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Abstract:

Directed acyclic graph (DAG) models are widely used to represent casual re-

lations among collected nodes. This paper proposes an efficient and consistent

method to learn DAG with a general causal dependence structure, which is in

sharp contrast to most existing methods assuming linear dependence of causal

relations. To facilitate DAG learning, the proposed method leverages the concept

of topological layer, and connects nonparametric DAG learning with kernel ridge

regression in a smooth reproducing kernel Hilbert space (RKHS) and learning

gradients by showing that the topological layers of a nonparametric DAG can be

exactly reconstructed via kernel-based estimation, and the parent-child relations

can be obtained directly by computing the estimated gradient function. The

developed algorithm is computationally efficient in the sense that it attempts to

solve a convex optimization problem with an analytic solution, and the gradient

Shaogao Lv is the corresponding author; the authors contributed equally to this
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functions can be directly computed by using the derivative reproducing property

in the smooth RKHS. The asymptotic properties of the proposed method are

established in terms of exact DAG recovery without requiring any explicit model

specification. Its superior performance is also supported by a variety of simulated

and a real-life example.

Key words and phrases: Causality, exact DAG recovery, learning gradients, non-

parametric DAG, RKHS.

1. Introduction

Directed acyclic graph (DAG) models are widely used to represent directional

or parent-child relations among interacting units, which have a wide range of

applications in many disciplines (Spirtes et al., 2000; Peters et al., 2017). Thus,

learning DAG from the observed data has attracted tremendous attention in the

past decades (Shimizu et al., 2011; Peters and Bühlmann, 2014; Yuan et al., 2019;

Zhao et al., 2022) and is still challenging especially when the casual relations

display a general dependence structure beyond linearity (Bühlmann et al., 2013;

Peters et al., 2014; Park, 2020; Gao et al., 2020).

In literature, most existing DAG learning methods assume that the parent-

child relations have a linear dependence structure and thus assume the linear

structural equation models (SEMs). These methods can be roughly categorized

into three classes. The first class attempts to learn linear Gaussian DAG by

assuming that all the noise terms are Gaussian distributed. Specifically, Peters

and Bühlmann (2014) shows that a linear Gaussian DAG is identifiable if all
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the noise terms have equal variances, and then motivates a variety of learning

methods (Yuan et al., 2019; Chen et al., 2019; Li et al., 2020). The second class

focuses on learning linear non-Gaussian DAG. One of the most important works is

that Shimizu et al. (2006) proves that a linear non-Gaussian DAG is identifiable if

all the noise terms follow continuous non-Gaussian distribution, and an iterative

search algorithm is developed. This fundamental work also motivates a variety

of follow-up studies (Shimizu et al., 2011; Hyvärinen and Smith, 2013; Wang and

Drton, 2020; Zhao et al., 2022). Recently, Park and Raskutti (2018); Zhou et al.

(2022) focus on a general class of non-Gaussian DAG models that the conditional

variance of each node given its parents is a quadratic function of its conditional

mean, which admits many non-Gaussian distributions including some discrete

ones. The other class of methods further relaxes the distribution assumption by

requiring some explicit order among noise variances (Ghoshal and Honorio, 2018;

Park, 2020). Note that almost all the methods in these categories are designed for

recovering the causal relations with linear dependence structure. Yet, as pointed

out by Yuan et al. (2019), many causal relations in real-life analysis may have

nonlinear behavior, which cannot be captured by any linear model.

Nonparametric DAG relaxes the linear dependence assumption by allow-

ing more general causal relations, and thus has attracted tremendous interest

in recent years (Bühlmann et al., 2013; Peters et al., 2014; Mooij et al., 2016;

Rothenhäusler et al., 2018; Park, 2020; Zhang et al., 2020; Gao et al., 2020; Li

et al., 2023). A majority class of learning nonparametric DAG methods replace

the linear SEMs with the additive noise models (ANMs), where each node is gen-

erated by a nonparametric function of its parents adding an independent noise
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term. Moreover, additive modelling (Stone, 1985) is often imposed to model the

nonparametric function. Specifically, Bühlmann et al. (2013) proposes a casual

additive model and aims to learn the DAG via maximum likelihood estimation

and variable selection technique for additive modelling. Peters et al. (2014) pro-

poses the RESIT algorithm to learn a potential causal ordering via sequential

nonparametric fitting and independence testing. Rothenhäusler et al. (2018) fur-

ther considers the case that the nonparametric function is a partially linear model

under the additive modelling assumption. Some other classes of methods focus

on the bivariate models or the post-nonlinear models (Zhang and Hyvärinen,

2009; Zhang et al., 2016) and the score-based search procedures within a more

general function space of the nonparametric function (Zhang et al., 2020). It

should be pointed out that all the aforementioned methods attempt to recover

an indeterministic causal ordering, and many of them lack theoretical guaran-

tee in terms of exact DAG recovery or suffer computational burden even when

dealing with a medium-sized DAG.

Most recently, Gao et al. (2020) introduces the concept of layers into non-

parametric DAG learning to eliminate the unnecessary inefficiency caused by

casual ordering. Specifically, it estimates the nonparametric function with some

standard nonparametric estimators, including the kernel smoother, nearest neigh-

bors, and additive modeling with splines, to recover the layer structure, and

then adopts the variable selection technique for additive modeling to recover the

parent-child relations after all the layers being estimated. Note that the recov-

ery procedure may suffer computational burden when the number of nodes is

relatively large, even using the additive modeling with splines, not to mention
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the kernel smoother or nearest neighbor estimator. Moreover, their proposed

method is mainly designed for the special case with equal variances, and their

theoretical analysis only focuses on establishing the layer recovery consistency

by assuming that the employed nonparametric estimator is consistent. Yet, the

statistical guarantee in terms of exact DAG recovery remains largely unknown

especially when the employed additive modeling assumption is violated.

In this paper, we propose an efficient method to learn nonparametric DAG

with theoretical guarantee. A useful concept of topological layer is adopted to

facilitate DAG learning, which assures that any DAG can be converted into a

unique topological structure, where the parents of a node must belong to its up-

per layers, and thus acyclicity is naturally guaranteed. The proposed method is

motivated by the key fact that topological layers of a nonparametric DAG with

heterogeneous noise variances are identifiable, and the general parent-child rela-

tion can be fully detected by gradient functions. The proposed method adopts

kernel-based estimation in the RKHS for reconstructing layers and the parent-

child relations can be simultaneously recovered as a by-product via learning gra-

dients. The proposed method is computationally efficient and its asymptotic

properties are provided in terms of exact DAG recovery, which are established

without requiring any specific model assumption. Its superior performance is

also supported by a variety of simulated and real-life examples.

The main contribution of this paper is the development of an efficient learning

method to learn nonparametric DAG from observed data, and the investigation

of its statistical guarantees in terms of exact DAG recovery. Specifically, we show

that the topological layers of a nonparametric DAG can be sequentially recon-
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structed under the conditional noise variance assumption in a top-down fashion,

and the gradient function can be employed as a useful tool to recover the general

parent-child relations. More importantly, we connect nonparametric DAG learn-

ing with kernel ridge regression and learning gradients by showing that the layers

can be exactly reconstructed via kernel-based estimation, and the parent-child

relations can be simultaneously obtained by computing the estimated gradient

function without any extra estimation. Computationally, an efficient learning al-

gorithm is developed, where the corresponding convex optimization task has an

analytic solution, and the derivative reproducing property in RKHS ensures that

the gradient function can be directly computed. Theoretically, with the help of

functional operators in learning theory, the statistical guarantees of the proposed

method are established ensuring the underlying DAG with general parent-child

relations can be exactly recovered, which is particularly attractive in line of re-

search in nonparametric DAG learning.

The rest of this paper is organized as follows. Section 2 introduces some

background of nonparametric DAG, the concept of topological layers, and the

motivations of the proposed method. Section 3 develops an efficient algorithm

for learning nonparametric DAG, and Section 4 establishes the theoretical results

of the proposed method in terms of exact DAG recovery under mild conditions.

Numerical experiments on several simulated examples and a real-life analysis are

provided in Section 5. Section 6 contains a brief discussion, and all the technical

proofs are provided in an online supplementary file.
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2. Learning nonparametric directed acyclic graph

We consider a directed acyclic graph (DAG) model G = (V, E) encoding the

joint distribution P (x) of variables x = (x1, ..., xp)
T ∈ X ⊂ Rp. Precisely, V =

{1, ..., p} represents a set of nodes associated with x, and E ⊂ V×V denotes a set

of directed edges without directed cycles representing the parent-child relations.

For notation ease, we denote node k’s parents as pak ⊂ {1, ..., p} and its non-

descendants (exclude itself) by ndk. For any j ∈ pak, an arrow from xj towards

xk in G is indicated; if xk has no parents in G, such as xk is a root or isolated

node, we have pak = ∅. Moreover, we denote the set of all the directed edges

pointing to node k as Ek = {j → k, for any j ∈ pak}. We also assume that the

Markov property (Spirtes et al., 2000; Yuan et al., 2019) and causal minimality

(Bühlmann et al., 2013) hold. To be more precise, the Markov property requires

that P (x) can be factorized based on G into the product of the conditional

distributions of each variable given their parents that P (x) =
∏p
k=1 P (xk|xpak),

where xpak denotes all the variables xj , j ∈ pak.

To represent the causal structure, we apply the continuous additive noise

model (ANM) which is also known as the functional model (Peters et al., 2014).

Note that ANMs are a special case of DAG models where the joint distribution

is defined by the following structural equations with additive noise. Precisely,

each xj is centered with mean zero, the graph structure can be represented by

the following ANM that

xj = f∗j (xpaj ) + nj , for any j ∈ V, (2.1)
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where f∗j (xpaj ) = E[xj |xpaj ], j ∈ V are allowed to have any form of Borel measur-

able functions and are assumed to be differentiable, and the noise terms {nj}j∈V

have strictly positive densities and are independent but may allow following dif-

ferent distributions with mean zero and heterogeneous variances that E[nj ] = 0

and Var(nj) = σ2
j . This is much more general than most existing works which

either assume f∗j following linear (Ghoshal and Honorio, 2018; Yuan et al., 2019)

or additive model assumption (Bühlmann et al., 2013; Gao et al., 2020). It is

worthy pointing out that the requirement that each xj is centered with mean

zero and E[nj ] = 0 imply that the true target function f∗j in (2.1) also has zero

mean.

We now introduce the RKHS HK associated with a specified kernel K taking

values on a subset of Rp and endowed with the norm ‖ · ‖K . It is well-known

that RKHS induced by some universal kernel, such as the Gaussian kernel, is

differentiable and fairly large in the sense that any continuous function can be

well approximated by some intermediate function in the induced RKHS under

the infinity norm (Steinwart and Christmann, 2008). To be more precise, we have

Kx := K(x, ·) ∈ HK for any x ∈ X , and 〈f,Kx〉K = f(x) for any f ∈ HK . By

the Mercer’s theorem (Steinwart and Christmann, 2008), under some regularity

conditions, the eigen-expansion of the kernel function is

K(x,x′) =

∞∑
k=1

µkφk(x)φk(x
′), ∀ x,x′ ∈ X ,

where µ1 ≥ µ2 ≥ ... ≥ 0 are non-negative eigenvalues, and {φk}∞k=1 are the associ-

ated eigenfunctions, taken to be orthonormal in L2(X , ρx) =
{
f :
∫
X f(x)2dρx <
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2.1 Learning with topological layers

∞
}

with ρx denoting the marginal distribution of x. Moreover, the RKHS-

norm of any f ∈ HK then can be written as ‖f‖2K =
∑

k≥1
a2
k

µk
where ak =

〈f, φk〉2L2(X ,ρx) =
∫
X f(x)φk(x)dρx denote Fourier coefficients, and thus for any

f ∈ HK , we have f(x) =
∑∞

k=1 akφk(x). Note that these results require that

HK ⊂ L2(X , ρx), which is automatically satisfied if supx∈X K(x,x) is bounded.

Then, the RKHS induced by the kernel K can be written as

HK,p :=
{
f =

∞∑
k=1

akφk |
∑
k≥1

a2
k/µk ≤ ∞

}
.

It is important to notice that in the rest of this paper, we need to search functions

sequentially over different RKHS induced by the kernel function with different

inputs’ dimensions. With a slight abuse of notation, we write all the RKHSs as

HK when the inputs’ dimension of the corresponding kernel function is clear for

notation simplicity. Moreover, we assume that Ef(x) =
∫
X f(x)dρx = 0 for all

f ∈ HK to facilitate DAG learning. It is worthy pointing out that this zero mean

assumption is also required in many kernel-based learning problems and can be

verified if the kernel function is centralized (He et al., 2022). In literature, various

centralized kernels have been proposed, including the centralized Gaussian kernel

and interested readers are referred to Lindsay et al. (2008); Durrande et al. (2013);

He et al. (2022) for detailed discussions.

2.1 Learning with topological layers

Without loss of generality, we assume that a DAG G has T layers, for some

positive constant T , and each node only belongs to one layer, due to its longest
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2.1 Learning with topological layers

path to roots (nodes with no parents). Note that the concept of a topological

layer is explicitly defined in Zhao et al. (2022); Zhou et al. (2022) for learning

linear DAGs, which is general and which is general and reconstructs any DAG in

such a way that causal ordering among each layer is uniquely determined, and

a similar idea is also adopted to learn nonparametric DAG in Gao et al. (2020);

Li et al. (2023). Note that the idea of topological layers significantly differs

from the commonly used causal ordering in literature (Yuan et al., 2019). More

importantly, we show that the procedure of learning nonparametric DAG can

be much more stable and computationally efficient, and can establish theoretical

guarantees in terms of exact DAG recovery.

Specifically, let At denote all the nodes in the t-th layer and St = ∪t−1
d=0Ad

denote the nodes in all the upper layers. Clearly, we have S0 = ∅ and ST = V.

Figure 1 illustrates a toy DAG with its unique topological layer structure.

Figure 1: An illustration of a DAG with 3 layers.

From Figure 1, we see that nodes 1 and 4 are regarded as root and isolated

node, respectively, and thus belonging to the first layer A0; although node 1 is

one of its parents, node 3 still belongs to the last layer A2 due to its longest path

to root (1 → 2 → 3). It is interesting to point out that node 4 is named as an

isolated node due to the fact that it does not direct to any other nodes. In fact,

node 4 can also be regarded as a root which does not have any children. In sharp
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2.2 Reconstruction via topological layer

contrast, the toy example has multiple potential causal orderings as illustrated in

the left panel of Figure 1, which may lead to unnecessary estimation instability

and computational inefficiency in recovering the DAG structures. Clearly, any

nonparametric DAG can be uniquely converted to the corresponding topologi-

cal structure, thus the original task of DAG learning can be decomposed into

reconstructing the layers and recovering the parent-child relations among layers.

2.2 Reconstruction via topological layer

In this section, we show that the topological layer of a nonparametric DAG

can be reconstructed under mild conditions, and the causal minimality condi-

tion connects the recovery of parent-child relations with learning gradients. Let

dej denote all the descendant nodes of node j, and then the topological layers

of a nonparametric DAG model can be identified under the following technical

condition.

Assumption 1. For any j, j′ ∈ At, t = 0, ..., T−1 and k ∈ dej , there exists some

positive quantity Mmax such that minj,k σ
2
k + E

[
Var

(
E[xk|xpak ]|xSt

)]
− σ2

j >

Mmax and σ2
j = σ2

j′ .

Assumption 1 is a general condition and is widely used in literature of learn-

ing ANMs (Park, 2020). Particularly, the first part of Assumption 1 allows that

nodes belonging to different layers have heterogeneous variance, which relaxes

the commonly used equal variance assumption (Gao et al., 2020), and is analo-

gous to the conditions required in Theorem 2 of Park (2020) in terms of causal

ordering. The second part of Assumption 1 requires that nodes belonging to the

same layer have equal variance, which is natural in the sense that they may come
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2.2 Reconstruction via topological layer

from a similar domain, and thus share a similar characteristic. Note that the

equal variance condition can be further relaxed by allowing nodes in the same

layer to have heterogeneous variances, but their differences are upper bounded

by some constant less than Mmax.

Theorem 1. Consider an ANM (2.1) associated with DAG G. Suppose that

A0, ...,At−1 have been identified and St = ∪t−1
d=0Ad. Then, for any t = 0, ..., T −1,

there holds

E
[

Var(xj |xSt)
]

= σ2
j , for any j ∈ At;

= σ2
j + E

[
Var

(
E[xj |xpaj ]|xSt

)]
, for any j ∈ V\{St ∪ At}.

(2.2)

Additionally, suppose that Assumption 1 is satisfied, then the topological layers

can be exactly reconstructed.

Theorem 1 ensures that the topological layers can be reconstructed in a hier-

archical fashion by evaluating the conditional variance for each remaining node.

The first part of Theorem 1 states that if node j belongs to the current layer At,

the expected conditional variance is exactly the same as the corresponding noise

variance; otherwise, the expected conditional variance should be strictly larger

than the noise variance. Moreover, by assuming Assumption 1, the second part

of Theorem 1 ensures that the expected conditional variances of nodes belonging

to the current layer are exactly the same, and there exists some gap between

the expected conditional variances of nodes belonging to the current layer and

to all the lower layers. And thus, the topological layer can be reconstructed cor-
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2.2 Reconstruction via topological layer

respondingly. Particularly, Theorem 1 shows that for any j ∈ A0 with paj = ∅,

the layer A0 can be exactly reconstructed by the fact that Var(xj) = σ2
0,min for

any j ∈ A0 and otherwise Var(xj) > σ2
0,min with σ2

0,min = mink∈V Var(xk). For

the general cases that t = 1, ..., T − 1, Theorem 1 ensures that for any j ∈ At,

there holds E[Var(xj |xSt)] = σ2
t,min with σ2

t,min = min
k∈V\{St}

E[Var(xk|xSt)], and

E[Var(x`|xSt)] > σ2
t,min + Mmax for any node belonging to lower layers. It is

also interesting to notice that Theorem 1 ensures that the layers can be recon-

structed in a top-down fashion, whereas Theorem 2 of Park (2020) shows the

causal ordering can be forward or backward recovered under different types of

noise-variance assumptions. In fact, Theorem 1 as well as our motivated method

can be further extended to reconstruct the topological layers in the bottom-up

fashion and more discussions on this possible extension are provided in Section

6.

More interestingly, among the above reconstruction procedures, suppose that

A0, ...,At have been identified. By the definition of At, for any node j ∈ At, we

have paj ⊂ St = ∪t−1
d=0Ad and dej ∩ St = ∅, and thus there holds f∗j (xpaj ) =

E[xj |xpaj ] = E[xj |xSt ] = f∗j,St(xSt). Furthermore, we notice that as pointed out

in Section 3 of Peters et al. (2014), causal minimality reduces to the condition

that each function f∗j is not constant in any of its arguments under Model (2.1).

This requires that all the parents should make a contribution to their child, and

implies paj is the set of nodes with non-zero gradients. Precisely, by assuming

causal minimality, for any j ∈ At, we have

‖g∗jk‖22 =

∫ (∂f∗j,St(xSt)
∂xk

)2
dρxSt > 0, for any k ∈ paj , (21)
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2.2 Reconstruction via topological layer

and for any k ∈ St\{paj}, there holds ‖g∗jk‖22 = 0, due to the fact that f∗j,St(xSt) =

E[xj |xSt ] = E[xj |xpaj ] since j ∈ At and in (21), each gradient function is evalu-

ated given all the other nodes belonging to paj . Thus, for any node j ∈ At, paj

can be written as paj = {k ∈ St, ‖g∗jk‖22 > 0}. It is also interesting to notice that

in Section 4, the minimal signal strength is required in Assumption 4 to establish

the asymptotic consistency under the finite sample setting.

Theorem 2. Suppose that all the assumptions in Theorem 1 are satisfied and

the causal minimality holds. Then, the DAG G is uniquely identifiable.

Theorem 2 provides the identifiability result of the nonparametric DAG un-

der the noise variance condition in Assumption 1. Its proof directly follows

from Theorem 1 that all the topological layers can be exactly recovered by eval-

uating the conditional variances, and from the required causal minimality as-

sumption that once the layers are exactly identified, the underlying parent-child

relations can be exactly recovered by checking the corresponding gradient func-

tions. Therefore, we omit its proof here. Note that the established identifiability

results differ from the classical identifiable results of nonparametric in literature

(Peters et al., 2014) that they are motivated by different identifiable conditions.

Specifically, the results in Theorem 2 does not require that the noise terms must

be normally distributed (Peters et al., 2014; Li et al., 2023) but require the noise

terms have some ordered variances as stated in Assumption 1. More importantly,

we notice that by the derivative reproducing property (Zhou, 2007), there holds

gjk(x) =
∂fj(x)

∂xk
= 〈fj , ∂kKx〉K ≤ ‖∂kKx‖K‖fj‖K , (2.4)
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for any fj ∈ HK and ∂kKx = ∂K(x,·)
∂xk

. This implies that the gradient function of

any fj ∈ HK can be bounded by its K-norm up to some constant. In other words,

if we want to estimate gjk(x) within the smooth RKHS, it suffices to estimate

fj itself without loss of information. Most importantly, the key factor (2.4)

ensures us that the corresponding gradient function can be directly obtained

if the estimator of fj belonging to HK is provided, and thus the parent-child

relations can be simultaneously obtained without any extra estimation. Due to

the nice properties of HK , we consider the estimation procedures in the smooth

RKHS in the next section.

3. Nonparametric DAG learning algorithm

In this section, we develop an efficient learning algorithm, which connects non-

parametric DAG learning and learning gradients in the smooth RKHS. Particu-

larly, motivated by Theorem 1 and the key factor (21), the problem of learning

a nonparametric DAG can be decomposed into a hierarchical procedure, where

the topological layers can be reconstructed by computing the criteria of Theorem

1 in a top-down fashion, and simultaneously the directed edges can be directly

recovered using the computed gradients in a parallel fashion.

3.1 Proposed algorithm

Given a random sample X = {xi}ni=1 ∈ Rn×p, where xi = (xi1, ..., xip)
T is

generated from Model (2.1) and xij denotes the i-th observation of xj , we first

attempt to reconstruct the first layer A0 from the observed data. Specifically, for

each j ∈ V, we compute the unconditional variance that V̂ar(xj) = n
n−1(Ê[x2

j ]−
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3.1 Proposed algorithm

(Ê[xj ])
2) with Ê[x2

j ] = 1
n

∑n
i=1 x

2
ij and Ê[xj ] = 1

n

∑n
i=1 xij . Then, by Theorem

1, the first layer can be reconstructed as Â0 =
{
k, |V̂ar(xk) − σ̂

(0)
min| < ε0

}
with

σ̂
(0)
min = minj∈V V̂ar(xj) for some small ε0 > 0.

Suppose that the layers Â0, ..., Ât−1 have been reconstructed and denote

Ŝt = ∪t−1
d=0Âd. Then, we turn to reconstruct the layer At by calculating the

criteria in Theorem 1 based on the remaining nodes. Specifically, given Ŝt, for

any j ∈ V\{Ŝt}, we compute the estimated criteria as

Ê[V̂ar(xj |xŜt)] = Ê[x2
j ]− Ê

[
Ê[xj |xŜt ]

2
]
, (3.1)

where Ê[x2
j ] = 1

n

∑n
i=1 x

2
ij and Ê

[
Ê[xj |xŜt ]

2
]

can be obtained by kernel ridge

estimation in the smooth RKHS. Put differently, for each j ∈ V\{Ŝt}, we regress

xj on xŜt by fitting a kernel ridge regression that

f̂j = argmin
fj∈HK

1

n

n∑
i=1

(
xij − fj(xiŜt)

)2
+ λ‖fj‖2K . (3.2)

It is clear that f̂j(xŜt) can be treated as a valid estimation of E[xj |xŜt ], and thus

the second term in (3.1) can be computed as Ê
[
Ê[xj |xŜt ]

2
]

= 1
n

∑n
i=1(f̂j

(
x
iŜt)
)2

.

Note that the employed estimation procedure (3.2) is computationally efficient

and by the representer theorem (Wahba, 1998), the minimizer of (3.2) must have

the following form that

f̂j(xŜt) =

n∑
i=1

α̂
(j)
i K(xiŜt ,xŜt) = α̂T

j Kn(xŜt),
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3.1 Proposed algorithm

where α̂j = (α̂
(j)
1 , ..., α̂

(j)
n )T and Kn(xŜt) =

(
K(x1Ŝt ,xŜt), ...,K(xnŜt ,xŜt)

)T
.

Therefore, the optimization problem (3.2) has an analytic solution that α̂j =(
KT
Ŝt
KŜt + nλKŜt

)+
KT
Ŝt
xj where KŜt = {K(xiŜt ,xjŜt)}

n
i,j=1 ∈ Rn×n denote

the kernel matrix and xj = (x1j , ..., xnj)
T . Then, by Theorem 1, the layer At

can be reconstructed as Ât =
{
k, |ÊV̂ar(xk|xŜt) − σ̂

(t)
min| < εt

}
with σ̂

(t)
min =

minj∈V\Ŝt ÊV̂ar(xj |xŜt) and for some small εt > 0.

Once Ât is reconstructed, the parent-child relations among nodes in Ât and

Ŝt can be simultaneously recovered by using the derivative reproducing property

(2.4) as a by-product. Specifically, for each j ∈ Ât and k ∈ Ŝt, we compute the

corresponding gradient function and evaluate the existence of a directed edge by

using the empirical norm that

‖ĝjk‖2n =
1

n

n∑
i=1

(
ĝjk(xiŜt)

)2
=

1

n

n∑
i=1

(
α̂T
j ∂kKn(xiŜt)

)2
. (3.3)

Note that α̂j is obtained in (3.2), and thus (3.3) can be directly computed in a

parallel fashion since ∂kKn(xiŜt) is known once K(·, ·) is specified. Then, the es-

timated directed edges can be denoted as Êj =
{
k → j, ‖ĝjk‖2n > v

(t)
n , for any k ∈

Ŝt
}

for some pre-specified v
(t)
n .

We repeat the above reconstructing procedure until all the nodes have been

assigned and all the directed relations have been recovered.
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3.1 Proposed algorithm

Algorithm 1 The proposed algorithm
1: Input: sample matrix X ∈ Rn×p, Ŝ = ∅, and t = 0;
2: Until Ŝ = V:

a. For any j ∈ V\{Ŝ}, compute the conditional variance ÊV̂ar(xj |xŜ);

b. Define Ât =
{
k, |ÊV̂ar(xk|xŜ)− σ̂(t)

min| < εt
}

;

c. Define Êj =
{
k → j, ‖ĝjk‖2n > v

(t)
n , for any k ∈ Ŝ

}
for any j ∈ Ât;

d. Let Ŝ = Ŝ ∪ Ât;

e. t← t+ 1;

3: Let T̂ = t.
4: Return: {Ât}T̂−1

t=0 and {Êj}j∈V .

It is thus clear that the proposed method is motivated by our identifiability

result in Theorem 1, which takes the advantage of topological layer to assure

acyclicity and facilitate DAG learning, and kernel ridge regressions are used as

efficient tools to reconstruct layers and recover parent-child relations. This signif-

icantly differs from the learning sparse nonparametric DAG method (NOTEARS,

Zhang et al. (2020)) from a methodological point of view. Specifically, NOTEARS

is a score-based method that it searches over the space consisting of all the pos-

sible graphs, and a gradient-based criteria is developed to force the graph to be

acyclic. Then, some pre-specified modeling is used to evaluate the score func-

tion, including linear model, additive model or neural network, and finally, the

graph minimizing the score is returned. Theoretically, the asymptotic properties

of the proposed method are established in terms of exact DAG recovery under

mild conditions in Section 4, yet the theoretical properties of NOTEARS remain

largely unknown.
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3.2 Tuning

3.2 Tuning

Note that the numerical performance of the proposed method depends on the

choice of tuning parameters εt and v
(t)
n . For selecting the optimal values of

{v(t)
n }′s, we follow the suggestion of He et al. (2021). For the parameters εt, we

employ the stability-based criterion (Sun et al., 2013) to select the optimal value,

which is also used in Zhao et al. (2022). The key idea is to measure the stability

of topological layer reconstruction by randomly splitting the training sample into

two parts and comparing the disagreement between the two estimated active sets.

Specifically, given a value ε, we randomly split the training sample ZM into two

parts ZM1 and ZM2 . Then the proposed method is applied to ZM1 and ZM2 and

obtains two estimated active sets Â1,ε and Â2,ε, respectively. The disagreement

between Â1,ε and Â2,ε is measured by Cohen’s kappa coefficient

κ(Â1,ε, Â2,ε) =
Pr(a)− Pr(e)

1− Pr(e)
,

where Pr(a) = n11+n22

p and Pr(e) = (n11+n12)(n11+n21)
p2 + (n12+n22)(n21+n22)

p2 with

n11 = |Â1,ε ∩ Â2,ε|, n12 = |Â1,ε ∩ ÂC2,ε|, n21 = |ÂC1,ε ∩ Â2,ε|, n22 = |ÂC1,ε ∩ ÂC2,ε| and

| · | denotes the set cardinality. The procedure is repeated for B times and the

topological layer reconstruction stability is measured as

ŝ(Ψε) =
1

B

B∑
b=1

κ(Âb1,ε, Âb2,ε).

Finally, the selected parameter ε is set as max
{
ε : ŝ(Ψε)

maxε ŝ(Ψε)
≥ d

}
, where

d ∈ (0, 1) is some given percentage. Note that the adopted selection criteria
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(Sun et al., 2013) is originally designed for the purpose of variable selection with

theoretical guarantees, and the ratio is used to avoid missing some weak signals.

Moreover, the choice of maximum can be regarded as a pre-specified parameter

and in practice, one can also use minimum, mean or median.

4. Statistical guarantees

In this section, we investigate the theoretical property of the proposed method

in terms of exact DAG recovery. The asymptotic theoretical results are es-

tablished by using the kernel ridge regression and learning gradients in the

smooth RKHS under some regularity assumptions. For theoretical analysis,

we define some intermediate target functions and introduce some functional

operators. Specifically, for any t = 1, ..., T − 1 and j ∈ V\{St}, we define

f∗j,St(xSt) = argminf E
[
xj − f(xSt)

]2
and it is clear that f∗j,St(xSt) = E[xj |xSt ].

We further assume that f∗j,St(xSt) ∈ HK and it is interesting to notice that

E[xj |xSt ] = E[xj |xpaj ] if j ∈ At and E[xj |xSt ] 6= E[xj |xpaj ] if j ∈ V\{St ∪ At}.

We denote the supports of xSt as Xt ⊂ X , which are assumed to be compact.

Without loss of generality, we also assume that the K-norms of all the target func-

tions f∗j,St are upper bounded by R/2 for mathematical simplicity throughout this

paper, where R denotes some positive quantity, and this technical requirement

can be easily satisfied by taking R relatively large. Note that the compactness

condition is commonly assumed in machine learning literature (Smale and Zhou,

2007; Rosasco et al., 2013; Lv et al., 2018) to ensure universality and the Mercer’s

theorem, which also implies that all the noise terms {nj}j∈V have compact sup-

port and recently, many efforts have been made to extend it to the non-compact
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setting (Steinwart and Scovel, 2011; Simon-Gabriel and Schölkopf, 2018). More-

over, we introduce the integral operators LK,t : L2(XSt , ρxSt ) → L
2(XSt , ρxSt )

that

LK,t(f)(xSt) =

∫
K(xSt ,uSt)f(uSt)dρxSt (uSt),

for any f ∈ L2
(
XSt , ρxSt

)
=
{
f :
∫
f2(xSt)dρxSt <∞

}
.

We first establish the layer recovery consistency based on kernel ridge regres-

sion. The following technical assumptions are required to establish consistency.

Assumption 2. For any t = 1, ..., T − 1 and j ∈ V\{St}, suppose that f∗j,St is in

the range of the r-th power of LK,t, denoted as LrK,t, for some positive constant

r ∈ (1
2 , 1].

Assumption 3. There exist some constants κ1 and κ2 such that for any S ⊂ V,

there hold sup ‖KxS‖K ≤ κ1 and sup ‖∂kKxS‖K ≤ κ2.

Note that the fractional operators LrK,t in Assumption 2 make sense as the op-

erator LK,t on L2(XSt , ρxSt ) is self-adjoint and semi-positive definite. As pointed

out by Smale and Zhou (2007), the requirement that r ≥ 1
2 is a general assump-

tion, which ensures that the range of LrK,t is contained in HK (Smale and Zhou,

2007), and thus we can deduce that there exists some function hj,t ∈ L2(XSt , ρxSt )

such that f∗j,St = LrK,thj,t ∈ HK . This ensures strong estimation consistency un-

der the RKHS-norm. Assumption 3 requires the kernel function and its gradient

function to be upper bounded, which is commonly assumed in machine learn-

ing literature (Rosasco et al., 2013) and is satisfied by many kernel functions,

including the Gaussian kernel.
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Theorem 3. Suppose that Assumptions 1−3 are satisfied. Then, for any ζ > 0

and k ∈ V, we have

P
(
|V̂ar(xk)−Var(xk)| > ζ

)
≤ 2 exp

(
− nζ2

2C4
X

)
,

where CX denotes the diameter of the support X . Additionally, if we take ε0 =

Mmax

2 , there holds

P
(
Â0 = A0

)
≥ 1− 2p exp

(
− nM2

max

32C4
X

)
.

Theorem 3 establishes the estimation consistency of the variance estima-

tor and ensures that the first layer A0 can be exactly reconstructed with high

probability. It is worth pointing out that the consistency result still holds if we

take ε0 ∈
(
C1

√
log(2p)
n , Mmax

2

]
for some positive constant C1. Once A0 has been

reconstructed, the subsequent layers can also be reconstructed in a sequence.

To establish the asymptotic results for the lower layers, we define the event

that

J =
⋂
t

{
max

j∈V\{St}
‖f̂j‖K ≤ R

}
,

and use J c to denote its complementary. Without loss of generality, we assume

that the layers A1, ...,At−1 have been exactly reconstructed and the following

theorem ensures that the layer At can be recovered with high probability by

using kernel-based estimation under mild conditions.

Theorem 4. Suppose that all the assumptions in Theorem 3 are satisfied. Given

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0272



the events {Â0 = A0, ..., Ât−1 = At−1}, t ≥ 1 and the event J , if we take

λ = n−
1

2r+1 , then for any ζ > 0 and j ∈ V\{St}, there holds

P
(∣∣Ê[V̂ar(xj |xSt)]− E[Var(xj |xSt)]

∣∣ > ζ | Â0 = A0, ..., Ât−1 = At−1,J
)

≤ 2 exp
(
− 8nζ2

C4
X

)
+ 4 exp

(
− n

2r−1

2(2r+1) ζ

2Cjt

)
,

where Cjt = 6κ2
1Rmax

{
2κ1 max

{
CX+2κ1R,

√
2(2κ2

1R
2 + σ2

j )
}
,
√

2, ‖L−rK,tf∗j,St‖2
}

.

Additionally, if we take εt = Mmax

2 , there holds

P
(
Ât = At | Â0 = A0, ..., Ât−1 = At−1,J

)
≥

1− 2(p− |St|) exp
(
− nM2

max

2C4
X

)
− 4(p− |St|) exp

(
− Mmaxn

2r−1

2(2r+1)

8Cjt

)
.

The first part of Theorem 4 shows that the estimated criteria converges to

the truth with high probability, which plays a crucial role to establish the layer

recovery consistency. The second part of Theorem 4 ensures that the layer At can

be exactly reconstructed under mild conditions with some proper choice of εt. In

fact, the consistency result still holds if we take εt in an interval with upper bound

Mmax

2 following the similar choice for ε0. The proof of Theorem 4 is completed by

using Lemma S1 in the supplementary file. As a direct consequence of Theorems

3 and 4, all the layers can be exactly reconstructed with high probability.

We want to emphasize that once the layer At has been constructed, the

parent-child relations between nodes in At and St = ∪t−1
d=0Ad can be obtained

directly by computing the estimated gradient function using (3.3) without any
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extra estimation. More importantly, the selection consistency of the parent set

for nodes in At can also be established under mild conditions. The following

technical assumption is needed to establish the recovery consistency of parent-

child relations.

Assumption 4. For any t = 1, ..., T − 1 and j ∈ At, there exists some positive

constant C2 such that min
k∈paj

‖g∗jk‖22 > C2n
− 2r−1

2(2r+1)

(
log
(
4|St|max{n, |St|}

))β
for

some β > 1 and max
k∈St\{paj}

‖g∗jk‖22 = 0.

Note that by the definition of At, there holds paj ⊂ St for any j ∈ At, and

Assumption 4 is a general condition that requires all the parents should make a

contribution to their child by assuming that given all the other nodes belonging

to paj , the true gradient function contains sufficient information about parent

nodes. This is equivalent to assuming each true function in (2.1) should not be

a constant in any of its arguments and is also known as the causal minimality

condition in DAG learning literature (Peters et al., 2014).

Lemma 1. Suppose that all the assumptions in Theorem 4 as well as Assumption

4 are satisfied. Then, for any t ≥ 1, given the events that {Â0 = A0, ..., Ât = At}

and the event J , and if we take v
(t)
n = C2

2 n
− 2r−1

2(2r+1)

(
log
(
4|St|max{n, |St|}

))β
,

there holds

P
(
{Ej = Êj : j ∈ Ât}|Â0 = A0, ..., Ât = At,J

)
≥ 1− 1

max{n, |St|}
.

Lemma 1 shows that the parent set for nodes in At can be also consistently

recovered after the layer At is correctly reconstructed. It is interesting to point
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out that Lemma 1 is particularly attractive in that it is established without

any further estimation after reconstructing At, due to the fact that the gradient

functions can be directly computed as a by-product as illustrated by (3.3). Now,

we turn to establish the exact DAG recovery consistency of the proposed method.

Theorem 5. Suppose that all the assumptions of Lemma 1 are satisfied. Then,

we have

P (Ĝ = G)→ 1, as n→∞.

Theorem 5 ensures that the DAG G can be consistently recovered by the

proposed method with probability tending to 1. Note that the proof of Theorem

5 is conducted by using the fact that P (Ĝ 6= G) ≤ P (Ĝ 6= G,J ) + P (J c),

and directly by the results in Smale and Zhou (2007), P (J c) → 0 as n → ∞

under some mild conditions. It is particularly attractive in the literature on

DAG learning in the sense that it allows for general parent-child relations and it

provides a solid theoretical guarantee for learning nonparametric DAG in terms

of exact DAG recovery.

5. Numerical experiments

In this section, we compare the numerical performance of the proposed method by

using centralized Gaussian kernel (He et al., 2022), denoted as NL, against some

state-of-the-art methods, including the nonparametric variance-based algorithm

with additive modeling (NPVAR; Gao et al. (2020)), the nonparametric regres-

sion with independence test (RESIT; Peters et al. (2014)), the nonparametric
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additive method (CAM; Bühlmann et al. (2013)), the greedy equivalent search

algorithm (GES; M. Chickering (2003)), the high-dimensional constraint-based

PC algorithm (PC; Kalisch and Bühlmann (2007)) and NOTEARS (Zhang et al.,

2020). We code NL in R and implement CAM by using the R package CAM. Both

methods PC and GES are implemented by using the R package pcalg. The R

codes of NPVAR and RESIT are available online at http://people.tuebingen.

mpg.de/jpeters/onlineCodeANM.zip and https://github.com/MingGao97/NPVAR,

respectively. The Python code of NOTEARS is available at https://github.

com/xunzheng/notears. Note that NPVAR, RESIT and CAM fit the nonpara-

metric functions under the additive modeling, and thus their performance highly

relies on the validity of the additive model assumption.

To evaluate the performance of all the methods, we report the true positive

rate (TPR) and false discovery rate (FPR) to evaluate the accuracy of estimated

directed edges. We also employ the normalized structural Hamming distance

(HD) (Tsamardinos et al., 2006) to evaluate the closeness of the true and esti-

mated DAG, and use the Matthews correlation coefficient (MCC) (Yuan et al.,

2019) to overall accuracy of the estimated DAG structure. Note that the met-

ric HD measures the smallest number of edge insertions, deletions, and flips to

convert the estimated DAG into the truth DAG. It is worth noting that small

values of HD, FDR and FPR, but large values of TPR and MCC indicate a good

reconstruction of a DAG.
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5.1 Simulated examples

5.1 Simulated examples

In this section, we examine the numerical performance of all the competitors in

three simulated examples, where Examples 1 and 2 consider a dense and sparse

hub graph, respectively, and Example 3 considers a random graph generated by

the Erdös Rényi (ER) model.

Example 1. we consider a DAG where the only directed structure is edged

directing from the first node, known as the hub node, to all the other nodes.

Clearly, we have T = 2,A0 = {1} and A1 = {2, ..., p}. Example 1 is illustrated

in Figure 2(a). Specifically, we generate n1 ∼ U(−0.5, 0.5) and xj , j ∈ A1,

from xj = f∗j (x1) + nj , where nj ∼ U(−1, 1) and f∗j (x) is randomly chosen

from f (1)(x) = 0.3 sin(πx) + 0.3 cos(πx) + 0.4 sin2(πx), f (2)(x) = 0.2 cos3(πx) +

0.2 sin3(πx), f (3)(x) = arctan(x), f (4)(x) = sin(πx)/(2 − sin(πx)) with equal

probability and is also centered.

Example 2. The generated DAG is the same as that in Example 1 except that

the first node is only directed to the next bp3c + 1 nodes and all the remaining

nodes are isolated. Clearly, we have T = 2,A0 = {1, bp3c + 2, ..., p} and A1 =

{2, ..., bp3c+ 1}, and the structure of the underlying DAG is illustrated in Figure

2(b).

Example 3. We consider a random DAG generated by the ER graph and the un-

derlying structure is illustrated in Figure 2(c). The probability of connecting an

edge is set as PE = 0.25 for p = 5 and 20, and PE = 0.05 for p = 100. Specifically,

we generate nj ∼ U(−0.5, 0.5) for any j ∈ A0, nj ∼ U(−1.5, 1.5) for any j ∈ A1

and A2, and nj ∼ U(−3, 3) for any ∈ A3, ...,AT−1, and set T = max{4, blog(p)c}.

For t ≥ 1, xj , j ∈ At, is generated by xj =
∑

0≤s≤t−1

∑
k∈As∩paj

θskf
(s)(xk) +
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5.1 Simulated examples

∑
k,`∈paj ,k 6=`

( ∏
1≤s≤t

(1 − θsk)(1 − θs`)
)
g1(xk)g2(x`) + nj with θsk ∼ Bern(1, 0.75).

For the main function, we set f (0)(x) = 0.2 cos3(πx) + 0.2 sin3(πx), f (1)(x) =

1.5 arctan(x), f (2)(x) = 3
√
|x|, f (3)(x) = 0.3 sin(πx) + 0.3 cos(πx) + 0.4 sin2(πx)

and f (t)(x) = sin(πx)/(2 − sin(πx)), t ≥ 4, and consider g1(x) = 2|x|0.4 and

g2(x) = exp(sin(πx)) for the interaction term. Note that the parameters θsk

are used to ensure the parent nodes in the main function and interaction term

are distinct, for example, if 5 ∈ A2 and pa5 = {1, 2, 3, 4} with {1, 3} ⊂ A0,

{2, 4} ⊂ A1, then a possible generating scheme of x5 is x5 = f (0)(x1)+f (1)(x2)+

g1(x3)g2(x4) + n5 and the functions are also centered.

(a) Dense hub graph. (b) Sparse hub graph.

(c) Random graph.

Figure 2: The topological layer of the DAG structures in Examples 1 to 3.

For each example, we repeat the data generating scheme 50 times and the

averaged performance of all the competitors under the cases by varying n and p

from {100, 200, 500} and {5, 20, 100}, respectively, are provided in Tables 1 to 3.
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5.1 Simulated examples

Note that ∗∗ is used to denote the fact that the corresponding methods take too

long to produce any results or is not applicable.

Table 1: The averaged performance metrics of different methods as well
as their standard errors in parentheses in Example 1.

p n Methods HD FDR TPR MCC

5

100

NL 0.0520(0.0101) 0.0000(0.0000) 0.7400(0.0505) 0.8159(0.0358)
NPVAR 0.1380(0.0055) 0.1400(0.0496) 0.3100(0.0273) 0.4790(0.0321)

CAM 0.2110(0.0096) 0.5533(0.0509) 0.2500(0.0295) 0.2431(0.0381)
RESIT 0.2160(0.0123) 0.5353(0.0538) 0.2650(0.0298) 0.2573(0.0414)
GES 0.2790(0.0163) 0.7103(0.0463) 0.2550(0.0388) 0.1401(0.0492)
PC 0.1290(0.0111) 0.2800(0.0502) 0.4850(0.0394) 0.5363(0.0469)

NOTEARS 0.1920(0.0056) 0.6544(0.0466) 0.2750(0.0399) 0.2502(0.0350)

200

NL 0.0370(0.0090) 0.0000(0.0000) 0.8150(0.0451) 0.8699(0.0318)
NPVAR 0.0850(0.0066) 0.0200(0.0200) 0.5750(0.0329) 0.7116(0.0267)

CAM 0.2380(0.0107) 0.6113(0.0338) 0.3050(0.0279) 0.2322(0.0336)
RESIT 0.1790(0.0113) 0.3727(0.0365) 0.4800(0.0235) 0.4583(0.0300)
GES 0.2910(0.0162) 0.7470(0.0428) 0.2450(0.0413) 0.1114(0.0494)
PC 0.0980(0.0105) 0.1900(0.0332) 0.6550(0.0342) 0.6816(0.0362)

NOTEARS 0.1800(0.0047) 0.5667(0.0540) 0.2750(0.0359) 0.2889(0.0350)

20

200

NL 0.0000(0.0000) 0.0000(0.0000) 0.9989(0.0011) 0.9994(0.0006)
NPVAR 0.0378(0.0005) 0.0147(0.0071) 0.2484(0.0095) 0.4809(0.0099)

CAM 0.0428(0.0010) 0.3911(0.0142) 0.3968(0.0141) 0.4701(0.0140)
RESIT 0.1109(0.0020) 0.9339(0.0064) 0.0884(0.0083) 0.0213(0.0077)
GES 0.0925(0.0010) 0.8715(0.0059) 0.1453(0.0065) 0.0903(0.0064)
PC 0.0483(0.0015) 0.4509(0.0316) 0.2495(0.0138) 0.3490(0.0212)

NOTEARS 0.0656(0.0013) 0.6709(0.0134) 0.2874(0.0133) 0.2717(0.0110)

500

NL 0.0000(0.0000) 0.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
NPVAR 0.0210(0.0008) 0.0040(0.0029) 0.5832(0.0158) 0.7507(0.0104)

CAM 0.0335(0.0011) 0.3165(0.0120) 0.6168(0.0127) 0.6320(0.0120)
RESIT 0.1483(0.0025) 0.9192(0.0031) 0.1853(0.0062) 0.0538(0.0047)
GES 0.0934(0.0008) 0.8793(0.0047) 0.1368(0.0050) 0.0818(0.0051)
PC 0.0480(0.0028) 0.4690(0.0398) 0.3740(0.0283) 0.4220(0.0346)

NOTEARS 0.0553(0.0010) 0.5568(0.0193) 0.2726(0.0121) 0.3142(0.0094)

100

200

NL 0.0000(0.0000) 0.0000(0.0000) 0.9990(0.0004) 0.9995(0.0002)
NPVAR ** ** ** **

CAM ** ** ** **
RESIT 0.0340(0.0006) 0.9956(0.0008) 0.0103(0.0019) -0.0088(0.0013)
GES 0.0334(0.0002) 0.9838(0.0007) 0.0388(0.0017) 0.0098(0.0011)
PC ** ** ** **

NOTEARS 0.0153(0.0001) 0.9936(0.0036) 0.0036(0.0021) -0.0024(0.0028)

500

NL 0.0000(0.0000) 0.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
NPVAR ** ** ** **

CAM ** ** ** **
RESIT 0.0551(0.0008) 0.9917(0.0003) 0.0378(0.0015) -0.0036(0.0008)
GES 0.0297(0.0001) 0.9826(0.0008) 0.0354(0.0016) 0.0108(0.0012)
PC ** ** ** **

NOTEARS 0.0118(0.0001) 0.9420(0.0152) 0.0162(0.0042) 0.0262(0.0080)

It is evident from Tables 1 to 3 that NL outperforms all the other competitors

in almost all the cases, except in Example 3 where NL is the second performer
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5.1 Simulated examples

Table 2: The averaged performance metrics of different methods as well
as their standard errors in parentheses in Example 2.

p n Methods HD FDR TPR MCC

5

100

NL 0.1150(0.0056) 0.4177(0.0149) 0.9600(0.0154) 0.7027(0.0140)
NPVAR 0.1090(0.0053) 0.3600(0.0686) 0.2733(0.0352) 0.3971(0.0448)

CAM 0.1700(0.0074) 0.6850(0.0509) 0.2133(0.0340) 0.1887(0.0411)
RESIT 0.1530(0.0091) 0.5133(0.0545) 0.3000(0.0319) 0.3166(0.0413)
GES 0.2120(0.0137) 0.7317(0.0494) 0.2600(0.0460) 0.1685(0.0527)
PC 0.1120(0.0117) 0.4230(0.0606) 0.4600(0.0529) 0.4680(0.0603)

NOTEARS 0.1390(0.0036) 0.7200(0.0508) 0.2333(0.0439) 0.2247(0.0394)

200

NL 0.0640(0.0061) 0.2590(0.0230) 0.9667(0.0143) 0.8163(0.0172)
NPVAR 0.0610(0.0050) 0.0400(0.0280) 0.5933(0.0334) 0.7269(0.0289)

CAM 0.1740(0.0086) 0.6033(0.0414) 0.3267(0.0323) 0.2802(0.0382)
RESIT 0.1200(0.0100) 0.3130(0.0414) 0.5400(0.0342) 0.5427(0.0356)
GES 0.2480(0.0138) 0.8300(0.0443) 0.1733(0.0449) 0.0593(0.0506)
PC 0.0770(0.0103) 0.2400(0.0460) 0.6600(0.0431) 0.6730(0.0473)

NOTEARS 0.1350(0.0050) 0.7257(0.0550) 0.2200(0.0472) 0.2184(0.0444)

20

200

NL 0.0086(0.0007) 0.1304(0.0127) 0.8923(0.01204) 0.8751(0.0100)
NPVAR 0.0249(0.0005) 0.0157(0.0091) 0.2785(0.0132) 0.5090(0.0132)

CAM 0.0303(0.0008) 0.4153(0.0179) 0.4092(0.0155) 0.4729(0.0158)
RESIT 0.0669(0.0014) 0.8893(0.0096) 0.1277(0.0105) 0.0856(0.0103)
GES 0.0633(0.0009) 0.8452(0.0074) 0.1877(0.0088) 0.1392(0.0082)
PC 0.0295(0.0012) 0.3775(0.0281) 0.3662(0.0181) 0.4626(0.0223)

NOTEARS 0.0389(0.0008) 0.5870(0.0177) 0.2892(0.0170) 0.3198(0.0137)

500

NL 0.0047(0.0005) 0.0000(0.0000) 0.8631(0.0138) 0.9255(0.0077)
NPVAR 0.0119(0.0005) 0.0150(0.0060) 0.6615(0.0144) 0.8001(0.0097)

CAM 0.0271(0.0009) 0.3878(0.0142) 0.5985(0.0132) 0.5907(0.0127)
RESIT 0.0878(0.0020) 0.8768(0.0061) 0.2446(0.0098) 0.1330(0.0080)
GES 0.0632(0.0007) 0.8464(0.0058) 0.1862(0.0073) 0.1380(0.0066)
PC 0.0275(0.0017) 0.3828(0.0292) 0.5323(0.0251) 0.5587(0.0273)

NOTEARS 0.0351(0.0007) 0.5016(0.0245) 0.2815(0.0143) 0.3496(0.0137)

100

200

NL 0.0020(0.0000) 0.0016(0.0008) 0.6963(0.0069) 0.8324(0.0041)
NPVAR ** ** ** **

CAM ** ** ** **
RESIT 0.0211(0.0003) 0.9928(0.0013) 0.0155(0.0028) 0.0008(0.0019)
GES 0.0266(0.0002) 0.9833(0.0007) 0.0515(0.0022) 0.0179(0.0013)
PC ** ** ** **

NOTEARS 0.0103(0.0002) 0.9487(0.0101) 0.0294(0.0059) 0.0334(0.0075)

500

NL 0.0018(0.0000) 0.0000(0.0000) 0.7333(0.0075) 0.8550(0.0044)
NPVAR ** ** ** **

CAM ** ** ** **
RESIT 0.0329(0.0006) 0.9861(0.0007) 0.0548(0.0024) 0.0146(0.0014)
GES 0.0219(0.0001) 0.9791(0.0010) 0.0497(0.0022) 0.0223(0.0015)
PC ** ** ** **

NOTEARS 0.0077(0.0001) 0.7380(0.0169) 0.0803(0.0052) 0.1410(0.0090)

under the small n and p case in terms of HD and FDR. It is interesting to point out

that although the metric TPR of NL decreases as n increases in some scenarios

of Examples 2 and 3, all the other three metrics indicate that the performance of

NL improves in that HD and FDR decrease and MCC increases as n increases.
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5.1 Simulated examples

Table 3: The averaged performance metrics of different methods as well as
their standard errors in parentheses in Example 3.

p n Methods HD FDR TPR MCC

5

100

NL 0.1530(0.0123) 0.4274(0.0331) 0.9753(0.0108) 0.6797(0.0255)
NPVAR 0.1260(0.0082) 0.2200(0.0592) 0.3168(0.0314) 0.4629(0.0387)

CAM 0.1670(0.0116) 0.4797(0.0619) 0.2456(0.0324) 0.3005(0.0427)
RESIT 0.1640(0.0132) 0.3343(0.0602) 0.2687(0.0267) 0.3637(0.0403)
GES 0.2220(0.0154) 0.6717(0.0484) 0.1822(0.0252) 0.1514(0.0360)
PC 0.2000(0.0141) 0.6300(0.0614) 0.1520(0.0257) 0.1680(0.0412)

NOTEARS 0.1430(0.0107) 0.3629(0.0570) 0.3591(0.0347) 0.4226(0.0402)

200

NL 0.1120(0.0108) 0.3520(0.0340) 0.9603(0.0134) 0.7341(0.0253)
NPVAR 0.1230(0.0075) 0.2600(0.0627) 0.3209(0.0339) 0.4541(0.0417)

CAM 0.1720(0.0106) 0.5433(0.0613) 0.2279(0.0308) 0.2631(0.0421)
RESIT 0.1530(0.0141) 0.3200(0.0579) 0.3532(0.0394) 0.4236(0.0452)
GES 0.2240(0.0150) 0.6637(0.0538) 0.1977(0.0325) 0.1608(0.0424)
PC 0.2060(0.0143) 0.6330(0.0591) 0.1690(0.0296) 0.1700(0.0420)

NOTEARS 0.1400(0.0081) 0.3300(0.0613) 0.2989(0.0313) 0.4030(0.0380)

20

200

NL 0.1159(0.0034) 0.5246(0.0117) 0.7376(0.0116) 0.5331(0.0100)
NPVAR 0.0715(0.0020) 0.0045(0.0027) 0.3236(0.0123) 0.5425(0.0104)

CAM 0.0800(0.0035) 0.2469(0.0245) 0.3713(0.0157) 0.4921(0.0192)
RESIT 0.1281(0.0045) 0.6861(0.0227) 0.1296(0.0074) 0.1408(0.0136)
GES 0.1507(0.0044) 0.8414(0.0115) 0.0981(0.0080) 0.0493(0.0105)
PC 0.1200(0.0038) 0.6970(0.0272) 0.0920(0.0084) 0.1170(0.0159)

NOTEARS 0.1227(0.0050) 0.5379(0.0147) 0.5141(0.0161) 0.4163(0.0102)

500

NL 0.0551(0.0019) 0.2241(0.0124) 0.6874(0.0109) 0.6993(0.0078)
NPVAR 0.0538(0.0016) 0.0093(0.0048) 0.4914(0.0144) 0.6746(0.0109)

CAM 0.0781(0.0037) 0.2853(0.0187) 0.4682(0.0138) 0.5384(0.0153)
RESIT 0.1381(0.0059) 0.6715(0.0194) 0.2228(0.0121) 0.1966(0.0156)
GES 0.1576(0.0045) 0.8294(0.0103) 0.1250(0.0079) 0.0648(0.0092)
PC 0.1250(0.0036) 0.7090(0.0169) 0.1250(0.0079) 0.1340(0.0121)

NOTEARS 0.0876(0.0036) 0.3227(0.0224) 0.4358(0.0147) 0.4905(0.0118)

100

200

NL 0.0600(0.0018) 0.8098(0.0062) 0.4856(0.0064) 0.2769(0.0051)
NPVAR ** ** ** **

CAM ** ** ** **
RESIT 0.0339(0.0006) 0.9058(0.0042) 0.0591(0.0025) 0.0577(0.0031)
GES 0.0430(0.0005) 0.9217(0.0024) 0.0865(0.0025) 0.0605(0.0025)
PC 0.0241(0.0003) 0.6247(0.0149) 0.1301(0.0057) 0.2110(0.0092)

NOTEARS ** ** ** **

500

NL 0.0295(0.0008) 0.6055(0.0142) 0.4839(0.0068) 0.4184(0.0084)
NPVAR ** ** ** **

CAM ** ** ** **
RESIT 0.0368(0.0009) 0.8752(0.0056) 0.0994(0.0031) 0.0920(0.0040)
GES 0.0394(0.0005) 0.8820(0.0035) 0.1190(0.0036) 0.0985(0.0036)
PC 0.0247(0.0003) 0.6181(0.0141) 0.1774(0.0067) 0.2492(0.0097)

NOTEARS ** ** ** **

This observation is largely due to the fact that when n is relatively small, many

false directed edges are discovered resulting in a high value of FDR, and thus

leads to a high value of TPR. As n increases, the estimation procedure in NL

becomes more accurate and many false directed edges are eliminated leading to
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5.2 Application to cell signalling data

the decreasing of TPR. Note that the performance of NPVAR is less satisfactory,

possible due to the fact that it is designed for the equal variance case and the

considered additive modeling can not detect the interaction relations. It is also

worth pointing out that the performance of NL may be further improved with

a finer tuning scheme at the cost of increasing computational cost. Note that

NPVAR, CAM and PC do not produce any results for the cases with p = 100 in

Examples 1 to 2 after more than 24 hours, which indicates that they may suffer

serious computational burden even when dealing with a medium-sized DAG.

Moreover, we report the averaged running times of all the competing methods

under various examples and scenarios in Table 4. Precisely, we consider the same

generating schemes in Examples 1 to 3 and vary (n, p) from (200, 50), (200, 100),

(500, 50) to (500, 100). It is thus clear from Table 4 that compared to all the

other competitors, NL is remarkably computational efficient especially under the

case that the number of nodes is relatively large. It is also interesting to notice

that the averaged running times of GES are less than NL at the cost of achieving

less satisfactory numerical results as illustrated in Tables 1 to 3.

5.2 Application to cell signalling data

In this section, we apply NL and all the other competitors to analyze the mul-

tivariate flow cytometry data collected by Sachs et al. (2005), which consists of

continuous measurement of multiply phosphorylated proteins and phospholipid

components following perturbation of thousands of individual human immune

system cells with molecular interventions. Precisely, the intracellular signaling

networks of human primary naive CD4+ T-cells are studied by recording cell
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5.2 Application to cell signalling data

Table 4: The averaged running times (in minutes) of all the competitors
under various scenarios of Examples 1 to 3 together with their standard
errors in parentheses. Here ** denotes that the corresponding methods do
not produce any results after running 24 hours.

n p Methods Example 1 Example 2 Example 3

200

50

NL 4.30(0.13) 2.97(0.10) 3.92(0.48)
NPVAR ** ** **

CAM 590.33(40.40) 590.19(47.06) 590.94(27.95)
RESIT 25.37(0.21) 26.62(0.56) 25.22(0.53)
GES 0.09(0.01) 0.07(0.01) 0.10(0.02)
PC 3.73(1.15) 2.32(1.25) 0.08(0.01)

NOTEARS 45.81(21.10) 21.95(8.37) 240.12(69.53)

100

NL 7.70(0.21) 5.14(0.15) 7.76(0.71)
NPVAR ** ** **

CAM ** ** **
RESIT 117.90(0.34) 120.95(0.52) 120.62(0.87)
GES 0.61(0.13) 0.47(0.08) 0.98(0.14)
PC ** ** 0.38(0.07)

NOTEARS 393.86(120.93) 173.25(38.55) 2441.87(641.96)

500

50

NL 29.32(0.37) 19.41(0.15) 27.45(2.47)
NPVAR 38.89(3.12) 37.27(2.74) 109.26(8.70)

CAM ** ** **
RESIT 186.52(1.96) 189.02(2.84) 181.36(4.61)
GES 0.09(0.01) 0.07(0.01) 0.12(0.01)
PC 1225.07(576.60) 175.29(73.81) 0.09(0.01)

NOTEARS 39.28(13.71) 18.62(4.56) 353.39(44.41)

100

NL 55.45(0.16) 38.58(0.18) 56.08(6.28)
NPVAR ** ** **

CAM ** ** **
RESIT 799.70(28.69) 811.64(11.94) 802.94(10.19)
GES 0.73(0.21) 0.40(0.05) 0.81(0.13)
PC ** ** 0.44(0.09)

NOTEARS 176.17(43.89) 132.30(67.72) 2679.03(668.18)

reactions terminated by 15 fixation minutes after a series of interventions, and

flow cytometry measurements are taken from 11 expression levels of proteins

and phospholipids under 9 experimental conditions. Note that this data can be

regarded as a common benchmark in causal inference, due to the fact that it

comes with a known consensus network, and is widely accepted by the biological

community.

Following the same treatment as in Yuan et al. (2019), we also consider one

specific condition among the 9 experimental conditions, which uses anti-cluster
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5.2 Application to cell signalling data

of differentiation 3 (CD3) /cluster of differentiation 28 (CD28) and intercellular

adhesion molecule-2 (ICAM-2) as general perturbations since they attempt to

activate cell signaling. Then, we use the consensus network in Sachs et al. (2005)

as the true network as illustrated in Figure 3(a), and we apply all the competitors

to analyze this data. The learned DAGs are illustrated in Figure 3 and the

numerical metrics of all the competitors are also reported in Table 5.

From Figure 3, it is clear that NL is the best performer in that 19 directed

edges are learned and among them, 12 edges agree with the true DAG, and 7

edges are false reconstructed. GES is the second performer that 8 directed edges

are correctly recovered and the next is PC with 7 edges correctly estimated. The

performance of NPVAR and CAM is similar that they both correctly identify 5

edges and obtain similar skeleton structures, largely due to the fact that they both

use additive modeling and thus may miss some directed relations with a more

general dependence structure. NOTEARS can also correctly recover 5 directed

edges at the cost of returning a large number of false discovered edges. RESIT

only correctly identifies 4 edges. It is interesting to notice that many true edges,

such as PKC → PKA and PKA → P38, are correctly recovered by NL, but are

missed by all the other methods. This indicates that NL is able to detect more

general causal relations among collected nodes. The superior performance of NL

is also supported by the numerical metrics in Table 5 that it is the best performer

under almost all the evaluation metrics.
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5.2 Application to cell signalling data

(a) True Graph (b) NL (c) NPVAR

(d) CAM (e) RESIT (f) GES

(g) PC (h) NOTEARS

Figure 3: The true DAG and DAG learned by the seven competitors. Cor-
rect discoveries are represented by solid blue lines, false discoveries are
displayed as solid grey lines.
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Table 5: The numerical performance of all the competitors in application
to cell signalling data.

Methods SHD FDR TPR MCC
NL 0.1364 0.3684 0.60 0.5418

NPVAR 0.2000 0.5833 0.25 0.2246
CAM 0.2091 0.6154 0.25 0.2049

RESIT 0.2182 0.6667 0.20 0.1501
GES 0.1455 0.3333 0.40 0.4479
PC 0.1455 0.3000 0.35 0.4321

NOTEARS 0.3909 0.8485 0.25 -0.0227

6. Discussion

This paper proposes an efficient method to learn nonparametric DAG from ob-

served data with sound statistical guarantees. The proposed method leverages

the concept of topological layers to facilitate nonparametric DAG learning and

connects nonparametric DAG learning with kernel ridge regression and learning

gradients by showing that the introduced layers can be exactly reconstructed

via kernel ridge regression. More interestingly, the parent-child relations can

be simultaneously recovered without any extra estimation by using the deriva-

tive reproducing property in the smooth RKHS. An efficient learning algorithm

is developed and the statistical guarantees of the proposed method in terms of

exact DAG recovery are established ensuring the underlying DAG with general

parent-child dependence can be exactly recovered. Its superior performance is

also supported by numerical experiments on a variety of simulated and real-life

examples. It is interesting to point out that one of the possible future work is to

modify the proposed method to reconstruct the topological layers in a bottom-

up fashion if some decreasing noise-variance assumption is satisfied, where the

topological layers should be defined based on the longest distance to one of the

leaf nodes.
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