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Abstract: A common theme among high-dimensional linear dis-

criminant analysis (LDA) methods is the sparsity assumption.

However, in practice, this assumption may be violated, mak-

ing sparse methods inaccurate. Motivated by this challenge, we

propose a novel high-dimensional LDA method that relaxes the

sparsity assumption. We assume that there exist a few sparse

signals with large effects, and a large number of dense signals

with small effects. In the parameter estimation, we combine the

group lasso penalty and the ℓ2 penalty to identify these signals

automatically. Our estimation involves a convex optimization

problem that can be solved straightforwardly. Theoretical and

numerical results support the application of our proposal.
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1. Introduction

Numerous works have proposed methods for applying the classical linear

discriminant analysis (LDA) to high-dimensional data, including Cai and

Liu (2011), Clemmensen et al. (2011), Witten and Tibshirani (2011), Fan

et al. (2012), Mai et al. (2012), Xu et al. (2015), Mai et al. (2019), and

Yang et al. (2022). These methods preserve the elegance and simplicity of

the classical LDA. They have explicit probabilistic models that yield highly

interpretable final classifiers and enable researchers to understand the re-

sults, using innovations in formulation, computation, and theory to address

the high dimensionality. These methods are shown to have impressive per-

formance in a wide range of applications.

However, most high-dimensional LDA methods rely on sparsity, often

assuming that some parameters in the high-dimensional LDA model are

sparse, such as the covariance matrix, precision matrix, mean differences,

or discriminant coefficients. Without additional parsimony assumptions, ac-

curate model estimation is virtually impossible in high dimensions (Bickel

and Levina, 2004; Fan and Fan, 2008), and thus sparsity is a powerful as-

sumption. The sparsity also facilitates interpretation, because only a small
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subset of predictors are relevant for the prediction. However, it remains

an open question if we can relax the sparsity assumption. For example,

Witten and Tibshirani (2011) explicitly enforce sparsity in their ℓ1 Fisher’s

discriminant analysis (ℓ1-FDA) method, but in the three real data sets they

consider, ℓ1-FDA produced nonsparse classifiers with thousands of nonzero

coefficients and high classification accuracy. The authors argued that this

was because sparsity is often only an approximation, in practice. Thus, it

is of interest to determine whether we can accommodate such situations

using a new high-dimensional LDA model and method.

Motivated by this challenge, we propose a novel high-dimensional LDA

method that gives a “sparse+dense” (SD) classifier. We assume that there

exists a small subset of predictors with large coefficients, while the rest

have small, but possibly nonzero coefficients. Thus, we relax the sparsity

assumption by allowing all the coefficients to be nonzero, but to some extent

preserve the interpretability that only a few variables have large effects on

the final prediction. Under this assumption, we devise an estimator that

automatically identifies and estimates the sparse and dense signals using

convex optimization. Numerical and theoretical evidence is provided to

support our proposal.

Our proposal is inspired by the so-called “lava” estimator in the regres-
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sion problem described in Chernozhukov et al. (2017). The lava estimator

estimates the coefficient in a linear regression problem with a sparse+dense

structure. Although we borrow some of their techniques in our study, we

investigate the different problem of classification, where sparse+dense es-

timators have not been developed, to the best of our knowledge. We also

address several challenges in LDA problems. First, in a regression, we can

treat the predictors as fixed, or at least condition on the predictors, to make

an inference about the response, but in an LDA model, we directly model

the distribution of the predictors, and have to deal with the randomness in

them. Second, in a regression, it is relatively easier to pick the parameter of

interest, and then estimate it using a variant of the least squares formula.

In an LDA model, we need to carefully determine the parametrization and

formula, for efficiency. Third, in a linear regression model, we need only

estimate one parameter of the regression coefficient, whereas in multiclass

problems, we need to estimate several different directions to separate the

classes.

The rest of the article is organized as follows. We explain the proposed

model and method in Section 2. The theoretical properties of our proposal

are given in Section 3. In Section 4, we present the numerical studies.

We further examine our method on several real data sets in Section 5. We
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provide proofs of the lemmas and theorems in the Supplementary Materials.

2. Methodology

2.1 Background

Consider a pair of random variables (Y,X), where the predictor X =

(X1, . . . , Xp)
T ∈ Rp and the class label Y ∈ {1, . . . , K}, with K being

a positive integer. LDA assumes that (e.g.,see Hastie et al. (2009))

X | Y = k ∼ N(µk,Σ), Pr(Y = k) = πk, (2.1)

where µk ∈ Rp is the within-class mean, Σ is a p × p covariance matrix,

and πk is the prior probability of class k.

Our goal is to predict the label of any new sample X∗. It is known that,

under the LDA model, we can minimize the classification error by using the

so-called Bayes rule that (Friedman et al., 2001; Mai et al., 2019)

Ŷ = argmax
k

{(X − 1

2
(µ1 + µk))

Tθ∗
k + log(πk/π1)},

where the linear discriminant directions are given by

θ∗
k = Σ−1(µk − µ1), k = 2, . . . , K.

Hence, the linear discriminant directions θ∗
k are critical to the classifica-

tion. They project the p-dimensional predictorX onto aK−1–dimensional
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2.2 The “Sparse+Dense” Assumption

subspace that retains all the information for optimal classification. Conse-

quently, many existing sparse LDA methods assume that θ∗
k is sparse, in

the sense that the majority of its elements are zero (Cai and Liu, 2011; Fan

et al., 2012; Mai et al., 2012, 2019). In particular, in a multiclass problem

where K > 2, we have multiple directions θ∗
k to estimate, and a variable Xj

is unimportant for classification if and only if

θ∗kj = 0, for k = 2, . . . , K. (2.2)

Therefore, the sparsity assumption indicates that (2.2) holds for most j.

2.2 The “Sparse+Dense” Assumption

Our interest is to relax the sparsity assumption in the LDA model. To this

end, we decompose the discriminant direction as

θ∗
k = β∗

k + δ∗
k, (2.3)

for any k, where δ∗
k = (δ∗k1, . . . , δ

∗
kp)

T ∈ Rp is sparse, with only a few nonzero

and relatively large elements, while β∗
k = (β∗

k1, . . . , β
∗
kp)

T ∈ Rp have small

elements. Specifically, motivated by the sparsity assumption in (2.2), for

most j ∈ {1, . . . , p}, we have

δ∗kj = 0, for k = 2, . . . , K.
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2.2 The “Sparse+Dense” Assumption

For ease of presentation, we also refer to δ∗
k as “sparse signals,” and to β∗

k

as “dense signals.”

Note that the entries in θ∗
k are coefficients in the final classifier, and

quantify the effect of each predictor. Hence, our SD assumption implies

that a few predictors dominate the classification, while most predictors

have small effects. Our SD assumption includes the sparsity assumption as

a special case, because when β∗
k = 0, the discriminant direction is exactly

sparse. However, in general, our SD assumption is weaker than the sparsity

assumption. By incorporating the dense signals, we are essentially assuming

that the directions are approximately sparse, in which the sparse signals are

most relevant for the classification. However, the dense signals contribute

to the classification as well, although with less noticeable effects. As a

result, our SD assumption allows us to perform variable selection similarly

to popular sparse methods. Even though θ∗
k does not have to be sparse, we

can still exploit the sparsity pattern in δ∗
k to identify the most important

variables.

In addition, the dense signals are assumed to have small magnitudes.

Similar to sparsity, this is also a type of parsimony assumption that limits

the parameter space. Such an assumption is important because, in high

dimensions, it is challenging to estimate the classifier accurately without
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2.2 The “Sparse+Dense” Assumption

appropriate parsimony assumptions. As discussed later, this assumption

enables helpful regularization techniques in the estimation. Note that, al-

though the dense signals have small entries individually, jointly, they can

significantly improve the classification results.

Our SD assumption in (2.3) is imposed on the discriminant direction

θ∗
k, because θ∗

k is often viewed as the most “direct” parameter for classi-

fication. In the literature on sparse LDA methods, researchers sometimes

instead assume that the covariance matrix, precision matrix, and the mean

differences are sparse (Shao et al., 2011; Xu et al., 2015, e.g). In our con-

text, we choose not to make the SD assumption on these parameters, for

two reasons. First, the assumption on the discriminant direction is easy to

interpret. Second, the discriminant direction has O(p) parameters, whereas

the covariance and precision matrices have O(p2) parameters, and are much

more difficult to estimate than the discriminant directions.

Note that our definitions of sparse and dense signals may have iden-

tifiability issues. However, as discussed in Section 2.3, we are estimating

unique target parameters when we employ regularization.
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2.3 Estimation

2.3 Estimation

To estimate our model, we first rewrite θ∗
k as the solution to the following

optimization problem, as suggested by Mai et al. (2019):

(θ∗
2, . . . ,θ

∗
K) = arg min

θk∈Rp

K∑
k=2

{1
2
θT
k Σθk − (µk − µ1)

Tθk}. (2.4)

Equation (2.4) cannot be used in the estimation, because it involves the

unknown parameters Σ and µk. More importantly, it does not enforce our

SD assumption. We solve these two problems as follows.

To start with, suppose that we observe the data set {Yi,Xi}ni=1, and let

Ck be the set of indices of the nk samples in class k. We find

µ̂k =
1

nk

∑
i∈Ck

Xi (2.5)

Σ̂ =
1

n−K

K∑
k=1

∑
i∈Ck

(Xi − µ̂k)(Xi − µ̂k)
T (2.6)

as estimates for µk and Σ, respectively. These are also the standard esti-

mates for a low-dimensional LDA (Hastie et al., 2009), and popular esti-

mates in many sparse LDA methods (e.g., see Cai and Liu (2011) and Fan

et al. (2012)).

Now, we turn to the more interesting problem of imposing the SD as-

sumption. We use the parametrization in (2.3) and regularize β∗
k and δ∗

k.

For the sparse signals δ∗
k, we use the group lasso penalty (Yuan and Lin,
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2.3 Estimation

2006) to honor the sparsity assumption in (2.2). For the dense signals,

we use the ridge penalty (Hoerl and Kennard, 1970; Hastie et al., 2009;

Weisberg, 2005). In other words, we consider the penalized problem

(β̂k, δ̂k, k = 2, . . . , K) = argmin
βk∈Rp,δk∈Rp

K∑
k=2

{1
2
(βk + δk)

T Σ̂(βk + δk)− (µ̂k − µ̂1)
T (βk + δk)}

+λ1

p∑
j=1

√√√√ K∑
k=2

δ2kj + λ2

p∑
j=1

K∑
k=2

β2
kj,

(2.7)

where λ1, λ2 > 0 are tuning parameters. After we obtain β̂k and δ̂k, we

estimate the discriminant direction θ∗
k by θ̂k = β̂k + δ̂k.

We name this method SD-LDA, where SD refers to the “sparse” and

“dense” signals that we target. SD-LDA provides a nonsparse but inter-

pretable classifier, because only a few variables have large effects. When the

sparsity assumption does hold, SD-LDA is as powerful as existing sparse

methods. However, in the SD problems of our primary interest, SD-LDA

continues to be suitable.

It is easy to see that (β̂k, δ̂k, k = 2, . . . , K) produced by (2.7) approxi-
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2.3 Estimation

mate

(β†
k, δ

†
k, k = 2, . . . , K) = argmin

βk∈Rp,δk∈Rp

K∑
k=2

{1
2
(βk + δk)

TΣ(βk + δk)− (µk − µ1)
T (βk + δk)}

+λ1

p∑
j=1

√√√√ K∑
k=2

δ2kj + λ2

p∑
j=1

K∑
k=2

β2
kj.

(2.8)

Note that, compared with (2.7), in (2.8), we use the true parameters Σ and

µk. Hence, for any fixed pair of tuning parameters (λ1, λ2), (β
†
k, δ

†
k, k =

2, . . . , K) are parameters. With the corresponding penalties, β†
k is dense,

while δ†
k is sparse. Moreover, unlike δ∗

k and β∗
k, defined intuitively in Sec-

tion 2.2, (β†
k, δ

†
k, k = 2, . . . , K) do not have identifiability issues, because

(2.8) is strictly convex and has a unique minimizer. Admittedly, similar to

many penalized problems, (β†
k, δ

†
k, k = 2, . . . , K) are generally biased in the

sense that, in general, θ∗
k ̸= β†

k + δ†
k. However, if the tuning parameters

(λ1, λ2) are chosen properly, the discrepancy is small, and (2.7) consistently

estimates the discriminant directions. See Section 3 for rigorous theoretical

justifications.

To better understand SD-LDA, we present the following toy example.

Example 1. Consider a binary classification problem, where Σ = σ2Ip is
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doi:10.5705/ss.202022.0260



2.3 Estimation

known. Then, we have the following solution to SD-LDA:

δ̂2j = sign(µ̂2j − µ̂1j)

(∣∣∣∣ µ̂2j − µ̂1j

σ2

∣∣∣∣− λ1(
1

2λ2

+
1

σ2
)

)
+

(2.9)

and

β̂2j =
µ̂2j − µ̂1j − σ2δ̂2j

2λ2 + σ2
, (2.10)

for any j, where the soft-threshoding operator (x)+ = max{x, 0}, for any

x ∈ R.

Example 1 illustrates how (2.7) obtains the “sparse signals” and “dense

signals” in δ̂2 and β̂2. According to (2.9), each δ̂2j produces a shrunken

standardized mean difference. Therefore, δ̂2j is only nonzero when
µ̂2j−µ̂1j

σ2

is large enough with respect to the choices of λ1 and λ2. Benefiting from this

feature, δ̂2 is able to identify the signals with large magnitude exclusively.

On the other hand, β̂2j is essentially a rescaled standardized mean differ-

ence, reduced by λ2. When λ2 is large, (2.10) gives a small β̂2j., ensuring

that β̂2 contains the “dense signals.” Therefore, the two types of penalties

in (2.7) help identify the “sparse signals” and “dense signals” effectively.

The ability to capture the two types of signals is made possible by the ℓ1

and ℓ2 regularization.

Example 1 assumes that Σ is diagonal and known to obtain explicit

formulae for the estimates. However, in practice, SD-LDA does not need
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2.3 Estimation

any knowledge of Σ. It simply plugs in our sample estimate in (2.6). In

what follows, we discuss another special case where Σ does not have any

special structure and is unknown. Suppose that λ1 = ∞, and thus the

sparse signal is estimated as zero. Then, the dense signals are estimated by

β̂k = (Σ̂+ 2λ2I)
−1(µ̂k − µ̂1). (2.11)

It is easy to see that the sample covariance is stabilized by adding 2λ2I,

and resembles the Ledoit–Wolf estimator (Ledoit and Wolf, 2004). The

estimator in (2.11) also has a similar form to the regularized discriminant

analysis (RDA; Friedman (1989)). However, in the Ledoit–Wolf estimator

and RDA, the added identity matrix is intended only to make the sample

covariance wellconditioned, and usually λ2 is chosen to be small. In our

work, λ2 is usually reasonably large, to encourage the signals to have small

magnitudes. When λ2 is large, β̂k in (2.11) is close to the shrunken mean

difference. The nearest centroids classifier (Tibshirani et al., 2002, 2003)

also uses the shrunken mean difference to construct a classifier. However,

it uses the soft-thresholding operator to obtain a sparse classifier, whereas

(2.11) obtains a dense coefficient using the ℓ2 penalty.

Our proposal is inspired by the lava estimator in Chernozhukov et al.

(2017) for regression. Similarly to their estimator, we separate the coef-

ficients into sparse signals and dense signals, and use a sparsity-inducing
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2.3 Estimation

penalty and a ridge penalty, accordingly. Our estimator for the classifi-

cation problem has many unique challenges. For example, in a regression

problem, there is one coefficient vector to be estimated, whereas in classifi-

cation problems, we need to estimate several discriminant directions when

K > 2 so that we can separate the classes.

Moreover, compared with the lava estimator for a regression, the for-

mulation for classification requires additional considerations. In regression

problems, the least squares formula is the foundation of most methods, as

is the case for the lava estimator. However, in a discriminant analysis,

although there are various approaches to finding the directions in high di-

mensions, no formula dominates the others like the least squares problem

does in a regression. Consequently, we examined numerous different high-

dimensional LDA formulae to find the one most suitable to be generalized

to our context. Our SD-LDA is related to the multiclass sparse discriminant

analysis (MSDA) method (Mai et al., 2019) in that when we are confident

in the sparsity assumption, we can set the dense signals to zero, and (2.7)

reduces to the MSDA. In this sense, (2.7) is a generalization of the MSDA

to SD problems. We choose to generalize the MSDA rather than other can-

didates for computational reasons. Note that SD-LDA is convex. This is

partially because its predecessor, MSDA, is convex. However, many other

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0260



2.3 Estimation

high-dimensional LDA methods are nonconvex, and their generalizations

to the SD problem will continue to be nonconvex and potentially chal-

lenging in terms of computation. For example, Clemmensen et al. (2011)

and Fan et al. (2012) both consider nonconvex optimization problems with

equality constraints. In principle, we could also modify these methods by

reparametrizing the parameters of interest into sparse and dense signals,

and adding appropriate penalty functions. However, the resulting methods

would be nonconvex.

Note that our method is significantly different from the elastic net (Zou

and Hastie (2005)), even though we also combine a nonsmooth penalty func-

tion (group lasso) with the ridge penalty. Elastic net imposes both penalties

on the same parameter to stablize the estimator when the predictors are

highly correlated. In our method, the penalties are enforced on the sparse

and dense signals separately to exploit their own structure. In principle we

could use other group selection penalty functions to pursue sparsity, such

as a group smoothly clipped absolute deviation (SCAD) and a group mini-

max concave penalty (MCP) (Fan and Li, 2001; Zhang, 2010; Huang et al.,

2012). However, these penalty functions are nonconvex, which is likely to

lead to instability in computation. The corresponding theoretical study is

also expected to be more challenging, because there could be local minima.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0260



2.4 Algorithm

2.4 Algorithm

In this section, we derive an algorithm to solve (2.7). SD-LDA is jointly

convex over (βk, δk), but it is most straightforward to derive updates for

one of βk and δk while fixing the other, and iterate between them. To this

end, we derive the following lemma.

Lemma 1. Denote Q̂ = 2λ2Ip + Σ̂, Σ̄ = 2λ2Σ̂Q̂−1, µ̂dk = µ̂k − µ̂1, and

µ̄dk = µ̂T
dk(2λ2Q̂

−1). Then, we have

1. for a fixed δk, the optimizer of βk to (2.7) is

β̂k(δk) = (2λ2Ip + Σ̂)−1(µ̂k − µ̂1 − Σ̂δk); (2.12)

2. the optimizer of δk to (2.7) is

(δ̂2, . . . , δ̂K) = argmin
δk∈Rp

K∑
k=2

{1
2
[δT

k Σ̄δk]− µ̄T
dkδk}+ λ1

p∑
j=1

√√√√ K∑
k=2

δ2kj.

(2.13)

According to Lemma 1, we first solve (2.13), and then plug its results

into (2.12) to find the SD-LDA estimate. Note that the ℓ2 regularization

enables us to invert the covariance matrix in (2.12), so that (2.12) is feasible,

even in high dimensions. For the solution of (2.13), although it does not

have an explicit form, we can find it by modifying the groupwise coordinate

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0260



descent algorithm of Mai et al. (2019). We replace their Σ̂ with Σ̄, and

µ̂k − µ̂1 with µ̄dk, respectively, to solve (2.13).

3. Theory

In this section, we present the theoretical properties of SD-LDA. The entire

theoretical study is based on the LDA model setup given by (2.1). For ease

of presentation, for two quantities A and ξ, we write A ≲ ξ if A ≤ Cξ, for

some C > 0.

We also make the following assumptions:

(A1) ||Σ||2 ≤ u and ||Σ−1||2 ≤ U , for some constants U and u,

(A2) maxk ||µk − µ1||2 ≤ w1, for some constant w1,

(A3) 0 < c2 < πk < c1 < 1, for some constants c1 and c2.

Assumptions (A1) and (A2) are technical conditions that facilitate our

proof. Assumption (A1) implies that the eigenvalues of Σ are finite and

bounded away from zero, and Assumption (A2) requires a bound on the

ℓ2-norm of the mean difference. Assumption (A3) guarantees that our data

set is not extremely unbalanced. This yields the following theorem.

Theorem 1. Let θ̂k = δ̂k + β̂k, with β̂k and δ̂k defined as in (2.12) and

(2.13), respectively, and Assumptions (A1), (A2), and (A3) hold. Then,
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with probability at least 1−O(p−1), we have

||θ̂k − θ∗
k||2 ≲

√
p log p

n
, (3.1)

for λ2 = O(
√

log p
n

) and λ1 = O(
√

log p
n

).

Theorem 1 shows that the estimators for the linear discriminant direc-

tions consistently converge to the truth when p log p
n

→ 0. This implies that

SD-LDA approaches the Bayes rule under the same dimensionality. Hence,

in theory, SD-LDA works similarly to the true Bayes rule as the sample size

increases.

Although SD-LDA allows p to diverge, we acknowledge that it has a

stronger requirement on the dimensionality than those of sparse methods.

Sparse methods often allow p to diverge at an exponential rate (Cai and

Liu, 2011; Fan et al., 2012; Mai et al., 2012). Theorem 1 has a stronger

requirement, because we no longer make the sparsity assumption, and the

problem is more difficult. However, the difficulty could be technical, because

SD-LDA works out well on high-dimensional problems with p > n in our

numerical studies. In addition, in the special case of exact sparsity where

we know β∗
k = 0, SD-LDA reduces to the sparse classifier MSDA (Mai

et al., 2019), which has an optimal convergence rate of
√

s log p
n

(Min et al.,

2023), with s being the number of important variables. Moreover, even
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though SD-LDA is inspired by the lava estimator in regression, our proof

differs significantly from theirs, because most of their proof conditions on

X, but we have to directly handle the randomness in X as a consequence

of the LDA model assumption. Furthermore, in multiclass problems, we

have multiple directions to estimate, which adds to the technical difficulty

of the proof. In addition, compared with the sparse classifier MSDA, SD-

LDA involves much more complicated functionals, such as Σ̂(Σ̂+ 2λ2I)
−1.

We need to establish bounds for these terms, which are not available in

the literature. Because we focus on method development, we leave a more

careful theoretical investigation of the SD-LDA as a future topic of research.

4. Simulation

Here, we present a simulation study to examine the performance of our

proposed method. We consider two scenarios separately: settings where the

sparsity assumption holds, and the settings where the sparsity assumption

does not hold, but the SD assumption holds. The sparse models are given

by S1 and S2 and the SD models are given by Models D1–D6. Throughout

the simulation, we set the sample size nk = 50 for each class and p =

250K. Simulations of imbalanced classes can be found in Section S1 in the

Supplementary Material. For each class, we set X | Y = k ∼ N(µk, σ
2Σ),
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where σ2 is a constant that varies from model to model. For each model,

we have different δ∗
k and β∗

k, with µ1 = 0 and µk = σ2Σ(β∗
k + δ∗

k), for

k = 2, . . . , K. In the sparse models, β∗
k = 0 for all k. For the five SD

models, We choose q from {0.1, 0.15, 0.2} for each model, where q represents

the signal strength of “dense signals.” The models are given as follows:

S1 : K = 2, σ = 0.5. Σ is block-diagonal, with each block Σs being a

4× 4 auto-regressive matrix with parameter 0.5, δ∗
2 = (25,0495).

S2 : K = 3, σ = 0.5. Σ is block-diagonal, with each block Σs being

a 4 × 4 auto-regressive matrix with parameter 0.5, δ∗
2 = (25,0745),

δ∗
3 = (05,−25,0740).

D1 : K = 2, σ = 0.5. Σ = Ip, δ
∗
2 = (2.5,0499), and β∗

2 = (0, q499),

q ∈ {0.1, 0.2}.

D2 : K = 2, σ = 0.5. Σ is block-diagonal, with each block Σs being a

4×4 compound symmetry matrix with parameter 0.5, δ∗
2 = (2.5,0499)

and β∗
2 = (0, q499), q ∈ {0.1, 0.2}.

D3 : K = 2, σ = 0.5. Σ is block-diagonal, with each block Σs being a

4× 4 auto-regressive matrix with parameter 0.5, δ∗
2 = (2.5,0499) and

β∗
2 = (0, q499), q ∈ {0.1, 0.2}.
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D4 : K = 3, σ = 0.6. Σ = Ip, δ∗
2 = (2.5,0749), δ∗

3 = (−2.5,0749),

β∗
2 = (0, q749), and β∗

3 = (0,−q749), q ∈ {0.15, 0.2}.

D5 : K = 3, σ = 0.5. Σ is block-diagonal, with each block Σs being

a 4 × 4 auto-regressive matrix with parameter 0.5, δ∗
2 = (2.5,0749),

δ∗
3 = (−2.5,0749), β

∗
2 = (0, q749), and β∗

3 = (0,−q749), q ∈ {0.1, 0.15}.

D6 : K = 5, σ = 0.5. The covariance matrix Σ has an auto-regressive

structure, namely, σij = 0.8|i−j|. The number of nonzero elements of

parameter β′s is five instead of one. Specifically, we let (δ∗
2, · · · , δ∗

5) =

(1.55,−1.55,15,−15) and (β∗
2, · · · ,β∗

5) = (2q495,−2q495, q495,−q495),

q ∈ {0.075, 0.1}.

In addition to SD-LDA, we include the following competitors in our

simulation: the MSDA (Mai et al. (2019)), a logistic regression with a lasso

penalty (Hastie et al. (2009)) or elastic-net penalty (Zou and Hastie (2005))

(denoted as Lasso and elastic-net, respectively), a support vector machine

(SVM) (Joachims (1998)), and sparse optimal scoring (Clemmensen et al.

(2011), denoted as SOS). MSDA is implemented using the R package msda,

Lasso and elastic-net are implemented using the R package glmnet, and the

SVM is implemented using the R package e1071. SOS is implemented using

the R package sparseLDA for multiclass models, and implemented using the
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R package TULIP in binary models (Pan et al., 2020).

The tuning parameters in all methods are chosen using five-fold cross-

validation, and a grid search is implemented if there are multiple tuning

parameters. We run the simulation 100 times for each model, and the

means and standard errors of the prediction error (PE in %) are reported

in Table 1. The means of the numbers of correctly and incorrectly selected

variables are given in Table 2. Recall that the sparse signals dominate in

terms of their effects, and thus we focus on their selection. For all the

competitors, a variable is selected if and only if it has a nonzero coefficient,

while for SD-LDA, a variable is selected if it has a nonzero coefficient in δ̂k.

As shown in Table 1, even when the true models are sparse, SD-LDA

still gives a comparable, or even significantly better result than those of the

sparse competitors. This may be because the SD-LDA can approximate

a sparse classifier by using a large λ2, but it explores more classifiers us-

ing cross-validation over λ2, yielding better empirical results. For the SD

models, SD-LDA has a clear advantage over the sparse methods, indicating

that the latter are vulnerable when dense signals exist, and the SD-LDA is

preferable under such circumstances.

In Table 2, we see that the SD-LDA continues to give excellent variable

selection results across all models. In the SD models, the variable selection
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Table 1: The prediction accuracy results. The means and standard errors

(in the parentheses) of the prediction error of 100 replicates are reported as

percentages.

Models q BE SD-LDA MSDA Lasso elastic-net SVM SOS

S1 0 6.4 6.51(0.23) 7.83(0.28) 8.58(0.3) 7.2(0.27) 22.93(0.44) 8.69(0.3)

S2 0 8.3 8.54(0.24) 9.29(0.26) 11.45(0.3) 10.51(0.26) 29.15(0.36) 17.23(0.31)

D1
0.1 20.1 25.27(0.45) 27.26(0.47) 28.4(0.5) 26.28(0.46) 40.79(0.55) 28.2(0.5)

0.2 10.0 21.08(0.45) 27.18(0.52) 28.35(0.53) 25.4(0.47) 28.18(0.48) 27.57(0.45)

D2
0.1 13.5 18.9(0.38) 26.59(0.47) 26.99(0.48) 24.18(0.42) 25.13(0.45) 25.91(0.49)

0.2 2.8 5.63(0.22) 21.65(0.48) 19.46(0.44) 10.94(0.33) 5.92(0.23) 17.08(0.49)

D3
0.1 15.2 20.42(0.42) 26.24(0.46) 26.76(0.45) 24.34(0.41) 29.3(0.44) 27.14(0.45)

0.2 4.1 7.99(0.28) 22.67(0.41) 21.18(0.42) 13.99(0.35) 9.33(0.28) 21.79(0.47)

D4
0.15 9.9 28.57(0.37) 31.23(0.41) 33.9(0.4) 32.47(0.32) 34.43(0.4) 35.61(0.41)

0.2 8.3 20.76(0.38) 31.59(0.41) 33.75(0.37) 31.15(0.31) 23.38(0.32) 35.35(0.39)

D5
0.1 20.4 28.63(0.39) 35.36(0.42) 38(0.38) 35.11(0.38) 31.09(0.38) 39.06(0.41)

0.15 5.9 17.54(0.4) 35.04(0.42) 35.41(0.39) 29.26(0.33) 14.66(0.3) 37.45(0.37)

D6
0.075 6.3 9.11 (0.18) 28.12 (0.26) 33.41 (0.36) 28.10 (0.29) 11.51 (0.20) 27.34 (0.31)

0.1 2.4 3.1 (0.10) 26.14 (0.31) 28.52 (0.33) 18.47 (0.28) 4.0 (0.14) 24.15 (0.32)

becomes worse as q increases. This is expected, because as q increases, the

boundary between sparse and dense signals becomes blurred. However, the

sparse competitors struggle much more than the SD-LDA does. Because

they are incapable of modeling dense signals, they drastically overselect the

variables in the hope of achieving higher accuracy.

Finally, we report the computation cost for SD-LDA and its competitors
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Table 2: The means and standard errors of correctly selected variables

(denoted as C) and incorrectly selected variables (denoted as IC). The true

numbers of important/dense signals are 5 for Model S1, 10 for Model S2,

and 1 for all SD models.
SD-LDA MSDA Lasso elastic net SOS

Models q C IC C IC C IC C IC C IC

S1 0 4.5(0.7) 4.6(5) 4.5(0.8) 5.6(6.8) 4.7(0.5) 19.5(8.6) 4.9(0.2) 43.6(30.3) 4.8(0) 19.4(2.3)

S2 0 9.2(1) 5.1(6.7) 9.1(1.1) 4.6(6.9) 1.8(1.1) 33.2(7.4) 5.5(2.6) 67(36.2) 10(0) 4.4(0.1)

D1
0.1 1(0) 4.2(4.4) 1(0) 4.5(6.3) 1(0) 9.2(9) 1(0) 15(20.6) 1(0) 13.6(2.2)

0.2 1(0.1) 4.7(5.2) 1(0) 6.7(7.5) 1(0) 18.2(13.4) 1(0) 56(52.1) 1(0) 30.8(3.5)

D2
0.1 1(0) 1.8(3.1) 1(0) 10.5(10.9) 1(0) 22.9(13.1) 1(0) 65.8(51) 1(0) 23.5(3)

0.2 0.9(0.3) 1.5(2.8) 1(0) 24(12.1) 1(0) 46.2(7.5) 1(0) 189.1(29.7) 1(0) 68.8(3.1)

D3
0.1 1(0) 2.7(3.7) 1(0) 7.7(9) 1(0) 18.7(12.9) 1(0) 51.1(43.5) 1(0) 17.3(2.6)

0.2 0.9(0.2) 1.1(2) 1(0) 21.9(11.1) 1(0) 42.1(10.1) 1(0) 175.1(44.2) 1(0) 58.2(3.3)

D4
0.15 1(0.1) 0.6(3.4) 1(0) 1.2(3.4) 0(0) 19.9(11.6) 0(0.1) 57(69.5) 1(0) 22.8(0)

0.2 0.9(0.3) 0(0) 1(0) 5.4(13) 0(0) 23.1(12.8) 0(0.1) 109.7(87.4) 1(0) 26.7(0.1)

D5
0.1 1(0.1) 1.2(4.4) 1(0) 5.3(14.3) 0(0) 19.6(10.8) 0(0.1) 102.2(79.4) 1(0) 28.7(0.1)

0.15 0.9(0.3) 1.6(6.2) 1(0) 30.4(26.5) 0(0) 22.9(10.1) 0.1(0.3) 168.2(66.5) 1(0) 18.9(0)

D6
0.075 2.6(0.2) 17.5(3.1) 3.3(0.1) 0.11(0) 0(0) 26.89(0.7) 0.31(0.1) 137.7(3.6) 2.3(0.1) 139.9(3.9)

0.1 2.4(0.1) 11.3(2.7) 3.8(0.1) 0.81(0.2) 0(0) 26.7(0.6) 0.36(0.1) 153.0(1.3) 2.3(0.1) 139.0(3.7)

in Table 3. For brevity, we report only the results for Models D1 and D6

with q = 0.1 at the optimal tuning parameters. The computation time is

averaged over 100 replicates. Most methods take much less than 1 second to

finish one replicate. SD-LDA is slower than most of the competitors, which

is the price we pay to model the dense signals and achieve better prediction

accuracy. Among the discriminant analysis methods (SD-LDA, MSDA,
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Time (s× 10−2) SD-LDA MSDA Lasso elastic-net SVM SOS

D1 11.3 2.3 0.18 0.18 2.5 1.2

D6 17.9 5.2 8.4 9.0 10.4 104.7

Table 3: Average computation time based on 100 replicates.

and SOS), SD-LDA is slower than MSDA because it needs to calculate

(Σ̂ + 2λ2I)
−1 when estimating the dense signals. SD-LDA is slower than

SOS in the relatively simple Model (D1). However, in the more difficult

Model (D6), SD-LDA is much faster than SOS, even though SOS estimates

only the sparse signals.

5. Real Data Set Analysis

We demonstrate the performance of SD-LDA on five real-world data sets:

The IBD data set from Burczynski et al. (2006), the small-blue-round-cell

tumour data set (SBRCT) from Khan et al. (2001), the prostate cancer

data set from Singh et al. (2002), the gene time data set, and the cancer

genome atlas data set. The screened IBD data set is imported from the

R package msda directly. It contains 127 samples in three classes and 127

gene expressions. The SBRCT data set has 84 samples in four classes, and

the prostate cancer data set has 102 samples in two classes. Because the
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dimensions of the SBRCT and the prostate cancer data sets are extremely

high, we first apply t-test screening, as in Fan and Fan (2008), before per-

forming our proposal. The reduced data sets are generated by the t-test

screening with p-values of screening set to 0.001 and 0.05, respectively. The

numbers of their gene expressions are reduced to 594 and 477, respectively.

The gene time course data (GTC) describes the clinical response to

treatment for multiple sclerosis (MS) patients based on gene expression

time course data. This data set was originally described in Baranzini et al.

(2004). Fifty-three patients were given recombinant human interferon beta

(rIFNβ), which is often used to control the symptoms of MS. Gene expres-

sion was measured for 76 genes of interest before treatment (baseline) and

at six follow-up time points over the next two years (3 months, 6 months, 9

months, 12 months, 18 months, 24 months). Afterward, patients were clas-

sified into good responders or poor responders to rIFNβ, based on clinical

characteristics. There are 20 good responders and 33 bad responders in all

the 53 patients. The dimension for this data set is 76× 7 = 532.

The Cancer Genome Atlas (TCGA) Research Network has profiled and

analyzed large numbers of human tumors to discover molecular aberrations

at the DNA, RNA, protein, and epigenetic levels. These data are part of

the pan-cancer data set, and is a random extraction of gene expressions of
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patients with different types of tumors: BRCA, KIRC, COAD, LUAD, and

PRAD.We downloaded the data from https://archive.ics.uci.edu/ml/datasets/

gene+expression+cancer+RNA-Seq, which was kindly shared by Samuele

Fiorini in 2016. The original data set is maintained by the cancer genome

atlas pan-cancer analysis project (https://www.synapse.org/ ). The data

set has 801 samples in five classes and 20531 gene expressions. As with the

previous data sets, we first use t-test screening to select 801 genes.

We perform SD-LDA and the competitors included in Section 4 on the

first four data sets. We run 100 replicates, and in each replicate the data

sets are split in a 2:1 ratio in a balanced manner to form training and test-

ing sets. The tuning parameters are chosen using five-fold cross-validation

and by checking their prediction errors. For the TCGA data, almost all

the methods perform perfectly. To make the classification problem more

challenging, we run 100 replicates, with the data set split in a 1:9 ratio in

a balanced manner to form training and testing sets; that us, we have 80

training samples and 721 test samples.

The average prediction errors are reported in Table 4. SD-LDA is ei-

ther the best classifier, or statistically no different from the best classifier.

These results support the application of SD-LDA in practice. Note that

the sparse methods may perform better if we preprocess the data sets a
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Table 4: The means and standard errors (in parentheses) of the prediction

error(%) of SD-LDA and other competitors of 100 replicates for each data

set.

DataSet SD-LDA MSDA Lasso elastic-net SVM SOS

IBD 3.71(0.28) 8(0.37) 6.76(0.36) 5.1(0.34) 8.27(0.38) 6.93(0.33)

SBRCT 0.08(0.08) 14.08(0.9) 1.58(0.2) 0(0) 0.92(0.17) 2.15(0.26)

Prostate 0(0) 29.06(0.74) 19.06(0.58) 2.79(0.28) 0(0) 15.33(0.63)

GTC 17.4 (0.74) 33.6 (0.97) 31.7 (0.85) 21.2 (0.87) 31.6 (0.51) 45.2 (1.31)

TCGA 0.20(0.02) 1.57 (0.14) 0.58 (0.02) 0.42 (0.01) 0.37 (0.01) 4.90 (0.12)

little differently. For example, Mai et al. (2012) reported a prediction error

of 5.9% for MSDA (its binary equivalence, to be exact) if the data set is

not screened. However, the error is still significantly larger than that of

SD-LDA on the screened data in Table 4.

We further check the variable selection results in Table 5. By consider-

ing the “dense signals”, SD-LDA actually selects the fewest sparse signals.

Therefore, SD-LDA could help researchers focus on a smaller set of key

features for a more in-depth study. Because the gene names for the IBD,

Prostate, and TCGA data sets are missing from the original resources, we

report only the selected genes for the SBRCT and GTC data sets. For the

SBRCT data, SD-LDA selects 10 genes, including WASp, CAV1, CDH2,
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Table 5: The means and standard errors of the number of selected variables

by SD-LDA and other competitors of 100 replicates are reported.

Methods SD-LDA MSDA Lasso elastic-net SOS

IBD 9.4(0.82) 29.46(0.7) 10.67(0.18) 69.83(0.5) 52.36(1.89)

SBRCT 7.62(0.47) 17.32(0.54) 10.97(0.23) 140.45(0.67) 59.07(0.99)

Prostate 11.37(0.52) 12.66(0.4) 43.59(0.59) 233.7(0.93) 64.67(1.15)

GTC 2.04(0.18) 6.09(0.34) 12.52(0.66) 110.07(2.84) 25.65(1.15)

TCGA 19.13(0.76) 38.71(0.84) 9.01(0.19) 125.51(0.74) 108.34(2.71)

HBE1, anti-CD99, Psmb10, HLA-DMA, SYNGR1, EHD1, and PSMB8.

Some of these genes have been shown to have close relationship with the

development of cancer. For example, CAV1 appears to act as a tumor

suppressor protein at early stages of cancer progression (Sáinz-Jaspeado

et al., 2011); CD99 appears to be a robust marker of cancer stem cells

and a promising therapeutic target in these malignancies (Pasello et al.,

2018);and HLA-DMA antigen expression by tumor cells influences the tu-

mor antigen (TA)-specific immune responses and, depending on the cancer

type, the clinical course of the disease (Seliger et al., 2017). For the GTC

data set, SD-LDA selects two genes, Caspase 6 and FLIP. This agrees with

the findings in the existing literature. For example Julien et al. (2016)

showed that Caspase 6 is related to MS, and (Hauser and Oksenberg, 2006)
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showed that FLIP is related to MS.

6. Discussion

SD-LDA is proposed as a convex high-dimensional classification method

that is robust to the changing signal pattern in linear discriminant direc-

tions. It is obtained by separating the linear discriminant directions into

“sparse signals” and “dense signals” and applying suitable penalties to es-

timate them. To the best of our knowledge, this is the first SD classifier,

to perform well over a wide range of data sets. Similar techniques could

be combined with linear classifiers, such as the logistic regression or SVM,

to enable them to capture the “sparse signals” and “dense signals.” We

can further consider a similar modification for nonlinear models, such as

the quadratic discriminant analysis (QDA; Fan et al. (2015); Li and Shao

(2015); Jiang et al. (2018)).

Although our work is developed under the LDA model, in which the

within-class distribution is normal. It can be extended easily to a semi-

parametric framework that has been reasonably well studied (Lin and Jeon,

2003; Liu et al., 2009; Mai and Zou, 2015; Jiang and Leng, 2016). In such

a semiparametric framework, X does not have to be normal within each

class, but there must exist a set of unknown transformations g = (g1, . . . , gp)
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such that (g(X), Y ) follows the LDA model. When considering high-

dimensional data, existing works frequently adopt the sparsity assumption.

However, following our work, we can consider a semiparametric model with

sparse+dense signals to achieve greater flexibility. We leave this topic as

an interesting future research direction, for which some recent theoretical

works on estimating the transformation may be helpful (Mai et al., 2022).

However, such studies are beyond the scope of this study.

Supplementary Materials

The derivation for algorithms and the proof for theorems are available in

the supplementary materials. Section S2 contains the derivation for Lemma

1 and Section S3 contains the proof for Theorem 1.
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