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Abstract:

The randomized response technique (RRT) is used to reduce underreporting of sensitive char-

acteristics in survey studies by enhancing privacy protection. Currently, the RRT is mainly

applied for prevalence estimation of some sensitive event. We extend the application of the

RRT to an analysis of a time-to-event outcome. Event time data collected from surveys are

usually subject to case-I interval-censoring, so that only “current-status” data on the occur-

rence of the event by the examination time are available. As such, we focus on current-status

(case-I interval-censored) event time data collected using the RRT. Based on the data, we

propose a semiparametric maximum likelihood estimation procedure for the event time dis-

tribution given the covariates. The proposed method is assumed to follow a general class

of semiparametric transformation models characterized by a parametric function for the rela-

tionship between the event time and the covariates, as well as an unspecified baseline function.

We develop the asymptotic theory for the proposed estimation, including the consistency and

asymptotic normality, and examine its finite-sample properties using simulation studies. We

apply the proposed method to current-status data surveyed using the RRT to make statistical

inferences on the time to incidence of extramarital relations since marriage.

Key words and phrases: Randomized response technique, Semiparametric maximum likelihood

estimation, sensitive issue, semiparametric transformation model.

1. Introduction

The time duration to the occurrence of some event of interest is a common and important

research target in various disciplines, including medicine and the social sciences. Usually,

the observation of the event time is subject to incompleteness caused by a limitation of

the observation procedure, a well-known phenomenon called “censoring.” For example,

when the occurrence of an event is not tracked continuously, but only by a sequence of

examinations, the event time lies in some interval between two consecutive examinations,

that is, the event time is subject to interval censoring. In survey studies, it is common

for there to be only one examination during the observation period. Here, the event time

is subject to a special case of interval censoring, called case-I interval censoring, and the

resulting event time data are called “current-status” data. Analyses of case-I interval-

censoring data, including regression analyses, are widely used in the literature; see Huang

(1996), Lin et al. (1998), Martinussen and Scheike (2002), Sun and Sun (2005), Tian and

Cai (2006), Sun (2006), Zhang and Sun (2010), Wen and Chen (2012), among others, for

further details.
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In addition to censoring, event time data obtained from survey studies are also subject to

participants’ response bias, that is, the participants answer the survey questions inaccurately

or falsely. Response bias is of particular concern when the survey questions are related to

moral, legal, or other sensitive issues, because there is a greater chance that participants

will want to protect their privacy, and thus conceal the truth on such issues. In other words,

response data from sensitive survey questions can be highly erroneous.

To encourage respondents to truthfully answer sensitive questions, the randomized re-

sponse technique (RRT) was proposed by Warner (1965), and has been extended by various

subsequent authors (Greenberg et al., 1969; Horvitz et al., 1967; Kuk, 1990; Singh et al.,

2000; Gjestvang and Singh, 2006; Narjis, 2021). The RRT encourages respondents to re-

spond to sensitive issues by using some random device (such as a coin, cards, or dice), the

outcome of which is blind to the interviewer. As a result, the respondents may feel it is

safer to tell the truth, because they cannot be identified by the interviewer, thus reducing

underreporting of sensitive characteristics in surveys (Scheers and Dayton, 1988).

Two types of the RRT are popular: the related- and unrelated-question RRTs. Warner’s

(1965) original RRT proposal is now termed the “related-question” RRT, and uses a question

set consisting of a sensitive question A, and a complementary question Ac. For example,

A: Have you ever had sex with someone other than your spouse?

Ac: Have you never had sex with someone other than your spouse?

The interviewee is asked either A or Ac, determined by a random device and unknown

to the interviewer. Greenberg et al. (1969) proposed the unrelated-question RRT, which

employs a question set consisting of a sensitive question A, and an innocuous question B.

For example,

A: Have you ever had sex with someone other than your spouse?

B: Were you born in the month of January, February, or March?

The interviewee answers one of A or B, which again is determined by a random device and

unknown to the interviewer. The probability of answering “yes” to question B is known,

or can be estimated before the survey. A simple RRT is designed by asking interviewees to

either answer question A truthfully, or answer “yes,” regardless of the truth, according to

the outcome of a random device. This RRT can also be conceived as an unrelated-question

RRT with an innocuous question B, such that the probability of answering “yes” to B is

one.

Although the RRT has been applied to obtain less biased estimations of the prevalence

(Warner, 1965; Greenberg et al., 1969) and factors (Scheers and Dayton, 1988) affecting

sensitive behavior, it has not been applied to estimate an event time distribution. As

mentioned above, event times in survey studies are usually only observed in the form of

interval-censored data, often case-I interval-censored, or current-status data. Hence, an

analysis of time-to-event data collected using the RRT may also need to address the interval-

censoring problem in addition to the special data structure under the RRT.
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In this work, we propose a general methodology for analyzing current-status event time

data collected using the RRT in a survey study. Specifically, we propose a semiparametric

maximum likelihood estimation procedure for the event time distribution given the covari-

ates, which is assumed to follow semiparametric transformation models characterized by a

parametric function for the relationship between the event time and the covariates, and an

unspecified baseline function. We also discuss the asymptotic theory, including the consis-

tency and asymptotic normality, for the proposed estimation, and examine its finite-sample

properties using simulation studies. We apply the proposed method to a set of current-

status data collected using the RRT to make statistical inferences about the time to the

incidence of extramarital relations after marriage.

2. Current-Status Data and Model

Let T , C, and Z denote the time to the sensitive event of interest, survey time, and covariate

vector for an individual, respectively. Then, δ ≡ I(T ≤ C) indicates whether or not the

sensitive event has occurred by the survey time C, where I(·) is the indicator function.

Given the covariate Z, the event time T is assumed to follow a semiparametric trans-

formation model, namely, at time t, the conditional distribution function of T given Z is of

the form

Pr(T ≤ t|Z = z) = F (exp(β′z)H(t)), (2.1)

where F is a known distribution function, β is an unknown vector of regression parameters,

and H is an unspecified increasing real-valued function. The choices of F (x) = 1− exp(−x)

and F (x) = x/(1 + x) lead to the proportional hazards and proportional odds model,

respectively, which are well-known models for lifetime distributions with ranges on [0,1];

see, for example, Zeng and Lin (2006) and Zeng and Lin (2007).

Throughout the paper, we assume the censoring mechanism is noninformative, that is,

T and C are conditionally independent given Z.

3. Estimation under the unrelated RRT

Suppose that the current-status data for the sensitive event are collected using the unrelated-

question RRT (Greenberg et al., 1969). Recall that the unrelated-question RRT consists of a

question A on the sensitive event and an innocuous question B, and one of them, determined

by a random device, is answered by the interviewee. Let Q be a binary random variable,

with Q = 1 denoting that the interviewee answers question A and Q = 0 denoting that

the interviewee answers question B, and let W be the binary response of the interviewee to

the innocuous question B. A single observation in the unrelated-question RRT survey then

consists of O = {Y,C, Z}, where Y = Qδ+(1−Q)W, with δ = I(T ≤ C). Here, and in the

following, we assume that interviewees answer honestly when asked the sensitive question.

Figure 1 illustrates the probability mechanism of the answer Y from the unrelated-question
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Figure 1: Diagrams of the probability mechanism for the unrelated-question RRT

(left panel) and the related-question RRT (right panel).

RRT. Here, we propose an estimation procedure for the event time model (2.1) based on the

independent and identically distributed (i.i.d.) sample Oi = {Yi, Ci, Zi}, for i = 1, · · · , n, of
the unrelated-question RRT observation O. Let the probabilities Pr(Q = 1) = q, Pr(W =

1|C,Z) = c, and Pr(W = 0|C,Z) = 1− c. The values of q and c are assumed known in the

following.

Observe that

Pr(Y = 1|C,Z) = Pr(Y = 1|C,Z,Q = 1)Pr(Q = 1) + Pr(Y = 1|C,Z,Q = 0)Pr(Q = 0)

= Pr(δ = 1|C,Z)q + Pr(W = 1|C,Z)(1− q)

= qF (eβ
′zH(C)) + c(1− q).

Hence, the likelihood function of (O1, · · · , On) takes the form

Ln(θ) =
n∏

i=1

L(θ|Oi), (3.2)

where L(θ|O) = {qF (eβ
′zH(C))+(1−q)c}Y {1−qF (eβ

′zH(C))−(1−q)c}1−Y and θ = (β,H).

The semiparametric maximum likelihood estimator (SPMLE) θ̂ = (β̂, Ĥ), referred to as the

RRT estimator, of θ maximizes the likelihood in (3.2).

It is obvious that (3.2) depends onH only throughH(Ci), for i = 1, · · · , n. Therefore, in
maximizing Ln, we treat Ĥ as a right-continuous step function that jumps at the survey time

Ci. Let t1 < · · · < tK be the ordered distinct time points of Ci, for i = 1, · · · , n, associated
with Yi = 1. For a person with Yi = 0 and tk < Ci < tk+1, consider two increasing step

functions, H1 and H2, with H1 = H2 at all tj , except that H1(Ci) = H1(tk) and H2(Ci) >

H1(tk). Because the transformation F is increasing, we conclude that L(β,H1) > L(β,H2).

Therefore, Ĥ can have jumps only at tj , for j = 1, · · · ,K. Let hj denote the jump size at

tj .

Because the number K of jumps increases with the sample size, a direct maximization of

(3.2) can be challenging. Note that, without randomized response sampling, O = (Y,C, Z)

reduces to the current-status data (δ, C, Z). Turnbull (1976) proposed a self-consistency

formula for computing the SPMLE, that is essentially an EM algorithm based on current-

status data without covariates. Herein, we propose a novel EM algorithm that extends

Turnbull’s method to a regression analysis of randomized response survival data. Let Nij =
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I(Ti ∈ (tj−1, tj ]), for j = 1, · · · ,K, with t0 = 0. We treat the failure time indicator Nij

and the latent indicator Qi of selecting the sensitive question in the unrelated-question set

as missing values in the EM method. Let q̄ = 1 − q and c̄ = 1 − c. The complete-data

likelihood of {(Yi, Ci, Zi, Nij , Qi), i = 1, · · · , n, j = 1, · · · ,K} takes the form

Lc
n(θ) =

n∏
i=1

[{
q
∏

tj≤Ci

∇F (eβ
′ZiH(tj))

Nij

}QiYi {
q
(
1− F (eβ

′ZiH(Ci))
)}Qi(1−Yi)

×(q̄c)(1−Qi)Yi(q̄c̄)(1−Qi)(1−Yi)

]
,

where ∇F (eβ
′ZiH(tj)) = F (eβ

′ZiH(tj))− F (eβ
′ZiH(tj−1)). In the M-step, we maximize

n∑
i=1

[
Yi
∑
tj≤Ci

(NijQi)
∧ log∇F (eβ

′ZiH(tj)) + (1− Yi)Q
∧
i log{1− F (eβ

′ZiH(Ci))}

+Q∧
i log q + (1−Q∧

i )Yi log(q̄c) + (1−Q∧
i )(1− Yi) log(q̄c̄)

]
, (3.3)

where

Q∧
i = E(Qi|Yi, Ci, Zi) = Pr(Qi = 1|Yi, Ci, Zi)

=
qF (eβ

′ZiH(Ci))
Yi [1− F (eβ

′ZiH(Ci))]
1−Yi

qF (eβ′ZiH(Ci))Yi [1− F (eβ′ZiH(Ci))]1−Yi + q̄cYi c̄1−Yi
,

and

(NijQi)
∧ = E(NijQi|Yi, Ci, Zi) = Pr(Nij = 1, Qi = 1|Yi, Ci, Zi)

=
q∇F (eβ

′ZiH(tj))

qF (eβ′ZiH(Ci)) + q̄c
I(tj ≤ Ci)Yi.

To update hk, for k = 1 · · · ,K, we use a one-step self-consistency algorithm, as follows. By

the first-order approximation, the objective function (3.3) can be approximated by

n∑
i=1

{
Yi
∑
tj≤Ci

(NijQi)
∧ log{Ḟ (eβ

′ZiH(tj))e
β′Zihj}+ (1− Yi)Q

∧
i log[1− F (eβ

′ZiH(Ci))]

+Q∧
i log q + (1−Q∧

i )Yi log(q̄c) + (1−Q∧
i )(1− Yi) log(q̄c̄)

}
, (3.4)

where Ḟ (x) = dF (x)/dx. We set the derivative of (3.4) relative to hk to zero to obtain

0 =

 ∑
i:Yi=1

(NikQi)
∧ 1

hk
+
∑

i:Yi=1

∑
j:tj≤Ci

(NijQi)
∧

(
F̈

Ḟ

)
(eβ

′ZiH(tj))e
β′ZiI(tk ≤ tj)

−
∑

i:Yi=0

Q∧
i

(
Ḟ

1− F

)
(eβ

′ZiH(Ci))e
β′ZiI(tk ≤ Ci)

 ,
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which gives an updating algorithm for hk,

hk =

 ∑
i:Yi=1

(NikQi)
∧


−

∑
i:Yi=1

∑
j:tj≤Ci

(NijQi)
∧

(
F̈

Ḟ

)
(eβ

′ZiH(tj))e
β′ZiI(tk ≤ tj)

+
∑

i:Yi=0

Q∧
i

(
Ḟ

1− F

)
(eβ

′ZiH(Ci))e
β′ZiI(tk ≤ Ci)


−1

,

where F̈ (x) = d2F (x)/dx2. To update β, we use a one-step Newton–Raphson algorithm

based on (3.4). The initial value of β is set to zero and the initial value of hk is set to

1/K. The E-steps and M-steps are iterated until the changes for the parameter estimates

between two successive iterations are all less than 10−4.

With regularity conditions, given in the Appendix, our theorems establish the asymp-

totic properties for the RRT estimator θ̂. Denote by θ0 = (β0, H0) the true parameter.

Define the metric d∗{(β,H), (β̃, H̃)} = {∥β − β̃∥2 + ∥H − H̃∥22}1/2, where ∥ · ∥ is the Eu-

clidean norm and ∥H∥22 =
∫
H(u)2du.

Theorem 1 (Consistency and rate of convergence) The RRT estimator (β̂, Ĥ) is consistent;

that is, β̂
P→ β0 and Ĥ(t)

P→ H0(t) for every t in the study period. The rate of convergence

of (β̂, Ĥ) is of order n−1/3; that is, d∗{(β̂, Ĥ), (β0, H0)} = Op(n
−1/3).

Let w(θ) = qḞ (eβ
′ZH(C))eβ

′ZH(C), E(θ) = qF (eβ
′ZH(C)) + (1 − q)c, and V(θ) =

E(θ){1− E(θ)}. Define m∗(θ|O) = w(θ)V(θ)−1 {Z − g∗(C)H(C)−1
}
{Y − E(θ)} , where

g∗(C) = H0(C)
E
{
Zw(θ0)

2V(θ0)−1|C
}

E
{
w(θ0)2V(θ0)−1|C

} .

Theorem 2 (Asymptotic normality)

The RRT estimator β̂ is asymptotically normal; that is,

√
n(β̂ − β0) = I−1 1√

n

n∑
i=1

m∗(θ0|Oi) + oP (1)
d→ N{0, I−1Σ(I−1)′},

where Σ = E{m∗(θ0|O)m∗(θ0|O)′} and I = −E
{

∂
∂βm

∗(θ0|O)
}
.

Although the overall convergence rate for (β̂, Ĥ) is OP (n
−1/3), it is dominated by that of

the estimated nonparametric baseline function Ĥ; the convergence rate for β̂ still achieves

the usual parametric rate OP (n
−1/2). The asymptotic variance var(β̂) ≡ I−1Σ(I−1)′/n

can be estimated by v̂ar(β̂) ≡ Î−1Σ̂(Î−1)′/n, with Σ̂ = n−1
∑n

i=1{m∗(θ̂|Oi)m
∗(θ̂|Oi)

′}
and Î = −n−1

∑n
i=1

∂
∂βm

∗(θ̂|Oi). In particular, the conditional expectations in g∗ can be

estimated by using the multivariate product kernel method (Huang, 1996).

4. Estimation under the related-question RRT

In this section, we discuss estimation with current-status data obtained from the related-

question RRT (Warner, 1965). Recall that this RRT consists of a question A and a comple-

mentary question Ac, and that one of them, determined by a random device, is answered by
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the interviewee. Let Q be a binary random variable, such that Q = 1 represents the intervie-

wee answering A, and Q = 0 represents the interviewee answering Ac. A single observation

in the related-question RRT survey consists of Õ = {X,C,Z}, whereX = Qδ+(1−Q)(1−δ),

with δ = I(T ≤ C). Again, we assume that interviewees answer honestly when asked the

sensitive question. Figure 1 illustrates the probability mechanism of the answer X from the

related-question RRT. Below, we propose an estimation procedure for the event time model

(2.1) based on the i.i.d. sample, Õi = {Xi, Ci, Zi}, for i = 1, · · · , n, of the related-question

RRT observation Õ = {X,C,Z}. Here, we assume the value of q = Pr(Q = 1) is known.

The case with q = 0.5 leads to a degenerate data distribution containing no information on

model (2.1), and hence is excluded.

Let q̄ = 1−q and F̄ = 1−F . Similarly to the derivation of (3.2), the likelihood function

of the sample (Õ1, · · · , Õn) takes the form

L̃n(θ) =

n∏
i=1

L̃(θ|Õi), (4.5)

where L̃(θ|Õ) = [{qF+q̄F̄}(eβ′ZH(C))]X [{1−qF−q̄F̄}(eβ′ZH(C))]1−X . The nonparametric

maximum likelihood estimator θ̂r = (β̂r, Ĥr), referred to as the rRRT estimator, of θ =

(β,H) maximizes the likelihood (4.5) under the related-question RRT. As in Section 3, let

t1 < · · · < tK be the ordered distinct time points of {Ci|Xi = 1, i = 1, · · · , n}. Furthermore,

as in the case of the RRT estimator Ĥ, the rRRT estimator Ĥr can have jumps only at

tj , j = 1, for · · · ,K. For the computation of the rRRT estimator, we employ a similar EM

algorithm to that developed in Section 3, as described below.

Let the failure time indicator Nij ≡ I(Ti ∈ (tj−1, tj ]), and let Qi be the latent indicator

of selecting the sensitive question in the related-question set, both of which are treated as

missing values in the EM method. Let X̄i = 1 −Xi and Q̄i = 1 − Qi. The complete-data

likelihood of the sample {(Xi, Ci, Zi, Nij , Qi), i = 1, · · · , n, j = 1, · · · ,K} takes the form

L̃c
n(θ) =

n∏
i=1

{[
q
∏

tj≤Ci

∇F (eβ
′ZiH(tj))

Nij

]QiXi [
qF̄ (eβ

′ZiH(Ci))
]QiX̄i

×
[
q̄F̄ (eβ

′ZiH(Ci))
]Q̄i)Xi

q̄ ∏
tj≤Ci

∇F (eβ
′ZiH(tj))

Nij

Q̄iX̄i}
,

where ∇F (eβ
′ZiH(tj)) = F (eβ

′ZiH(tj))− F (eβ
′ZiH(tj−1)).

By omitting terms in L̃c
n(θ) irrelevant to (β,H), in the M-step, we maximize

n∑
i=1

[ ∑
tj≤Ci

Xi{(NijQ)∧i + X̄i(NijQ̄i)
∧} log∇F (eβ

′ZiH(tj)) (4.6)

+(X̄iQ
∧
i +XiQ̄

∧
i ) log F̄ (eβ

′ZiH(Ci))

]
,

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0320



where

Q∧
i = E(Qi|Xi, Ci, Zi) = Pr(Qi = 1|Xi, Ci, Zi)

=
qFXiF̄ 1−Xi(eβ

′ZiH(Ci))

(qF + q̄F̄ )Xi(qF̄ + q̄F )1−Xi(eβ′ZiH(Ci))
,

(NijQi)
∧ = E(NijQi|Xi, Ci, Zi) = Pr(Nij = 1, Qi = 1|Xi, Ci, Zi)

=
q∇F (eβ

′ZiH(tj))

(qF + q̄F̄ )(eβ′ZiH(Ci))
I(tj ≤ Ci)Xi,

(NijQ̄i)
∧ = E[Nij(1−Qi)|Xi, Ci, Zi] = Pr(Nij = 1, Qi = 0|Xi, Ci, Zi)

=
q̄∇F (eβ

′ZiH(tj))

(qF̄ + q̄F )(eβ′ZiH(Ci))
I(tj ≤ Ci)(1−Xi),

To update hj , for j = 1, · · · ,K, we replace ∇F (eβ
′ZiH(tj)) in (4.6) with its first-order

approximation Ḟ (eβ
′ZiH(tj))e

β′Zihj , and set the derivative of (4.6) with respect to hk to

zero to obtain an updating algorithm for hk,

hk =

[∑
i

{
Xi(NikQi)

∧ + X̄i(NikQ̄i)
∧}]

×

−∑
i

∑
j:tj≤Ci

{
Xi(NikQi)

∧ + X̄i(NikQ̄i)
∧}( F̈

Ḟ

)
(eβ

′ZiH(tj))e
β′ZiI(tk ≤ tj)

+
∑
i

(X̄iQ
∧
i +XiQ̄

∧
i )

(
Ḟ

1− F

)
(eβ

′ZiH(Ci))e
β′Zi1(tk ≤ Ci)

]−1

.

To update β, we use a one-step Newton–Raphson algorithm based on (4.6). We obtain the

rRRT estimator by starting with initial values β = 0 and hj = 1/K, for j = 1, · · · ,K, and

then iterating between the E- and M-Steps until the changes for the parameter estimates

between two successive iterations are all less than 10−4.

Given the regularity conditions in the Appendix and q ̸= 0.5, the following theorems

establish the asymptotic properties for the rRRT estimator θ̂r = (β̂r, Ĥr).

Theorem 3 (Consistency and rate of convergence) The rRRT estimator (β̂r, Ĥr) is con-

sistent; that is, β̂r
P→ β0 and Ĥr(t)

P→ H0(t) for every t in the study period. The rate of

convergence of (β̂r, Ĥr) is of order n−1/3; that is, d∗{(β̂r, Ĥr), (β0, H0)} = Op(n
−1/3).

Let w̃(θ) = (q − q̄)Ḟ (eβ
′ZH(C))eβ

′ZH(C), Ẽ(θ) = (qF + q̄F̄ )(eβ
′ZH(C)), and Ṽ(θ) =

Ẽ(θ){1− Ẽ(θ)}. Define m̃∗(θ|Õ) = w̃(θ)Ṽ(θ)
−1 {

Z − g̃∗(C)H(C)−1
}{

X − Ẽ(θ)
}
, where

g̃∗(C) = H0(C)
E
{
Zw̃(θ0)

2Ṽ(θ0)
−1

|C
}

E
{
w̃(θ0)2Ṽ(θ0)

−1
|C
} .

Theorem 4 (Asymptotic normality)

The rRRT estimator β̂r is asymptotically normal; that is,

√
n(β̂r − β0) = I−1

r

1√
n

n∑
i=1

m̃∗(θ0|Õi) + oP (1)
d→ N{0, I−1

r Σr(I−1
r )′},
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where Σr = E{m̃∗(θ0|Õ)m̃∗(θ0|Õ)′} and Ir = −E
{

∂
∂β m̃

∗(θ0|Õ)
}
.

The asymptotic variance for β̂r, var(β̂r) ≡ I−1
r Σr(I−1

r )′/n, can be estimated by v̂ar(β̂r) ≡
Î−1
r Σ̂r(Î−1

r )′/n, where Σ̂r = n−1
∑n

i=1{m̃∗(θ̂r|Õi)m̃
∗(θ̂r|Õi)

′} and Îr = −n−1
∑n

i=1
∂
∂β m̃

∗(θ̂r|Õi).

Based on the asymptotic normality and the estimated variance, one can perform hypothesis

testing and construct a confidence interval for the regression parameter β.

The proofs for the asymptotic theory of the RRT and rRRT estimators in Theorems 1–4

are, in general, based on the techniques of Huang (1996), van der Vaart and Wellner (1996),

and Korosok (2008). In short, we first apply the techniques developed in van der Vaart

and Wellner (1996) to establish the consistency and the convergence rate of estimators in

Theorem 1 and 3, then use the techniques similar to Huang (1996) to derive the efficient

scores (m∗ and m̃∗) and the invertibility of the efficient Fisher Informations (I and Ir),
and finally follow the empirical process theory and semiparametric M-estimator theory

(Korosok, 2008; van der Vaart and Wellner, 1996) to establish the asymptotic normality of

the estimators in Theorems 2 and 4. Proofs for the theorems are given in the Appendix.

Remark 1. In Ahangar et al. (2012), the response probability distribution F to the sensitive

issue is estimated indirectly using the probability distribution of the actual response Y (to

the mix of sensitive and innocuous question problems) Pr(Y = 1) = qF + (1 − q)c, or by

using the probability distribution of the actual response X (to the mix of sensitive and

complementary question problems) Pr(X = 1) = qF + (1 − q)(1 − F ), and the resulting

estimate of F can take a value outside [0,1]. Our method differs from that of Ahangar et al.

in that we directly model and estimate the distribution F , avoiding the problem of an out-

of-range estimation. In the current work, we employ the same questionnaire survey designs

as those of Warner (1965) and Greenberg et al. (1969), but propose a different modeling

and estimation approach to those of Ahangar et al. (2012), Warner (1965), and Greenberg

et al. (1969). In particular, we focus on a (type-I) interval-censored time-to-event model

and data, which has not previously been addressed in the RRT literature.

5. Simulation Studies

We employ simulation studies to assess the performance of the proposed estimation meth-

ods and examine the adequacy of the associated normal approximations. Each simulation

consists of 1000 replications. The sample size n = 500 or 1000 for each simulated data set.

In the first simulation study, we consider the covariate vector Z = (Z1, Z2)
′, where Z1

is generated from Bernoulli(0.5), Z2 is generated from N(0, 0.5), and they are independent

of each other. Given the covariate Z, the time T to the sensitive event is generated from

(2.1) with β = (1, 0.5)′, H(t) = 0.5t0.7, and F (x) = 1 − exp(−x), which corresponds to

the proportional hazards (PH) model. The survey time C is simulated from Uniform(0,1),

independently of T and Z. The answer to the sensitive question is given by δ = I(T ≤
C), and the answer to the innocuous question W is generated as Bernoulli with Pr(W =

1|C,Z) = c, with the constant c = 0, 0.25, 0.5, or 1. Given δ and W, the observed response
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Y of the unrelated-question RRT survey is Y = Qδ+ (1−Q)W, and the observed response

X of the related-question RRT survey is X = Qδ+(1−Q)(1−δ), where Q is Bernoulli with

Pr(Q = 1) = q, for q = 0.5, 0.7, 0.9, or 1, with the case q = 0.5 excluded for the related-

question RRT as mentioned in Section 4. The unrelated-question RRT observation consists

of O = (Y,C, Z), and the related-question RRT observation consists of Õ = (X,C,Z). In

the second simulation study, the data are simulated from the same setups as above, except

that F (x) = x/(1 + x), which corresponds to the proportional odds (PO) model.

The simulation results are presented in Tables 1 and 2, including the bias and standard

deviation (SD) over the simulation replicates for the estimators of β, the average standard

error (ASE) based on the asymptotic theory, and the coverage probability (CP) of the 95%

Wald-type confidence intervals for β over the simulation replicates. Also presented are the

results of the relative efficiency (RE) of the RRT or the rRRT estimation relative to the

ideal case, defined as MSE(β̂I)/MSE(β̌), where MSE is the mean squared error over the

simulation replicates, β̌ is the RRT estimate (β̂) or the rRRT estimate (β̂r) of β, and β̂I

is the “ideal” estimate obtained when the full data {(δi, Ci, Zi)|i = 1, · · · , n} are available,

that is, the estimate from (3.2) under q = 1.

The results in Tables 1 and 2 show that the proposed estimators for the event time model

parameters under the unrelated- and the related-question RRT surveys are essentially unbi-

ased. Furthermore, the asymptotic theory performs well in finite samples: the asymptotic

standard error approximates the simulation standard deviation well, and the Wald-type

confidence interval based on asymptotic normality has a virtually correct coverage proba-

bility. As expected, the RRT estimators for both the related- and unrelated-question RRTs

are less efficient than the estimator based on the current-status data without the RRT, that

is, the “ideal” estimator. In addition, the relative efficiency of the RRT estimators with

respect to the ideal estimator ranges from 10 to 87%, depending on the probability mech-

anism of the random device underlying the RRT. Comparing the results of the unrelated-

and related-question RRTs, we find that the unrelated-question RRT leads to more efficient

estimation than does the related-question RRT, especially when the probability c of answer-

ing “yes” to the innocuous question is smaller. The efficiency of the related-RRT estimator

increases when the probability q of choosing the sensitive question instead of the comple-

mentary question approaches one. These effects correspond to a bias–efficiency trade-off,

as mentioned in Scheers and Dayton (1988); see Section 7 for further discussion.

Figure 2 shows the Q–Q plots for the standardized RRT estimates (v̂ar(β̂))−1/2(β̂ −
β) and the standardized rRRT estimates (v̂ar(β̂r))

−1/2(β̂r − β) for β with respect to the

standard normal quantile values under the PH model with q = 0.7, c = 0.25, and n = 1000.

The Q–Q plots confirm that the normal approximation theory for the proposed estimators

is adequate.
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6. Analysis of Extramarital Relations Data

In this section, we apply the proposed methods to a data set from the Taiwan Social Change

Survey (TSCS) conducted by Academia Sinica in Taiwan. One of the survey questions was

aimed at extramarital relations, in particular, extramarital sex, and was asked using the

unrelated-question RRT of Greenberg et al. (1969) for 1140 study participants, who were

aged above 18 years and married. The sensitive and innocuous questions were given by

A: Have you ever had sex with someone other than your spouse?

B: Were you born in the month of January, February, or March?

The interviewees were asked to pick up one card from the deck of 40 cards numbered 1

to 5 (8 cards numbered 1, 4 numbered 2, 8 numbered 3, 16 numbered 4, 4 numbered 5),

and not to tell the interviewer the number on the card. Then, the interviewees answered

Question A or B, according to the number on the card. If the number on the card was 1,

2, or 3, they answered Question A; if the number on the card was 4 or 5, they answered

Question B. Under the design, the probability of answering the sensitive question A is

Pr(Q = 1) = q = 0.5, where Q is a binary random variable representing whether question

A (Q = 1) or B is answered.

Based on the survey data obtained using the above RRT design, we wish to study

the relationship between a set of covariates and the time T to extramarital relations since

marriage. Let C denote the survey time of the interviewee since he/she was married,

obtained by the answer to the survey question, “How many years have you been married

?” Let δ = I(T ≤ C) be the current-status indicator for the interviewee at the survey time

C, representing whether or not the sensitive event (extramarital relations) had occurred

by the time C. Owing to the RRT design, instead of observing T , we can only observe

Y = Qδ+(1−Q)W, assuming that the interviewee answered question A truthfully, and W

is the response to question B.

The covariates we consider in the analysis include gender (Male; 1: Male, 0: Female),

attitude toward extramarital relations (Atti; 1: Yes, 0: No), any children (Child; 1: Yes,

0: No), and years of education (EduYear; 1.5–27 years). Whether an interviewee has any

children was obtained by the survey question “Do you have any child?”, and the attitude

toward extramarital relations of an interviewee was obtained by the survey question “Can

married people have extramarital relations?” To investigate the covariate effects on the time

to extramarital relations, we consider the class of generalized odds-rate hazards models

(Scharfstein et al., 1998), that is, the function F in (2.1) is given by F (x) = 1 − (1 +

νx)1/ν , ν ≥ 0. This class of models includes the PH (ν = 0) and PO (ν = 1) models as

special cases. For the TSCS RRT data, the generalized odds-rate hazards model with ν = 0,

that is, the PH model is found to give the largest log-likelihood value (-558.128) over a set

of grid values for ν ∈ [0, 2]. The regression analysis results for the TSCS RRT data based

on the PH and PO models are presented in Table 3.

As shown in Table 3, the results from both models reveal that males have a significantly
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higher cumulative chance of experiencing extramarital relations than females do. Further-

more, persons with a positive attitude toward extramarital relations have a significantly

shorter time to extramarital relations than persons with a negative attitude do. On the

other hand, people with children and who have more education tend to have less incidence

of extramarital relations, although these trends are not statistically significant at the 5%

level.

Figure 3 presents the RRT estimates of the cumulative percentages of extramarital

relations over years since marriage for males and females, obtained from the PH and PO

models, with the covariates Atti, Child, and EduYear fixed at their sample means. The

estimates of the proportions of males and females having extramarital relations based on

Figure 3 are presented in the Supplementary Material.

Here, to help readers understand the proposed method, we summarize and explain the

steps applied to the TSCS unrelated-question RRT data. First, we set the time-to-event

model, which can belong to a general class of models, such as the generalized odds-rate

hazard models. The resulting likelihood is then obtained from (3.2) of Section 3. Second,

we apply the computation algorithm described in Section 3 to maximize the likelihood

function and obtain the maximum likelihood estimates of the model parameters. Third, we

base on the asymptotic normality theory in Theorem 2 to make the inferences, including the

hypothesis testing and confidence intervals, about model parameters. Fourth, we choose an

appropriate time-to-event model from the general class of models considered, and compare

the log-likelihood values of different models in the class. When the method is applied to

related-question RRT data, the steps are essentially the same, except that the likelihood

function is now obtained from expression 3.2 of Section 4, and the computation algorithm

and the asymptotic normality theory of the maximum likelihood estimates are provided in

Section 4 and Theorem 4, respectively.

7. Conclusion

Current-status data obtained from routine survey studies, where continuous follow-up is

rare, allow us to analyze the time-to-event distribution and the distribution conditional on

certain covariate variables (Huang, 1996; Jewell and van der Laan, 2003). In this work,

we extend the regression analysis for current-status data to that for data collected using

theRRT, including the unrelated-question RRT of Greenberg et al. (1969) and the related-

question RRT of Warner (1965). The RRT is usually applied in surveys on sensitive issues,

and uses some random perturbation of the target question in a well-designed manner to make

it possible to analyze the target issue while protecting interviewees’ privacy. Statistical

analysis methods for the prevalence of a sensitive event, possibly adjusting for certain

covariates, based on RRT data are available. The main and novel contribution of this

work is that we extend the application of the RRT to event time analysis.

Our simulation studies reveal that the unrelated-question RRT leads to a more efficient

regression coefficient estimation than that of the related-question RRT. In particular, the
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unrelated-question RRT achieves higher efficiency when the probability c of answering “yes”

to the innocuous question is smaller. However, a smaller value of c would make the group

of persons with the sensitive event easier to identify, which, in turn, would make that group

of persons less willing to answer the sensitive question truthfully, leading to larger bias.

In particular, the extreme case of c = 0 would not be used in practice, because it would

make the group of persons with the sensitive event fully identifiable. On the other hand,

increasing the probability q of selecting the sensitive question, rather than the innocuous

question (in the unrelated-question RRT) or the complement of the sensitive question (in

the related-question RRT), can yiled higher estimation efficiency; and the extreme case of

q = 1 yields the current-status data exactly for the sensitive event, and hence full efficiency.

However,a larger value of q means less privacy protection, and thus may induce larger bias,

as above. Hence, there is a bias–efficiency trade-off when analyzing survey data on sensitive

issues.

In this work, we assume that interviewees answer the sensitive question truthfully under

the RRT. Relaxing this assumption requires an extension of the methods proposed here for

event time regression analysis, and so is left as poissible.

Supplementary Materials

The Matlab code implementing the proposed methods and a more detailed report of the

TSCS data analysis are available in the online Supplementary Material.
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Appendix

We use the notation Pn, P0, and P for the expectations taken under the empirical distri-

bution, the true underlying distribution, and a given model, respectively. Assume Z is

d-dimensional. The parameter space of β is a compact subset B of Rd, and the parameter

space of H is a set H of all right-continuous non-decreasing functions that are uniformly

bounded on the study period [0, τ ]. The asymptotic theories are based on the following

assumptions.

(C1) The covariate vector Z is bounded with E{var(Z|C)} is positive definite.

(C2) The density of survey time C is continuous with support [τ1, τ2] where 0 < τ1 < τ2 < τ.

(C3) The true parameter β0 is an interior point of its parameter space, and H0 is continu-

ously differentiable and satisfies M−1 < H0(τ1) < H0(τ2) < M.
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Our proofs of the theorems are mainly based on the techniques developed in Huang

(1996), van der Vaart (1998), and Korosok (2008). Specifically, we apply Theorem 5.7

of van der Vaart (1998) and Theorem 3.2.5 of van der Vaart and Wellner (1996) to es-

tablish the consistency and the convergence rate of estimators. To derive the asymptotic

normality of estimators, we first derive the efficient score for β using techniques similar

to Huang (1996), and then follow the well-known empirical process theory and semipara-

metric M-estimator theory (e.g., Korosok 2008, van der Vaart and Wellner 1996) to ob-

tain the asymptotic normality of estimators. Without confusion, we also write L(θ) =

L(θ|O),m∗(θ) = m∗(θ|O), L̃(θ) = L̃(θ|Õ), and m̃∗(θ) = m̃∗(θ|Õ).

A.1 Asymptotic properties of the RRT estimator

Proof of Theorem 1.

Consistency. First, we apply Theorem 5.7 of van der Vaart (1998) to establish the con-

sistency of RRT estimator (β̂, Ĥ). Let m(θ) = logL(θ). Since the class of monotone and

uniformly bounded functions is a Donsker class, by Theorem 2.10.6 of van der Vaart and

Wellner (1996) and conditions (C1)-(C3), we know that the class {m(θ)|θ ∈ B × H} is

Donsker and hence Glivenko-Cantelli. By Jensen’s inequality, we have

P0{m(θ)−m(θ0)} ≤ log(P0 {L(θ)/L(θ0)}) = 0,

wherein the equality holds only if L(θ) = L(θ0) a.s., or equivalently, θ = θ0 by model

identifiability. This indicates that

sup
{θ: d∗{θ,θ0}>ε}

P0m(θ) < P0m(θ0).

Furthermore, by definition of θ̂, Pnm(θ0) ≤ Pnm(θ̂). Applying Theorem 5.7 of van der Vaart

(1998), we have β̂→β0 and ∥Ĥ−H0∥2→ 0 in probability. Since H0 is continuous and strictly

monotone, it further implies Ĥ(t)→H0(t) in probability for every t in (τ1, τ2).

Rate of convergence. Below we apply Theorem 3.2.5 of van der Vaart and Wellner (1996)

to prove d∗(θ̂, θ0) = Op(n
−1/3). Here we follow van der Vaart (1998) to introduce the

bracketing number and bracketing integral. For two functions l and u, define the bracket

[l, u] as the set of all functions f with l ≤ f ≤ u. An ε-bracket in L2(P ) = {f : Pf2 < ∞}
with respect to some distribution P is then a bracket [l, u] with P (u − l)2 < ε2. For a

subclass C of L2(P ), the bracketing number N[ ](ε, C, L2(P )) is defined as the minimum

number of ε-bracket that is needed to cover C, and the bracketing integral J(δ, C, L2(P ))

is defined as
∫ δ
0 {1 + logN[ ](ε, C, L2(P ))}1/2dε. With the consistency and (C3), we restrict

H to H0 = {H ∈ H |M−1 ≤ H(τ1) ≤ H(τ2) ≤ M}. Let Ψ = {m(θ) : θ ∈ B × H0}. Then
each element in Ψ is uniformly bounded and satisfies P0{m(θ) − m(θ0)}2 ⪯ d∗{θ, θ0}2 by

the mean value theorem, where ⪯ means smaller than, up to a constant. Lemma A.1 below
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gives the bracketing integral J{δ,Ψ, L2(P )} = O(δ1/2). Consequently, Lemma 19.36 of van

der Vaart (1996) gives

P ∗ sup
d∗(ζ,ζ0)<δ

|
√
n(Pn − P0)(m(θ)−m(θ0))| ⪯ δ1/2(1 +

δ1/2

δ2
√
n
),

where P ∗ is the outer expectation. By the inequality of Kullback-Leibler divergence (van

der Vaart 1996, p.62), E(m(θ|O)|C,Z) is maximized at (θ0, H0(C)). So, its first derivative is

equal to zero there. Since (C,Z) has a bounded support, the parameter spaces are compact,

and H is uniformly bounded from 0 and ∞, a Taylors’s expansion gives P0(m(θ)−m(θ0)) ⪯
−d∗{θ, θ0}2. According to Theorem 3.2.5 of van der Vaart and Wellner (1996), we complete

the proof.

Lemma A.1. logN[ ](ε,Ψ, L2(P0)) = O(1/ε).

Proof. First consider the functions in Ψ for a fixed β. Given the ε-brackets HL ≤ H ≤ HU ,

it is readily to get a bracket (mL,mU ) for m(θ) where

mL ≡ log

{
[qF (eβ

′ZHL(C)) + (1− q)c]Y [1− qF (eβ
′ZHU (C))− (1− q)c]1−Y

}
,

mU ≡ log

{
[qF (eβ

′ZHU (C)) + (1− q)c]Y [1− qF (eβ
′ZHL(C))− (1− q)c]1−Y

}
.

By the mean value theorem, we have |mL − mU |2 ⪯ {HU (C) − HL(C)}2. Thus, brackets
for H of ∥ · ∥2-size ε can translate into brackets for m(θ) of L2(P0)-size proportional to

ε. By Example 19.11 of van der Vaart (1998), we can cover the set of all H by exp(C/ε)

brackets of size ε for some constant C. Next we allow β to vary freely as well. Because β

is finite-dimensional and (∂/∂β)m(θ|O) is uniformly bounded in (θ,O), this increases the

entropy only slightly. This completes the proof.

Proof of Theorem 2.

Efficient score. Recall that w(θ) = qḞ (eβ
′ZH(C))eβ

′ZH(C), E(θ) = qF (eβ
′ZH(C)) +

(1 − q)c, and V(θ) = E(θ)(1 − E(θ)). The score for β, defined by ∂m/∂β, takes the form

m1(θ) = Zw(θ)V(θ)−1{Y −E(θ)}. Consider parametric paths Hε ∈ H with Hε|ε=0 = H and

(∂Hε/∂ε)|ε=0 = g. The score for H, defined by (∂m(β,Hε)/∂ε)|ε=0, has the form m2(θ)[g] =

{g(C)/H(C)}w(θ)V(θ)−1{Y − E(θ)}. Also define m12(θ)[g] = (∂m1(β,Hε)/∂ε)|ε=0 and

m22(θ)[g̃, g] = (∂m2(β,Hε)[g̃]/∂ε)|ε=0. They have forms

m12(θ)[g] = −Z
g(C)

H(C)

w(θ)2

V(θ)
, m22(θ)[g̃, g] = − g̃(C)

H(C)

g(C)

H(C)

w(θ)2

V(θ)
.

Following semiparametric M-estimator (e.g., Korosok, 2008), the efficient score is defined

by m∗(θ) = m1(θ)−m2(θ)[g
∗], where g∗ satisfies that

P0{m12(θ0)[g]−m22(θ0)[g
∗, g]} = 0, (7.7)
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for all g in L2(P0). It immediately gives that

g∗(C) = H0(C)
E
[
Zw(θ0)

2V(θ0)−1|C
]

E
[
w(θ0)2V(θ0)−1|C

] ,

and hence m∗(θ) = w(θ)V(θ)−1 {Z − g∗(C)H(C)−1
}
{Y − E(θ)} .

Asymptotic Normality. Denote a⊗2 = aa′ for any column vector a. By direct calculations

and the definition of g∗, we have

−P0

{
∂

∂β
m∗(θ0)

}
= E

{
Z

(
Z − g∗(C)

H0(C)

)′ w(θ0)
2

V(θ0)

}
= E

{(
Z − g∗(C)

H0(C)

)⊗2 w(θ0)
2

V(θ0)

}
,

which is positive definite. This implies the invertibility of I.
Applying Taylor expansions of m∗(β0, H(C))(O) at H0(C), we conclude that

P0m
∗(β0, H) = P0m

∗(θ0) + P0{m12(θ0)[H −H0]−m22(θ0)[g
∗, H −H0]}+Op(∥H −H0∥22).

Using the facts that P0m
∗(θ0) = 0, (7.7), and the rate of convergence of Ĥ, we have

√
nP0m

∗(β0, Ĥ) = op(1). (7.8)

It is known that the class of uniformly bounded functions of bounded variations is a Donsker

class. By Theorem 2.10.6 of van der Vaart and Wellner (1996), we can show that {m∗(θ)|θ ∈
B × H0} is a uniformly bounded Donsker class; the proof of which is technical and hence

omitted here. This together with the consistency of θ̂ implies that
√
n(Pn − P0){m∗(θ̂) −

m∗(θ0)} = op(1). Adding (7.8) and using the fact that P0m
∗(θ0) = Pnm

∗(θ̂) = 0, we obtain

−
√
nP0{m∗(θ̂)−m∗(β0, Ĥ)} =

√
nPnm

∗(θ0) + oP (1).

By the mean value theorem, there exists β̃ lying between β̂ and β0 such that

−
√
nP0{

∂

∂β
m∗(β̃, Ĥ)}(β̂ − β0) =

√
nPnm

∗(θ0) + oP (1).

By the consistency of θ̂ and the invertibility of I, we have

√
n(θ̂ − θ0) = I−1

0

√
nPnm

∗(θ0) + oP (1)
d→ N(0, I−1Σ(I−1)′).

This completes the proof.

A.2 Asymptotic properties of the rRRT estimator

Proof of Theorem 3.

Let m̃(θ) = log L̃(θ). The consistency and the rate of convergence of the rRRT estimator
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can be obtained using the same argument for establishing Theorem 1 for the RRT estimator.

We skip the most similar part of the proof except that the construction of the bracket for

m̃(θ) needed in Lemma A.1. Recall that

m̃(θ) = X log
{
{qF + q̄F̄}(eβ′ZH(C))

}
+ X̄ log

{
{q̄F + qF̄}(eβ′ZH(C))

}
.

Given a ε-brackets HL ≤ H ≤ HU , a bracket (mL,mU ) for m̃ can be obtained by

mL(θ) = X log
{
qF (eβ

′ZHL(C)) + q̄F̄ (eβ
′ZHU (C))

}
+X̄ log

{
q̄F (eβ

′ZHL(C)) + qF̄ (eβ
′ZHU (C))

}
,

mU (θ) = X log
{
qF (eβ

′ZHU (C)) + q̄F̄ (eβ
′ZHL(C))

}
+X̄ log

{
q̄F (eβ

′ZHU (C)) + qF̄ (eβ
′ZHL(C))

}
.

Proof of Theorem 4.

The asymptotic normality of the rRRT estimator can be obtained using the same argument

in Theorem 2. Below we derive the efficient score m̃∗(θ) and show the invertibility of efficient

information Ir, but skip the much similar remaining part of the proof.

Recall that w̃(θ) = (q − q̄)Ḟ (eβ
′ZH(C))eβ

′ZH(C), Ẽ(θ) = {qF + q̄F̄}(eβ′ZH(C)), and

Ṽ(θ) = Ẽ(θ)(1− Ẽ(θ)). The score for β takes the form

m̃1(θ) = Zw̃(θ)Ṽ(θ)−1{X − Ẽ(θ)},

and the score for H along direction g takes the form

m̃2(θ)[g] =
g(C)

H(C)
w̃(θ)Ṽ(θ)−1{X − Ẽ(θ)}.

Define m̃12(θ)[g] = (∂m̃1(β,Hε)/∂ε)|ε=0 and m̃22(θ)[g̃, g] = (∂m̃2(β,Hε)[g̃]/∂ε)|ε=0, some

calculations give

m̃12(θ)[g] = −Z
g(C)

H(C)

w̃(θ)2

Ṽ(θ)
, m̃22(θ)[g̃, g] = − g̃(C)

H(C)

g(C)

H(C)

w̃(θ)2

Ṽ(θ)
.

The efficient score for β is m̃∗(θ) = m̃1(θ)− m̃2(θ)[g̃
∗] with g̃∗ satisfying

P0{m̃12(θ0)[g]− m̃22(θ0)[g̃
∗, g]} = 0.

It immediately gives that

g̃∗(C) = H0(C)
E
[
Zw̃(θ0)

2Ṽ(θ0)
−1

|C
]

E
[
w̃(θ0)2Ṽ(θ0)

−1
|C
] ,

and hence m̃∗(θ) = w̃(θ)Ṽ(θ)
−1 {

Z − g̃∗(C)H(C)−1
}{

X − Ẽ(θ)
}
. By direct calculations

and the definition of g̃∗, we have

−P0

{
∂

∂β
m̃∗(θ0)

}
= E

{
Z

(
Z − g̃∗(C)

H0(C)

)′ w̃(θ0)
2

Ṽ(θ0)

}
= E

{(
Z − g̃∗(C)

H0(C)

)⊗2 w̃(θ0)
2

Ṽ(θ0)

}
,

which is positive definite. This implies the invertibility of Ir.
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Table 1: Simulation results for the PH model under various survey designs. (β̂1, β̂2) :

the unrelated-question RRT estimator; (β̂r1, β̂r2) : the related-question RRT estima-

tor; (β̂I1, β̂I2) : the ideal estimator. ASE: the average of the standard error estimates;

CP: the coverage probability of the 95% confidence interval; RE: the ratio of the mean

squared error of the ideal estimate to that of the considered estimate.

n = 500 n = 1000

q c Bias SD ASE CP RE Bias SD ASE CP RE

0.5 0 β̂1 0.014 0.276 0.290 96.6 0.347 -0.002 0.191 0.199 96.9 0.349

β̂2 0.003 0.187 0.210 97.5 0.358 0.001 0.138 0.144 95.7 0.311

0.25 β̂1 0.075 0.358 0.362 96.7 0.198 0.029 0.238 0.244 96.6 0.222

β̂2 0.036 0.259 0.257 96.5 0.183 0.016 0.175 0.174 96.1 0.193

0.5 β̂1 0.088 0.405 0.389 97.1 0.154 0.048 0.252 0.260 96.4 0.193

β̂2 0.052 0.284 0.271 97.4 0.150 0.023 0.181 0.182 95.5 0.177

1 β̂1 0.098 0.356 0.322 93.8 0.195 0.046 0.236 0.220 94.7 0.220

β̂2 0.067 0.240 0.203 90.6 0.203 0.024 0.149 0.141 93.0 0.264

0.7 0 β̂1 0.010 0.222 0.225 95.1 0.535 -0.001 0.153 0.156 95.3 0.542

β̂2 0.007 0.145 0.162 97.2 0.591 0.001 0.111 0.112 94.9 0.483

0.25 β̂1 0.037 0.249 0.246 94.4 0.417 0.015 0.165 0.170 95.6 0.461

β̂2 0.020 0.169 0.176 96.7 0.434 0.007 0.121 0.121 95.8 0.402

0.5 β̂1 0.043 0.257 0.255 95.1 0.390 0.021 0.175 0.176 95.6 0.412

β̂2 0.027 0.179 0.179 95.9 0.383 0.013 0.121 0.124 95.4 0.398

1 β̂1 0.056 0.251 0.242 95.0 0.401 0.027 0.173 0.168 94.5 0.413

β̂2 0.038 0.170 0.158 93.8 0.412 0.018 0.113 0.111 93.3 0.450

- β̂r1 0.079 0.506 0.510 97.6 0.101 0.036 0.342 0.335 95.4 0.107

β̂r2 0.038 0.331 0.349 97.4 0.113 0.024 0.237 0.234 95.9 0.104

0.9 0 β̂1 0.012 0.181 0.181 94.8 0.804 0.005 0.121 0.126 96.1 0.867

β̂2 0.012 0.123 0.129 96.7 0.820 0.003 0.088 0.089 95.7 0.766

0.25 β̂1 0.020 0.185 0.184 95.3 0.770 0.007 0.125 0.128 96.2 0.816

β̂2 0.016 0.127 0.130 95.9 0.759 0.005 0.091 0.090 95.1 0.722

0.5 β̂1 0.022 0.184 0.186 95.2 0.774 0.010 0.126 0.129 95.3 0.800

β̂2 0.020 0.130 0.130 96.0 0.723 0.007 0.090 0.091 95.9 0.729

1 β̂1 0.027 0.187 0.186 95.1 0.745 0.015 0.133 0.130 94.9 0.713

β̂2 0.025 0.129 0.126 94.7 0.729 0.011 0.089 0.088 95.8 0.713

- β̂r1 0.023 0.216 0.216 94.2 0.561 0.015 0.146 0.150 96.2 0.588

β̂r2 0.023 0.148 0.152 96.5 0.561 0.009 0.105 0.105 96.2 0.534

1 - β̂I1 0.015 0.162 0.161 94.5 - 0.005 0.113 0.112 95.1 -

β̂I2 0.014 0.111 0.111 95.4 - 0.005 0.077 0.078 95.2 -
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Table 2: Simulation results for the PO models under various survey designs. (β̂1, β̂2) :

the unrelated-question RRT estimator; (β̂r1, β̂r2) : the related-question RRT estima-

tor; (β̂I1, β̂I2) : the ideal estimator. ASE: the average of the standard error estimates;

CP: the coverage probability of the 95% confidence interval; RE: the ratio of the mean

squared error of the ideal estimate to that of the considered estimate.

n = 500 n = 1000

q c Bias SD ASE CP RE Bias SD ASE CP RE

0.5 0 β̂1 -0.015 0.342 0.363 96.4 0.396 -0.018 0.233 0.249 97.0 0.406

β̂2 -0.011 0.229 0.262 98.0 0.413 -0.007 0.163 0.179 96.9 0.424

0.25 β̂1 0.062 0.456 0.466 97.0 0.220 0.024 0.305 0.316 96.7 0.237

β̂2 0.028 0.331 0.333 97.4 0.197 0.011 0.222 0.225 95.7 0.229

0.5 β̂1 0.072 0.520 0.513 96.9 0.168 0.047 0.333 0.344 96.5 0.196

β̂2 0.043 0.369 0.360 97.4 0.158 0.017 0.236 0.243 96.5 0.201

1 β̂1 0.093 0.516 0.471 95.8 0.169 0.041 0.340 0.318 94.8 0.189

β̂2 0.069 0.358 0.317 92.8 0.164 0.014 0.224 0.216 94.2 0.225

0.7 0 β̂1 -0.014 0.279 0.287 94.9 0.597 -0.012 0.191 0.198 95.9 0.606

β̂2 -0.004 0.183 0.207 97.5 0.646 -0.006 0.138 0.143 95.6 0.590

0.25 β̂1 0.025 0.321 0.321 95.1 0.448 0.010 0.211 0.221 95.9 0.495

β̂2 0.014 0.221 0.230 96.9 0.444 0.004 0.156 0.158 95.3 0.459

0.5 β̂1 0.030 0.339 0.339 95.5 0.401 0.018 0.232 0.234 95.5 0.409

β̂2 0.022 0.240 0.241 96.7 0.376 0.010 0.161 0.166 96.0 0.437

1 β̂1 0.044 0.350 0.343 95.8 0.374 0.023 0.244 0.237 94.9 0.369

β̂2 0.032 0.241 0.238 95.5 0.367 0.014 0.168 0.164 95.2 0.399

- β̂r1 0.077 0.672 0.692 97.8 0.102 0.031 0.435 0.446 96.8 0.116

β̂r2 0.042 0.472 0.474 98.3 0.097 0.016 0.311 0.313 96.5 0.116

0.9 0 β̂1 -0.008 0.234 0.237 94.7 0.848 -0.006 0.158 0.164 96.3 0.881

β̂2 0.002 0.159 0.170 97.1 0.864 -0.003 0.116 0.118 95.3 0.836

0.25 β̂1 0.005 0.242 0.244 94.6 0.792 -0.001 0.165 0.169 95.8 0.812

β̂2 0.009 0.167 0.175 97.0 0.782 0.001 0.121 0.121 95.3 0.771

0.5 β̂1 0.008 0.246 0.249 94.7 0.770 0.003 0.168 0.173 95.7 0.779

β̂2 0.014 0.173 0.178 96.1 0.722 0.004 0.121 0.123 96.0 0.767

1 β̂1 0.011 0.254 0.256 95.5 0.719 0.009 0.181 0.178 95.9 0.674

β̂2 0.017 0.178 0.181 96.5 0.678 0.008 0.126 0.126 95.9 0.706

- β̂r1 0.009 0.286 0.289 95.2 0.566 0.009 0.197 0.200 96.1 0.570

β̂r2 0.017 0.197 0.206 97.2 0.559 0.006 0.141 0.142 96.1 0.569

1 0 β̂I1 -0.006 0.215 0.217 94.7 - -0.007 0.149 0.151 95.8 -

β̂I2 0.002 0.148 0.155 96.9 - -0.001 0.106 0.107 94.6 -
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Table 3: Analysis results of extramarital relations data.

Model Male Atti Child EduYear max-loglik

PH Est 1.223∗ 0.791∗ -0.948 -0.032 -588.128

SE 0.320 0.312 0.505 0.038

PO Est 1.449∗ 0.950∗ -1.268 -0.036 -589.355

SE 0.373 0.433 0.673 0.048

n = 1040, q = 0.5, c = 0.25, and “∗” denotes significance.
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Figure 2: Q–Q plots of the standardized RRT estimates (left panels) and rRRT

estimates (right panels) versus the standard normal distribution under the simulation

scenario with n = 1000, q = 0.7, and c = 0.25, and the PH model.
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Figure 3: The estimated cumulative proportions of extramarital relations for males

and females under the PH model and the PO model, with the covariates (Atti, Child,

EduYear) fixed at the sample means.
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