 23.2 seconds for

N/2 = 101, 201, 401, respectively. Verifying the optimality of the maximin

design took less than a second.
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6. Conclusion

In this paper, we have shown how to solve multi-objective optimal design

problems on a discrete design space using convex optimization, and how

to verify the optimality of the designs using linear programming. Our ap-

proach can be applied to efficiency-constrained or maximin optimal design

problems that combine any of the single-objective criteria shown in Table

1.

The multi-objective optimal design setting offers a natural opportunity

to gain robustness against parameter and/or model misspecification, be-

cause we can include objective functions formulated from a range of guesses

for θ∗ and/or from the information matrices of multiple models. A se-

quential multi-objective optimal design setting may offer opportunities for

further robustness, because it would enable us to select design points and

weights in stages, and then use the data from each stage to inform the

choice of parameters and/or models used in the objective functions for the

next stage. This may provide a fruitful avenue for future work.

We were able to achieve the results and algorithms presented here be-

cause the inverse of the asymptotic covariance matrix of the ordinary least

squares estimator under model (1.1) is a linear function of w∗; see equation

(2.2). It would be straightforward to extend the results and algorithms to
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other models and estimators that have a similar property. For example,

we could allow the vector of errors in (1.1) to be heteroskedastic or have a

block diagonal covariance structure, and use the generalized least squares

estimator. Another example is generalized linear models with a canonical

link function, where we estimate θ using the maximum likelihood estimator.

Necessary and sufficient conditions for optimality that involve a set

of unknown parameters appear in contexts outside of the multi-objective

design problems we consider here, for example, in any single-objective op-

timal design problem involving a convex, but non-differentiable objective

function (e.g. single-objective E-optimality). When the conditions define

linear equalities and inequalities in these unknown parameters, we can ver-

ify them using linear programming, as discussed here.

A limitation of our results and algorithms is the assumption of a discrete

design space. An important direction for future work is to develop results

and algorithms under a continuous design space.
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Appendix

A. General convex optimization theory

In this section, we review general results on optimality conditions in convex optimization.

Proposition A1. Let Φ : RN 7→ R be a convex function and C be a closed convex set. Then,

w∗ ∈ arg min
w∈C

Φ(w) if and only if there exists g ∈ ∂Φ(w∗) such that

gT (w −w∗) ≥ 0, for all w ∈ C, (A.29)

where ∂Φ(w∗) ≡ {g ∈ RN : Φ(w)− Φ(w∗) ≥ gT (w −w∗) ∀ w ∈ RN}.

Proposition A1 is a direct consequence of Theorem 4.14 of Mordukhovich and Nam (2013).

The following result characterizes optimality for constrained convex optimization problems.

Proposition A2. Define the following convex optimization problem:

min
w∈C

Φ0(w) subject to: Φl(w) ≤ 0, l = 1, . . . , L, (A.30)

where Φ0, . . . ,ΦL : RN → R are convex functions and C is a closed convex set. Suppose that

Slater’s condition holds, i.e. there exists w′ ∈ C such that Φl(w
′) < 0 for all l = 1, . . . , L.
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Then, a feasible solution w∗ of (A.30) solves (A.30) if and only if there exists η1, . . . , ηL ≥ 0

such that ηlΦl(w
∗) = 0 for all l = 1, 2, . . . , L and w∗ ∈ arg min

w∈C

{
Φ0(w) +

L∑
l=1

ηkΦl(w)

}
.

Proof. We assumed that Slater’s condition holds. Thus, Theorem 4.18 of Mordukhovich and

Nam (2013) says that w∗ is optimal for (A.30) if and only if there exist multipliers η1, . . . , ηL ≥ 0

such that ηlΦl(w
∗) = 0 for all l = 1, 2, . . . , L and

0 ∈ ∂Φ0(w∗) +

L∑
l=1

ηl∂Φl(w
∗) +

{
g ∈ RN : gTw∗ ≥ gTw ∀ w ∈ C

}
. (A.31)

Thus, by Lemma 1, (A.31) is equivalent to:

∃g ∈ ∂

(
Φ0 +

L∑
l=1

ηlΦl

)
(w∗) such that gT (w −w∗) ≥ 0 for all w ∈ C. (A.32)

Finally, it follows from Proposition A1 that (A.32) holds if and only if w∗ ∈ arg min
w∈C

{
Φ0(w) +

L∑
l=1

ηlΦl(w)

}
.

B. Proof of Theorem 1

Let w∗ ∈ Ω. Since Φ(w) = φ[If (w)] is convex and Ω is a closed convex set, from Proposition

A1, w∗ ∈ arg min
w∈Ω

Φ(w) if and only if

∃g ∈ ∂Φ(w∗) such that gT (w −w∗) ≥ 0, for all w ∈ Ω. (B.33)

Suppose that (B.33) holds. Since ei ∈ Ω for all i = 1, 2, . . . , N , we have that (2.3) holds. Now

suppose that (2.3) holds. Then, because all w ∈ Ω have wi ≥ 0 for all i = 1, 2, . . . , N , (2.3)

implies that there exists g ∈ ∂Φ(w∗) such that
N∑
i=1

wig
T (ei−w∗) ≥ 0, for all w ∈ Ω. Observing

that gT (w −w∗) =
N∑
i=1

wig
T (ei −w∗) completes the proof.
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C. Proof of Lemma 3

We will start by establishing properties of (−Φ)(w) = λmin(If (w)), as this allows us to take

advantage of existing theoretical results about the minimum eigenvalue function λmin(M).

The function (−Φ)(w) is not differentiable at every point in RN . Furthermore, the notion

of a subdifferential does not apply to (−Φ)(w), as (−Φ)(w) is a concave rather than a convex

function. However, it has a Clarke subdifferential (Clarke, 1983), which generalizes the notion

of the gradient to the class of locally Lipschitz continuous functions. The Clarke subdifferential

of a locally Lipschitz continuous function h(w) on RN is defined as:

∂Ch(w) = co
({

v ∈ RN : ∃ {wk}∞k=1 s.t. lim
k→∞

wk exists,∇h(wk) exists, and lim
k→∞

∇h(wk) = v
})

,

where co(S) is the convex hull of the set S, i.e. the intersection of all convex sets containing S.

We can characterize the Clarke subdifferential ∂C(−Φ)(w) by observing that (−Φ)(w) is

the composition of the non-differentiable concave function λmin with the linear function If .

Thus, it follows from the Clarke subdifferential chain rule (Theorem 2.3.10 in Clarke 1983) that

gc ∈ ∂c(−Φ)(w∗) if and only if there exists M ∈ ∂cλmin(If (w∗)) such that for any w ∈ RN ,

gT
c w = trace

(
M

(
N∑
i=1

wizf (ui)z
T
f (ui)

))
. (C.34)

Furthermore, Corollary 10 of Lewis (1999) says that

∂cλmin(If (w∗)) =

{
r∗∑
j=1

ajv
∗
j [v∗j ]T : aj ≥ 0,

r∗∑
j=1

aj = 1

}
, (C.35)

recalling that in the statement of Lemma 3 we defined v1, . . . ,vr∗ to be an arbitrary set of r∗

linearly independent unit eigenvectors associated with λmin(If (w∗)) where r∗ is the geometric
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multiplicity of λmin(If (w∗)). It follows from the definition of If (w∗) in (2.2) and (C.34)–(C.35)

that if gc ∈ ∂c(−Φ)(w∗), then there exists a1, . . . , ar∗ ≥ 0 such that
r∗∑
j=1

aj = 1 and gT
c (ei −

w∗) =
r∗∑
j=1

aj([v
∗
j ]T zf (ui))

2 − λmin(If (w∗)), for all i = 1, 2, . . . , N. Furthermore, ∂Φ(w∗) =

∂cΦ(w∗) = − [∂c(−Φ)(w∗)] , where the first equality follows from Proposition 2.2.7 of (Clarke,

1983), and the second equality follows from Proposition 2.3.1 of (Clarke, 1983). Therefore, for

any g ∈ ∂Φ(w∗), we know that −g ∈ ∂c(−Φ)(w∗). Thus, there exists a1, . . . , ar∗ ≥ 0 such that

r∗∑
j=1

aj = 1 and −gT (ei − w∗) =
r∗∑
j=1

aj([v
∗
j ]T zf (ui))

2 − λmin(If (w∗)), for all i = 1, 2, . . . , N.

D. Proof of Theorem 2

Since we assumed that there exists w ∈ Ω satisfying Effk(w) > mk for all k = 2, . . . ,K, we have

that Slater’s condition holds for problem (3.8). Furthermore, for all k = 1, 2, . . . ,K, Φk(w) =

φk[Ifk (w)] is a convex function and Ω is a convex set. Thus, it follows from Proposition A2 that

w∗ ∈ Ω solves (3.8) if and only if there exists η2, . . . , ηK ≥ 0 such that ηk(Φk(w∗)−hk(mk)) = 0

for all k = 2, 3, . . . ,K and w∗ ∈ arg min
w∈Ω

{
Φ1(w) +

K∑
k=2

ηk(Φk(w)− hk(mk))

}
. Observing that

K∑
k=2

ηkhk(mk) does not depend on w completes the proof.

E. Proof of Theorem 3

We first confirm that the following restatement of (4.20),

min
w∈Ω,t≥0

t subject to: Φk(w) ≤ hk(1/t), k = 1, . . . ,K, (E.36)
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satisfies the conditions in Proposition A2. Since Ω and R are closed convex sets, Ω×R is a closed

convex set. Furthermore, for all k = 1, 2, . . . ,K, Φk(w) = φk[Ifk (w)] is a convex function.

We also know that for all k = 1, 2, . . . ,K, hk(1/t) in (3.9) is a concave function of t for all

k = 1, 2, . . . ,K, as −λmin(M)/t is a concave function of t for any positive definite matrix M, t

is a linear function, and qk log(t) is a concave function. To show that Slater’s condition holds,

we need to find w′ ∈ Ω and t′ > 0 with Φk(w′) < hk(1/t′) for all k = 1, 2, . . . ,K. It follows from

the definition of the efficiency functions Effk(w′) in Table 1 that Φk(w′) < hk(1/t′) if and only

if Effk(w′) > 1/t′, and that Effk(w′) > 0 for all w′ ∈ Ω. Thus, choosing w′ = arg min
w∈Ω

Φ1(w)

and t′ = 2/

(
min

k=1,2,...,K
Effk(w′)

)
satisfies Slater’s condition.

We can now apply Proposition A2 to (E.36) to yield the following result: a feasible solution

(w∗, t∗) for (E.36) solves problem (E.36) if and only if there exists ν, η1, . . . , ηK ≥ 0 satisfying:

νt∗ = 0, (E.37)

ηk(Φk(w∗)− hk(1/t∗)) = 0 for all k = 1, 2, . . . ,K, (E.38)

(w∗, t∗) ∈ arg min
w∈Ω,t∈R

{
t− νt+

K∑
k=1

ηk(Φk(w)− hk(1/t))

}
. (E.39)

The optimization problem in (E.39) is separable. Thus, (E.39) can be rewritten as

w∗ ∈ arg min
w∈Ω

{
K∑

k=1

ηkΦk(w)

}
, (E.40)

t∗ ∈ arg min
t∈R

{
t− νt−

K∑
k=1

ηkhk(1/t)

}
. (E.41)
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Since g(t) = t− νt−
K∑

k=1

ηkhk(1/t) is a convex function, we can rewrite (E.41) as

1− ν −
K∑

k=1

ηk

[
d

dt
hk(1/t)

∣∣∣
t=t∗

]
= 0. (E.42)

This means that there exists ν, η1, . . . , ηK ≥ 0 satisfying (E.37)–(E.39) if and only if there exists

η1, . . . , ηK ≥ 0 satisfying (E.38), (E.40), and

1−
K∑

k=1

ηk

[
d

dt
hk(1/t)

∣∣∣
t=t∗

]
≥ 0, t∗

(
1−

K∑
k=1

ηk

[
d

dt
hk(1/t)

∣∣∣
t=t∗

])
= 0. (E.43)

Since (E.38) is Condition 2 in Theorem 3, and (E.40) is Condition 3 in Theorem 3, it remains

to show that (E.43) is equivalent to Condition 1 in Theorem 3. It suffices to show that t∗ > 0.

Recall that (E.36) is equivalent to (4.19), so the optimal value for t in (E.36) is the reciprocal

of the maximin efficiency attained by the optimal design. Efficiencies are bounded between 0

and 1, so the optimal value for t must be greater than 1, i.e. t∗ > 1.
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