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Abstract: Existing privacy guarantees for convex optimization algorithms do

not apply to heavy-tailed data with regularized estimation. This is a notable

gap in the differential privacy (DP) literature, given the broad prevalence of

non-Gaussian data and penalized optimization problems. In this work, we propose

three (ϵ, δ)-DP methods for regularized convex optimization and derive bounds

on their population excess risks in a framework that accommodates heavy-tailed

data with fewer assumptions (relative to previous works). This work is the first to

address DP in generic regularized convex optimization problems with heavy-tailed

responses. Two of our methods augment a basic (ϵ, δ)-DP algorithm with robust

procedures for privately estimating minibatch gradients. Our numerical analyses

highlight the performance of our methods relative to data dimensionality, batch

size, and privacy budget, and suggest settings where each approach is favorable.

Key words and phrases: Privacy protection, randomized mechanism, non-smooth

regularization, error bound.
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1. Introduction

Progress towards data privacy, especially in the analysis of sensitive financial

or medical data (???), is undermined by the ubiquity of convex optimiza-

tion. As general approaches to convex problems offer no inherent privacy

guarantees, the development of privacy-aware optimization techniques has

the potential to impact a broad range of analytic methods and applications.

Differential privacy (?) offers a framework to objectively assess privacy

guarantees and can be easily incorporated into analytic techniques and

algorithms. Differential privacy has consequently grown in popularity in

fields where privacy protection is a concern (?).

While privacy-preserving convex optimization algorithms have received

substantial attention in the literature, most focus has been placed on stochas-

tic gradient descent (SGD) due to its simplicity and computational effi-

ciency (?Abadi et al., 2016; ?; ?). However, the convergence rates of these

differentially private (DP) versions of SGD suffer in most regularized opti-

mization problems, particularly when working with non-smooth regularizers,

such as the widely used ℓ1 penalty for managing sparse, high-dimensional

settings (?). Recently, DP variants of mirror descent and Frank–Wolfe algo-

rithms have been developed to address this problem (????). Additionally,

? proposed a modification to the exponential mechanism, which allows for
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the optimal empirical and population risk in private solving of non-smooth

objective functions.

Despite these and other advances in DP convex optimization, the current

literature relies on one critical assumption to achieve differential privacy:

Lipschitz continuity of the loss function. The consequent assumption of a

bounded gradient is not valid for many real-world datasets. Settings with

heavy-tailed data, as a focal point for the present work, can hardly be

called fringe: file sizes, the flood levels of rivers, and major insurance claim

amounts, among many other examples, fall into this category. Consider

the squared loss function ℓ(β, x, y) = (y − x⊤β)2 as an example, which has

an unbounded gradient with respect to β when either covariates x or the

response variable y has heavy-tailed distributions. As a result, the privacy

guarantees offered by the aforementioned methods may fail to hold in this

setting.

More recent works noting this issue are discussed in Section 2 (???). In

summary, researchers are recognizing the limitations of assuming Lipschitz

continuity in the loss function and are developing privacy algorithms to

address these limitations for SCO problems. Nevertheless, there has been

insufficient attention paid to regularized convex optimization problems in

this direction, such as lasso regression, group lasso, and regularized logistic
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regression, despite their widespread use in statistics and machine learning.

Regularization techniques can provide various critical functions such as

shrinking estimates, performing variable selection, and reducing model

overfitting. The current gap in the literature is surprising, given the ubiquity

of regularized problems and also heavy-tailed data.

Throughout this work, we consider a dataset D = {z1, · · · , zn} of zi =

(xi, yi) ∈ Z which independently and identically follow some distribution

D. Here, xi ∈ Rp is a feature vector, and yi ∈ R is a heavy-tailed response.

Our goal is to minimize a population risk of the form FD(β) = LD(β) + g(β)

under this setting, namely,

min
β∈Rp

{
LD(β) + g(β)

}
, (1.1)

where LD(β) = Ez∼D[ℓ(β, z)] for some smooth, convex loss function ℓ and

where g is a relatively simple, convex function that may be non-differentiable.

Unless otherwise specified, we let ∥·∥ denote the usual ℓ2 norm on Euclidean

space. Let ∇LD and ∇ℓ denote the gradient of LD(β) and ℓ(β), respectively.

In this work, we focus on developing algorithms that can privately,

efficiently, and robustly handle regularized stochastic convex optimization

(SCO) problems with heavy-tailed responses. It is worth noting that the term

“robust” is used to signify our objective of achieving rigorous theoretical

derivation and stable numerical outcomes, even in the presence of heavy-
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tailed responses. In this situation, the utilization of first-order algorithms

may lead to inaccuracies due to the existence of anomalous gradients. To

overcome this problem, we employ robust mean estimators proposed in the

literature, which help to provide reliable estimates of gradients. Specifically,

our contributions in this paper are three-fold.

(1) We first propose a vanilla (ϵ, δ)-DP algorithm (Algorithm 1) for the

regularized SCO problem in (1.1). This approach requires minimal

assumptions and is applicable to a wide range of data distributions. In

this setting, we establish an upper bound on the expected population

excess risk that generally depends on a gradient-clipping mechanism.

(2) Next, we develop an (ϵ, δ)-DP algorithm (Algorithm 2) that utilizes

the mean estimator in Kamath et al. (2020) to robustly estimate ∇LD.

We show that, with high probability and for some k ≥ 2, the output

of Algorithm 2 achieves an upper bound of Õ[p3/2{
√
pT/(nϵ)}(k−1)/k +

T−1/2] on the population excess risk, where T denotes the total number

of iterations. We introduce one additional assumption to achieve this

refinement of Algorithm 1: the mean and the order-k central moment

of each coordinate of ∇ℓ are bounded.

(3) We propose a second robust (ϵ, δ)-DP algorithm (Algorithm 4) that
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instead incorporates the robust mean estimator in Holland (2019). It

improves the upper bound of Algorithm 2 to Õ(pT 1/4/
√
nϵ+ T−1/2)

in a high probability setting. Compared with Algorithm 2, Algorithm

4 relies on a relatively weaker assumption that only bounds the second

moment of each coordinate of ∇ℓ.

Due to the space limit, all the proofs and technical lemmas are relegated to

the supplementary material.

2. Related Work

As previously mentioned, there are only a few works that address DP

SCO for heavy-tailed data. Wang et al. (2020) proposed Algorithm 4

as the first approach to consider this setting. This algorithm combined

projected gradient descent with the robust mean estimator from Holland

et al. (2019). Our Algorithm 4 draws inspiration from this approach, and

we can improve the algorithm’s Õ{p/(ϵ2n)1/3} bound on population excess

risk in this work. ? derived new algorithms for SCO with heavy-tailed

distributions under concentrated differential privacy. However, this work

relies on the smoothness of the objective function and only provides the

bounds on expected population excess risk. ? was the first to study DP SCO

for high-dimensional, heavy-tailed data, but did not do so in full generality.
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The authors considered specific convex problems over polytope (i.e., ℓ1-

norm), sparsity (ℓ0-norm) constraints under ϵ-DP and (ϵ, δ)-DP frameworks.

Since only the methods in ? can handle non-smooth loss function in the

presence of heavy-tailed data, we compare them with our approaches in our

numerical study.

3. Preliminaries

3.1 Stochastic proximal gradient descent

Proximal gradient descent is a standard approach to the problem in (1.1) due

to the efficiency and flexibility of the proximal operator (??). Given an initial

point β0 ∈ Rp and a sequence (γt)t∈N of positive step sizes, the update rule

for proximal gradient descent is βt+1 = proxγt,g (βt − γt∇LD (βt)) , where

proxγ,g(β) = argmin
b∈Rp

{
g(b) + (2γ)−1∥b− β∥2

}
is the proximal map associated with g and the step size γ. If g is a proper,

convex, and lower semicontinuous function, then the proximal map is unique

for any β ∈ Rp and any γ > 0 (?).

When n is large, the proximal gradient update requires computing n

gradients and may be expensive. Stochastic proximal gradient descent

(SPGD), or more accurately, mini-batch SPGD, is a stochastic variant

Statistica Sinica: Preprint 
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of proximal gradient descent that uses a small, size-m subset Bt of the

observations to estimate the gradient. The updating procedure is

βt+1 = proxγt,g

(
βt − γtm

−1
∑
zi∈Bt

∇ℓ(βt, zi)
)
.

If the subsetBt is sampled uniformly from the full dataset, then the stochastic

gradient estimate is unbiased, i.e., E[m−1
∑

zi∈Bt
∇ℓ(βt, zi)] = ∇LD (βt) .

3.2 Differential privacy

Loosely speaking, a privacy-preserving algorithm should give similar outputs

when applied to neighboring datasets, i.e., datasets that differ in only one

record. It should be difficult to determine the contribution of a single indi-

vidual to the output. Differential privacy provides a formal mathematical

framework that quantifies this notion and controls the amount of privacy pro-

tection using a prespecified privacy budget ϵ. However, “pure” ϵ-differential

privacy is typically too restrictive and can been relaxed to (ϵ, δ)-differential

privacy, a framework that accommodates a constant probability δ of failure.

Definition 1. A randomized mechanism M is called (ϵ, δ)-differentially

private if, for all measurable O in the output space ofM and for any two

adjacent datasets d, d′ ∈ Zn, P[M(d) ∈ O] ≤ eϵP [M (d′) ∈ O]+δ. We write

thatM is (ϵ, δ)-DP.

Statistica Sinica: Preprint 
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Approaches for attaining (ϵ, δ)-differential privacy are well established in

the literature (?). For a mechanism f : Zn → Rp, the Gaussian mechanism

is defined as M(d, f, ϵ, δ) = f(d) +
(
X∗

1 , . . . , X
∗
p

)⊤
, where the X∗

i s are

independently drawn from N (0, σ2∆2
2). Here, ∆2 = max{d,d′∈Zn}∥f(d) −

f(d′)∥ (d, d′ are two adjacent datasets) is the l2 sensitivity of f and σ is

a variance parameter determined by ϵ and δ. It has been shown that the

Gaussian mechanism is (ϵ, δ)-DP.

3.3 Assumptions

To facilitate our theoretical investigations, we consider the following assump-

tions.

(A1) The function g is non-negative, convex, not identically +∞, and

lower semicontinuous. The function ℓ is convex and continuously

differentiable over the parameter space.

(A2) The parameter space B = {β ∈ Rp | g(β) < ∞} is closed and has a

finite diameter ∆ = sup{∥β − β′∥ : β, β′ ∈ B}.

(A3) The function LD has a K1-Lipschitz-continuous gradient on B: for any

β, β′ ∈ B, ∥∇LD(β)−∇LD(β
′)∥ ≤ K1∥β − β′∥.

(A4) The function ℓ has a K2-Lipschitz-continuous gradient on B.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0282



10

(A5) For any β ∈ B and each coordinate j ∈ [p], E[|⟨∇ℓ(β, z)−µ, ej⟩|k] ≤ 1

for some k ≥ 2, where ej is the jth standard basis vector and µ =

E[∇ℓ(β, z)] is assumed to be bounded.

(A6) For any β ∈ B and each coordinate j ∈ [p], E[{∇jℓ(β, z)}2] ≤ τ , where

τ is some known constant.

Assumptions (A1)–(A3) are common in the SPGD literature (Atchadé

et al., 2017; ?). Assumption (A4) pertains to the smoothness of the loss

function ℓ, requiring it to be K2-smooth. This assumption has been taken

into consideration in previous literature when dealing with heavy-tailed

response data, see ?Holland (2019); ?, for example. Assumption (A5)

bounds the order-k central moment (for some k ≥ 2) and the mean of the

distribution of ∇ℓ(β, z): this is required for the robust estimator in Kamath

et al. (2020) which we implement in Algorithm 2. Assumption (A6) is

designed for Algorithm 4, which is weaker than Assumption (A5) in the

way that it only assumes the gradient of the loss function has a bounded

second-order moment.

4. Vanilla DP SPGD

We begin by proposing a basic approach to DP SPGD in Algorithm 1. In

the absence of a Lipschitz-continuity assumption on the loss function, we

Statistica Sinica: Preprint 
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introduce clipping in each iteration to bound the norm of the gradient and

achieve a desired level of privacy. Outside of differential privacy, gradient

clipping is commonly used to manage exploding gradients and has established

practical benefits (??). Intuitively, clipping reduces the influence of large

gradients created by outlying data. To achieve differential privacy, we apply

the Gaussian mechanism after clipping and then perform the proximal

update step using the private gradient estimate ∇L̂D.

Specifically, the noises introduced in line 6 of Algorithm 1 should be

generated from a Gaussian distribution with a variance term of σ2C2Ip,

where C is a pre-specified clipping threshold, Ip is a p× p identity matrix,

and σ is a noise scale. To ensure Algorithm 1 is (ϵ, δ)-DP, the noise scale

needs to satisfy the inequality: σ ≥
√
log(δ−1)/(mϵ). In the algorithm, we

set σ equal to the right-hand side of the inequality to meet the minimum

requirement on the noise scale. The following proposition establishes a

privacy guarantee for the output of Algorithm 1. The proof of this result

can be found in the supplementary material.

Proposition 1. Let T = O(n2/m2). There exists a constant c1 such that

Algorithm 1 is (ϵ, δ)-DP for any 0 < ϵ ≤ c1 and 0 < δ < 1.

Remark 1. To facilitate practical implementation, Algorithm 1 takes δ

as an input, allowing for the adjustment of the noise scale σ based on

Statistica Sinica: Preprint 
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Algorithm 1 DP SPGD algorithm for solving (1.1)

Input: dataset D = {zi}ni=1, number of iterations T , step-size sequence

(γt)
T−1
t=0 , clipping threshold C, batch size m, privacy parameters (ϵ, δ)

1: initialize β0

2: for t = 0 to T − 1 do

3: Sample a batch Bt randomly from D with sampling probability m/n

4: ℓ̃ti ← ∇ℓ(βt, zi) for i ∈ Bt

5: ℓ̄ti ← ℓ̃ti/max{∥ℓ̃ti∥/C, 1} for i ∈ Bt

6: ∇L̂D(βt) ← m−1(
∑

i∈Bt
ℓ̄ti) + N (0, σ2C2Ip), where σ =√

log(δ−1)/(mϵ)

7: βt+1 ← proxγt,g(βt − γt∇L̂D(βt))

8: end for

Output: β̄T = T−1
∑T

t=1 βt

Statistica Sinica: Preprint 
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the desired privacy level. As a result, the privacy guarantee mentioned

above holds for all 0 < δ < 1. If the noise scale in the algorithm is fixed,

the lower bound of δ will depend on ϵ, σ, and m. Specifically, we have

exp{−(mϵσ)2} ≤ δ < 1.

The theorem below offers a utility guarantee for Algorithm 1 based on

the expected population risk, where the randomness of the algorithm is

taken into account. According to the result, it is not possible to eliminate

the bias introduced by clipping without a more specific clipping mechanism

or additional assumptions on the gradients, see ? for example. Further

discussion of this clipping bias is beyond the scope of this paper.

Theorem 1. Let β̄T = T−1
∑T

t=1 βt be the output of Algorithm 1. Assume

the non-increasing step sizes satisfy γt ∈ (0, K−1
1 ] for all t ≤ T − 1 and let

β∗ denote an arbitrary minimizer of (1.1). Under Assumptions (A1)–(A3),

E
[
FD(β̄

T )− FD(β
∗)
]
≤ ∆2

2TγT−1

+ T−1

T∑
t=1

∆Bias∥·∥(∇L̂t−1),

where Bias∥·∥(∇L̂t−1) = E[∥∇L̂D(βt−1)−∇LD(βt−1)∥] is the bias of ∇L̂D(βt−1)

with respect to the norm ∥·∥.

Remark 2. The clipping parameter C in Algorithm 1 plays an important

role in practice. It is unclear how to choose a value of C that suitably

balances the signal of the clipped gradient and the noise introduced for the

Statistica Sinica: Preprint 
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sake of privacy. ? showed that standard gradient clipping cannot induce

label noise robustness in classification tasks: while the setting of ? and the

present paper differ, this result encourages us to seek better alternatives to

simple clipping mechanisms. We explore these alternatives in the following

section with two robust mean estimators to better reduce the effect of

anomalous gradients caused by heavy-tailed data.

5. Improved DP SPGD via Robust Mean Estimation

5.1 DP SPGD with the Kamath estimator

Our first improved approach is motivated by the robust mean estimator

in Kamath et al. (2020). The core idea of this estimator is illustrated in

lines 1–9 of Algorithm 3 and formalized in Lemma 2 in the supplementary

material. Informally speaking, if the gradient distribution is truncated

within a large interval that is centered close to its mean, then the mean of

the distribution will not change substantially with truncation. In DP SPGD

settings, this result can guarantee the theoretical performance of the clipping

mechanism (e.g., in Algorithm 1). Consequently, we adopt the Kamath

estimator to obtain a private and robust approximation of the gradient in

Algorithm 2. The DP robust mean estimation procedure DPRME on line 4

is provided in Algorithm 3.

Statistica Sinica: Preprint 
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Algorithm 2 DP SPGD (Kamath) for solving (1.1)

Input: dataset D = {zi}ni=1, number of iterations T , step-size sequence

(γt)
T−1
t=0 , batch size m, failure probability ζ, scale parameter ϱ, privacy

parameters (ϵ, δ)

1: initialize β0

2: for t = 0 to T − 1 do

3: Sample a batch Bt randomly from D with sampling probability m/n

4: ∇L̂D(βt)← DPRME({∇ℓ(βt, zi)}i∈Bt , ζ, ϱ, ϵ, δ)

5: βt+1 ← proxγt,g(βt − γt∇L̂D(βt))

6: end for

Output: β̄T = T−1
∑T

t=1 βt

Statistica Sinica: Preprint 
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The following theorem establishes the accuracy of the DP robust mean

estimator in Algorithm 3.

Theorem 2. Let P be a distribution over Rp with bounded mean µ, and let

X = {x1, . . . , xn} be independent and identically distributed samples from P.

Assume that E[|⟨X − µ, ej⟩|k] ≤ 1 for some k ≥ 2 and all j ∈ [p], where ej

is the jth standard basis vector. If ϱ in Algorithm 3 is set to be ϱ ≥ 4∥µ∥∞,

with probability at least 1− ζ, the output µ̂ satisfies

∥µ̂− µ∥ ≤ O
[ϱ log(pζ−1)

√
p log(δ−1)

nϵ

{√
p+

√
log(ζ−1)

}
+
√
p
{√ log(pζ−1)

n
+
(4
ϱ

)k−1}]
.

We defer the proof of Theorem 2 to Section S2.2 in the supplementary

material, whose spirit is similar to that of Theorem 4.1 in ?. The difference,

however, is that some parameters (e.g., the number of splits q and the

truncation interval) are modified for better experimental performance. Fur-

thermore, we carefully control the Gaussian noise added for DP guarantee

in order to apply the moments-accountant technique in Abadi et al. (2016),

which leads to a stronger composition of DP than the basic composition

used in ?.

Note that due to the sampling procedure in Algorithm 2, batches are not

independent across iterations. An uniform bound on the gradient estimation

Statistica Sinica: Preprint 
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Algorithm 3 DP robust mean estimator (DPRME)

Input: samples X = {xi}ni=1 ⊂ Rp, failure probability ζ, scale parameter ϱ,

privacy parameters (ϵ, δ)

1: q ← 3 log(2p/ζ)

2: Set the truncation interval: I ← [−ϱ/2, ϱ/2]

3: for j = 1 to p do

4: for i = 1 to q do

5: Define the truncated set Zi
j ←

{
clip(x, I) : x ∈

(X(i−1)(n/q)+1(j), . . . , Xin/q(j))
}

6: µ̂i
j ← (q/n)

∑
x∈Zi

j
x

7: end for

8: µ̂j ← Median{µ̂1
j , . . . , µ̂

q
j}

9: end for

10: µ̂← (µ̂1, . . . , µ̂p) +N (0, σ2Ip), where σ = ϱq
√

p log(δ−1)/(nϵ)

Output: µ̂

Statistica Sinica: Preprint 
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error ∥∇L̂D(βt)−∇LD(β)∥ over β ∈ B is required. Lemma 3 provides the

uniform bound, which is presented in the supplementary material. This

bound is used in Corollary 1 to achieve a high probability bound on the

population excess risk. Additionally, the corollary below provides the DP

guarantee for Algorithm 2.

Corollary 1. Set T = O(n2/m2). Algorithm 2 achieves (ϵ, δ)-DP for any

0 < ϵ ≤ c2 and 0 < δ < 1, where c2 is a constant. Under Assumptions

(A1)–(A5), If ϱ = {ϵm/
√

p log(δ−1)}1/k > 4∥µ∥∞ and γt = K1/
√
t for

t ≤ T − 1, then with probability at least 1− ζ, Algorithm 2 satisfies

FD(β̄
T )− FD(β

∗) ≤ Õ
[
T− 1

2 + p
3
2 log(ζ−1)

{√
p log(δ−1)T/nϵ

} k−1
k

]
for any failure probability ζ, where the notation Õ omits some logarithmic

factors and the term of ∆, K1.

To provide intuition, we can express the bound from Corollary 1 as:

FD(β̄
T )− FD(β

∗) ≤ Õ
(
T− 1

2 + p3/2σ
)
,

where σ is defined in Algorithm 3. It is well-known that the lower bound for

convergence rate in non-smooth stochastic convex optimization is Ω(1/
√
T )

(?). Therefore, our upper bound can be decomposed into two parts: the non-

private convergence rate that cannot be improved for non-smooth stochastic

Statistica Sinica: Preprint 
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convex optimization and the additional excess population error caused by

privacy. It is worth noting that the non-private rate is suboptimal when the

regularization term is smooth or absent. Even though the regularization

term is allowed to be smooth, the literature on SPGD primarily focuses

on the use of non-differentiable regularization functions. For instance, ?

and ? have established the O(1/
√
T ) convergence rate for solving (1.1) via

SPGD. In this work, we mainly address the challenge of handling non-smooth

regularization terms using the proposed approach. Deriving an optimal

non-private rate that covers both smooth and non-smooth cases is left as

future work. More discussions are given in Section 7.

If we ignore the effect of polylog factors (which is common in the DP SCO

literature, such as in ?, ?, and ?), we see that with high probability guarantee,

the upper bound of the excess population risk is Õ
[
p3/2{

√
pT/(nϵ)}(k−1)/k +

T−1/2
]
for some k ≥ 2. The selection of batch size m is subject to

a trade-off: a smaller value of m facilitates faster convergence of the

non-private part Õ(T−1/2), but results in larger levels of noise added

to ensure privacy. Optimizing the upper bound in m yields a bound of

Õ{p(4k−1)/2/(ϵk−1nk−1)}1/(2k−1), where m = (nkp(4k−1)/2/ϵk−1)1/(2k−1). The

bound may vary depending on the order of the bounded moment of ∇ℓ.

For example, when k = 2, our bound takes the form of Õ{p7/6/(nϵ)1/3}.
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Moreover, as k approaches infinity, the bound converges to Õ(p/
√
nϵ). How-

ever, to achieve this optimal rate, a restrictive constraint on the ratio of

dimensionality p and sample size n is required, namely, p ≤ (nϵ)(2k−2)/(4k−1).

This limitation significantly reduces the practicality of the approach. We

further investigate the impact of m on the convergence results through

simulation studies, as discussed in Section 6.1.

Remark 3. If we simply set m = n1/2, the upper bound from Corollary 1

is given by p2/(
√
nϵ)(
√
nϵ/
√
p)

1
k , which is looser compared with the bound

p/
√
n + p2/(nϵ)(nϵ/p3/2)

1
k in ?. Nevertheless, ? requires the smoothness

assumption on the overall loss function and their bound is for expected

population excess risk. For heavy-tailed data, an expected population excess

risk can not be directly transformed to a useful population excess risk with

high probability, whereas the latter one is more commonly used in the

literature on robust statistics (???).

5.2 DP SPGD with the Holland estimator

As can be seen in Corollary 1, the upper bound of the excess population risk

is slightly high, which impels us to explore other potential methods. Holland

(2019) provides another approach to robust mean estimation. As noted in

Section 2, this estimator has been previously implemented to solve DP SCO

Statistica Sinica: Preprint 
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problems for heavy-tailed data (?). To keep the present work self-contained,

we briefly review the Holland estimator. We start with a one-dimensional

example. Let x1, . . . , xn be an i.i.d. realizations of a random variable X.

Our goal is to robustly estimate E[X]. The estimation procedure in Holland

(2019) consists of three steps.

Firstly, define one step as “scaling and truncation”. In this step, we

scale each sample xi by a scale parameter s (to be specified later), truncate

the scaled samples with a soft truncation function ϕ, and transform the

truncated arithmetic mean back to the original scale:

E[X] ≈ s

n

n∑
i=1

ϕ
(xi

s

)
,

where

ϕ(x) =



x− x3

6
, −

√
2 ≤ x ≤

√
2

2
√
2

3
, x >

√
2

−2
√
2

3
, x < −

√
2

(5.2)

is as given in Catoni and Giulini (2017). Then, let η1, . . . , ηn be i.i.d.

random noise from a zero-mean distribution χ. Multiply each sample xi by

the random noise 1 + ηi and apply the “scaling and truncation” step to the

result. That is,

x̃(η) =
s

n

n∑
i=1

ϕ

(
xi + ηixi

s

)
.
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Lastly, the multiplicative noise is smoothed out by taking the expectation

with respect to the noise distribution χ. This leads to the final robust

estimator

x̂ =
s

n

n∑
i=1

∫
ϕ

(
xi + ηixi

s

)
dχ (ηi) . (5.3)

The computation of each integral in (5.3) relys on the noise distribution

χ and the truncation function ϕ. Luckily, Catoni and Giulini (2017) provides

an efficient way to evaluate the integral. If χ ∼ N (0, 1/ν) (with ν to be

specified later), then for any a and b, Eη[ϕ(a + b
√
νη)] = a (1− b2/2) −

a3/6 +C(a, b), where C(a, b), whose explicit form is given in Section S2.4 in

the supplementary material, is a correction factor that is easy to implement.

Due to the nature of the truncation function ϕ, the integral in the final

step is bounded by 2
√
2/3, so the ℓ2-norm sensitivity of the estimator x̂ is

4
√
2s/(3n). Therefore, a mechanism to achieve (ϵ, δ)-DP is as follows:

A(D) = x̂+N
(
0, 32s2 log(δ−1)/(9n2ϵ2)

)
, (5.4)

whose error bound is given in Lemma 4 (See Section S2.3 in the supplemen-

tary material).

So far we have only considered robust mean estimation in one dimension.

We generalize this procedure to arbitrary dimensions in Algorithm 4: in

each iteration, we use a size-m minibatch to estimate each coordinate of
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Algorithm 4 DP SPGD (Holland) algorithm for solving (1.1)

Input: dataset D = {zi}ni=1, number of iterations T , step-size sequence

(γt)
T−1
t=0 , batch size m, failure probability ζ, gradient second-moment

bound τ , privacy parameters (ϵ, δ)

1: initialize β0

2: ν ←
√

log(ζ−1)

3: s←
√
mϵτ/{log(ζ−1) log1/4(δ−1)}

4: for t = 0 to T − 1 do

5: Sample a batch Bt randomly from D with sampling probability m/n

6: ℓ̃ti ← ∇ℓ(βt, zi) for i ∈ Bt

7: Calculate the robust gradient:

l̃t ←
1

m

∑
i∈Bt

{
l̃ti

(
1− l̃2ti

2s2ν

)
− l̃3ti

6s2

}
+

s

m

∑
i∈Bt

C
( l̃ti
s
,
|l̃ti|
s
√
ν

)
8: ∇L̂D(βt)← l̃t +N (0, σ2Ip), where σ = 4s

√
2p log(δ−1)/(3mϵ)

9: βt+1 ← proxγt,g(βt − γt∇L̂D(βt))

10: end for

Output: β̄T = T−1
∑T

t=1 βt
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the gradient. Operations on line 7 of Algorithm 4 are made elementwise.

To privatize the robust mean estimation procedure, we add Gaussian noise

to the robust gradient, whose ℓ2-norm sensitivity is 4s
√
2p/3m. Theorem

3 uniformly bounds the approximation error of ∇L̂D with high probability.

Corollary 2 uses this bound to establish a (1−ζ)-probability upper bound on

the population excess risk, where ζ is some pre-determined failure probability.

Theorem 3. Under Assumptions (A2)–(A4) and (A6), with probability at

least 1− ζ and for any β ∈ B, the gradient estimator ∇L̂D(β) in Algorithm

4 satisfies

∥∇L̂D(β)−∇LD(β)∥ ≤ O
[√

pτ log
1
2 (δ−1){log(pζ−1) + p log(∆

√
m)}/(mϵ)

]
,

where the batch size m = O(n/
√
T ).

Corollary 2. Set T = O(n2/m2). Algorithm 4 achieves (ϵ, δ)-DP for any

0 < ϵ ≤ c3 and 0 < δ < 1, where c3 is a constant. Let γt = K1/
√
t for

t ≤ T − 1. Then for any given failure probability ζ, under Assumptions

(A1)–(A4) and (A6), Algorithm 4 satisfies

FD(β̄
T )− FD(β

∗) ≤ Õ
{
T− 1

2 + p log
1
4 (δ−1) log

1
2 (ζ−1)T

1
4/
√
nϵ
}

with probability at least 1− ζ. The notation Õ omits some logarithmic terms

and those that depend only on ∆, τ , and K1.
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Remark 4. It is notable that with a weaker assumption, Corollary 2 im-

proves the upper bound of Corollary 1 to Õ(pT 1/4/
√
nϵ+T−1/2). By setting

m = (np)2/3/ϵ1/3, we obtain an optimal bound of the form Õ{p2/3/(nϵ)1/3},

which outperforms the bound of Õ{p3/(ϵ2n)}1/3 in ? for general smooth

convex loss functions. Note that both works have the same requirement

on p to achieve optimal rates, specifically p ≤ (nϵ)1/2. Moreover, even if

p > (nϵ)1/2, selecting a batch size close to the sample size (e.g., m = n2/3)

still results in a superior upper bound when 0 < ϵ < 1 compared to the

bound in ?. Our experimental results show that DP SPGD (Holland) algo-

rithm performs better with a relatively large batch size in both regression

and classification tasks.

6. Experimental Results

In this section, we examine the performance of the proposed algorithms on

synthetic and real-world data. We treat SPGD as the nonprivate benchmark

and compare our methods with it under several settings. We write DP-

SPGD(K) and DP-SPGD(H) to refer to our methods using the Kamath

and Holland estimators, respectively. In addition, we make a comparison

with heavy-tailed private LASSO (HTP-LASSO) and heavy-tailed DP Frank

Wolfe method (HTDP-FW) proposed in ? for high dimensional DP SCO with
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heavy-tailed data. Throughout the following section, results are presented

for 20 datasets (for the simulation studies) and across 20 training–test splits

(for the real-world analyses).

6.1 Simulation studies

We consider linear and binary logistic regression models with an ℓ1 penalty.

We fix the sample size at n = 10000 and consider varying data dimension-

alities p = 20, 40, 60, 80, 100, 150. We let X denote the n× p data matrix

with each column scaled to a unit norm. The first 10 elements of the effect

vector β∗ ∈ Rp are set to be ±1 while the rest are set to zero. The responses

in the linear and logistic models are generated following Y = Xβ∗ + e and

Y = sign([1+exp{−(Xβ∗+e)}]−1−1/2), respectively. The errors e in these

models are independently generated from T (2) and the centred (1/2, 1/2)

log-logistic distribution.

We set T = 5n2/m2 as the total number of iterations and ζ = 0.1 as

the failure probability in Algorithms 2 and 4. The privacy parameters are

set as δ = n−1 and ϵ = 0.5, 1, 3. For comparison, the performance of HTP-

LASSO and HTDP-FW are evaluated in the lasso and logistic regression

cases, respectively. Parameters in these algorithms (e.g., the total number of

iterations T ) are set the same way as in ?. Because of the use of exponential

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0282



6.1 Simulation studies27

Figure 1: Simulation study results for the lasso model: accuracy vs. data

dimensionality p under different privacy budgets ϵ.

mechanism, the performance of HTP-LASSO and HTDP-FW are highly

related to the ℓ1 norm of β∗, which is unknown in practice. Thus, we use (O)

to specify algorithms utilizing oracle information (i.e., HTP-LASSO(O) and

HTDP-FW(O)). The following numerical experiments examine the influence

of batch size m and dimensionality p on algorithm performance, measured

as ∥β̄T − β∗∥.

Figures S1 and S2 (See Section S1 in the supplementary material) present

results for the lasso and ℓ1-regularized logistic regression models with respect

to batch size: we use these results to determine an optimal batch size for our

approaches in each setting. DP-SPGD(H) and DP-SPGD(K) perform better

with large batch sizes, especially in the linear case. DP-SPGD typically
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Figure 2: Simulation study results for the ℓ1-regularized logistic regression

model: accuracy vs. data dimensionality p under different privacy budgets

ϵ.

Figure 3: Results for the blog feedback data analysis: empirical risk vs.

iteration t under different privacy budgets ϵ.
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Figure 4: Results for the crop mapping data analysis: empirical risk vs.

iteration t under different privacy budgets ϵ. In the right panel, the ϵ = 0.5

and ϵ = 2 series are nearly identical.

requires more iterations (i.e., a larger T and more computation time) to

achieve competitive performance.

At these optimal batch sizes, we examine the effect of data dimensionality

p and the privacy budget ϵ. These results are shown in Figures 1 and 2. We

first compare methods proposed in this paper. DP-SPGD(H) outperforms

the others except in the logistic case for a small ϵ. As the privacy budget

increases, DP-SPGD performance decreases below that of DP-SPGD(K)

and DP-SPGD(H). The performance of DP-SPGD depends primarily on

clipping parameter and batch size while DP-SPGD(K) and DP-SPGD(H)

are more sensitive to changes in the privacy budget. Our empirical and
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Table 1: Running time for different methods (p = 50).

Method Running time(s)

DP-SPGD 31.2866

DP-SPGD(K) 20.1467

DP-SPGD(H) 28.8785

HTP-LASSO 202.944

HTDP-FW 1.5017

theoretical results are consistent: DP-SPGD(H) is superior to DP-SPGD(K)

in all the cases, and the increase in data dimensionality has less effect on

the performance of DP-SPGD(H).

In addition, Figure 1 indicates that DP-SPGD(H) dominates other meth-

ods, even HTP-LASSO(O), the algorithm utilizing extra information learned

from the simulation dataset. HTP-LASSO outperforms DP-SPGD(K) and

DP-SPGD when the privacy budget is small or the dimensionality is high.

Obviously, HTP-LASSO performs worse without the oracle information. In

the logistic case (See Figure 2), the performance of HTDP-FW is not ideal.

Weirdly, HTDP-FW doesn’t benefit from the oracle information.

To have an idea of how efficient our approaches are, we examine the
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wall-clock running time for each method. Table 1 summarizes the running

time of implementing each method per simulation run. We observe that the

running time for HTP-LASSO is much larger than other methods. HTDP-

FW converges quickly but to an unsatisfactory result as shown in Figure

4. DP-SPGD takes a longer time than DP-SPGD(H) and DP-SPGD(K)

because it requires more iterations.

6.2 Real data analysis

We next consider two real-world applications. We fit a lasso and an ℓ1-

penalized logistic regression model to a blog feedback dataset (with n =

52396 and p = 280) and a crop-mapping dataset (with n = 20000 and

p = 173), respectively. These datasets are both available online on the UCI

Machine Learning Repository (?). We aim to predict how many comments

a post will receive and categorize crop types. The number of comments

received follows a heavy-tailed distribution, whose range is from 0 to 1424.

In each case, the data is divided into a training and test set following a

70–30 split. Performance is assessed using the test set through metrics

such as empirical risk, root mean square error (RMSE), and classification

accuracy. The privacy parameters are set to δ = n−1 and ϵ = 0.5, 2. Each

algorithm is implemented with parameters that yield the best performance.
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As an example, for the lasso model, we apply DP-SPGD with a batch size

of m = n/6 and m = n for the other algorithms.

Empirical risk results on test sets are illustrated in Figures 3 and 4. Be-

sides, the supplementary material includes Tables S1 and S2, which present

a comparison of the RMSE and classification accuracy, respectively, of differ-

ent methods. Our analysis aligns with prior simulation studies, indicating

that DP-SPGD(H) and DP-SPGD(K) outperform DP-SPGD in scenarios

with a large privacy budget. Notably, both methods perform comparably to

DP-SPGD but with a shorter execution time due to the efficacy of robust

mean estimators. DP-SPGD(H) exhibits superior prediction performance, as

evidenced by lower RMSE and higher classification accuracy, when compared

to DP-SPGD(K). This advantage is particularly pronounced in scenarios

with a large privacy budget.

7. Discussion

In this paper, we proposed three approaches to regularized DP SCO: two of

our algorithms incorporate existing robust mean estimators to address the

general difficulties associated with gradient clipping. Our work, motivated

by the ubiquity of both nonsmooth regularization in statistics and heavy-

tailed data in the real world, fills a notable gap in the differential privacy
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literature on regularized DP SCO methods for heavy-tailed data. For each

of our algorithms, we established theoretical bounds on population excess

risk under assumptions of varying strength. By comparing these bounds

with related results in the general DP SCO literature, we demonstrated that

our methods yield superior performance on a more general class of problems

and under milder assumptions. Our extensive numerical studies suggested

settings where our algorithms perform more- or less favourably.

Our work leaves open numerous doors for further development. First,

even though our proposed algorithms can solve a wide class of regularized

SCO problems, the generality of our approach to some extent comes at the

cost of estimator accuracy. Through a lasso-specific approach, ? improved

the performance bound of (ϵ, δ)-DP lasso estimators to Õ{log(p)/(nϵ)2/5}.

This convergence rate has logarithmic dependence in dimension, making

it more suitable for high-dimensional cases. This example highlights the

potential for further improvements to general DP SCO frameworks. Second,

as discussed in Section 5.1, the enhancement of the excess population risk is

possible, particularly under smooth population risk conditions. This can be

achieved by incorporating the scale of the regularization term g into the risk

bound, but it necessitates additional assumptions on g, such as Lipschitz

continuity. One possible approach is to follow ? and bound the subgradient
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of g. Third, to explore the optimality of proposed algorithms, a lower bound

for DP regularized SCO with heavy-tailed data can be developed. Lastly,

? showed that the f -DP framework can provide better privacy guarantees.

Consequently, f -DP may provide an alternative approach that can more

effectively balance privacy and utility in DP SCO.

Supplementary Materials

We display the additional numerical results and technical details in the

supplementary material.
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