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Abstract: Maximin distance designs are a kind of space-filling design, and are widely used in

computer experiments. However, although much work has been done on constructing such

designs, doing so for a large number of rows and columns remains challenging. In this paper,

we propose a theoretical construction method that generates a maximin L1-distance Latin

hypercube design with a run size that is close to the number of columns, or half the number of

columns. Our theoretical results show that some of the constructed designs are both maximin

L1-distance and equidistant designs, which means that their pairwise L1-distances are all equal,

and that they are uniform projection designs. Other designs are asymptotically optimal under

the maximin L1-distance criterion. Moreover, the proposed method is efficient for constructing

high-dimensional Latin hypercube designs that perform well under the maximin L1-distance

criterion.

Key words and phrases: Computer experiment, Latin square, maximin distance design, space-

filling design.

1. Introduction

Computer experiments are increasingly being used to investigate complex systems

(Fang, Li, and Sudjianto, 2006). In doing so, it is crucial to use a good space-filling de-
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sign in order to explore the design space effectively and build a high-quality metamodel.

Generating a space-filling design involves seeking design points that fill a bounded de-

sign region as uniformly as possible. Much work has been done on constructing such

designs, including Latin hypercube designs (LHDs; McKay, Beckman, and Conover,

1979) and their extensions (Lin, Mukerjee, and Tang, 2009), maximin distance designs

(Johnson, Moore, and Ylvisaker, 1990), and uniform designs (Fang et al., 2018).

One fruitful approach to constructing space-filling designs is to use orthogonal ar-

rays (Hedayat, Sloane, and Stufken, 1999). Owen (1992) and Tang (1993) consider

randomized orthogonal arrays and orthogonal array-based LHDs, respectively, repre-

senting an important development in this area. Orthogonal arrays have also been used

to construct orthogonal LHDs; see Steinberg and Lin (2006), Pang, Liu, and Lin (2009),

Sun, Liu, and Lin (2009, 2010), Sun, Pang, and Liu (2011), and Wang et al. (2018).

Another approach is to find optimal designs based on other criteria, such as uniformity

measures (Fang, Li, and Sudjianto, 2006; Fang et al., 2018), the maximin and minimax

distances (Johnson, Moore, and Ylvisaker, 1990), and the integrated mean squared

error (Montgomery, 2008). Santner, Williams, and Notz (2018) comprehensively ex-

amine various space-filling measures, finding that the maximin distance criterion, which

maximizes the minimal distance between all pairs of points, is preferable to the other

criteria.

Morris and Mitchell (1995) use a simulated annealing algorithm to search for max-

imin LHDs. Joseph and Hung (2008) propose an algorithm that generates an orthog-

onal maximin LHD by combining correlation and distance performance measures. Ba,
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Myers, and Brenneman (2015) propose an efficient algorithm that searches for max-

imin distance sliced LHDs, available as an R package called “SLHD.” Numerous other

algorithms have also been proposed for constructing maximin LHDs; see Lin and Tang

(2015) for a review. Such algorithmic methods are useful for generating flexible LHDs,

but are not efficient for constructing large designs, owing to their computational com-

plexity. However, large designs are needed for computer experiments; for example,

Morris (1991) and Kleijnen (1997) provide many computer models that involve sev-

eral hundred factors. Xiao and Xu (2017) note that in such cases, it is not unreasonable

to assume effect sparsity. Thus, saturated or even supersaturated LHDs are useful for

identifying a few active factors using limited runs.

Zhou and Xu (2015) propose constructing maximin LHDs by using a linear-level

permutation based on good lattice point sets. Xiao and Xu (2017) propose methods

for constructing LHDs with large L1-distances that use Costas arrays. Wang, Xiao,

and Xu (2018) use Williams transformations of good lattice point designs to construct

a series of maximin LHDs, some of which are optimal under the maximin L1-distance

criterion and have small pairwise correlations between columns. He (2019) proposes

a method for constructing maximin distance designs from interleaved lattices. Zhou,

Yang, and Liu (2020) use the rotation method to construct maximin L2-distance LHDs

based on a 22 full factorial design and a series of saturated two-level regular designs.

Li, Liu, and Tang (2021) propose an easy-to-use method for constructing maximin

distance designs based on some carefully selected small designs.

Focusing on two-dimensional projection uniformity, Sun, Wang, and Xu (2019)
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propose a design criterion called the uniform projection criterion. Uniform projection

designs generated under this criterion scatter points uniformly in all dimensions, and

have good space-filling properties in terms of distance, uniformity, and orthogonality.

Moreover, the authors show that maximin L1-equidistant designs are uniform projec-

tion designs, and provide a method for constructing uniform projection designs based

on good lattice point sets when the number of rows is an odd prime.

Lin and Kang (2016) propose a general method for constructing Latin hypercubes

with flexible run sizes for computer experiments. The method uses arrays with a special

structure and LHDs. They show that their method can be used to generate maximin

LHDs with flexible run sizes under the ϕr criterion. However, constructing maximin

distance LHDs with many rows and columns remains challenging. Here, we propose

a method for generating maximin L1-distance LHDs with run sizes that are close to

the number of columns, or half the number of columns. Some of the resulting designs

are also Latin squares, which are widely used in designs of experiments and in other

fields, see, for example, Hedayat, Sloane, and Stufken (1999) and Keedwell and Dénes

(2015). Our theoretical results show that some of the constructed designs are both

maximin L1-distance and equidistant designs, which means their pairwise L1-distances

are all equal, as well as being uniform projection designs. Furthermore, others are

asymptotically optimal under the maximin L1-distance criterion.

The rest of this paper is organized as follows. Section 2 provides preliminaries

needed for the development in the subsequent sections. The proposed construction

method is presented in Section 3. Theoretical results and comparisons are provided in
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Section 4. Section 5 concludes the paper. All proofs are deferred to the Appendix.

2. Preliminaries

For a positive integer b, let Zb denote the set {1, . . . , b}. Given any two integers a

and b, gcd(a, b) denotes the greatest common divisor of a and b. If gcd(a, b) = 1, then

a is coprime to b. For any real number r, ⌊r⌋ is the integer part of r.

A Latin square of order n is an n× n square matrix with n2 entries of n different

elements, none of them occurring twice within any row or column of the matrix. An

isotopism of a Latin square L permutes the rows, columns, and elements of L, resulting

in another Latin square, which is said to be isotopic to L. These two Latin squares

belong to the same isotopy class (an isotopy class of Latin squares is an equivalence

class for the isotopy relation). An LHD, denoted by LHD(n, s), is an n × s matrix

in which each column is a permutation of the n different elements from Zn. A Latin

square of order n is a special LHD(n, n) if the n different elements are taken from Zn.

For an integer q ≥ 1, define dq(x,y) =
(∑s

i=1 |xi − yi|q
)1/q

as the Lq-distance of

any two row vectors, x = (x1, . . . , xs) and y = (y1, . . . , ys). In this paper, we take

q = 1. Define the L1-distance of design D as

d1(D) = min{d1(x,y) : x ̸= y,x,y ∈ D}.

A maximin L1-distance design D∗ is defined as a design that satisfies

d1(D
∗) = max

D
d1(D),

from among all possible candidate designs.
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3. Construction Method

For a positive integer N , the number of positive integers that are less than and

coprime to N is ϕ(N), where ϕ(·) is the Euler function. It is easy to see that ϕ(N) is

even for any integer N > 2. Define a generator vector h as

h = (h1, . . . , hn), (3.1)

where 1 = h1 < · · · < hn ≤ ⌊N/2⌋, and gcd(hi, N) = 1, for i = 1, . . . , n, and

n = ϕ(N)/2. It is easy to verify that h consists of the first ϕ(N)/2 elements of the

generator vector for the N × ϕ(N) good lattice point sets. Taking h given in (3.1)

as the generator vector, we obtain an n × n square matrix L = (rij), with its (i, j)th

element rij defined by

rij = min{hi ∗ hj (mod N), N − hi ∗ hj (mod N)}, i, j = 1, . . . , n. (3.2)

Lemma 1. The n× n matrix L constructed in (3.2) is a Latin square of order n with

n different elements {h1, . . . , hn}.

Table 1: Latin squares constructed using (3.2) for N = 11 and 22.

N = 11 N = 22

1 2 3 4 5 1 3 5 7 9

2 4 5 3 1 3 9 7 1 5

3 5 2 1 4 5 7 3 9 1

4 3 1 5 2 7 1 9 5 3

5 1 4 2 3 9 5 1 3 7

Example 1. Let N = 11 and 22. Then, n = ϕ(N)/2 = 5, h = (1, 2, 3, 4, 5) for N = 11,

and h = (1, 3, 5, 7, 9) for N = 22. The Latin squares constructed using (3.2) are listed

in Table 1.
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For the Latin square L constructed using (3.2), replace each element hi with i, for

i = 1, . . . , n, and denote the obtained matrix as D. Then, D is both an LHD(n, n)

and a Latin square of order n with n different elements in Zn. The following example

shows that design D performs well under the maximin L1-distance criterion.

Example 2. Take the Latin square for N = 22 in Table 1 as an example. Replace

each element hi with i, for i = 1, . . . , n, that is, 1 → 1, 3 → 2, 5 → 3, 7 → 4, and

9 → 5. Then, we have

1 3 5 7 9

3 9 7 1 5

5 7 3 9 1

7 1 9 5 3

9 5 1 3 7


−→



1 2 3 4 5

2 5 4 1 3

3 4 2 5 1

4 1 5 3 2

5 3 1 2 4


.

It is easy to see that the generated matrix is both an LHD(5, 5) and a Latin square of

order 5. Furthermore, the L1-distances of the two LHD(5, 5)’s obtained when N = 11

and 22 are both equal to 10 = (5 + 1)5/3.

For an LHD(n, s), the average pairwise L1-distance is (n + 1)s/3 (Zhou and Xu,

2015). In addition, the minimum pairwise L1-distance cannot exceed the integer part

of the average. Hence, the upper bound of the L1-distance of any LHD(n, s) is dupper =

⌊(n + 1)s/3⌋. It can be verified that the LHDs obtained in Example 2 are maximin

L1-distance designs. Inspired by this, we propose the following method for constructing

maximin distance LHDs.

Algorithm 1 (Construction of maximin L1-distance LHD(n, n)).

Step 1. For a given integer N , obtain the generator vector h = (h1, . . . , hn) from (3.1),

where n = ϕ(N)/2.

Statistica Sinica: Preprint 
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Step 2. Generate the n× n Latin square L using (3.2), where each row and column is

a permutation of {h1, . . . , hn}.

Step 3. Replace each element hi in L with i, for i = 1, . . . , n, and denote the resulting

LHD(n, n) as D.

Note that we can also use N − h as the generator vector in Algorithm 1. In this

case, the obtained design is the same as that constructed using the generator vector h.

For the LHD(n, n) D constructed by Algorithm 1, let l1, . . . , ln be its 1st to nth

rows, and αi be the bijection from l1 = (1, . . . , n) to li = (li1, . . . , lin) with αi(k) = lik,

for k = 1, . . . , n, i = 1, . . . , n. Here, α1 is obviously an identity mapping, and we have

the following result.

Lemma 2. The transformation set {α1, α2, . . . , αn} is a commutative group.

Remark 1. For any two distinct rows li and lj(i < j) from D, reorder the elements of

li such that its elements are in increasing order, that is, li is transformed to l1. Apply

the same permutation on the elements of row lj, and denote the newly obtained row

by l′j. From Lemma 2 and the definition of the L1-distance criterion, it is easy to verify

that l′j is still a row of D, and d1(li, lj) = d1(l1, l
′
j). Hence, the pairwise L1-distances

between rows in D take at most n− 1 different values.

Example 3. To illustrate Remark 1, take the LHD(5, 5) D (listed in Table 1) con-

structed by Algorithm 1 for N = 11 as an example. Let α1, α2, α3, α4, α5 be the five

bijections corresponding to its rows l1, l2, l3, l4, l5, respectively. It can be verified that
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α−1
i (li) = l1, for i = 1, . . . , 5, and the following equalities hold:

d1(l2, l3) = d1(α
−1
2 (l2), α

−1
2 (l3)) = d1(l1, l4),

d1(l2, l4) = d1(α
−1
2 (l2), α

−1
2 (l4)) = d1(l1, l2),

d1(l2, l5) = d1(α
−1
2 (l2), α

−1
2 (l5)) = d1(l1, l3),

d1(l3, l4) = d1(α
−1
3 (l3), α

−1
3 (l4)) = d1(l1, l5),

d1(l3, l5) = d1(α
−1
3 (l3), α

−1
3 (l5)) = d1(l1, l2),

d1(l4, l5) = d1(α
−1
4 (l4), α

−1
4 (l5)) = d1(l1, l4).

This means that the L1-distance of any two different rows in D is equal to one of the

L1-distances between its 1st row l1 and other rows lj′ , for j′ = 2, 3, 4, 5. Hence, the

pairwise L1-distances between rows in D take at most four different values.

Lemma 2 also implies that each transformation in the set {α1, α2, . . . , αn} has an

inverse mapping. Then, the design D generated by Algorithm 1 has the following

property.

Corollary 1. For row l1 and any two other rows li and lj (2 ≤ i, j ≤ n) of de-

sign D generated by Algorithm 1, with corresponding transformations α1, αi, and αj,

respectively, if αj is the inverse mapping of αi, then d1(l1, li) = d1(l1, lj).

Remark 2. From Lemma 2 and Corollary 1, the pairwise L1-distances of the LHD(n, n)

D generated by Algorithm 1 take at most ⌊n/2⌋ different values, which are included in

the set {d1(l1, li), 2 ≤ i ≤ n}.

Example 4 (Example 3 continued). ForN = 11, consider the LHD(5, 5)D constructed

by Algorithm 1. It is easy to check that α−1
2 = α5, α

−1
3 = α4, α

−1
4 = α3, and α−1

5 = α2.

Statistica Sinica: Preprint 
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Then, we have

d1(l1, l2) = d1(α5(l1), α5(l2)) = d1(l5, l1) = d1(l1, l5),

d1(l1, l3) = d1(α4(l1), α4(l3)) = d1(l4, l1) = d1(l1, l4).

Therefore, the pairwise L1-distances between the rows in D take at most two different

values.

Figure 1: Maximum number of different values of the pairwise L1-distances in the

LHD(n, n)’s constructed by Algorithm 1.

In fact, for the LHD(n, n) D constructed by Algorithm 1, the number of different

values of the pairwise L1-distances between its rows is far less than ⌊n/2⌋ in most cases.

For a given positive integer n, because there may be more than one LHD(n, n) that

can be constructed from Algorithm 1, Figure 1 plots the maximum number of different

values of the pairwise L1-distances between different rows from among all possible such

designs for each n (n ≤ 800). From Figure 1, it is easy to see that there are few designs

with ⌊n/2⌋ different values of the pairwise L1-distances; in most cases, the number of

different values of the pairwise L1-distances is far less than ⌊n/2⌋.
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Table 2: Pairwise L1-distances of the LHD(n, n)’s generated by Algorithm 1.

N n #{d1(li, lj)} d1(D) d1(D)/dupper

11, 22 5 1 10 1

13, 26 6 1 14 1

17, 34 8 1 24 1

19, 38 9 1 30 1

25, 33 10 2, 3 34 0.94

23, 46 11 1 44 1

39 12 4 48 0.92

29, 58 14 1 70 1

31, 62 15 1 80 1

51 16 4 86 0.96

37, 74 18 1 114 1

41, 82 20 1 140 1

43, 86 21 1 154 1

69 22 5 162 0.96

47, 94 23 1 184 1

65 24 8 186 0.93

53, 106 26 1 234 1

81 27 3 244 0.97

87, 116 28 5, 6 262 0.97

59, 118 29 1 290 1

For further clarification, we consider 11 ≤ N ≤ 118, and list the possible LHD(n,n)’s

generated by Algorithm 1 with different n values in Table 2. We define the efficiency

of an LHD(n, s) D under the maximin L1-distance criterion as d1(D)/dupper, with

dupper = ⌊(n + 1)s/3⌋ (Zhou and Xu, 2015). It is obvious that d1(D)/dupper ≤ 1, and

a design with larger efficiency is preferable. When d1(D)/dupper < 1, we select the

largest d1(D)/dupper, and give the corresponding two smallest N ’s (if they exist) with

different #{d1(li, lj)}(number of different pairwise L1-distances for the same n). Table

2 shows that the number of different values of the pairwise L1-distances is far less than

Statistica Sinica: Preprint 
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⌊n/2⌋, and the LHD(n, n)’s constructed by the proposed method perform well under

the maximin L1-distance criterion.

Figure 2: Minimum efficiencies of LHD(n, n)’s generated by Algorithm 1 for general

N ’s, where n = ϕ(N)/2.

Because there is more than one positive integer N that has the same value of the

Euler function ϕ(·), for a given positive integer n, there is more than one possible

LHD(n, n) that can be constructed by Algorithm 1. To further explore the overall

performance of the proposed method under the maximin L1-distance criterion, Figure

2 plots the minimum efficiency for each n (n ≤ 800). It is easy to see that the minimum

efficiency of the constructed LHD(n, n) converges to one for large n. The proposed

method can be used to generate large LHDs with large L1-distances.
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4. Theoretical Results and Comparisons

The proposed method generates optimal LHDs under the maximin L1-distance

criterion for different values of N . Next, we further explore the properties of the LHDs

constructed by Algorithm 1 in different cases. Throughout the paper, we assume that

p is an odd prime.

4.1 N = p and 2p

When N = p and 2p, the generator vectors in (3.1) are h = (1, 2, . . . , n) and (1, 3,

. . . , 2n − 1), respectively, where n = ϕ(N)/2 = (p − 1)/2. It is easy to verify that

the integer 3 divides n or n + 1 for p ≥ 5. The following result holds for a design D

generated by Algorithm 1.

Theorem 1. For N = p or 2p, and n = ϕ(N)/2 = (p − 1)/2, the LHD(n, n) D

generated by Algorithm 1 is a maximin L1-distance LHD, with its pairwise L1-distances

between rows all equal to n(n+ 1)/3.

Remark 3. (i) Theorem 1 suggests that when N is an odd prime or twice an odd

prime, the pairwise L1-distances of D are all equal to a constant. We call such a design

an equidistant LHD, which is a maximin L1-distance LHD. (ii) Hence, by Theorem 3

in Sun, Wang, and Xu (2019), the constructed designs when N = p and 2p are also

uniform projection designs, which have good space-filling properties, not only in two

dimensions, but also in all dimensions. (iii) When N = p, the LHD(n, n) D is the same

as the design H constructed in Wang, Xiao, and Xu (2018). Then, by Theorem 7 in

Wang, Xiao, and Xu (2018), we have that the average pairwise absolute correlation

Statistica Sinica: Preprint 
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between columns of D, denoted by ρave(D), satisfies ρave(D) < 2/(n− 1).

Example 5. For both N = 13 and 26, and n = ϕ(N)/2 = 6, the generator vectors

are h = (1, 2, 3, 4, 5, 6) and h = (1, 3, 5, 7, 9, 11), respectively. Table 3 lists the two

LHD(6, 6)’s generated by Algorithm 1. Here, the pairwise L1-distances between the

rows of each design are all equal to 14, implying that both D1 and D2 are equidistant

and maximin L1-distance LHDs. In addition, if we permute the rows, columns, and

elements of D1 according to the permutation(
1 2 3 4 5 6

1 4 5 2 3 6

)
, (4.1)

then the obtained design is D2; that is, D1 and D2 are equivalent (i.e., they belong to

the same isotopy class). This may not be true in general; see Table 2.

Table 3: Two LHD(6, 6)’s D1 and D2 generated by Algorithm 1 for N = 13 and 26.

D1 D2

1 2 3 4 5 6 1 2 3 4 5 6

2 4 6 5 3 1 2 5 6 3 1 4

3 6 4 1 2 5 3 6 1 5 4 2

4 5 1 3 6 2 4 3 5 2 6 1

5 3 2 6 1 4 5 1 4 6 2 3

6 1 5 2 4 3 6 4 2 1 3 5

Consider two equidistant LHDs D1 and D2 for N = p and 2p, respectively, con-

structed by Algorithm 1, and let

D∗ = [D1, D2]. (4.2)

Then, we have the following result.

Statistica Sinica: Preprint 
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Theorem 2. The LHD(n, 2n) D∗ defined in (4.2) is also equidistant, and thus a

maximin L1-distance LHD, with its pairwise L1-distances between rows all equal to

2n(n+ 1)/3, where n = (p− 1)/2.

Remark 4. The 1st and (n + 1)th columns in D∗ constructed by (4.2) are the same,

and we denote the design obtained by deleting its (n+ 1)th column as D∗
−1. When we

delete one column from an LHD with n rows, its L1-distance reduces by at most n− 1;

thus, the L1-distance of the LHD(n, 2n− 1) D∗
−1 satisfies d1(D

∗
−1) ≥ (2n2 − n + 3)/3.

In addition, it is easy to obtain that d1(D
∗
−1)/dupper > 1− 1/(n+1), which means that

D∗
−1 is an asymptotically optimal LHD, where dupper = ⌊(n+ 1)(2n− 1)/3⌋.

Theorem 2 is obvious from the equidistant property of the LHDs constructed by

Algorithm 1 when N = p and 2p. Furthermore, if there are more than two equidistant

LHDs with the same number of rows, we can generate larger maximin distance LHDs

with more columns that are also equidistant.

Example 6 (Example 5 continued). Consider p = 13. The two LHD(6, 6)’s D1 and D2

generated by Algorithm 1 for N = p and 2p, respectively, are listed in Table 3. From

Theorem 1, it follows that they are both equidistant LHDs with d1(D1) = d1(D2) =

14. The corresponding LHD(6, 12) D∗ constructed in (4.2) is also equidistant, with

d1(D
∗) = 28, which attains the upper bound of the L1-distance. Because the first

columns in each of the two designs listed in Table 3 are the same, we can obtain an

LHD(6, 11) D∗
−1 by deleting one of the repeated columns. Then, d1(D

∗
−1) = 23, which

is very close to the corresponding upper bound dupper = 25.

For an LHD(n, n) constructed by Algorithm 1, by adding a row with its n elements

Statistica Sinica: Preprint 
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all n+1, the obtained design has the same L1-distance as the corresponding LHD(n, n),

and the following result holds.

Lemma 3. Let D be an equidistant LHD(n, n) constructed by Algorithm 1 for N = p

and 2p, and let D′ be the LHD(n + 1, n) obtained by adding a row of (n + 1)’s to D.

Then, d1(D
′) = d1(D) = (n+ 1)n/3, and

d1(D
′)/dupper ≥ 1− 1/(n+ 2) → 1 as n → ∞,

where dupper = ⌊(n+ 2)n/3⌋.

Lemma 3 is obvious, and shows that D′ is an asymptotically optimal design under

the maximin L1-distance criterion. In addition, when we delete any column from an

LHD(n, s) D, its L1-distance reduces by at most n− 1. After repeating this procedure

multiple times, we have the following result.

Lemma 4. Let D be an equidistant LHD(n, n) constructed by Algorithm 1. Deleting

any kc columns yields an LHD(n, n− kc), denoted by D′. Then,

d1(D
′)/dupper ≥ 1− 2kc/(n− kc).

If kc is a fixed constant, not increasing with n, then d1(D
′)/dupper → 1 as n → ∞;

that is, designs obtained by deleting columns from an equidistant LHD are asymp-

totically optimal LHDs with different sizes under the maximin L1-distance criterion.

Similar results hold for deleting columns from any (asymptotically) optimal design

under the maximin L1-distance criterion.
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4.2 N = 2t and 2tp

When N(≥ 16) is double even, that is, N/2 is an even integer, according to Lemma

1 in Elsawah, Fang, and Deng (2021), we have n = ϕ(N)/2 = ϕ(N/2), and n is even.

For a designD generated by Algorithm 1, denoteD′ as the submatrix ofD that consists

of its first n/2 columns. Then, we have the following result from Theorem 5 in Elsawah,

Fang, and Deng (2021). We omit the proof.

Theorem 3. For any double even integer N(≥ 16), let D = (lij) be the LHD(n, n)

generated by Algorithm 1, where n = ϕ(N)/2. We have the following results:

(i) The elements in D satisfy lij + li(n+1−j) = n + 1 and lij + l(n+1−i)j = n + 1, for

any i, j = 1, . . . , n, which implies

D =

(
A1 n+ 1− A2

n+ 1− A3 A4

)
,

where A1 is the n/2× n/2 leading principal submatrix of D, and A2, A3, and A4

can be obtained from A1 by reversing the orders of the columns, rows, and both,

respectively;

(ii) Denote D′ as the n×n/2 submatrix of D that consists of its first n/2 columns, that

is, D′ =

(
A1

n+ 1− A3

)
. Then, D′ is an LHD(n, n/2), and d1(D

′) = d1(D)/2.

Theorem 3 (i) shows that whenN(≥ 16) is double even, the corresponding LHD(n, n)

generated by Algorithm 1 has a fold-over or mirror-symmetric structure with respect

to both rows and columns.

Example 7. Consider the double even integers N = 28 and 32. The corresponding

LHD(6, 6) and LHD(8, 8) constructed by Algorithm 1 are listed in Table 4. Divide
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each of the two LHDs into four blocks, as shown in Table 4. Then, it is easy to

verify that property (i) in Theorem 3 holds. Let D′
1 and D′

2 be the 6 × 3 and 8 × 4

submatrices consisting of the first-half columns of D1 and D2, respectively. Then,

d1(D
′
1) = d1(D1)/2 = 6 and d1(D

′
2) = d1(D2)/2 = 11.

Table 4: LHD(n, n)’s constructed by Algorithm 1 for double even integers N = 28 and 32.

D1: LHD(6, 6) for N = 28 D2: LHD(8, 8) for N = 32

1 2 3 4 5 6 1 2 3 4 5 6 7 8

2 4 6 1 3 5 2 5 8 6 3 1 4 7

3 6 2 5 1 4 3 8 4 2 7 5 1 6

4 6 2 8 1 7 3 5

4 1 5 2 6 3

5 3 1 6 4 2 5 3 7 1 8 2 6 4

6 5 4 3 2 1 6 1 5 7 2 4 8 3

7 4 1 3 6 8 5 2

8 7 6 5 4 3 2 1

When N = 4p and n = ϕ(N)/2 = p − 1, the corresponding generator vector h

consists of p− 1 elements {2j− 1, j = 1, . . . , p}\{p}. When N = 2t and n = ϕ(N)/2 =

2t−2, the corresponding generator vector is h = (1, 3, . . . , 2n−1). We have the following

results for N = 2t and 4p.

Theorem 4. Let D be the LHD(n, n) generated by Algorithm 1, with n = ϕ(N)/2.

(i) If N = 4p and p ≥ 5, then n = ϕ(N)/2 = p− 1 and

d1(D) =

{
n2/3, if p (mod 3) = 1,

(n2 + 2)/3, if p (mod 3) = 2;

(ii) If N = 2t and t ≥ 3, then n = 2t−2 and

d1(D) = (n2 + 2)/3.
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In addition, for both cases, we have d1(D)/dupper ≥ 1 − 1/(n + 1), where dupper =

⌊(n+ 1)n/3⌋.

We can establish similar theoretical results for the constructed LHD(n, n)’s when

N = 2tp (t > 2), with more elaborate arguments; the details are omitted here. Figure

3 plots the efficiencies of the LHD(n, n)’s generated by Algorithm 1 when N = 2tp (t =

3, 4 and 16 < p < 200), showing that the constructed designs perform well under the

maximin L1-distance criterion.

Figure 3: Efficiencies of LHD(n, n)’s generated by the proposed method for N = 23p

and 24p.

Corollary 2. From Theorems 3 and 4, the following results hold for the LHD(n, n/2)

D′:
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(i) if N = 4p and p ≥ 5, then n = ϕ(N)/2 = p− 1 and

d1(D
′) =

{
n2/6, if p (mod 3) = 1,

(n2 + 2)/6, if p (mod 3) = 2;

(ii) if N = 2t and t ≥ 4, then n = 2t−2 and

d1(D
′) = (n2 + 2)/6.

Because the upper bound of d1(D
′) is dupper = ⌊(n + 1)n/6⌋, it is easy to verify

that d1(D
′)/dupper → 1 as n → ∞ for each case listed in Corollary 2; that is, the

LHD(n, n/2) D′ is an asymptotically optimal design under the maximin L1-distance

criterion. More generally, when N is double even, for each LHD(n, n) constructed

by the proposed method, the corresponding submatrix that consists of its first n/2

columns is asymptotically optimal under the maximin L1-distance criterion, as long as

the LHD(n, n) itself is asymptotically optimal.

In Figure 4, we compare the efficiencies of the LHD(p − 1, (p − 1)/2)’s generated

by the linear permutation of good lattice point sets method (“LP-GLP,” Zhou and

Xu, 2015), the R package SLHD (“SLHD,” Ba, Myers, and Brenneman, 2015), and

the proposed method (“new method”) in Algorithm 1 for 5 ≤ p < 200. Because the

last row of a p × (p − 1) good lattice point set D is (0, . . . , 0), the last row of the

linear permutation good lattice point set Db is (b, . . . , b), for b = 0, 1, . . . , p − 1. We

use the leave-one-out method given in Wang, Xiao, and Xu (2018) to generate an

LHD(p− 1, p− 1) based on each Db. Then, we can construct p LHD(p− 1, (p− 1)/2)’s

by taking the first (p − 1)/2 columns of each design. Of these p designs, we choose

the one with the largest L1-distance for comparison. The SLHD package generates
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optimal designs under the average reciprocal inter-point distance measure ϕr (Morris

and Mitchell, 1995). Therefore, we run the command maximinSLHD with the option

t = 1 and the default settings (r = 15) 100 times, and choose the design with the largest

L1-distance. For comparison, from the LHD(p − 1, p − 1) generated by Algorithm 1

when N = 4p, we choose the first (p−1)/2 columns to obtain an LHD(p−1, (p−1)/2),

as stated in Theorem 3. Figure 4 shows that the proposed method outperforms the

other two methods as p becomes larger. Moreover, the proposed method generates

LHD(p− 1, (p− 1)/2)’s without a computer search for any given p.

Figure 4: Efficiencies of the LHD(p− 1, (p− 1)/2)’s generated by various methods.

To further explore the performance of the constructed designs, we consider the

maximin L2-distance criterion. We define the efficiency of an LHD(n, s) under the
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L2-distance as its L2-distance divided by the corresponding upper bound d2, where

d2 =
√
⌊n(n+ 1)s/6⌋; see Theorem 3 in Zhou and Xu (2015). Figure 5 shows the

efficiencies (under the L2-distance) of the designs generated by various methods. For

the R package SLHD, we run the command maximinSLHD with the option t = 1 and

the default settings 100 times, and record the maximum L2-distance of these designs.

Figure 5 shows that the proposed method still outperforms the other two methods

under the L2-distance. When p ≥ 17 (except when p = 173), the L2-distances of the

LHD(p−1, (p−1)/2)’s generated by the proposed method are larger than the maximum

L2-distances of the corresponding LHDs generated by the R package SLHD.

Figure 5: Efficiencies (under the L2-distance) of the LHD(p−1, (p−1)/2)’s generated

by various methods.
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We also compare these three methods under the ϕr (r = 15) criterion (where a

smaller value is better). For the R package SLHD, we run the command maximinSLHD

with the option t = 1 and the default settings 100 times, and record the minimum ϕr

value of these designs. To better illustrate the performance of the three methods,

we define the relative ϕr efficiency (where a smaller value is better) of a design D as

ϕr(D)/ϕr(DSLHD), where DSLHD is the design generated by the R package SLHD as a

reference. The relative ϕr efficiency may be larger or smaller than one, in contrast to the

efficiencies defined for Figures 4 and 5. Figure 6 shows the relative ϕr efficiencies of the

LHD(p−1, (p−1)/2)’s generated by various methods. Clearly the designs generated by

the proposed method have smaller relative ϕr efficiencies. Thus, the proposed method

outperforms the other two methods in terms of the ϕr criterion.

Note that the method of Lin and Kang (2016) can also be used to generate max-

imin LHDs under the ϕr criterion. Their numerical results show that the designs

constructed using their method have larger ϕr values (thus, worse) than those of the

designs constructed using the R package SLHD. In contrast, because our designs have

smaller ϕr values than those of the designs constructed by the R package SLHD, our

designs perform better than those obtained using the method of Lin and Kang (2016).

As an example, using N = 404, we obtain an LHD(100, 50). By deleting the last two

columns and the last two rows, and rearranging the levels for each column, we obtain

an LHD(98, 48) with a ϕr value of 0.1096, which is better than any constructed using

the method of Lin and Kang (2016) (whose smallest ϕr value is 0.1164). The ϕr values

are evaluated on standardized designs with n levels, scaled to [0.5/n, 1− 0.5/n].
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Figure 6: Relative ϕr efficiencies of the LHD(p − 1, (p − 1)/2)’s generated by various

methods.

To conclude this section, Table 5 lists the possible sizes of the (asymptotically)

maximin L1-distance LHDs that can be obtained directly from the above theoretical

results. Some designs are maximin L1-distance LHDs and others are asymptotically

optimal under the maximin L1-distance criterion, and their efficiencies exceed 95% for

n ≥ 50.

4.3 Numerical studies

In this subsection, we further explore the properties of the LHD(n, n) D obtained

from Algorithm 1 for more general N with n = ϕ(N)/2 using simulations.
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Table 5: Maximin L1-distance LHDs obtained from the theoretical results.

Source LHD(n, s) d1(D)/dupper

Theorem 1 LHD((p− 1)/2, (p− 1)/2) 1

Theorem 2 LHD((p− 1)/2, p− 1) 1

Remark 4 LHD((p− 1)/2, p− 2) ≥ 1− 1/(n+ 1)

Lemma 3 LHD((p+ 1)/2, (p− 1)/2) ≥ 1− 1/(n+ 2)

Lemma 4 LHD((p− 1)/2, (p− 1)/2− kc) ≥ 1− 2kc/(n− kc)

Theorem 4 LHD(p− 1, p− 1) ≥ 1− 1/(n+ 1)

Theorem 4 LHD(2t−2, 2t−2) ≥ 1− 1/(n+ 1)

Corollary 2 LHD(p− 1, (p− 1)/2) ≥ 1− 1/(n+ 1)

Corollary 2 LHD(2t−2, 2t−3) ≥ 1− 1/(n+ 1)

Figure 7 shows the efficiencies of the LHD(n, n)’s generated by Algorithm 1 for

N = 5p, 7p, 11p, and 13p (13 < p < 200), with n = 2(p − 1), 3(p − 1), 5(p − 1), and

6(p−1), respectively. Figure 8 shows the efficiencies of the LHD(n, n)’s generated by the

proposed method for N = p2 and p3 (5 ≤ p < 100), with n = p(p−1)/2 and p2(p−1)/2,

respectively. It is easy to see that the generated LHDs are all asymptotically maximin

L1-distance designs, and d1(D) approaches dupper as p becomes larger. In general,

when N = p1p2 or pm1 (p1, p2 are odd primes, m ≥ 2), the LHD(n, n)’s generated

by Algorithm 1 are all asymptotically optimal designs under the maximin L1-distance

criterion. Furthermore, we can obtain addtional asymptotically optimal LHDs with

different sizes by deleting columns (see Lemma 4) or rows (see Theorem 9 in Wang,

Xiao, and Xu (2018)) from the constructed LHDs.

We give the following results on the L1-distance of the constructed LHD(n, n) D

for different N values. We have verified the results up to p = 1000:

d1(D) ≥

{
⌊(4p2 − 10p)/3⌋+ 2, when N = 5p, n = 2(p− 1),

3p2 − 7p+ 6, when N = 7p, n = 3(p− 1).
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Figure 7: Efficiencies of LHD(n, n)’s generated by the proposed method for N =

5p, 7p, 11p, and 13p.

Using simulations, we find that the lower bound is achieved by some N for either of

the two cases. Moreover, the corresponding upper bounds for N = 5p and 7p are

dupper = ⌊(4p2 − 6p+ 2)/3⌋ and 3p2 − 5p+ 2, respectively. Thus, the efficiencies of the

LHD(n, n)’s generated by Algorithm 1 for N = 5p and 7p satisfy

d1(D)/dupper >

{
1− 2p/(2p2 − 3p+ 1), when N = 5p, n = 2(p− 1),

1− 2p/(3p2 − 5p+ 2), when N = 7p, n = 3(p− 1),

which implies that d1(D)/dupper → 1 as n → ∞ for a design D generated by Algorithm

1 when N = 5p and 7p.
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Figure 8: Efficiencies of LHD(n, n)’s generated by the proposed method for N = p2 and p3.

5. Conclusion

We have proposed a method for constructing maximin L1-distance LHDs. Our

theoretical results and numerical studies show that the proposed method can be used

to generate (asymptotically) optimal LHDs that perform well under the maximin L1-

distance criterion. In particular, when N = p and 2p, the constructed LHDs are all

equidistant LHDs; thus, they are maximin L1-distance LHDs and uniform projection

designs. Moreover, larger equidistant LHDs can be constructed by using two or more

equidistant LHDs with the same number of rows. Section 4.3 provides lower bounds

for the L1-distances of the constructed LHDs for more general N using numerical com-

putations. Additional theoretical support is possible with more elaborate arguments.
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The maximin L1-distance LHDs constructed using the proposed method are limited

to special row and column sizes. This limitation is easy to overcome. Asymptotically

optimal LHDs with flexible row and column sizes can be generated easily based on the

constructed designs using Theorem 9 in Wang, Xiao, and Xu (2018). Furthermore, the

integer programming algorithm of Vazquez and Xu (2024) can be used to obtain more

flexible maximin L1-distance designs based on the constructed LHDs.
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Appendix: Proofs

A.1. Proof of Lemma 1

Let L = (rT
1 , . . . , r

T
n )

T , where ri is the ith row of L and T is the notation for

transpose. It is obvious that r1 = h and LT = L. To prove that L is a Latin square, it

is sufficient to verify that each ri (i = 1, . . . , n) is a permutation on the set {h1, . . . , hn}.

Let ri = (ri1, . . . , rin). For k = 1, . . . , n, we have rik = min{hi ∗ hk (mod N), N −

hi ∗ hk (mod N)}. It is easy to check that rik ≤ ⌊N/2⌋ and gcd(rik, N) = 1, thus rik

is an element of the set {h1, . . . , hn}. As gcd(hi, N) = 1 (1 ≤ i ≤ n), for any two

entries rik and riw (k ̸= w), it is easy to obtain that rik ̸= riw, otherwise, at least one of
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the following conditions holds: (1) N divides hi, (2) N divides hk − hw, (3) N divides

hk +hw, which leads to a contradiction. Consequently, each ri is a permutation on the

set {h1, . . . , hn}, which completes the proof.

A.2. Proof of Lemma 2

Let G = {α1, . . . , αn}. G is a commutative group if the following conditions hold:

(C1) if α, β ∈ G, then αβ ∈ G;

(C2) the identity mapping is in G;

(C3) if α ∈ G, then its inverse mapping α−1 is in G;

(C4) for any α, β ∈ G, the equality αβ = βα holds.

Item (C2) holds obviously as α1(∈ G) is an identity mapping, so only (C1), (C3), and

(C4) need to be verified.

It is easy to see that the elements of Latin square L in (3.2) satisfy rik = min{±hi∗

hk (mod N)}. Suppose p is an odd prime, we can prove the lemma in two cases.

(i) When N = p (≥ 5) and n = (p− 1)/2. The generator vector is h = (1, . . . , n),

thus the design D = (lij)n×n constructed by Algorithm 1 is the same as L. For i =

1, . . . , n, we have

αi(k) = lik = rik = min{±i ∗ k (mod N)},where k = 1, . . . , n.

Choose another transformation αj (j ̸= i) from G, then αj(k) = min{±j ∗ k (mod N)}
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for k = 1, . . . , n. The resultant of αi and αj can then be expressed as

αjαi(k) = αj(min{±i ∗ k (mod N)})

= min{±j ∗ i ∗ k (mod N)}

= αiαj(k),

where k = 1, . . . , n, so item (C4) holds. Since

min{±j ∗ i ∗ k (mod N)} = min{±(j ∗ i(mod N)) ∗ k (mod N)}

= min{±min{±j ∗ i (mod N)} ∗ k (mod N)}

= min{±w ∗ k (mod N)},

where w = min{±j ∗ i (mod N)} ∈ Zn; it is easy to verify that αjαi(k) = αiαj(k) =

αw(k), that is, αjαi ∈ G, so item (C1) holds.

For each αi, there exists a unique integer j0 (1 ≤ j0 ≤ n) such that min{±j0 ∗

i (mod N)} = 1. Then αj0 and αi satisfy the following equality:

αj0αi(k) = αiαj0(k) = min{±j0 ∗ i ∗ k (mod N)}

= min{±min{±j0 ∗ i (mod N)} ∗ k (mod N)}

= k,

where k = 1, . . . , n. That is, αj0 is the inverse mapping of αi, and for each αi in G, its

inverse mapping is also in G, so item (C3) holds.

(ii) When N ̸= p and n = ϕ(N)/2. From Lemma 1, for any two integers i and k

(1 ≤ i, k ≤ n), there exists a unique integer t (1 ≤ t ≤ n) satisfying

ht = min{±hi ∗ hk (mod N)},
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which means αi(k) = t. In addition, for each hi, there exists a unique integer i′ (1 ≤

i′ ≤ n) such that

min{±hi ∗ hi′ (mod N)} = h1 = 1.

Then, similar to the discussions in case (i), it is easy to verify that items (C1), (C3),

and (C4) hold.

In summary, G is a commutative group. This completes the proof.

A.3. Proof of Corollary 1

If the transformation αj is the inverse mapping of the transformation αi, that is,

(αi)
−1 = αj, then (αi)

−1α1 = αjα1 = αj, where α1 is the identity mapping. Take the

transformation αj on the rows l1 and li, then, these two rows are transformed to rows

lj and l1, respectively. Thus, according to the definition of L1-distance of two row

vectors, we have d1(l1, li) = d1(l1, lj), which completes the proof.

A.4. Proof of Theorem 1

For a given integer N , define w(x) as the modified Williams’ transformation in

Wang, Xiao, and Xu (2018), that is,

w(x) =

{
2x, if x < N/2;

2(N − x), if x ≥ N/2.

When N = p, the generator vector in (3.1) is h = (1, . . . , n), where n = ϕ(N)/2 =

(p − 1)/2. Hence, the LHD(n, n) D generated by Algorithm 1 is the same as L in

(3.2), and it can be verified that D is also the same as the design H constructed in

Wang, Xiao, and Xu (2018) by modified Williams’ transformation. Therefore, the
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result follows from Theorem 4 of Wang, Xiao, and Xu (2018).

For N = 2p and n = ϕ(N)/2 = (p − 1)/2, let U = (xij) be the N × ϕ(N) good

lattice point design with generator vector (1, 3, . . . , p−2, p+2, . . . , N−1). With proper

row and column permutations, U is equivalent to(
2C + p

2C

)
(mod N)

where C is the p× (p− 1) good lattice point design.

Then w(U) is equivalent to (
w(2C ⊕ p)

w(2C)

)
,

where 2C⊕p = (2C+p) (mod N). According to Theorem 1 and the proof of Theorem

8 in Wang, Xiao, and Xu (2018), the following result holds for the ith and kth rows,

denoted by ri and rk, in w(2C),

d1(ri, rk) =
2(p2 − 1)

3
, for i ̸= k, i ̸= p, k ̸= p, and i+ k ̸= p. (A.1)

Moreover, it can be verified that (A.1) also holds for w(2C ⊕ p).

In addition, when N = 2p, it can be verified that for the n × n Latin square L

generated in (3.2), the following results hold: (i) its n elements are {1, 3, . . . , p−2}; (ii)

the L1-distance of any two distinct rows in L is two times that of the corresponding rows

in LHD(n, n) D constructed using Algorithm 1; (iii) under column permutations, L is

equivalent to the submatrix of w(2C⊕p)/2 that consists of its ((p+1)/2)th to (p−1)th

columns and 1st, 3rd, . . . , (p− 2)th rows. Hence, according to (A.1) and properties of

good lattice point design U , for any two distinct rows in D, their L1-distance equals
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(p2 − 1)/12 = (n+ 1)n/3, which means that d1(D) = (n + 1)n/3. Thus, the theorem

holds.

A.5. Proof of Theorem 4

(i) For N = 4p and n = ϕ(N)/2 = p − 1, the corresponding generator vector

defined in (3.1) is h = (1, 3, . . . , p− 2, p+2, . . . , 2p− 1). Denote rows of the LHD(n, n)

D constructed by Algorithm 1 as l1, . . . , ln. It is easy to see that the p− 1 elements of

l1 are l1j = j, for j = 1, . . . , p− 1. For l2, its p− 1 elements are

l2j =



2 + 3(j − 1), for j = 1, . . . , (p− 1)/6;

(p+ 1)/2 + 3[j − (p+ 5)/6], for j = (p+ 5)/6, . . . , (p− 1)/3;

(p+ 5)/2 + 3[(p− 1)/2− j], for j = (p+ 2)/3, . . . , (p− 1)/2;

p− 3[j − (p− 1)/3], for j = (p+ 1)/2, . . . , 2(p− 1)/3;

3 + 3[j − (2p+ 1)/3], for j = (2p+ 1)/3, . . . , 5(p− 1)/6;

3[j − 2(p− 1)/3]− 1, for j = (5p+ 1)/6, . . . , p− 1,

when p (mod 3) = 1, and

l2j =



2 + 3(j − 1), for j = 1, . . . , (p+ 1)/6;

(p+ 3)/2 + 3[j − (p+ 7)/6], for j = (p+ 7)/6, . . . , (p+ 1)/3;

(p+ 5)/2 + 3[(p− 1)/2− j], for j = (p+ 4)/3, . . . , (p− 1)/2;

3 + 3[2(p− 2)/3− j], for j = (p+ 1)/2, . . . , 2(p− 2)/3;

1 + 3[j − (2p− 1)/3], for j = (2p− 1)/3, . . . , (5p− 7)/6;

(p+ 1)/2 + 3[j − (5p− 1)/6], for j = (5p− 1)/6, . . . , p− 1,

when p (mod 3) = 2. Then, it can be calculated that d1(l1, l2) = n2/3 for p (mod 3)

= 1, and d1(l1, l2) = (n2 + 2)/3 for p (mod 3) = 2.

For l3, it can be verified that its p− 1 elements are

l3j =



3 + 5(j − 1), for j = 1, . . . , n/10;

2 + 5(j − 1), for j = n/10 + 1, . . . , n/5;

4 + 5(2n/5− j), for j = n/5 + 1, . . . , 3n/10;

5 + 5(2n/5− j), for j = 3n/10 + 1, . . . , 2n/5;

1 + 5(j − 2n/5− 1), for j = 2n/5 + 1, . . . , n/2;

n+ 1− l3(n+1−j), for j = n/2 + 1, . . . , n,

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0263



MAXIMIN L1-DISTANCE LATIN HYPERCUBE DESIGNS 34

when p (mod 5) = 1, and the corresponding L1-distance d1(l1, l3) = n2/3 + 4n/15 >

d1(l1, l2). Similarly, for p with other values or other rows in D, it can be verified

that d1(l1, li) ≥ d1(l1, l2) (i = 3, . . . , n) via some tedious calculations (details are

omitted here). Therefore, the L1-distance of design D is equal to the L1-distance

between its first two rows. That is, d1(D) = d1(l1, l2) = n2/3 for p (mod 3) = 1, and

d1(D) = d1(l1, l2) = (n2 + 2)/3 for p (mod 3) = 2.

(ii) For N = 2t and n = ϕ(N)/2 = 2t−2, the corresponding generator vector is

h = (1, 3, . . . , 2n − 1). Results on d1(D) can be proved similarly via some tedious

calculations, so we omit the details.

In addition, for the constructed LHD(n, n) D in both cases, the upper bound of

the L1-distance is dupper = ⌊(n+1)n/3⌋, hence, it is easy to verify that d1(D)/dupper ≥

1− 1/(n+ 1). This completes the proof.
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