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Abstract:

Randomized response is one of the oldest and most well-known methods used

to analyze confidential data. However, its utility for differentially private hypoth-

esis testing is limited because it cannot simulaneously achieve high privacy levels

and low type-I error rates. We overcome this problem using the subsample and

aggregate technique. The result is a general-purpose method that can be used for

both frequentist and Bayesian testing. We demonstrate the performance of the

proposed method in three scenarios: goodness-of-fit testing for linear regression

models, nonparametric testing of a location parameter using the Wilcoxon test,

and the nonparametric Kruskal–Wallis test.
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1. Introduction

In this paper, we propose a method for testing hypotheses based on confi-

dential data. It is conceptually simple, widely applicable, and can simulta-

neously attain high privacy levels and low type-I error rates.

We work within the differential privacy framework (Dwork et al., 2006).

From a data privacy perspective, differentially private algorithms are ap-

pealing because they are robust to deanonymization attacks (Dwork et al.,

2014). From a statistical perspective, differentially private algorithms are

useful because they facilitate inferences from private data.

There is a growing body of literature on differentially private hypothesis

testing. For example, Gaboardi et al. (2016) and Rogers and Kifer (2017)

provide differentially private chi-squared tests, Couch et al. (2019) develop

differentially private versions of nonparametric tests such as the Mann–

Whitney and Kruskal–Wallis tests, and Barrientos et al. (2019), Peña and

Barrientos (2021), and Alabi and Vadhan (2022) propose methods for test-

ing in linear regression models.

Our proposed method applies the subsample and aggregate technique

(Nissim et al., 2007) to randomized response (Warner, 1965). The result is

a general-purpose algorithm that can create differentially private versions

of existing nonprivate hypothesis test. In our simulation studies and an
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application, we find that the method is especially useful when the type-I

error α of the tests is low. Testing hypotheses using low significance levels

(as low as α = 0.005) has been proposed as a way of ameliorating what has

become known as the replication crisis, where published significant results

(typically at a significance level α = 0.05) fail to replicate in subsequent

follow-up experiments (Benjamin et al., 2018).

The subsample and aggregate technique splits the data into subsets,

computes the statistics for each subset, and combines the results in a way

that ensures that the output is differentially private. From a theoreti-

cal perspective, Smith (2011) studies general asymptotic properties of the

strategy. From an applied perspective, the technique has been used to build

differentially private algorithms for clustering (Mohan et al., 2012; Su et al.,

2016), feature selection with the LASSO (Thakurta and Smith, 2013), hy-

pothesis testing for normal linear models (Barrientos et al., 2019; Peña and

Barrientos, 2021), and logistic regression (Mohan et al., 2012).

Randomized response was originally motivated as a method for reducing

bias in answers to sensitive questions. Since its inception more than 50 years

ago, it has been extended and applied to many different contexts; see Blair

et al. (2015) or the monograph Chaudhuri and Mukerjee (2020) for further

details. Importantly, randomized response is differentially private (Dwork
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et al., 2014). Its properties within the framework have been studied by

Wang et al. (2016) and Ma and Wang (2021), and it is used as a building

block for differentially private algorithms by Erlingsson et al. (2014), Bassily

and Smith (2015), and Ye et al. (2019).

Unfortunately, randomized response by itself is not useful for differ-

entially private hypothesis testing. As we argue in Section 2, it cannot

simultaneously achieve acceptable privacy levels and type-I error rates. For-

tunately, this problem can be resolved with the subsample and aggregate

technique.

The output of our method is a binary decision that indicates whether

or not we reject a null hypothesis. The decision can be used for both

frequentist and Bayesian hypothesis testing. For the latter, one has to

specify prior probabilities on the hypotheses and a prior distribution on the

power of the nonprivate test used to build the private test.

Previous works on differentially private hypothesis testing focus on re-

leasing differentially private p-values or, from a Bayesian perspective, Bayes

factors. In contrast, our output is a binary decision. Although our output

is, in some sense, less informative, it need not be less useful from a practical

standpoint. If we perform a hypothesis test, the type-I error α must be set

in advance. If we are using a p-value to make that decision, we should reject
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the null hypothesis if it is less than α. Otherwise, we may be tempted to

p-hack (Gelman and Loken, 2013) or misinterpret the p-value (Schervish,

1996). In our application and simulation studies in Section 4, we show that

approaches based on binarized outcomes are often more powerful than ap-

proaches based on p-values. This makes intuitive sense, because a bit (a

decision to reject or not reject a null hypothesis) is less informative than a

p-value.

In Section 2, we define differential privacy and randomized response. In

Section 3, we define the subsampled and aggregated randomized response

mechanism, study its properties, and devise simple strategies to implement

it in practice. In Section 4, we demonstrate the performance of the method

in differentially private implementations of the goodness-of-fit tests pro-

posed in Peña and Slate (2006), the one-sample Wilcoxon test, and the

Kruskal–Wallis test. Section 5 closes with a brief discussion and ideas for

future work. All proofs are relegated to the Supplementary Material, which

also includes an additional simulation study comparing our method with the

differentially private test for regression coefficients proposed in Barrientos

et al. (2019).
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2. Preliminaries

In this section, we give a brief introduction to differential privacy and ran-

domized response. We state a simplified version of the general definition of

differential privacy that is sufficient for our purposes.

Before we define differential privacy, we first need to define neighboring

data sets.

Definition 1. LetD = (x1, x2, ... , xn) ∈ {0, 1}n andD′ = (x′
1, x

′
2, ... , x

′
n) ∈

{0, 1}n. Then, D and D′ are neighbors if they differ in only one component:

xi = x′
i for all i ∈ {1, 2, ... , n}, except for one j ∈ {1, 2, ... , n} for which

xj ̸= x′
j.

Differential privacy bounds the extent to which the output of random-

ized algorithms can vary for neighboring data sets. In the differential pri-

vacy literature, privacy-ensuring randomized algorithms are referred to as

mechanisms. We formally define differential privacy below.

Definition 2. A mechanism M : {0, 1}n → {0, 1} is ε-differentially private

if there exists ε > 0 such that, for all neighboring D,D′ ∈ {0, 1}n,

max

{
P[M(D) = 1]

P[M(D′) = 1]
,
P[M(D′) = 1]

P[M(D) = 1]
,
P[M(D) = 0]

P[M(D′) = 0]
,
P[M(D′) = 0]

P[M(D) = 0]

}
≤ eε.

The mechanism is exactly ε-differentially private if the upper bound is tight.
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Figure 1: Shaded regions show the choices of P[M(D) = 1] and P[M(D′) =

1] that achieve ε-differential privacy for ε ∈ {0.1, 0.5, 1}.

Low values of ε are associated with high privacy levels, whereas high

values of ε are associated with low privacy. Figure 1 illustrates how ε

restricts P[M(D) = 1] and P[M(D′) = 1] for ε ∈ {0.1, 0.5, 1}. As ε goes to

zero, P[M(D) = 1] and P[M(D′) = 1] are forced to be equal; as ε goes to

infinity, any values of P[M(D) = 1] and P[M(D′) = 1] satisfy ε-differential

privacy.

A key building block of our method is the randomized response mech-

anism. It takes a binary input x ∈ {0, 1} and outputs

r(x) =


x, with probability p,

1− x, with probability 1− p, 1/2 < p < 1.

We consider that x is the outcome of a hypothesis test, and x = 1 implies

rejection of a null hypothesis H0.
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The proposition below is well known in the differential privacy literature

(e.g., example, Dwork et al. (2014)), and states that r(x) is ε-differentially

private.

Proposition 1. Let ε > 0 and p = exp(ε)/[1 + exp(ε)]. Then, r(x) is

exactly ε-differentially private.

We would like r(x) to be ε-differentially private and have a type-I error

rate of at most α. Unfortunately, r(x) cannot achieve low values of ε and

α simultaneously. If x is conducted at significance level 0 < α0 < 1, the

type-I error of r(x) is pα0 + (1− p)(1− α0) ≥ 1− p, which is very limiting;

for example, if ε = 1, the type-I error of r(x) is at least 0.268.

We can control the type-I error of r(x) by randomizing it further. That

is, we can report Br(x) for B ∼ Bernoulli(ϱ), where ϱ is set so that Br(x)

has type-I error α. However, the introduction of B causes a substantial loss

in power. In particular, the power of Br(x) is bounded above by ϱ: for

instance, if ε = 1, α0 = 0.05, and ϱ is such that the type-I error of r(x) is

α = 0.05, the power of Br(x) is bounded above by ϱ ≈ 0.17. In Sections 3

and 4, we show that subsampling and aggregating provides a more powerful

solution.
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3. Subsampled and aggregated randomized response

3.1 General properties

In this section, we define the subsampled and aggregated randomized re-

sponse mechanism and study its properties.

First, we split the data uniformly at random into 2k + 1 disjoint sub-

sets, indexed by i ∈ {1, 2, ... , 2k + 1}, where k is a nonnegative integer.

Within the subsets, we run the nonprivate test of interest at significance

level α0. The outcomes of the tests are denoted as xi, where xi = 1 indicates

rejection of the null hypothesis H0 in the ith subset. Then, we apply inde-

pendent randomized response mechanisms to xi, obtaining r(xi). Finally,

we combine the results in T =
∑2k+1

i=1 r(xi), and report dc = 1(T > c).

The proposition below shows that the privacy level ε of dc has a closed-

form expression. We derived it using facts about stochastically ordered

random variables found in Shaked and Shanthikumar (2007). We use the

notation Binomial(i, p) + Binomial(j, q) for the distribution of the sum of

independent Binomial(i, p) and Binomial(j, q) random variables, with the

understanding that if the number of trials is zero, the random variable is

zero with probability one.

Proposition 2. The statistic dc = 1(T > c) is exactly ε-differentially
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3.1 General properties

private, with

ε = log

(
P(B1 > c∗)

P(B0 > c∗)

)
,

where c∗ = max(c, 2k − c) and Bi ∼ Binomial(i, p) + Binomial(2k + 1 −

i, 1− p), for i ∈ {0, 1}.

Proposition 2 shows that ε depends on c, k, and p. We study how these

parameters affect ε by fixing two of them at a time and letting the other

one vary.

Proposition 3. The statistic dc = 1(T > c) has the following properties:

1. For any fixed k and c, ε is increasing in p.

2. For any fixed p and c ≥ k, ε is decreasing in k.

3. For any fixed k and p, ε is minimized at c = k.

Proposition 3 establishes that subsampling and aggregating lowers ε

whenever c ≥ k. It also suggests the majority vote d = 1(T > k) as a

default choice of dc because this minimizes ε for any fixed k and p. For

this reason and its intuitive appeal, we restrict our attention to d from this

point onward.

Figure 2a shows ε given k and p. Splitting the data into additional

subsets reduces ε, but the gains are limited as k increases. The proposition
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3.1 General properties
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Figure 2: (a) Privacy parameter ε as a function of p and k. (b) P(d ̸= d̃)

as a function of p and T = s for k = 4.

below confirms this intuition: the limit of ε as k goes to infinity is a positive

constant that is increasing in p. Combined with Proposition 3, the limit of

ε as k goes to infinity establishes a nontrivial necessary condition on p for

achieving ε-differential privacy.

Proposition 4. The statistic d = 1(T > k) has the following properties:

1. For any fixed p,

lim
k→∞

ε = log

(
1 +

(2p− 1)2

2p(1− p)

)
> 0.

2. A necessary condition on p for achieving ε-differential privacy is

p ≤ 1

2

(
1 +

√
exp(2ε)− 1

1 + exp(ε)

)
.
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3.1 General properties

A sufficient condition on p for achieving ε-differential privacy is

p ≤ exp(ε)

1 + exp(ε)
.

There are two sources of uncertainty in d: the uncertainty in xi and the

uncertainty introduced by the randomized response mechanisms. We focus

on the latter now, comparing d = 1(T > k) with d̃ = 1(
∑2k+1

i=1 xi > k),

treating
∑2k+1

i=1 xi as fixed.

Given
∑2k+1

i=1 xi = s, the probability that d is not equal to d̃ is

P(d ̸= d̃ |
∑2k+1

i=1 xi = s) =


P(Bs > k), if s ≤ k,

P(Bs ≤ k), if s > k,

where Bs ∼ Binomial(s, p)+Binomial(2k+1− s, 1−p). Figure 2b displays

this probability as a function of p and s for k = 4. There is an interesting

symmetry in s that holds in general.

Proposition 5. For any given s ∈ {0, 1, ... , k},

P(d ̸= d̃ |
∑2k+1

i=1 xi = s) = P(d ̸= d̃ |
∑2k+1

i=1 xi = 2k + 1− s).

The probability that d and d̃ disagree depends on s, k, and p. Below,

we describe this dependence.

Proposition 6. The probability P(d ̸= d̃ |
∑2k+1

i=1 xi = s) has the following

properties:
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3.2 Hypothesis testing

1. For any fixed k and p, P(d ̸= d̃ |
∑2k+1

i=1 xi = s) is decreasing in s if

s > k, and increasing in s if s ≤ k.

2. For any fixed p and s, P(d ̸= d̃ |
∑2k+1

i=1 xi = s) is decreasing in k if

s ≤ k, and increasing in k if s > k.

3. For any fixed k and s, P(d ̸= d̃ |
∑2k+1

i=1 xi = s) = 1/2 if p = 1/2, and

P(d ̸= d̃ |
∑2k+1

i=1 xi = s) = 0 if p = 1.

A direct consequence of Propositions 5 and 6 is that the probability that

d and d̃ disagree is minimized when
∑2k+1

i=1 xi ∈ {0, 2k + 1} and maximized

when
∑2k+1

i=1 xi ∈ {k, k + 1}.

3.2 Hypothesis testing

In this section, we focus on properties related to hypothesis testing. For

simplicity, we assume that the subsets are balanced (i.e., they have the

same sample size), but the proposed method can still be used, provided the

subsets are not heavily unbalanced. Throughout, we assume that the tests

behind xi are all conducted at a fixed significance level α0.

The type-I error and power of d depend on the probability that the

nonprivate test xi rejects H0, which we denote as γ0. Under H0, γ0 is the

type-I error α0 = P(xi = 1 | H0); under H1, it is the power P(xi = 1 | H1).
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3.2 Hypothesis testing

Let T =
∑2k+1

i=1 r(xi) ∼ Binomial(2k + 1, pγ0 + (1 − p)(1 − γ0)) be

the number of subsets in which H0 is rejected. Because d = 1(T > k),

the distribution of T lets us quantify how the probability of rejecting H0

depends on k, p, and γ0.

Proposition 7. The probability that d rejects H0 has the following proper-

ties:

1. For any fixed k and p, the probability that d rejects H0 is increasing

in γ0.

2. For any fixed γ0 and k, the probability that d rejects H0 is decreasing

in p if γ0 < 1/2, and increasing in p if γ0 > 1/2.

3. Let p > 1/2 be fixed. If γ0 > 1/2, then the probability that d rejects H0

goes to one as k → ∞. Alternatively, if γ0 < 1/2, then the probability

that d rejects H0 goes to zero as k → ∞.

Part 3 of Proposition 7 establishes that d is consistent under H1, as

long as the power of the tests within the subsets is greater than 1/2 as k

goes to infinity.

The type-I error α of d depends on k, p, and α0. By Proposition 2, ε

does not depend on α0, so decreasing α0 decreases α without sacrificing ε.

In Proposition 4, we saw that ε is decreasing in k, but that the gains are
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3.3 Tuning parameters of the mechanism

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5 2.0
ε

m
in

im
um

 α
 a

tta
in

ab
le

k

0

1

2

10

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

|δ|

(p
ow

er
 o

f d
)/

(p
ow

er
 o

f z
−

te
st

)

k

0

1

2

10

(b)

Figure 3: (a) Minimum α attainable as a function of ε and k. (b) Difference

in power between d and the z-test, as a function of the effect size |δ| and k,

for n = 105.

limited. This is not the case for α, because the minimum α attainable as

k grows to infinity is zero. However, recall that reducing α0 decreases the

power of the test.

Proposition 8. For any ε > 0, the minimum type-I error α attainable by

d goes to zero as k goes to infinity.

3.3 Tuning parameters of the mechanism

We propose two strategies for choosing k, p, and α0. In both cases, we set p

given k, so that d is exactly ε-differentially private. Once k and p are fixed,

we find α0 such that d has type-I error α.
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3.3 Tuning parameters of the mechanism

The first strategy is to inspect the power curves for values of k on a grid.

For each k, we determine if there are p and α0 such that d is ε-differentially

private and has type-I error α. If such p and α0 exist, we can find a power

curve. In some cases, power curves have closed-form expressions; in others,

they can be simulated. After finding power curves for all values of k on the

grid, we can choose a value visually.

The second strategy is a heuristic that can be used when the tests

have low power, in which case increasing the number of subsets typically

decreases the power of d. With that in mind, we propose setting k to

the minimum value k∗ for which there exist p and α0 such that d is ε-

differentially private and has type-I error α. To avoid α0 that are too

small, we add the restriction α0 ≥ α0,min for a user-defined α0,min > 0.

Table 1: Minimum k needed for different combinations of α and ε.

min k ε = 0.5 ε = 0.75 ε = 1 ε = 1.25 ε = 1.5

α = 0.005 13 8 6 4 3

α = 0.01 11 7 5 4 3

α = 0.05 6 4 3 2 1

α = 0.1 4 2 2 1 1

Proposition 8 guarantees that, for sufficiently large k, we can achieve
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3.3 Tuning parameters of the mechanism

any privacy level ε and type-I error α simultaneously. However, if we want

both ε and α to be small and we have a small sample size, we may not

be able to split the data into enough subsets to satisfy both requirements.

Table 1 shows the minimum k needed to simultaneously achieve a type-I

error level α and ε-differential privacy for α ∈ {0.005, 0.01, 0.05, 0.1} and

ε ∈ {0.5, 0.75, 1, 1.25, 1.5}. The lower α and ε are, the larger k needs to be

to simultaneously achieve α type-I error level and ε-differential privacy.

Below, we apply the two strategies to the one sample z-test. The ex-

ample shows that we need to set α0,min > 0: without a nonzero minimum,

α0,min can be too small and the mechanism can be underpowered.

Example 1 (One-sample z-test). Let the data be 105 independent and

identically distributed observations distributed as Normal(µ, σ2), with σ2

known. We set ε = 1.5 and test H0 : µ = µ0 against H1 ̸= µ0 with the

one-sample z-test at significance level α = 0.05. In this example, the clas-

sical randomized response mechanism (k = 0) cannot achieve ε-differential

privacy and a type-I error α at the same time. To solve this problem, we

let p = exp(ε)/[1 + exp(ε)] and define Br(x), where B ∼ Bernoulli(ϱ). The

probability ϱ is set so that Br(x) has a type-I error α. Figure 3b shows

the ratio of the power of d to the power of the usual nonprivate z-test

for k ∈ {0, 1, 2, 10} and effect sizes |δ| = |µ − µ0|/σ ranging from zero to
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3.4 Extensions: Multiple hypotheses and Bayesian testing

one. The classical randomized response mechanism (k = 0) and k = 1 do

not perform well. In the latter case, the method has low power because

α0 ≈ 0.0025. The performance of k = 2 and k = 10 is similar for small

effect sizes. For moderate effect sizes, k = 2 is preferable. For large effect

sizes, k = 10 outperforms k = 2, but at that point both approaches are

essentially as powerful as the nonprivate z-test. The values of α0 are 0.089

for k = 2 and 0.281 for k = 10. If we use the automatic strategy to select

the parameters of the mechanism with α0,min = 0, it selects k∗ = 1; if we

set a minimum α0,min > 0.0025, it chooses k∗ = 2 instead.

3.4 Extensions: Multiple hypotheses and Bayesian testing

The subsampled and aggregated randomized response mechanism can be

used to test multiple hypotheses. Indeed, it is straightforward to ap-

ply a Bonferroni correction to multiple independent runs of the mech-

anism. If each test is ε-differentially private, the vector (d1, d2, ... , dm)

is mε-differentially private by the sequential composition property of dif-

ferential privacy (McSherry, 2009). Therefore, to test m null hypotheses

H1
0 , H

2
0 , ... , H

m
0 at a familywise error rate α, we can runm independent sub-

sampled and aggregated randomized response mechanisms at significance

level α/m. We pursue this idea in Section 4.1.
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3.4 Extensions: Multiple hypotheses and Bayesian testing

The binary decision d can also be used for Bayesian hypothesis testing.

If d is calibrated to have type-I error α, then the posterior probability of

H1 given that d = 0 is

P(H1 | d = 0) =
P(H1)P(d = 0 | H1)

P(H0)P(d = 0 | H0) +P(H1)P(d = 0 | H1)

=
P(H1)P(d = 0 | H1)

P(H0)(1− α) +P(H1)P(d = 0 | H1)
.

If P(d = 0 | H1) goes to zero as the sample size increases (i.e., d is consistent

under H1), then P(H1 | d = 0) goes to zero as the sample size increases for

all α and P(H0). Therefore, the Bayesian test can give decisive evidence in

favor of H0 asymptotically.

Analogously, the posterior probability of H1 given that d = 1 is

P(H1 | d = 1) =
P(H1)P(d = 1 | H1)

P(H0)α +P(H1)P(d = 1 | H1)
.

If d is consistent under H1, P(H1 | d = 1) converges to P(H1)/[P(H0)α +

P(H1)]. If the null and alternative hypotheses are equally likely a priori,

the limit simplifies to 1/(α+1), which is greater than 1−α. In this case, the

Bayesian test cannot give decisive evidence in favor of H1 asymptotically,

but it can give fairly strong evidence in its favor.

For finite sample sizes, we can evaluate P(H1 | d) given P(H1), d, and

a prior distribution on the power π(γ0 | H1) = P(xi = 1 | H1). Once this
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3.4 Extensions: Multiple hypotheses and Bayesian testing

prior is set,

P(d = 1 | H1) =

∫ 1

0

P(T > k | γ0, H1) π(γ0 | H1) dγ0,

where T | γ0, H1 ∼ Binomial(2k + 1, pγ0 + (1− p)(1− γ0)).

In the absence of strong prior information about γ0 | H1, we recommend

running a sensitivity analysis with different priors. When the power can be

expressed as a function of an effect size δ, we can use it to induce a prior

distribution. We illustrate this point using the z-test.

Example 2 (Bayesian one-sample z-test). Let the data be independent

and identically distributed as Normal(µ, σ2). We test H0 : µ = µ0 against

H1 : µ ̸= µ0 using a Bayesian test. We set P(H0) = P(H1) = 1/2 and put

a unit information prior Normal(µ0, σ
2) on µ | H1, which induces δ | H1 ∼

Normal(0, 1) on the effect size δ = (µ − µ0)/σ. The prior on δ | H1, in

turn, induces a prior π(γ0 | H1) = P(xi = 1 | H1). The unit information

prior is a common default choice for this problem, and contains roughly as

much information as one observation in the sample (Kass and Wasserman,

1995). We set ε = 1.5 and consider k ∈ {1, 2, 10} and subgroup sample

sizes b ∈ {2, 3, ... , 50}. For any given k and b, the total sample size is

n = (2k + 1)b. The results are shown in Figure 4. As b increases, the

posterior probability is more decisive against or in favor of H1, depending

on whether d = 0 or d = 1, respectively.
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A peculiarity of our Bayesian analysis is that d has a fixed type-I error

rate α. From a strictly Bayesian perspective, one could output a binary

decision d that does not have a fixed type-I error rate. However, we appre-

ciate that d can be interpreted by both frequentists and Bayesians, which

is in line with ongoing efforts to reconcile frequentist and Bayesian answers

(e.g., Bayarri and Berger (2004) and Bayarri et al. (2016)).

The Bayesian approach described here is based on conditioning on a

binary outcome. Other proposals in the differential privacy literature ap-

proach the problem differently.

For example, an alternative approach is to condition on perturbed suf-

ficient statistics rather than binary outcomes, as proposed in Amitai and

Reiter (2018) and Peña and Barrientos (2021).

Another option is to draw directly from posterior distributions in a way

that ensures differential privacy (e.g., Dimitrakakis et al. (2017), Heikkilä

et al. (2019), Geumlek et al. (2017), and Hu et al. (2022)). However, these

strategies often assume an upper bound on the likelihood, which may require

users to modify their models to meet the assumption. A major drawback of

these methods is that they typically require a privacy budget proportional

to the number of posterior samples desired. This, in turn, may lead to

unreliable Monte Carlo approximations if ε is small. In spite of the potential
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Figure 4: Posterior probability P(H1 | d) as a function of k and the sample

size within the subgroups b if P(H0) = 1/2 and the effect size is δ ∼

Normal(0, 1).

drawbacks, applying these approaches to hypothesis testing is worthy of

further exploration and development.

Another promising approach is to use the data augmentation Markov

chain Monte Carlo scheme proposed in Ju et al. (2022), which has been

applied to estimation problems, but not to hypothesis testing.
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4. Simulation Studies and Applications

In this section, we evaluate the performance of our methods in simula-

tion studies and applications. In Section 4.1, we use the housing data

set in Lei et al. (2018) to implement differentially private versions of the

goodness-of-fit tests developed in Peña and Slate (2006). In Section 4.2,

we present a simulation study that applies the Bayesian extension devised

in Section 3.4 to the Wilcoxon test. Finally, in Section 4.3, we compare

our general-purpose method with the differentially private Kruskal–Walis

test proposed in Couch et al. (2019). In the Supplementary Material, we

provide an additional simulation study, in which we compare our method

to the differentially private t-test proposed in Barrientos et al. (2019).

In our this section, we include the subsampled and aggregated Laplace

mechanism (Nissim et al., 2007; Smith, 2011) as a competitor. For this

method, we split the data into 2k + 1 subsets and run the corresponding

nonprivate tests within them. The output is made differentially private

after adding a Laplace perturbation term. We consider two variants of this

approach.

In the first, we find 2k+1 p-values, one for each hypothesis test, and find

the average p-value. The result is made differentially private after adding a

perturbation term η ∼ Laplace(0, 1/[ε(2k+1)]) to the average p-value. The
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distribution of the differentially private statistic can be simulated under H0,

so it is straightforward to find a critical value that ensures a fixed type-I

error rate α.

The second approach is based on the sum of the binary outcomes∑2k+1
i=1 xi, rather than on the average p-value. Here, the output is made

differentially private after adding a perturbation term η ∼ Laplace(0, 1/ε)

to the sum. We can easily find a critical value that ensures a type-I error

rate α by simulating the distribution of the statistic under H0.

4.1 Goodness-of-fit tests for regression

In this section, we study the performance of the subsampled and aggregated

randomized response mechanism in a differentially private implementation

of four goodness-of-fit tests for regression proposed in Peña and Slate (2006).

We perform a simulation study based on the housing data set used in

Lei et al. (2018). The data set contains information on houses sold in the

San Francisco Bay area between 2003 and 2006. In our analysis, we consider

houses with prices within the $105000–905000 range and sizes smaller than

3000 ft2. After preprocessing, the data set contains 235760 rows and the

following variables: price (used as the response Y ), base square footage,

time of transaction, lot square footage, latitude, longitude, age, number of
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bedrooms, and a binary variable indicating whether the house is located in

a small county.

Peña and Slate (2006) develop tests for checking model assumptions in

the normal linear model. They provide a global test of goodness-of-fit and

individual tests for detecting specific violations of assumptions. Here, we

consider four tests: (1) a test whose null hypothesis is that the kurtosis of

the errors is equal to three, which is satisfied when the errors are normal,

(2) a test in which null is that the errors are symmetric, (3) a test in which

null is that the errors are homoscedastic, and (4) and a test in which the

null is that the expected value of the response is linear in the predictors.

For each of our simulations, we perform the four tests at significance level

α/4 and privacy level ε/4. This ensures that our answers have a familywise

error rate α and a global privacy level ε.

To simulate data, we first fit a normal linear model using price as the

response Y and the remaining variables as predictors X, obtaining maxi-

mum likelihood estimates of the regression coefficients β̂ and the residual

standard deviation σ̂. Then, we use β̂ and σ̂, along with the observed X,

to simulate new values of the response. More precisely, we simulate data

from the model Y ∗ = Xβ̂ + σ̂W ∗, where W ∗ is a vector with independent

and identically distributed skew-normal components with location and scale
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parameters equal to zero and one, respectively, and skew parameter equal

to θ. If θ = 0, all the assumptions of the normal linear model hold, but if

θ ̸= 0, the null hypotheses related to the kurtosis and skewness of the errors

are false.

We set the significance level to α ∈ {0.005, 0.01, 0.05, 0.1} and con-

sider privacy parameters ε ∈ {0.5, 0.75, 1, 1.25, 1.5}. The skew parameter θ

ranges from 0 to 1.5. For each value of α, ε, and θ, we perform 104 simula-

tions. The number of subgroups 2k + 1 is determined using the automatic

strategy outlined in Section 3.3 with α0,min = α.

The results for the test of skewness are shown in Figure 5. The results

for the test of kurtosis are provided in the Supplementary Material, and

are similar to those for skewness. The results for the tests of linearity and

homoscedasticity are uninteresting: because the null hypothesis holds in

these cases, the probability of rejecting the null is fixed to α/4 for all ε and

θ. In Figure 5, we also include the “truth”, defined as the result of running

the nonprivate test without splitting the data or running any mechanisms.

The subsampled and aggregated sum and randomized response (labeled

as SARR in the figure) outperform the average p-value in most scenarios.

The average p-value is best for small α and ε, especially for low θ. The

performance of the sum and randomized response, which are both based on
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binarized outcomes, is quite similar. Randomized response performs best

when ε ∈ {1, 1.25, 1.5} and α = 0.005.

4.2 Bayesian answers from one-sample Wilcoxon test

In this section, we report the results of a simulation study that compares the

posterior probabilities of hypotheses based on one-sample Wilcoxon tests,

using the approach proposed in Section 3.4.

We test H0 : θ = 0 against H1 : θ ̸= 0 for a location parameter θ ∈ R.

The tests behind xi are one-sample Wilcoxon tests, and the parameters of

the mechanism are tuned so that d has type-I error rate α = 0.05.

We repeatedly simulate data sets of sample size n = 200 compris-

ing independent and identically distributed observations yi = θ + τi for

θ ∈ {0, 0.25, ... , 2}, where τi has a Student-t distribution with 1.5 degrees of

freedom. We consider α ∈ {0.005, 0.01, 0.05, 0.1} and ε ∈ {0.5, 0.75, 1, 1.25, 1.5},

and run 104 simulations for each combination of θ, α, and ε. We select k

using the automatic strategy described in Section 3.3 with α0,min = α.

The prior probabilities on the hypotheses are P(H0) = P(H1) = 1/2.

As mentioned in Section 3.4, we need a prior on P(d = 1 | H1) to perform a

Bayesian test based on d. Table 2 lists the definitions of P(d = 1 | H1) for

the methods included in the simulation study. As in Example 2, we induce
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Figure 5: Goodness-of-fit tests: Average power of tests for skewness for

different combinations of α and ε.
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Table 2: Prior distributions for the one-sample Wilcoxon test and their

values of P(d = 1 | H1). “SA” stands for “subsample and aggregate.”

Method P(d = 1 | H1)

Truth 0.8γz
0

SA + Randomized Response
∫ 1

0
P(T > k | γ0, H1) π(γ0 | H1) dγ0

SA + Average p-value P(p+ η < cα | H1)

SA + Sum P(
∑2k+1

i=1 xi + η > c̃α | H1)

a prior on P(d = 1 | H1) through simpler quantities for which we can define

a prior more comfortably.

For the subsampled and aggregated randomized response mechanism,

we define the prior π(γ0 | H1) = P(xi = 1 | H1) as follows. Let γz
0 be the

average power of the z-test induced by the unit information prior used in

Example 2. Then, our prior π(γ0 | H1) is a beta distribution parametrized

in terms of its expected value µ and effective sample size κ with µ = 0.8γz
0

and κ = 2k + 1 (see Chapter 6 of Kruschke (2014) for a discussion on the

convenience of this parametrization in Bayesian analysis).

For the subsampled and aggregated average p-value, we put a prior on

the average p-value p under H1. First, we find the expected p-value for

the z-test pz induced by the unit information prior. Then, we define our
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prior on p | H1 as a beta distribution centered at µ = 0.8pz and with

an effective sample size κ = 2k + 1. Given the prior p | H1 and η ∼

Laplace(0, 1/[ε(2k + 1)]), P(d = 1 | H1) is the probability that p + η is

below a critical value cα so that P(p+ η < cα | H0) = α.

For the subsampled and aggregated sum, we follow a similar strategy.

We put a prior on the sum
∑2k+1

i=1 xi ∼ Binomial(2k + 1, γ0) through π(γ0 |

H1) = P(xi = 1 | H1), which is a beta distribution with µ = 0.8γz
0 and

κ = 2k + 1 (as it was for the subsampled and aggregated randomized

response mechanism). The probability P(d = 1 | H1) is the probability

that
∑2k+1

i=1 xi + η is above a critical value c̃α so that P(
∑2k+1

i=1 xi + η > c̃α |

H0) = α, where η ∼ Laplace(0, 1/ε).

Lastly, we include the “truth”, defined as the result of running the

usual nonprivate Wilcoxon test, without splitting the data or running any

mechanisms. For that case, we take P(d = 1 | H1) = 0.8γz
0.

Figure 6 displays the results of the simulation study. The methods that

are based on binarized outcomes, namely the subsampled and aggregated

randomized response mechanism and the subsampled and aggregated per-

turbed sum, tend to outperform the subsampled and aggregated p-value.

The exception is the case ε = 0.5 and α = 0.005. The performance of ran-

domized response and the perturbed sum is similar. Randomized response
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seems to be especially helpful when α is low and ε is greater than or equal

to one.

4.3 Nonparametric ANOVA: Kruskal–Walis test

In this section, we report the results of a simulation study involving

the Kruskal–Walis test. As a competitor, we include the test proposed in

Section 3.3 of Couch et al. (2019), which is a differentially private method

built specifically for the Kruskal–Walis test.

We simulate data independently from three groups: one where the data

are distributed as Normal(1, 1), another where the data are Normal(2, 1),

and another one where the data are Normal(3, 1). We consider sample

sizes ranging from 15 to 500 in increments of three so that the groups are

balanced. The power is approximated after performing 104 simulations.

This simulation study is similar that in Section 3.4 in Couch et al. (2019).

We consider α ∈ {0.005, 0.01, 0.05, 0.1} and ε ∈ {0.5, 0.75, 1, 1.25, 1.5}.

As we did previously, we set the number of subgroups using the heuristic

recommended in Section 3.3. When n, ε, and α are all small, the sample

size is not large enough to simultaneously guarantee ε-differential privacy

and a type-I error α if we use the randomized response mechanism (see

Table 1 and the discussion in Section 3.3). For those cases, the method in
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Figure 6: One-sample Wilcoxon test: Average posterior probability P(H1 |

d) for different values of α, ε, and location parameter θ.
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Couch et al. (2019) can be run, but its power is low.

The results of the simulation study are displayed in Figure 7. Overall,

the method in Couch et al. (2019) (labeled KWabs), which is tailored to

this task, outperforms the general-purpose algorithms. The loss in power is

most noticeable for smaller n, α, and ε. Randomized response is preferable

over the sum when α× ε ∈ {0.005, 0.01} × {1, 1.25, 1.5}. The sum outper-

forms randomized response when α× ε ∈ {0.05, 0.10} × {0.5, 0.75}. In the

remaining cases, the performance of the two approaches is relatively similar.

The average p-value performs best (out of all general-purpose algorithms)

for α× ε ∈ {0.005, 0.01} × {0.5, 0.75}.

5. Discussion and future work

The subsampled and aggregated randomized response mechanism is a sim-

ple and effective tool for constructing differentially private tests from non-

private tests. In our our examples, we have shown that the method is

especially useful when the type-I error rate α is small and ε is greater than

or equal to one.

We have focused on hypothesis testing, but the subsampled and ag-

gregated randomized response mechanism can be useful in other contexts,

especially when the data are naturally split into groups. One such example

is federated learning (Konečnỳ et al., 2016), where the data are assumed to
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Figure 7: Kruskal–Walis test: Power for different values of α and ε for a

range of total sample sizes n.
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be stored in different clients. Another application is multi-agent decision

problems with confidentiality constraints, where the goal is to make a col-

laborative decision ensuring that the individual recommendations are kept

private.

A drawback of our approach is that it cannot be used if the sample size,

type-I error α, and privacy parameter ε are all small (see Table 1). However,

in such instances, the differentially private tests that can be implemented

are low-powered.

In Section 4.3, we compared general-purpose algorithms for differen-

tially private testing with a test proposed in Couch et al. (2019) that was

developed specifically for the Kruskal–Walis test. The test proposed in

Couch et al. (2019) is considerably more powerful than the general-purpose

algorithms for small α and ε, but its performance is comparable with that

of the subsampled and aggregated randomized response mechanism when

α ≥ 0.05 and ε ≥ 1.

The subsampled and aggregated randomized response mechanism can

be extended in a number of ways. For instance, the mechanism could output

a categorical variable with multiple categories, instead of a binary decision.

Another extension could accommodate multi-step multiple hypothesis test-

ing methods, such as the Benjamini–Hochberg procedure (Benjamini and

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0279



REFERENCES

Hochberg, 1995). In that case, the privacy level of the algorithm should be

computed with care, because the outputs of the tests become dependent.

Supplementary Material

The Supplementary Material to this article contains proofs of the proposi-

tions stated in the main text and additional results from simulation studies.
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