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Abstract: We consider the classical problem of testing H(n)
0q : λ

(n)
q > λ

(n)
q+1 =

. . . = λ
(n)
p , where λ

(n)
1 , . . . , λ

(n)
p are the ordered latent roots of covariance ma-

trices ΣΣΣ(n). We show that the usual Gaussian procedure, φ(n), for this problem

essentially shows no power against alternatives of weaker signals of the form

H(n)
1q : λ

(n)
q = λ

(n)
q+1 = . . . = λ

(n)
p , which is problematic if it is used to perform

inference on the true dimension of the signal. We show that the same test φ(n)

enjoys some local and asymptotic optimality properties for detecting alternatives

to the equality of the p − q smallest roots of ΣΣΣ(n), provided that λ
(n)
q and λ

(n)
q+1

are sufficiently separated. We obtain tests, φ
(n)
new, for the problem that retain the

local and asymptotic optimality properties of φ(n) when λ
(n)
q and λ

(n)
q+1 are suffi-

ciently separated and properly detect alternatives of the form H(n)
1q . We illustrate

the performances of our tests using simulations and on a gene expression data

set, where we also discuss the problem of estimating the dimension of the signal.

Key words and phrases: signal dimension; hypothesis testing; latent roots.
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1. Introduction

Principal component analysis (PCA) is a popular technique for perform-

ing unsupervised dimension reduction. The main objective of a PCA is

to extract a low-dimensional signal from the data. This can be achieved

by first identifying a spiked structure in the underlying p × p positive-

definite covariance matrix ΣΣΣ using the data at hand. In the very popular

spiked covariance models, the underlying covariance matrix ΣΣΣ has eigen-

values λ1 ≥ . . . ≥ λq > σ2 = . . . = σ2 > 0; see, for instance, Johnstone

(2001). In the spiked covariance model, the q largest eigenvalues of ΣΣΣ are

well separated from the rest, and the data at hand can therefore be seen

as q-dimensional data contaminated with noise. Inference within spiked co-

variance models has been considered by Li et al. (2020), Paindaveine et al.

(2020a,b), and Bao et al. (2022), among others. In the context of spiked

models, and in a PCA in general, an important problem is testing the

equality of the p− q smallest eigenvalues H0q : λq > λq+1 = . . . = λp of ΣΣΣ.

Under H0q, the smallest p− q eigenvalues are equal so that they correspond

to some noise. As a result, selecting more than q principal components

is useless. Tests for H0q are typically used before selecting the number

of components to keep. The problem is not new. Bartlett (1950) used

tests for H0q to determine the number of significant factors in a data set of
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measurements of the reading speed, reading power, arithmetic speed and

arithmetic power for 140 children. Tests for H0q can also be used to check

the suitability of a data set for factor analysis, as Şahan et al. (2019), who

assessed wether a psychological questionnaire is consistent. In the same

spirit, Chakraborty et al. (2020) used tests for H0q to ensure that every

PCA-based sub-indicator is relevant when constructing a socioeconomic in-

dex. Finally, as mentioned in Kritchman and Nadler (2009), getting rid

of the noise is a critical preliminary step when treating the output of a

collection of sensors.

The (full) sphericity problem (q = 0 with λ0 arbitrarily large) has been

studied by Ledoit and Wolf (2002), Onatski et al. (2014), Tian et al. (2015),

Li and Yao (2016), and Paindaveine and Verdebout (2016) in the high-

dimensional case, while Hallin and Paindaveine (2006) proposed locally and

asymptotically optimal tests based on signed ranks. Cuesta-Albertos et al.

(2009) proposed tests based on random projections, Henze et al. (2014)

provided tests based on the characteristic function, and Francq et al. (2017)

considered the problem in a time series context. Fixing q < p − 1, the

problem of testing the equality of the smallest p− q eigenvalues H0q : λq >

λq+1 = . . . = λp has also been investigated thoroughly in the multivariate

statistics literature. Methods for determining the dimension of a signal
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can be traced back to the work of Lawley (1956), who developed Gaussian

likelihood ratio tests to check the equality of the smallest eigenvalues. A

pseudo-Gaussian test that is valid under elliptical assumptions has been

proposed in Waternaux (1984). The local asymptotic powers of robust

tests have been obtained in Tyler (1983), and other procedures have been

investigated by Nadler (2010), Luo and Li (2016), and Nordhausen et al.

(2022) among others. High-dimensional tests have been studied in Schott

(2006) and, more recently, in Virta (2021).

In the present study, our objective is to provide tests for H0q : λq >

λq+1 = . . . = λp that can detect alternatives of stronger signals, un-

der which λq+1, . . . , λp are not equal, and alternatives of weaker signals,

under which λq and λq+1 are “too close to each other.” Note that our

tests for H0q can be adapted easily to tests for other restrictions, such

as λq1 > λq1+1 = . . . = λq2 > λq2+1, for some q1 and q2. To properly formal-

ize the problem, we consider a triangular array context, in which the nth

line of the array consists of independent and identically distributed (i.i.d.)

p-variate Gaussian vectors X1n, . . . ,Xnn with common covariance matrix

ΣΣΣ(n) = βββΛΛΛ(n)βββ′, where βββ is orthogonal and ΛΛΛ(n) := diag(λ
(n)
1 , . . . , λ

(n)
p ) is

a diagonal matrix of positive ordered eigenvalues that may change with

n. Within such sequences of experiments, we consider the (sequence of)
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hypotheses testing problems characterized by null hypothesis of the form

H(n)
0q : {λ(n)q+1 = . . . = λ(n)p } ∩ {n1/2(λ(n)q − λ

(n)
q+1)→∞ as n→∞}. (1.1)

Under H(n)
0q , the smallest p − q underlying latent roots are equal, and λ

(n)
q

and λ
(n)
q+1 are sufficiently separated in the sense that n1/2(λ

(n)
q − λ(n)q+1)→∞

as n → ∞. Here, we adapt the aforementioned sequence of hypotheses

testing problems to detect the signal dimension. Indeed, a rejection of H(n)
0q

indicates that the smallest roots are not equal, in which case the signal is

stronger, or that λ
(n)
q and λ

(n)
q+1 are too close to each other, in which case

the signal is weaker. Note that the consistency of an empirical projection

on the first q principal axes holds only if n1/2(λ
(n)
q − λ(n)q+1) diverges to ∞

as n → ∞; this makes the testing problem associated with H(n)
0q in (1.1) a

natural problem to tackle in the context. Alternatives to H(n)
0q (for q ≥ 1)

are of two different types:

(i) type-I alternatives, under which the smallest p−q eigenvalues are not

equal and n1/2(λ
(n)
q − λ(n)q+1)→∞ as n→∞;

(ii) type-II alternatives, under which λ
(n)
q and λ

(n)
q+1 are too close to each

other in the sense that

(λ(n)q − λ
(n)
q+1) = O(n−1/2)

as n→∞ and λ
(n)
q+1 = . . . = λ

(n)
p .
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We begin by examining the asymptotic behavior of the classical test φ(n)

for the problem studied in Schott (2006) and Virta (2021). We show that

the test φ(n), which is asymptotically equivalent to the Gaussian likelihood

ratio test (LRT) for the equality of the smallest eigenvalues, behaves quite

well against type-I alternatives but behaves poorly against alternatives of

type II. Indeed, if n1/2(λ
(n)
q − λ(n)q+1) = O(1) as n → ∞, the limiting power

limn→∞ E[φ(n)] of the test is far below the asymptotic nominal level α. It

follows directly that φ(n) is unable to detect alternatives of weaker signals

(alternatives of type II). The two main contributions of this study are as

follows. First, we show that the test φ(n) enjoys some local and asymptotic

optimality properties when detecting type-I alternatives within a triangular

array context. Second, we obtain tests for the problem that retain the afore-

mentioned optimality properties, but can also detect alternatives of type II.

The idea underpinning our new tests lies in the concept of preliminary test

estimators studied by Saleh (2006) and Paindaveine et al. (2021). Our tests

can be viewed as preliminary test tests, guided by the power enhancement

principle studied recently in a high-dimensional setup by Fan et al. (2015)

and Kock and Preinerstorfer (2019). We show using simulations that the

estimator of the signal dimension based on φ(n) studied in Nordhausen et al.

(2022) can be improved using an estimator based on our new test.
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The rest of the paper is organized as follows. In Section 2, we present

notation used in the rest of the paper and discuss the asymptotic equivalence

between φ(n) and the LRT for the equality of eigenvalues. In Sections 3 and

4, we study the asymptotic properties of φ(n) against alternatives of type II

and type I, respectively. In Section 5, we propose new tests for the problem,

and show that the latter procedures enjoy many attractive properties. In

Section 6, we demonstrate our method using a gene expression data set

and discuss the problem of estimating the signal dimension. Additional

Monte Carlo simulation results and technical details are contained in the

Supplementary Material.

2. Testing the equality of eigenvalues

We consider triangular arrays of observations where the nth line of the ar-

ray consists of i.i.d. observations Xn1, . . . ,Xnn that follow a common Gaus-

sian distribution with mean zero (without loss of generality, because in the

Gaussian case, location and scatter parameters are “orthogonal”; e.g., see

Hallin et al. (2010)) and covariance matrix ΣΣΣ(n) that admits the spectral

decomposition

ΣΣΣ(n) = βββΛΛΛ(n)βββ′ =

p∑
j=1

λ
(n)
j βββjβββ

′
j, (2.1)
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where βββ = (βββ1, . . . ,βββp) is an orthogonal matrix and ΛΛΛ(n) = diag(λ
(n)
1 , . . . , λ

(n)
p )

is a diagonal matrix of finite positive (well-ordered) eigenvalues. Through-

out, diag(A1, . . . ,Am) denotes a block-diagonal matrix with blocks A1, . . . ,Am.

We write P
(n)

βββ,λλλ(n)
for this Gaussian triangular array hypothesis, parametrized

by βββ and λλλ(n) := (λ
(n)
1 , . . . , λ

(n)
p )′.

Fixing 0 ≤ q < p− 1, we consider the testing problem characterized by

sequences of null hypotheses of the form H(n)
0q in (1.1), where for q = 0, λ

(n)
0

can be defined arbitrarily in such a way that n1/2(λ
(n)
0 − λ

(n)
1 )→∞ as n→

∞ so that, still for q = 0, the sequence of problems coincides with the

full sphericity problem. We therefore tacitly assume that λ
(n)
0 = λ

(n)
1 + 1

throughout. When testing the equality of the smallest roots of a covariance

matrix, the classical Gaussian LRT φ
(n)
LRT rejects the null hypothesis at the

asymptotic level α when (d(p, q) := (p− q + 2)(p− q − 1)/2)

L(n)
q := −n log{

p∏
j=q+1

λ̂j/((p− q)−1
p∑

j=q+1

λ̂j)
p−q} > χ2

d(p,q);1−α, (2.2)

where χ2
ν;δ is the quantile of order δ of a chi-squared distribution with

ν degrees of freedom, and λ̂1, . . . , λ̂p are the ordered eigenvalues of the

empirical covariance matrix S(n) := n−1
∑n

i=1XniX
′
ni; see, for instance,

Muirhead (1982). Another classical test φ(n) for the same problem rejects
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the null hypothesis at the asymptotic level α when

T (n)
q =

n(
∑p

j=q+1 λ̂
2
j − (p− q)−1(

∑p
j=q+1 λ̂j)

2)

2((p− q)−1
∑p

j=q+1 λ̂j)
2

> χ2
d(p,q);1−α. (2.3)

The test statistic T
(n)
q is well known; Schott (2006) and Virta (2021) recently

studied its high-dimensional properties. We have the following result (the

proof follows directly from the proof of Theorem 5.1 in Tyler (1983)).

Lemma 1. Let 1p := (1, . . . , 1)′ ∈ Rp and

λλλ(n) = (λ
(n)
1 , . . . , λ(n)q , λ

(n)
p−q1

′
p−q)

′, (2.4)

where λ
(n)
1 ≥ . . . ≥ λ

(n)
q ≥ λ

(n)
p−q. Then L

(n)
q − T (n)

q = oP(1) as n→∞ under

P
(n)

βββ,λλλ(n)
as n→∞.

Lemma 1 shows that the Gaussian LRT φ
(n)
LRT and the test φ(n) enjoy a

similar asymptotic behavior under P
(n)

βββ,λλλ(n)
, with λλλ(n) as in (2.4). It follows

directly from the definition of contiguity that their asymptotic behaviors

also coincide under contiguous sequences. In particular, their local and

asymptotic power coincide under contiguous alternatives of type I. More-

over, because the result obtained in Lemma 1 does not depend on the

asymptotic behavior of (λ
(n)
q −λ(n)p−q), the asymptotic behaviors of φ

(n)
LRT and

φ(n) also coincide under alternatives of type II. In the rest of the paper, all

asymptotic results for φ(n) therefore also hold for φ
(n)
LRT.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0315



Our objective in the next two sections is to derive the asymptotic be-

havior of φ(n) against both types of alternatives. We need the following

notation: as usual, vec(A) stands for the vector obtained by stacking the

columns of a matrix A. Letting A ⊗ B stand for the Kronecker product

between two matrices A and B (A⊗2 := A ⊗ A), the commutation ma-

trix Kk,`, such that Kk,`(vecA) = vec(A′) for any k× ` matrix A, satisfies

Kp,k(A⊗B) = (B⊗A)Kq,`, for any k × ` matrix A and p× q matrix B;

see, for example Magnus and Neudecker (2007). In the sequel we write

Kk := Kk,k.

3. Asymptotic behavior against type-II alternatives

We now discuss the limiting behavior of T
(n)
q (and therefore of L

(n)
q ) under

alternatives of type II. To do so, we consider sequences of models P
(n)

βββ,λλλ(n)

such that the sequence λλλ(n) provides alternatives of type II. Accordingly,

the covariance matrix ΣΣΣ(n) in (2.1) has eigenvalues λλλ(n) = (λ
(n)
1 , . . . , λ

(n)
p )′

of the form

λ
(n)
1 := 1+r

(n)
1 v1 ≥ λ

(n)
2 := 1+r

(n)
2 v2 ≥ . . . ≥ λ(n)q := 1+r(n)q vq > λ

(n)
q+1 = . . . = λ(n)p = 1,

(3.1)

for some rates vector r(n) := (r
(n)
1 , . . . , r

(n)
q )′ and some positive localization

parameters v := (v1, . . . , vq)
′, such that (3.1) holds for all n. More precisely,
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r
(n)
j (j = 1, . . . , q) can be such that r

(n)
j ≡ 1 for all n, or such that r

(n)
j → 0

as n → ∞. Alternatives to H(n)
0q of type II are such that n1/2r

(n)
q is O(1)

(and potentially o(1)) as n → ∞. Note that the various tests compared

here are clearly invariant with respect to scale transformations of the form

(Xn1, . . . ,Xnn) → (sXn1, . . . , sXnn), for s ∈ R. Thus, when we study the

asymptotic behavior of T
(n)
q , or any other invariant test statistic, we can

safely assume in our asymptotic analysis that the eigenvalues λ
(n)
q+1 = . . . =

λ
(n)
p in (3.1) are equal to one without loss of generality. As shown below,

the asymptotic behavior of T
(n)
q under P

(n)

βββ,λλλ(n)
with λλλ(n) as in (3.1) depends

on the rates in r(n). We assume that the rates vector

r(n) = (r
(n)
1 , . . . , r(n)s1︸ ︷︷ ︸

block 1

, r
(n)
s1+1, . . . , r

(n)
s2︸ ︷︷ ︸

block 2

, r
(n)
s2+1, . . . , r

(n)
s3︸ ︷︷ ︸

block 3

, r
(n)
s3+1, . . . , r

(n)
q︸ ︷︷ ︸

block 4

)′ (3.2)

contains four blocks: in block 1, r
(n)
j are all equal to one; in block 2, r

(n)
j

are o(1) and n1/2r
(n)
j →∞; in block 3, r

(n)
j ≡ n−1/2; and in block 4, r

(n)
j are

o(n−1/2). Of course, the blocks can be empty; for instance, s1 = 0 indicates

that the first block is empty, and block 2 is empty if s2− s1 = 0, and so on.

Under H(n)
0q , blocks 3 and 4 are empty. The setup is illustrated in Figure 1

below.
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block 1: r
(n)
j ≡ 1

block 3: r
(n)
j ≡ 1/

√
n

block 2: r
(n)
j = o(1)

with r
(n)
j

√
n→∞

block 4: r
(n)
j = o(1)and r

(n)
j

√
n→ 0

r
(n)
j ≡ 0

r
(n)
j ≡ 1/

√
n

r
(n)
j ≡ 1

Figure 1: Illustration of how the eigenvalues are separated in blocks in the

data-generating process.
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We have the following result.

Proposition 1. Let r(n) and v be such that (3.1) holds and such that for

0 ≤ s1 ≤ s2 ≤ s3 ≤ q, (i) r
(n)
j ≡ 1 for each 1 ≤ j ≤ s1, (ii) r

(n)
j = o(1) with

n1/2r
(n)
j →∞, for each s1 < j ≤ s2, (iii) r

(n)
j = n−1/2, for each s2 < j ≤ s3

and (iv) r
(n)
j = o(n−1/2), for each s3 < j ≤ q. Furthermore, let

Z(v1, . . . , vs1) =

 Z11 Z′21

Z21 Z22


be a p× p matrix, where Z11 is the s2× s2 upper-left block of Z(v1, . . . , vs1),

Z22 is the (p − s2) × (p − s2) lower-right block of Z(v1, . . . , vs1), etc, such

that

vec(Z(v1, . . . , vs1)) ∼ Np2(0, (Ip2 + Kp)(diag(1 + v1, . . . , 1 + vs1 ,1
′
p−s1))

⊗2).

Then, as n→∞ under P
(n)

βββ,λλλ(n)
with λλλ(n) as in (3.1), T

(n)
q converges weakly

to

1

2
(

p∑
j=q+1

`2j − (p− q)−1(
p∑

j=q+1

`j)
2), (3.3)

where (`q+1, . . . , `p) are the p− q smallest roots of

Z22 + diag(vs2+1, . . . , vs3 ,0
′
q−s3 ,0

′
p−q).

See the Supplementary Material for a proof. Proposition 1 states that

the asymptotic behavior of T
(n)
q depends crucially on the content of the
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various blocks in (3.2). In particular, under H(n)
0q , that is, if s1 ≤ s2 = q

(s3− s2 = 0), and thus the blocks 3 and 4 in (3.2) are empty (and therefore

n1/2r
(n)
q → ∞ as n → ∞), `̀̀p−q := (`q+1, . . . , `p) are the p − q eigenvalues

of the (p− q)× (p− q) matrix Z22 in Proposition 1. It is then easy to see

that the resulting weak limit of T
(n)
q is chi-squared with d(p, q) degrees of

freedom. It follows that the test φ(n) is asymptotically valid for sequences

of testing problems with null hypotheses H(n)
0q . If n1/2r

(n)
q does not diverge

to ∞, that is, under alternatives of type II, the test statistic T
(n)
q does not

converge weakly to a chi-squared random variable with d(p, q) degrees of

freedom. Its asymptotic behavior is nevertheless completely characterized

by Proposition 1. In Figure 2, we provide approximations of

lim
n→∞

E[φ(n)] = lim
n→∞

P[T (n)
q > χ2

d(p,q);1−α],

for α = .05, p = 8 and various values of q under triangular arrays of

observations with covariance ΣΣΣ(n)(b) = diag((1 + n−b)1q,1p−q), for b =

0, 1/4, 1/2, 1. For b < 1/2, the corresponding sequences of models belong

to H(n)
0q , whereas for b ≥ 1/2, the sequences of models are alternatives

of type II. The approximations of limn→∞ E[φ(n)] are based on 100, 000

replications of the random variable in (3.3). Figure 2 clearly shows that

the test φ(n) is asymptotically valid for the problem at hand, but is blind

to alternatives of type II. For b ≥ 1/2, limn→∞ E[φ(n)] is far below the
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nominal level α = .05. The results of Monte Carlo simulations, provided

in the “Further simulations” section of the Supplementary Material clearly

confirm the asymptotic behavior of T
(n)
q obtained in Proposition 1. Two

natural questions then arise. First, does the test φ(n) enjoy some asymptotic

optimality properties against local alternatives of type I (for any rn, such

that n1/2r
(n)
q →∞, not only in the classical r

(n)
q ≡ 1 case)? Second, the test

φ(n) clearly does not properly detect alternatives of type II; Figure 2 shows

that the limiting power of φ(n) against such alternatives can be almost zero.

Thus, can we obtain tests that detect alternatives of type II, without losing

too much power with respect to φ(n) against local alternatives of type I?

4. Asymptotic behavior against type-I alternatives

In this section, we address the first of the two aforementioned questions by

determining wether the test φ(n) (and therefore φ
(n)
LRT) enjoys some optimal-

ity properties against alternatives of type I. Consider the (p−q)-dimensional

observations

Yni := (βββq+1, . . . ,βββp)
′Xni, i = 1, . . . , n,
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Figure 2: Approximations of limn→∞ E[φ(n)] for p = 8 and various values of q

under triangular arrays of observations with covariance ΣΣΣ(n)(b) = diag((1 +

n−b)1q,1p−q). The test φ(n) is performed at the nominal level α = .05. The

approximation is based on 100, 000 replications of the random variable in

(3.3).
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obtained by selecting the last p − q components of the rotated sample

βββ′Xn1, . . . ,βββ
′Xnn and define

S
(n)
Y := n−1

n∑
i=1

YniY
′
ni = (βββq+1, . . . ,βββp)

′S(n)(βββq+1, . . . ,βββp),

where S(n) (defined above (2.3)) is the empirical covariance matrix associ-

ated with the original sample. The Yni are i.i.d. with covariance matrix

ΣΣΣ
(n)
Y := (βββq+1, . . . ,βββp)

′ΣΣΣ(n)(βββq+1, . . . ,βββp). (4.1)

An asymptotically maximin test for the null hypothesis of sphericity

H0 : ΣΣΣ
(n)
Y = δIp−q, with δ > 0, against contiguous local alternatives of type

I has been proposed by Hallin and Paindaveine (2006). A test φ∗ is called

maximin in the class Cα of level-α tests for a problem of testing some null

hypothesis H0 against H1 if (i) φ∗ has level α, and (ii) the power of φ∗ is

such that

inf
P∈H1

EP[φ∗] ≥ sup
φ∈Cα

inf
P∈H1

EP[φ].

Note that if λλλ(n) belongs to H(n)
0q , λλλ(n) +n−1/2`̀̀ can only be an alternative of

type I (and not of type II). The asymptotically maximin test against local

alternatives of type I in Hallin and Paindaveine (2006), denoted here by
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φ
(n)
βββ , rejects the null hypothesis at the asymptotic level α when

T (n)
q (βββ) =

n

2
(
p− q

tr(S
(n)
Y )

)2(tr((S
(n)
Y )2)− (p− q)−1(tr2(S(n)

Y )) > χ2
d(p,q);1−α.

(4.2)

Of course, in practice, the eigenvectors βββq+1, . . . ,βββp are rarely specified

and, in general, need to be estimated. The most natural estimators of

βββq+1, . . . ,βββp in the present Gaussian context are the eigenvectors β̂ββq+1, . . . , β̂ββp

associated with the p− q smallest eigenvalues of

S(n) =:

p∑
j=1

λ̂jβ̂ββjβ̂ββ
′
j.

Below, β̂ββ := (β̂ββ1, . . . , β̂ββp) stands for the p×p orthogonal matrix collecting the

eigenvectors of S(n). Plugging these estimators into T
(n)
q (βββ) yields the test

statistic T
(n)
q in (2.3). Thus, to study the potential asymptotic equivalence

between T
(n)
q and T

(n)
q (βββ), we need to control the asymptotic cost of the

substitution of βββq+1, . . . ,βββp with β̂ββq+1, . . . , β̂ββp. Still in the same model,

letting

E(n) =

E
(n)
11 E

(n)
12

E
(n)
21 E

(n)
22

 := β̂ββ
′
βββ, (4.3)

where E
(n)
11 and E

(n)
22 are the q × q upper-diagonal and (p − q) × (p − q)

lower-diagonal blocks, respectively, of E(n), we have the following result.
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Proposition 2. As n→∞ under P
(n)

βββ,λλλ(n)
with λλλ(n) as in (3.1),

(i) if n1/2r
(n)
q → ∞ as n → ∞, n1/2diag((r(n))′)E

(n)
12 = OP(1) as n → ∞

and E
(n)
22 (E

(n)
22 )′ = Ip−q + oP(1) as n→∞;

(ii) if n1/2r
(n)
q → c < ∞ as n → ∞, we have that E

(n)
12 is not oP(1) as

n→∞.

See the Supplementary Material for a proof. Proposition 2 shows that the

consistency of the underlying eigenvectors can only hold when n1/2(λ
(n)
q −

λ
(n)
q+1) diverges to infinity as n → ∞ with rates depending on r

(n)
1 , . . . , r

(n)
q .

This fact naturally yields to the following question: are the tests φ
(n)
βββ and

φ(n) asymptotically equivalent underH(n)
0q (and therefore also under contigu-

ous alternatives of type I)? The following result provides a positive answer.

Proposition 3. Assume that λλλ(n) as in (3.1) is such that n1/2r
(n)
q →∞ as

n→∞. Then, T
(n)
q − T (n)

q (βββ) is oP(1) under P
(n)

βββ,λλλ(n)
as n→∞.

See the Supplementary Material for a proof. Proposition 3 states that

the test φ(n) and the test φ
(n)
βββ are asymptotically equivalent under the null

hypothesis H(n)
0q , and therefore also under contiguous alternatives. This

shows directly that the three tests φ(n), φ
(n)
LRT, and φ

(n)
βββ enjoy the same

asymptotic local power properties against the same contiguous alternatives
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of type I. In particular they are locally and asymptotically maximin for the

sphericity of ΣΣΣ
(n)
Y in (4.1), and therefore enjoy some local and asymptotic

optimality property for detecting alternatives of type I. The results of Monte

our Carlo simulations, provided in the “Further simulations” section of the

Supplementary Material confirm the results presented in this section.

5. New tests

As shown in the previous sections, the test φ(n) (and therefore φ
(n)
LRT) en-

joys some local and asymptotic optimality properties against alternatives

of type I, but is blind to alternatives of type II. This is often problematic,

because, in general, the purpose of this test is to provide information on the

dimension of the underlying signal. Here, we propose tests that combine

the properties of (i) being asymptotically equivalent to φ(n) under H(n)
0q (and

therefore also under contiguous alternatives of type I) and (ii) being able to

detect alternatives of type II. More precisely, we consider tests of the form

φ(n)
new := I[T (n)

q > χ2
d(p,q);1−α]I[T (n)

q,q+1 > χ2
2;1−γ] + I[T (n)

q,q+1 ≤ χ2
2;1−γ], (5.1)

for α ∈ (0, 1) and γ ∈ (0, 1), where

T
(n)
q,q+1 :=

n(
∑q+1

j=q λ̂
2
j − 1

2
(
∑q+1

j=q λ̂j)
2)

1
2
(
∑q+1

j=q λ̂j)
2

(5.2)
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is a natural test statistic to test the equality of λ
(n)
q and λ

(n)
q+1. Note that in

(5.1), we take the convention T
(n)
0,1 ≡ +∞ so that, for testing H(n)

00 , the tests

φ
(n)
new and φ(n) do coincide. The test φ

(n)
new can be viewed as a “preliminary

test” test that rejects H(n)
0q for large values of T

(n)
q , provided that T

(n)
q,q+1 is

large enough, and also rejects when T
(n)
q,q+1 is too small. The idea underpin-

ning this test lies in the concept of “preliminary test estimators” studied in

Saleh (2006) and Paindaveine et al. (2021). We have the following result,

obtained, without loss of generality, under sequences of models P
(n)

βββ,λλλ(n)
, with

λλλ(n) as in (3.1).

Proposition 4. Assume that λλλ(n) as in (3.1) is such that n1/2r
(n)
q →∞ as

n→∞. Then, under P
(n)

βββ,λλλ(n)
, φ

(n)
new − φ(n) is oP(1) as n→∞.

See the Supplementary Material for a proof. It follows directly from

Proposition 4 that φ
(n)
new is asymptotically valid, because under H(n)

0q ,

limn→∞ E[φ
(n)
new] = α. Moreover, φ

(n)
new inherits the local and asymptotic

properties of φ(n) under contiguous alternatives of type I. As shown be-

low using simulations and as expected, the test φ
(n)
new shows far better

power properties than φ(n) against alternatives of type II. Indeed, assume

that λλλ(n) in (3.1) is such that it belongs to alternatives of type II with

n1/2r
(n)
q → 0 as n → ∞. Following the same rationale as in Section 3,
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because limn→∞ P
(n)

βββ,λλλ(n)

[
T

(n)
q,q+1 > χ2

2;1−γ
]
≤ γ, for γ ∈ (0, 1),

lim
n→∞

P
(n)

βββ,λλλ(n)

[
φ(n)
new = 1

]
≥ lim

n→∞
P
(n)

βββ,λλλ(n)

[
T

(n)
q,q+1 ≤ χ2

2;1−γ
]

≥ 1− lim
n→∞

P
(n)

βββ,λλλ(n)

[
T

(n)
q,q+1 > χ2

2;1−γ
]

≥ 1− γ,

so that small values of γ necessarily result in large asymptotic power of φ
(n)
new

against type II alternatives.

To illustrate the properties of the new tests, we perform Monte Carlo

simulations. We generate M = 2, 000 independent samples of i.i.d. obser-

vations

X
(b,τ)
1 , . . . ,X(b,τ)

n ,

for τ = 0, 1, 2, 4, 6, 8 and b = 0, 1
8
, 1
4
, 1
2
, 1, 2. The X

(b,τ)
i are i.i.d. with a

common (p =)5-dimensional Gaussian distribution with mean zero and co-

variance matrix

ΣΣΣ(b, τ) = diag(3, 1 + n−b, 1 + n−b, 1, 1− τ

n1/2
).

We compare the classical test φ(n) performed at the asymptotic nominal

level α = .05 with three versions of the φ
(n)
new test (all with α = .05 in (5.1))

based on γ = .9, γ = .5, and γ = .05. All tests are performed for H(n)
03

(q = 3). The couples (τ, b) = (0, 0), (τ, b) = (0, 1
8
), and (τ, b) = (0, 1

4
) pro-

vide data-generating processes under H(n)
03 , while all other couples provide
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data-generating processes under the alternative. In particular, the values

(τ, b) = (0, 1
2
), (τ, b) = (0, 1), and (τ, b) = (0, 2) provide alternatives that

are purely of type II, and the couples (τ, b) with τ > 0 and b < 1/2 provide

alternatives that are purely of type I. In Figures 3 and 4, we provide the

empirical rejection frequencies (out of the 2, 000 replications) of the four

tests as functions of τ for sample sizes n = 500 and n = 10, 000, respec-

tively. The two figures show that the new tests φ
(n)
new behave as predicted by

the asymptotic theory. They enjoy the same empirical power curves as φ(n)

when λ
(n)
q is not too close to λ

(n)
q+1. Of course, there is some “continuity phe-

nomenon” that implies that for finite samples, the nominal level constraint

holds essentially for (τ, b) = (0, 0) and (τ, b) = (0, 1
8
) only. The situation

improves as n becomes larger, as shown in Figure 4. This is a finite-sample

effect since, because, as explained below Proposition 4, φ
(n)
new is asymptot-

ically valid. For large values of γ, the same “continuity phenomenon” is

more pronounced, with a larger power enhancement. The new tests φ
(n)
new

outperform φ(n) in terms of detecting alternatives of type II, as expected.

6. Estimation of the signal dimension and a real-data application

In this Section, we demonstrate the usefulness of our method by applying

it to the data used in Cho et al. (1998) on gene expressions. The data
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Figure 3: Empirical rejection frequencies of the classical φ(n) performed at

the asymptotic nominal level .05 and three versions of the φ
(n)
new test (all

with α = .05 in (5.1)), based on three choices of γ: γ = .9 (denoted as

new(.1)), γ = .5 (denoted as new(.5)), and γ = .05 (denoted as new(.95)).

The sample size is n = 500.
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Figure 4: Empirical rejection frequencies of the classical φ(n) performed at

the asymptotic nominal level .05 and three versions of the φ
(n)
new test (all with

α = .05 in (5.1)), based on three different choices of γ: γ = .9 (denoted as

new(.1)), γ = .5 (denoted as new(.5)), and γ = .05 (denoted as new(.95)).

The sample size is n = 10, 000.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0315



set contains data on n = 384 gene expressions, measured at p = 17 time

points, and is available online at http://faculty.washington.edu/kayee/pca/

. As explained in Cho et al. (1998), expression levels peak at different time

points, corresponding to the five phases of cell cycles. The gene expressions

are partitioned into five classes, corresponding to each phase of the cycle.

Following Yeung and Ruzzo (2001), it is important to provide methods that

cluster such data sets in order to recover the cell cycles. Following Yeung

and Ruzzo (2001), a PCA is performed before clustering to reduce the noise

level in the data. Then, the clustering is based on the noise-free data set.

Deleting the noise is crucial in the Yeung and Ruzzo (2001) procedure.

We show how our tests can be used to construct an estimator of the

signal dimension. The signal dimension k is the value q ∈ {0, . . . , p− 2} for

which H(n)
0q holds. Note that if H(n)

0q does not hold for any q ∈ {0, . . . , p−2},

we then put k = p − 1; in such a case, the signal does not contain noise.

As shown in Nordhausen et al. (2022), a consistent estimator k̂ of k can

be obtained as follows: letting b
(n)
q , q = 0, . . . , p − 2 be positive sequences

such that b
(n)
q →∞ and b

(n)
q = o(n) as n→∞ for all q, the estimator k̂ is

defined as

k̂ := min{q ∈ {0, . . . , p− 2}, T (n)
q < b(n)q }, (6.1)

with k̂ := p− 1 if the minimum above is not achieved. Using the test φ
(n)
new,
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we define a new estimator of k as

k̂new = min {q ∈ {0, . . . , p− 2}, I[T (n)
q > b(n)q ]I[T (n)

q,q+1 > c(n)] + I[T (n)
q,q+1 ≤ c(n)] = 0},

(6.2)

for some positive sequence c(n) → ∞ such that c(n) = o(n) as n → ∞,

and as k̂new := p − 1 if the minimum is not achieved. A consistency re-

sult for k̂new is provided in the Supplementary Material. Here, we com-

pare the small-sample properties of the estimators k̂ and k̂new using Monte

Carlo simulations, before using them on the real data. We generate M =

2, 000 independent samples of i.i.d. observations X
(b,τ (n))
1 , . . . ,X

(b,τ (n))
n from

a common (p =)3-dimensional Gaussian distribution with mean zero and

covariance matrix ΣΣΣ(b, τ (n)) = diag(1 + n−b, 1, 1 − τ (n)). We simulate

observations with τ (n) = 0, n−1/2, .99 and b = 0, 1
2
, 1. At each replica-

tion, we compute three versions of the estimator k̂ in (6.1): one for each

b
(n)
q ∈ {log(n), χ2

d(p,q),.95, n
1/2}, q = 0, . . . , p − 2. We also compute 12 ver-

sions of the estimator k̂new in (6.2): one for each couple (b
(n)
q , c(n)), with

b
(n)
q ∈ {log(n), χ2

d(p,q),.95, n
1/2} and c(n) ∈ {χ2

2;.05, χ
2
2;.1, χ

2
2;.95, n

1/2}. We com-

pare the estimators with the true value of k, given by

k = (p− 1)I[τ (n) > 0] + (I[b <
1

2
] + (p− 1)I[b ≥ 1

2
])I[τ (n) = 0].

In Figures 5, 6, and 7, we provide the frequencies (among the 2, 000 replica-
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tions) of good selection of k for the various estimators. More explicitly, we

compute the proportion of replications for which k̂ = k and k̂new = k. The

figures show that the new selectors perform equivalently to k̂ when b = 0

(the two largest eigenvalues are sufficiently separated), and outperform k̂

when b > 0. This is in line with the result that the tests associated with

the selectors k̂new perform better in terms of detecting alternatives of type

II. When τ = .99, the two smallest eigenvalues are strongly separated, and

all estimators select the signal dimension perfectly.

In practice, the selection of c(n) and b
(n)
q remains problematic. Virta and

Nordhausen (2019) encountered a similar problem when selecting the b
(n)
q

used to compute the classical estimator k̂. Our recommendation is similar

to theirs: use b
(n)
q = χ2

d(p,q);1−α and c(n) = χ2
2;1−α as default choices, for some

reasonable α. This choice is in line with the discussion in Section 5 about

the asymptotic power of φ
(n)
new under type-II alternatives.

The simulation results show that our estimator k̂new performs quite well.

We therefore use it to estimate the signal dimension of the log-transformed

data set described earlier , comprising n = 384 gene expressions mea-

sured at p = 17 time points. Because we can question the Gaussianity

in this practical example, we use estimators based on robustified versions

of our test statistics, namely, the pseudo-Gaussian test statistics, in the
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sense of Waternaux (1984) (see also Hallin et al. (2010)). The pseudo-

Gaussian test statistics use estimated kurtosis coefficients to extend the

asymptotic validity of parametric Gaussian procedures to the class of ellip-

tical distributions (with finite moments of order four). They furthermore

keep the local and asymptotic power properties of the same parametric

Gaussian procedures in the Gaussian case. Letting κ̂(n) be a consistent

estimator of the underlying kurtosis parameter (see Waternaux (1984) for

details), the pseudo-Gaussian test statistics are T̃
(n)
q := (1+ κ̂(n))−1T

(n)
q and

T̃
(n)
q,q+1 := (1 + κ̂(n))−1T

(n)
q,q+1. We compute (pseudo-Gaussian versions of) k̂

with b
(n)
q ∈ {log(n), χ2

d(p,q),.95, n
1/2}, for q = 0, . . . , p − 2, and 12 (pseudo-

Gaussian versions of) estimators k̂new, one for each couple (b
(n)
q , c(n)), with

b
(n)
q ∈ {log(n), χ2

d(p,q),.95, n
1/2} and c(n) ∈ {χ2

2;.05, χ
2
2;.1, χ

2
2;.95, n

1/2}. In Figure

8, we provide the values taken by the various estimators. Figure 8 reveals

that, although the small eigenvalues look close to each other, the data set

does not contain much noise; the classical estimator k̂ estimates the dimen-

sion of the signal at 13 or 14. Our new estimators with c(n) ∈ {χ2
2;.95, n

1/2}

indicate that the data contain no noise. Given the performance of the

various estimators on simulated examples, we suggest that every principal

component should be considered significant and kept in the data set if the

goal is to explain the maximal amount of variance possible. Because the
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data set is noiseless, any dimension reduction based on a PCA will come at

a cost of relevant information. There is no denoising step to conduct here,

and any further dimension reduction technique should be performed on the

full data set.
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Figure 5: Proportion of good selection of k for three estimators k̂ (in

red, denoted as “classic”) and for estimators k̂new (in blue) with b
(n)
q ∈

{log(n), χ2
d(p,q),.95, n

1/2}, and c(n) ∈ {χ2
2;.05, χ

2
2;.1, χ

2
2;.95, n

1/2} . The sample

size is n = 1000 and τ (n) = 0.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0315



classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 0

classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 1 2

classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 1

(a) b
(n)
q ≡ log(n)

classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 0

classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 1 2

classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 1

(b) b
(n)
q ≡ χ2

d(p,q),.95

classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 0

classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 1 2

classic .05 .1 .95 n^(1/2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b = 1

(c) b
(n)
q ≡ n1/2

Figure 6: Proportion of good selection of k for three estimators k̂ (in

red, denoted as “classic”) and for estimators k̂new (in blue) with b
(n)
q ∈

{log(n), χ2
d(p,q),.95, n

1/2}, and c(n) ∈ {χ2
2;.05, χ

2
2;.1, χ

2
2;.95, n

1/2} . The sample

size is n = 1000 and τ (n) = n−1/2.
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Figure 7: Proportion of good selection of k for three estimators k̂ (in

red, denoted as “classic”) and for estimators k̂new (in blue) with b
(n)
q ∈

{log(n), χ2
d(p,q),.95, n

1/2}, and c(n) ∈ {χ2
2;.05, χ

2
2;.1, χ

2
2;.95, n

1/2} . The sample

size is n = 1000 and τ (n) = .99.
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Figure 8: (a) the eigenvalues of the log-transformed gene expression data

set; (b)-(d) the values (between zero and 16) taken by the estimators k̂ (in

red, denoted as “classic”) for b
(n)
q ∈ {log(n), χ2

d(p,q),.95, n
1/2} and k̂new (in

blue) for b
(n)
q ∈ {log(n), χ2

d(p,q),.95, n
1/2} and c(n) ∈ {χ2

2;.05, χ
2
2;.1, χ

2
2;.95, n

1/2}.
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7. Conclusion

We have studied procedures for testing problems characterized by null hy-

potheses of the form

H(n)
0q : (λ

(n)
q+1 = . . . = λ(n)p ) ∩ (n1/2(λ(n)q − λ

(n)
q+1)→∞ as n→∞).

We have shown that φ(n) (or, equivalently, φ
(n)
LRT) enjoys some local and

asymptotic optimality properties against alternatives of type I, but is blind

to alternatives of type II. Our proposed tests for the problem that retain

the local and asymptotic optimality properties of φ(n) against alternatives

of type I, and are able to detect alternatives of type II. In Proposition 2, we

show that the consistency of an empirical projection on the first q principal

axes can hold only if n1/2(λ
(n)
q −λ(n)q+1) diverges to∞ as n→∞. This makes

H(n)
0q a natural sequence of null hypotheses to test in order to perform an

inference on the signal dimension. We then used our tests to build a new

estimator of the signal dimension, which performs quite well, as shown in

a simulation study.

Note that our asymptotic analysis concerns classical Gaussian estima-

tors and tests. However, the same type of analysis will hold for robust tests

built, for instance, on the eigenvalues of empirical robust scatter matrices

R(n) in setups in which the distribution of U(n) := (ΣΣΣ(n))−1/2n1/2(R(n) −
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ΣΣΣ(n))(ΣΣΣ(n))−1/2 is spherically symmetric, and the weak limit of vec(U(n))

is Gaussian. As explained in the real-data illustration, we can correct

Gaussian LRTs using empirical kurtosis coefficients to obtain tests that are

asymptotically valid under elliptical distributions with finite fourth-order

moments; see, for instance, the pseudo-Gaussian tests in Waternaux (1984)

and Hallin et al. (2010). Simulations illustrating the properties of these

pseudo-Gaussian procedures in non-Gaussian settings are provided in the

Supplementary Material.

Finally, in our study, the dimension p is fixed. It would be natural to

extend our results to the high-dimensional case considered, for instance, in

Forzani et al. (2017) and Virta (2021). This is left to future research.

Supplementary Material

The supplement contains various simulation studies to illustrate our results,

all the technical proofs and a consistency result for the new estimator of

the dimension of the signal.
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