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Abstract: We investigate perfect classification on functional data using finite samples. Per-

fect classification for functional data is easier to achieve than for finite-dimensional data,

because a sufficient condition for the existence of a perfect classifier, called the Delaigle–

Hall condition, is available only for functional data. However, a large sample size is re-

quired to achieve perfect classification, even when the Delaigle–Hall condition holds, be-

cause the minimax convergence rate of the errors with functional data has a logarithm order

in the sample size. We resolve this complication by proving that the Delaigle–Hall con-

dition also achieves fast convergence of the misclassification error in a sample size under

the bounded entropy condition on functional data. We study a reproducing kernel Hilbert

space-based classifier under the Delaigle–Hall condition, and show that the convergence

rate of its misclassification error has an exponential order in the sample size. Technically,

our proof is based on (i) connecting the Delaigle–Hall condition and a margin of classifiers,

and (ii) handling metric entropy of functional data. The results of our experiments support

our findings, and show that other classifiers for functional data have a similar property.

Key words and phrases: Convergence Rate, Functional Data, Perfect Classification, Re-

producing Kernel Hilbert Space
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1. Introduction

The classification problem is one of the most general and significant problems

in functional data analysis. The goal of classification is to predict labels or cate-

gories from functional data given in the form of (possibly) infinite-dimensional

random curves. Because of its versatility, classification has many applications

in the field of science (Varughese et al., 2015), engineering (Gannaz, 2014; Li

et al., 2013; Florindo et al., 2011), medicine (Chang et al., 2014; Islam, 2020;

Dai et al., 2017), and others. Several methods have been developed to solve this

problem, including distance-based (Alonso et al., 2012; Ferraty and Vieu, 2003),

k-nearest neighbor (Biau et al., 2005; Cérou and Guyader, 2006), partially least

square (Preda et al., 2007; Preda and Saporta, 2005), orthonormal basis (De-

laigle and Hall, 2013, 2012), Bayesian (Wang and Qu, 2014; Yang et al., 2014),

and logistic regression methods (Araki et al., 2009). For a survey, see Cuevas

(2014).

Perfect classification for functional data was studied by Delaigle and Hall

(2012), and has the advantage of being able to use infinite-dimensional data.

This notion refers to the convergence of the misclassification error to zero under

an optimal classifier, which is also referred to as realizability (Shalev-Shwartz

and Ben-David, 2014). Seminal works (Delaigle and Hall, 2012, 2013) show

that under certain conditions on the mean and covariance functions of func-
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tional data (hereafter, the Delaigle–Hall condition), there exists a classifier that

achieves perfect classification asymptotically. This result does not usually hold

with finite-dimensional data, which is why it focuses on infinite-dimensional

vectors, called functional data. Berrendero et al. (2018) describe a relation

between this notion and a reproducing kernel, and various methods have been

shown to have a connection to a perfect classifier (Cérou and Guyader, 2006;

Dai et al., 2017; Cuesta-Aboertos and Dutta, 2016; Hanneke et al., 2021).

One difficulty is the need for a large sample size to achieve perfect classifi-

cation, suggested by a convergence analysis of the misclassification error in the

sample size. Nonparametric methods for functional classification are known to

have a very slow convergence rate, owing to the infinite dimensionality of func-

tional data. Let R(f) be a misclassification error under a classifier f . Meister

(2016) proves that any classifier f̃n consisting of n observations has the follow-

ing relationship with some data-generating process:

R(f̃n)− inf
f
R(f) ≥ c(log n)−α.

Here, c > 0 is a universal constant, and α > 0 is a parameter that depends on

the data-generating process. This result shows that the misclassification error of

functional data cannot avoid errors that decay only on the logarithmic order in

the general setting. Because logarithmic decay is slower than every decay with

a polynomial order, the convergence of this unavoidable error is very slow. As
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such, even if a perfect classifier exists, it can be difficult to benefit from it.

This study resolves the aforementioned possibility by showing that the Delaigle–

Hall condition also makes the convergence of the excess misclassification error

sufficiently fast. To achieve our goal, we consider a reproducing kernel Hilbert

space (RKHS) H and study a classifier f̂n ∈ H from n observations using empir-

ical loss minimization. Furthermore, we consider a family of functional data that

satisfies a bounded entropy condition, implying the continuity and the bound-

edness of a norm of such data. Then, we show that f̂n obtains the following

convergence under the Delaigle–Hall condition:

E

(
R(f̂n)− inf

f∈H
R(f)

)
≤ 2 exp(−βn),

with some parameter β > 0. This exponential convergence in n is faster than all

polynomial convergence, ensuring perfect classification.

Note that the classifier f̂n is constructed as a linear sum of given kernel func-

tions. Functional data analysis using an RKHS is widely used in both linear and

nonlinear regression problems (Preda, 2007; Lian, 2007; Cai and Yuan, 2012;

Cui et al., 2020; Tian et al., 2020), but is not widely used for the classification

problem, with the exception of Rincón and Ruiz-Medina (2012). Note that our

approach differs from that of Berrendero et al. (2018), who considers functional

data as RKHSs, because we construct the classifier using RKHSs.

As a technical contribution, our theoretical results follow two ideas. First,
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we introduce a hard-margin condition, which describes the ease of classifica-

tion problems, and connect it to the Delaigle–Hall condition. In a general set-

ting, a hard-margin condition is suitable for a perfectly classifiable setting, such

as Koltchinskii and Beznosova (2005). We newly develop a new hard-margin

condition for functional data, and then prove that the Delaigle–Hall condition

implies the hard-margin condition by using covariance structures of functional

data. Second, we develop a metric entropy analysis on a classifier for functional

data. To analyze the speed of convergence of the empirical risk minimization

classifier, we study the excess empirical risk on a space of classifiers. However,

because classifiers for functional data are more complicated than those of ordi-

nary cases, we cannot use the traditional theoretical results. We derive a new

entropy bound for this purpose, which enables us to develop the theory. To the

best of our knowledge, both technical points are new theoretical results.

Note the bounded entropy condition on the functional data for our result.

First, the condition requires a kind of continuity of the functional data, for ex-

ample, Lipschitz continuity. Second, it requires that a norm of the functional

data is bounded almost surely, which excludes, for example, Gaussian processes.

These restrictions are necessary for our proof with an entropy condition. To clar-

ify this point, we provide several examples of stochastic processes that satisfy

the entropy condition.
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1.1 Notation

We conduct numerical experiments to confirm our theoretical findings. Our

results show that the convergence speed of the misclassification error by the

RKHS method varies depending on whether or not the Delaigle–Hall and hard-

margin conditions are satisfied. We also test several additional classification

methods for functional data under the conditions. The results show that the

RKHS method and nonparametric classification methods, such as the Gaussian

process method, give similar effects on their convergence rates, but that linear

methods, such as a linear discriminant analysis, do not cause such an effect.

The remainder of the paper is organized as follows. Section 2 introduces our

setting and method. Section 3 explains the perfect classification and its conver-

gence result. In Section 4, we confirm our theoretical result using experiments.

Section 5 concludes the paper. The online Supplementary Material contains

proofs and additional examples.

1.1 Notation

For r ∈ R, sign(r) is a sign function that is 1 if r > 0, −1 if r < 0, and 0

if r = 0. In addition, ⌈r⌉ denotes the largest integer which is no more than

r. For r, r′ ∈ R, r ∨ r′ = max{r, r′}. For a function f : Ω → R on a set

Ω, ∥f∥L∞ = supx∈Ω |f(x)| denotes a sup-norm, and ∥f∥2n = n−1
∑n

i=1 f(Xi)
2

is an empirical norm with observations X1, ..., Xn. For an event E , 1{E} is an
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indicator function that is one if E holds, and zero otherwise. For two sequences

{an}n∈N and {bn}n∈N, an ≳ bn denotes that there exists a constant c > 0 such

that an ≥ cbn, for all n ≥ n, with some finite n ∈ N; an ≲ bn denotes its

opposite, and an ≍ bn means that both an ≳ bn and an ≲ bn hold. For a variable

z, let Cz be some positive and finite constant that depends only on z. For a space

Ω with a distance d and δ > 0, let N (δ,Ω, d) be the covering number of H, that

is, the minimal number of balls that cover Ω with the radius δ in terms of d.

2. Preliminary

2.1 Problem Setting

We consider a functional classification problem. Let X be a subset of an L2-

space on an index set T ⊂ Rd, with some d ≥ 1, and consider its inner prod-

uct ⟨x, x′⟩ =
∫
T x(t)x

′(t)dt, with x, x′ ∈ X , and its induced L2-norm ∥ · ∥.

Let B(X ) be an associated Borel σ-field of X . Suppose we have observations

(X1, Y1), ..., (Xn, Yn) that are n independent copies of a random object (X, Y )

from a joint distribution P , where X is an X -valued random function and Y is

a {−1, 1}-valued discrete random label. We write w = P (Y = −1) ∈ (0, 1).

Let Π on B(X ) be a marginal measure of X . For each label, we define con-

ditional measures on B(X ) for functional data as P+ = Π(· | Y = 1) and

P− = Π(· | Y = −1). By the definitions, we obtain P+(X ) = P−(X ) = 1 and
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2.1 Problem Setting

Π = wP− + (1− w)P+.

The goal of this problem is to construct a classifier that outputs a label from

a functional input in X . For a given function f : X → R, a corresponding binary

classifier is defined as sign ◦ f . We define the misclassification error of f as

R(f) = P{(X, Y ) : Y ̸= sign(f(X))},

which is also referred as a generalization error of the classification problem.

We discuss the existence of a minimizer of R(f) that is an optimal function

for the Bayes classifier. To this end, we develop a density function of P+ and P−.

Unlike the finite-dimensional data case, it is not trivial to define the densities,

because function spaces do not have the useful Lebesgue measure. Instead, we

use Π as a base measure, which is absolute continuous to P+ and P−, and define

the following densities by the Radon–Nikodym derivative p+ = dP+/dΠ and

p− = dP−/dΠ. The following result shows that we can guarantee the function

as a minimizer with p+ and p−. The proof is deferred to the Supplementary

Material.

Lemma 1. We define a function f0 : X → R as f0(x) = (1−w)p+(x)−wp−(x).

Then, f0 minimizes R(f).
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2.2 Methodology: RKHS Classifier

2.2 Methodology: RKHS Classifier

We provide a setting for an RKHS for functional data. Let H be a Hilbert space

on X . In addition, let ⟨·, ·⟩H be an inner product of H, and let ∥ · ∥H be an

induced norm of H. A function K : X ×X → R is referred to as a reproducing

kernel for H if it satisfies (i) for every x ∈ X , K(·, x) ∈ H holds, and (ii)

for every x ∈ X and f ∈ H, f(x) = ⟨f,K(·, x)⟩H holds. It is well known

that a reproducing kernel K is symmetric, nonnegative definite and uniquely

determined by an RKHS H. Furthermore, a set of linear form {
∑n

i=1 ciK(xi, ·) :

ci ∈ R, xi ∈ X} is dense in H; see Berlinet and Thomas-Agnan (2011).

An important property of an RKHS is, for any x, x′ ∈ X and f ∈ H, there

exists a constant cH, such that

|f(x)| ≤ cH∥f∥H, and |f(x)− f(x′)| ≤ ∥f∥H∥x− x′∥ (2.1)

holds. For the proof, see Proposition 4.30 in Steinwart and Christmann (2008).

Hereafter, we set cH = 1, without loss of generality. In addition, we impose the

condition that H is dense in a set of continuous functions C(X ). This property

is referred to as universality, and is satisfied by many common RKHSs (see

Definition 4.52 and Corollary 4.55 in Steinwart and Christmann (2008)).

For binary classification problems, we define a classifier f̂n ∈ H. Let ℓ :

R → R be a loss function, such that ℓ ≥ 1(−∞,0] is decreasing, bounded by one,
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convex, and 1-Lipschitz continuous. We consider the following optimization

problem:

f̂n = argmin
f∈H

1

n

n∑
i=1

ℓ(Yif(Xi)) + λ∥f∥2H , (2.2)

where λ > 0 is a regularization coefficient. This minimization problem can be

solved in several ways, depending on the loss function. We further assume that ℓ

is twice differentiable, its first derivative ℓ′ is negative, increasing, and bounded

below by −1, and its second derivative ℓ′′ is bounded above by 1. The logit loss

ℓ(t) = log(1+ exp(−t)) is a common choice of a loss function that satisfies this

requirement.

3. Main Result on Convergence of Misclassification Error

Our aim is to study the excess risk R(f̂n)− inff∈HR(f) under a perfect classi-

fiable setting. To this end, we require an assumption for perfect classification.

3.1 Delaigle–Hall Condition for Perfect Classification

The Delaigle–Hall condition, established by Delaigle and Hall (2012, 2013), is

a condition for functional data to be asymptotically perfect classifiable.

We provide some notation. Consider covariance functions of X ∼ Π as

C(t, t′) = cov(X(t), X(t′)), which is assumed to be strictly positive definite

and uniformly bounded. Further, random functions X+ and X− are drawn from
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3.1 Delaigle–Hall Condition for Perfect Classification

P+ and P−, respectively, with a corresponding bounded covariance function

Cℓ(t, t
′) = cov(Xℓ(t), Xℓ(t

′)), for ℓ ∈ {−,+}. Their spectral decompositions

(e.g., Theorem 4.6.5 in Hsing and Eubank (2015)) are written as

C(t, t′) =
∞∑
j=1

θjϕj(t)ϕj(t
′) and Cℓ(u, v) =

∞∑
j=1

θℓjϕℓj(u)ϕℓj(v),

where {θℓj, ϕℓj}∞j=1, and {θj, ϕj}∞j=1 are pairs of nonzero eigenvalues and eigen-

functions of Cℓ and C, for ℓ ∈ {−,+}. We assume that they are sorted as

θ1 ≥ θ2 ≥ . . . and θℓ,1 ≥ θℓ,2 ≥ . . .. We also introduce coefficients of mean

functions for each label. Let X+ and X− be random functions generated from

P+ and P−, respectively. Then we define its mean as

µ+ := EP+ [X+] =
∞∑
j=1

µ+,jϕj, and µ− := EP− [X−] =
∞∑
j=1

µ−,jϕj,

with coefficients µ+,j and µ−,j , for j ∈ N, by the generalized Fourier decompo-

sition. Using the basis {ϕj}∞j=1, we express the difference µ+−µ− =
∑∞

j=1 µjϕj

by coefficients µj , for j ∈ N.

We now introduce a condition for perfect classification. The following con-

dition is developed in section 4.2 of Delaigle and Hall (2012):

Definition 1 (Delaigle–Hall condition (Delaigle and Hall, 2012)). The joint

measure P satisfies the Delaigle–Hall conditions if the following holds for ℓ ∈

{+,−}:

lim
M→∞

(
∑M

j=1 θ
−1
j µ2

j)
2∑∞

j=1 θℓj(
∑M

i=1 θ
−1
i µi

∫
ϕi(u)ϕℓj(u)du)2

= ∞. (3.1)
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3.1 Delaigle–Hall Condition for Perfect Classification

We can simplify condition (3.1) under a specific setting: if C+ and C− have

common eigenfunctions, that is, ϕj = ϕ+j = ϕ−j , then the condition (3.1) is

rewritten more intuitively as

∞∑
j=1

θ−1
j µ2

j = ∞.

This condition indicates that the covariance of functional data is too concise

compared with the mean difference. If the functional data are nearly indepen-

dent for each input, the Delaigle–Hall condition is more likely to be satisfied,

because θj decays faster as j increases. The Delaigle–Hall condition implies the

following result.

Proposition 1 (Theorem 1 in Delaigle and Hall (2012)). If the Delaigle–Hall

condition is satisfied and X | Y is Gaussian, then there is a perfect classifica-

tion; that is, inff R(f) = 0 holds.

A similar result holds without the Gaussianity of X|Y (see Theorem 2 in De-

laigle and Hall (2012)).

This Delaigle–Hall condition gives a sufficient condition for Gaussian mea-

sures on infinite-dimensional spaces to be mutually singular, based on the clas-

sical Hájek–Feldman theorem Da Prato and Zabczyk (2014). Because this type

of singularity appears more easily than on finite-dimensional spaces, this shows

one advantage of using infinite-dimensional functional data. Next, we provide an
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3.2 Conditions

example of functional data distributions that satisfy the Delaigle–Hall condition.

Example 1 (Decaying Coefficients). We give a specific example of θj and µj ,

and consider when the Delaigle–Hall condition is satisfied. Suppose that θj ≍

j−α with α > 0 and µj ≍ j−β with β > 0 hold. Then, the Delaigle–Hall

condition is satisfied with 2β − α ≤ 1. Because α describes the complexity of

the covariance C(t, t′) and β indicates the smoothness of µ, the Delaigle–Hall

condition is more likely to be satisfied when the functional data are less smooth

and the covariance decays quickly.

3.2 Conditions

Here, we discuss several assumptions needed for the fast convergence. Recall

that N (ε,X , d) denotes a covering number of X , which is common in empir-

ical process theory and statistical learning theory (for an introduction, see Van

Der Vaart and Wellner (1996)). We consider the following condition.

Assumption 1 (Covering Bound). There exists constants ε̄ > 0, γ > 0, and

V > 0 such that for every ε ∈ (0, ε̄), the following holds:

logN (ε,X , d) ≤ V ε−γ.

Meister (2016) uses this type of assumption for convergence analysis of func-

tional data. Here, γ represents the complexity of the functional data space X ,
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3.2 Conditions

and controls the smoothness of X and a dimension of inputs for X .

Assumption 1 restricts the form of functional data in X in the following

ways. First, it requires a kind of continuity or differentiability for the functional

data. The degree of smoothness is adjusted by the decay rate γ in Assump-

tion 1. Second, it also requires that a norm of the functional data be bounded.

This constraint excludes Gaussian processes, and so we use a truncated version

of Gaussian processes instead. The following examples satisfy Assumption 1.

Additional examples are deferred to the Supplementary Material.

Example 2 (Smooth Path). For α ∈ N, suppose that X is a set of functions f

on [0, 1]p that have partial derivatives up to an order α − 1 that are uniformly

bounded by some constant, and the highest partial derivatives are Lipschitz con-

tinuous. In this case, a setting γ = p/α satisfies Assumption 1 with d = ∥ · ∥L∞

(Theorem 2.7.1 in Van Der Vaart and Wellner (1996)).

Example 3 (Nonsmooth Path). For α′ ∈ (0, 1], X is a set of α′-Hölder-continuous

functions on [0, 1]p, which is a set of functions f : [0, 1]p → R, such that

|f(x)− f(x′)| ≤ C∥x− x′∥α

holds for every x, x′ ∈ [0, 1]p, with some constant C > 0. In this case, a set-

ting γ = p/α satisfies Assumption 1 with d = ∥ · ∥L∞ (Theorem 2.7.1 in Van

Der Vaart and Wellner (1996)). Note that this set includes nondifferentiable
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3.2 Conditions

functions.

Example 4 (Unbounded Path with Finite Peaks). We consider a family of func-

tions f on [0, 1], such that

f(x) = g(x) +
J∑

j=1

ψ(x; aj, tj),

where g is a function from the Sobolev space with order α ∈ N (a space of α-

times weakly differentiable functions in terms of ∥·∥L2), ψ(x; aj, tj) = aj/|(x−

tj)|1/3 is an unbounded peak function with scale parameters aj ∈ [0, 1] and fixed

locations tj ∈ [0, 1], and J is a number of peaks. We can show that a set of

such functions satisfies Assumption 1 with γ = 1/α, and with d = ∥ · ∥L2 and

sufficiently large V > 0; see Proposition ?? in the Supplementary Material.

Next, we give the second condition for the distribution Π of X . For x ∈ X

and δ > 0, define B(x; δ) as an x-centered open ball with radius δ in terms of

∥ · ∥. Then, we impose the following assumption.

Assumption 2 (Positive Small Ball Probability). For any x in a support of Π

and δ > 0, Π(B(x; δ)) > 0 holds.

This assumption is satisfied for a general class of distributions, even in the func-

tional data setting. We provide several examples in the Supplementary Material.
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3.3 Convergence Result

3.3 Convergence Result

Now, we provide our main result on the convergence speed of the generalization

error. We provide an outline of the proof and details of the constants outline in

the next section, and the full proof in the Supplementary Material.

Theorem 1. Let H be an RKHS on X with a universal kernel. Let f̂n ∈ H

be a classifier, minimizing the empirical loss, as defined in (2.2). Suppose that

the Delaigle–Hall condition and Assumptions 1 and 2 hold. Then, there exist

positive and finite constants CV,γ and CV,Π,H, such that the following inequality

holds for any λ ∈ [λ, λ], with λ = max{(log n)−1/γ, CV,γ log log n/n} and λ =

CV,Π,H, and any n ∈ N, as λ ≥ λ:

E

[
R(f̂n)− inf

f∈H
R(f)

]
≤ 2 exp(−βn),

where β > 0 is a parameter that depends on H,Π, and V .

This result shows that very fast convergence of the generalization error is ob-

tained under the Delaigle–Hall condition and a sufficient sample size. In other

words, because this convergence is exponential in n, the error decays faster than

all polynomial convergence in n, in contrast to the logarithmic convergence of

Meister (2016), that is, R(f̃n)− inff R(f) ≥ C(log n)−1/γ holds. This suggests

that adding the Delaigle–Hall condition reduces the complexity of the functional

classification problem more than expected.
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3.4 Proof Overview

The following two technical points are important. First, the minimum re-

quired n is determined by γ, which reflects the complexity of the functional data

in Assumption 1. When the functional data are more complex, that is, γ is large,

the required sample size increases. Second, β depends on various parameters

and is complicated to describe. Rigorous values are provided in the full proof.

Remark 1 (Role of the RKHS). We use RKHSs for classifiers for the following

reasons. First, the pointwise bound (2.1) in RKHSs is important for the error

analysis. Second, an RKHS is closely related to the Delaigle–Hall condition

(3.1), because the condition is regarded as measuring the difference between the

means of the distributions in terms of an RKHS norm. This relation makes our

error analysis simple.

Remark 2 (Selection of H). We discuss the effect of the choice of the RKHS.

The exponential convergence in n, which is the main claim of Theorem 1, holds

for all RKHSs, as long as the requirements are satisfied.

3.4 Proof Overview

The proof of Theorem 1 comprises three steps: (i) rewrite the Delaigle–Hall

condition as a hard-margin condition; (ii) decompose the misclassification er-

ror; and (iii) study each of the components. Hereafter, we set L as a Lipschitz

constant of f ∗ and assume that ∥f ∗∥H ≥ 1, without loss of generality.
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3.4 Proof Overview

Step (i): Rewrite the Delaigle–Hall condition as a hard-margin condi-

tion: We first introduce the hard-margin condition, which is a general condition

in many classification problems.

Definition 2 (Hard-Margin Condition). A margin of Π with f : X → R is

defined as

δ(f,Π) = sup {δ : Π({x : |f(x)| < δ}) = 0} .

We say Π satisfies the hard-margin condition with given f if δ(f,Π) > 0 holds.

This condition requires that a discrepancy between the sets {x : f(x) > δ}

and {x : f(x) < −δ} is large, almost surely. In other words, the margin with f

is contained in a Π-null set. A margin is useful notion for handling the difficulty

of classification problems. This condition is related to a common condition for

other classification problems, namely, the strong noise condition (Koltchinskii

and Beznosova, 2005; Audibert and Tsybakov, 2007).

To show the connection between the Delaigle–Hall condition and the hard-

margin condition, we introduce f ∗ as follows. We define the sum of the orthog-

onal basis ψM =
∑M

j=1 θ
−1
j (µ+,j − µ−,j)ϕj and f ∗

M as

f ∗
M(x) = (⟨x− µ+, ψM⟩)2 − (⟨x− µ−, ψM⟩)2 .

Furthermore, we define f ∗ = limM→∞ f ∗
M . This function measures whether

the input x is closer to µ+ or µ−, with the weight ψ∞, and the sign of f ∗(x)
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3.4 Proof Overview

works as a classifier. Then, the following result shows the equivalence of the

Delaigle–Hall and hard-margin conditions:

Proposition 2 (Delaigle–Hall implies hard-margin). If the Delaigle–Hall condi-

tions holds, then δ(f ∗,Π) > 0 holds.

Proposition 2 shows that the Delaigle–Hall condition leads to the margin of Π

being positive. This is similar to Theorem 5 in Berrendero et al. (2018), which

states that the Delaigle–Hall condition is equivalent to the discrepancy between

the supports of two measures P+ and P− under the Gaussian homoscedastic

model. Proposition 2 also shows that f ∗ is an effective classifier with a suffi-

ciently large margin under the Delaigle–Hall condition. The proof is based on

an idea in Delaigle and Hall (2012), who apply a property that distances be-

tween functional data become infinitely large under the weighting by θj from

the covariance.

Step (ii): Generalization Error Decomposition: In preparation, we con-

vert the perfect classifier f ∗ into a controllable form. To this end, we define

f̃M(x) := fM(x)/|fM(x)| and f̃ ∗(x) = limM→∞ f̃M(x). Because the risk de-

pends only on the sign of f ∗, we have R(f̃ ∗) = R(f ∗). In the following, we

study the classification error based on f̃ ∗, rather than f ∗.

The first step is to rewrite the generalization error as an integral that involves

probabilities associated with the signs of f̃ ∗ and f̂ . The standard calculation
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yields the following transformation, by the Bochner integral:

E[R(f̂n)−R(f̃ ∗)] ≤
∫

|η(x)|Pr(f̂n(x)f̃ ∗(x) ≤ 0) dΠ(x),

where η(x) = E[Y |X = x]. Next, for each x, we decompose the probability

term Pr(f̂n(x)f̃
∗(x) ≤ 0). For x such that f̃ ∗(x) > 0 holds, the misclassification

error is rewritten as

Pr(f̂n(x)f̃
∗(x) ≤ 0) = Pr(f̂n(x) ≤ 0) ≤ Pr(f̂n(x) ≤ 0 , ∥f̂n∥H ≤ U)︸ ︷︷ ︸

=T1

+Pr(∥f̂n∥H > U)︸ ︷︷ ︸
=T2

,

with a threshold value U > 0, specified in the full proof. We divide the event

by the value of ∥f̂n∥H associated with U , and then study each probability term

separately.

Step (iii): Bound the Probability Terms: We bound T1, using the hard-

margin condition. Define Ln(f) := n−1
∑n

i=1 ℓ(Yif(Xi)) + λ∥f∥2H. We show

that f̂n cannot be a minimizer of Ln(f) as (2.2) when T1 is large under the hard-

margin condition. Then, using the contradiction, we prove that T1 converges

exponentially in n. This part mainly follows the same proof in Koltchinskii and

Beznosova (2005).

We bound T2 using the empirical process technique. This part is specific

to functional data, and hence some theory, such as Koltchinskii and Beznosova

(2005) does not work. First, we show that bounding the excess loss Ln(f̂n) −

Ln(f̃
∗) is sufficient to achieve the goal. To show the convergence of the excess
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loss, we develop a covering number bound for H (Lemma ?? in the Supple-

mentary Material), and develop the following bound with probability at least

1− exp(−t):

|Ln(f)− L(f)| ≤ RcV,γ(log n)
−1/γ +

√
2t/n,

for any f ∈ H such that ∥f∥H ≤ ∥f †∥H holds, and any t > 0 (Lemma ?? in the

Supplementary Material). Here, cV,γ is a constant depending on V and γ, which

are specified in the full proof. As a result, we achieve our goal with a sufficiently

large n.

4. Experiments

In this section, we conduct numerical experiments to support our theoretical

result; that is, we analyze the change in the convergence rate of various clas-

sification methods for functional data under the Delaigle–Hall and hard-margin

conditions.

4.1 Experimental Setting

For the functional classification problem, we consider the following settings. We

generate functional data from two groups, with labels {−1, 1}. For each group,

we generate n functions on T = [0, 1], with a northogonal basis ϕ0(t) = 1 and

ϕj(t) =
√
2 sin(πjt), ∀j ≥ 1. Here, n is set from 1 to 3000. For a label +1,
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4.1 Experimental Setting

we generate functional data Xi+(t) =
∑50

j=0(θ
1/2
j Zj+ + µj+)ϕj(t) with random

variables Zj+ and coefficients θj, µj+, for j = 0, 1, ..., 50 and i = 1, ..., n. Sim-

ilarly, for a label −1, we generate Xi−(t) =
∑50

j=0(θ
1/2
j Zj− + µj−)ϕj(t) with

random variables Zj− and coefficients µj−.

We consider the following two scenarios. The values of the random vari-

ables and coefficients are determined separately. In Scenario 1, to consider

perfect classifiable data using the Delaigle–Hall condition, we set θj = j−2,

µj− = 0, and µj+ = j−γ , and draw Zj+, Zj− from a standard normal Gaus-

sian distribution. Here, γ handles the complexity of the mean of functional

data, and thus determines whether the data-generating process satisfies/violates

the Delaigle–Hall condition. If γ ≤ 3/2, the Delaigle–Hall condition is sat-

isfied, and is violated otherwise. In Scenario 2, we examine perfect classifi-

cation according to the hard-margin condition. We set θj = j−2, µj− = 0,

and µj+ = 1{j = 0}µ, and let Zj+, Zj− be from a uniform distribution on

[−1/2, 1/2]. Here, µ is a key parameter in terms of satisfying or violating the

hard-margin condition. If µ ≥ 1 holds, the hard-margin conditions are satisfied,

because the domains of P+ and P− do not overlap. Otherwise, the hard-margin

condition is violated. For each method and n, we study its misclassification rate

using 1000 newly generated data sets. We repeat each simulation experiment 200

times and report its mean. The case in which the basis functions differ between
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labels is discussed in the Supplemental Material.

4.2 RKHS Classifier and the Delaigle–Hall/hard-margin Condition

Here, we examine the misclassification rate of the RKHS method in (2.2). We

set the loss function as the logit loss ℓ(u) = log(1 + exp(−u)), and construct

the hypothesis space H using the functional RKHS associated with the Gaussian

kernel k(x, x′) = exp(−∥x−x′∥2/h), with functions x = x(t)and x′ = x′(t) and

a hyperparameter h > 0. The norm in the kernel is calculated as
∑∞

j=0(ξj−ξ′j)2,

where ξj = ⟨x, ϕj⟩ and ξ′j = ⟨x′, ϕj⟩. By the representer theorem (Theorem 5.5

in Steinwart and Christmann (2008)), the minimization problem is rewritten as

min
{wj}nj=1

1

n

n∑
i=1

ℓ

(
Yi

n∑
j=1

wjk(Xi, Xj)

)
+ λ

n∑
j=1

w2
j ,

with the parameters w1, ..., wn. We solve the optimization problem by using the

gradient descent method. The bandwidth h and the penalized parameter λ are

determined using cross-validation (CV) from {2−5, 2−4, . . . , 24}, minimizing the

misclassification rate in the newly generated test data.

In Scenario 1, we consider configurations of the mean decay parameter as

γ ∈ {1.6, 1.7} to satisfy the Delaigle–Hall condition, or γ ∈ {1.3, 1.4} to violate

the condition. In Scenario 2, we consider µ ∈ {0.8, 0.9} to satisfy the hard-

margin condition, or µ ∈ {1.1, 1.2} to violate it. For each scenario, we plot

error (logarithm of misclassification error) against log n in Figure 1.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0258



4.2 RKHS Classifier and the Delaigle–Hall/hard-margin Condition

100 101 102 103
n

0.1

0.3

0.2

0.4

Er
ro

r

Scenario 1

=1.3
=1.4
=1.6
=1.7

100 101 102 103
n

10 6

10 5

10 4

10 3

10 2

10
1

Er
ro

r

=1.2
=1.1
=0.9
=0.8

Scenario 2

Figure 1: Error (logarithm of misclassification error rate) by the

RKHS against log n. Left: Scenario 1 for the Delaigle–Hall con-

dition, with γ ∈ {1.3 (solid), 1.4 (dashes), 1.6 (dots), 1.7 (dotdash)}.

Right: Scenario 2 for the hard-margin condition, with µ ∈

{1.2 (solid), 1.1 (dashes), 0.9 (dot), 0.8 (dotdash)}.

Our results reveal the following findings. First, in Scenario 1 for the Delaigle–

Hall condition, the error curves show slight differences in shape and slope. That

is, the curves are convex when γ = 1.6 or 1.7 (the Delaigle–Hall condition is not

satisfied), which appears to result in slow convergence. Second, in Scenario 2

for the hard-margin condition, the error curves show fast convergence only when

µ = 1.2 and 1.1 (the hard-margin condition is satisfied). These results show that

the conditions affect the decay speed and errors, weakly for the Delaigle–Hall
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condition, and drastically for the hard-margin condition.

Here, we investigate the effect of bandwidth selection on the results. Specif-

ically, we consider Scenario 1, and set the bandwidth to 10, 50, and 100, repeat

each simulation 200 times, and calculate the average classification error. The re-

sults are shown in Figure 2. As the bandwidth increases, the decay of the errors

becomes more gradual. When the bandwidth is large, the perfect classification

does not hold, because the expressive power of the kernel is reduced. Therefore,

regardless of the value of γ, it becomes more difficult for the exponential decay

of the errors to hold.
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Figure 2: Error (logarithm of misclassification error rate) by the RKHS against

log n. Upper left: Scenario 1, with the bandwidth selected using CV. Other three:

Scenario 1 for bandwidth λ = 10, 50, 100.

4.3 Others Methods and the Delaigle–Hall / hard-margin Condition

In this section, we compare the misclassification errors of several common clas-

sification methods for functional data. We consider the following classifiers: (a)
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the kernel classifier (Dai et al., 2017); (b) the centroid method (Delaigle and

Hall, 2012); (c) the centroid method with a partial least square (PLS) (Preda

et al., 2007); (d) a logistic regression with a Gaussian process (GP); and (e) a

linear discriminant analysis (LDA). The hyperparameters in (b) and (c) are cho-

sen in the same way as in Delaigle and Hall (2012). The bandwidth of the kernel

in (a) and the number of components for the dimension reduction in (e) are se-

lected using CV. The hyperparameters in (d) are optimized using Algorithm 5.1

in KI Williams (2006). We set n from 5 to 1000. The remaining settings of

the data-generating process and the RKHS method are the same as those of the

previous sections.

The results are shown in Figure 3: the left column shows Scenario 1 with

γ = 1.3, 1.4, 1.6, and 1.7, and the right shows Scenario 2 with µ = 1.2, 1.1, 0.9,

and 0.8. In Scenario 1 (left column), the parameter γ does not have a significant

impact on the curves, although the RKHS method shows a slight difference in

shape, as in the previous section. In Scenario 2 (right column), the parameter µ

has a significant impact. As µ increases and the hard-margin condition is satis-

fied, the nonlinear methods (RKHS, GP, centroid, and kernel classifier) achieve

fast convergence. In contrast, the linear methods (PLS and LDA) do not. This

finding indicates that the nonlinear methods may achieve fast convergence with

the hard-margin condition.
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Figure 3: Error (logarithm of misclassification error) by the RKHS against

log n of the RKHS method (solid), centroid method (dots), logistic regression

with Gaussian process (dashdot), kernel classifier (bold dash), linear discrimi-

nant analysis (bold solid), and centroid method with partial least square (bold

dashdot). Left column: Scenario 1 with γ ∈ {1.3, 1.4, 1.6, 1.7}. Right: Scenario

2 for the hard-margin condition with µ ∈ {1.2, 1.1, 0.9, 0.8}.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0258



5. Conclusion

In this study, we investigate the convergence rate of the misclassification error

of the classification problem for functional data, and discuss the feasibility of

a small error with finite samples. The Delaigle–Hall condition guarantees the

existence of a perfect classifier, which is a specific condition for functional data

that cannot occur for finite-dimensional data. However, the minimax rate of the

misclassification error with functional data, that is, the worst-case error, follows

logarithmic convergence in the sample size. Hence, it is not clear whether we

can achieve the perfect classification in practice with a realistic sample size. Our

result reveals that the Delaigle–Hall condition leads not only to the existence of

a perfect classifier, but also to the exponential convergence of the error. Further-

more, the Delaigle–Hall condition is helpful when estimating from finite sam-

ples. This reveals the specific advantage of treating functional data explicitly,

because the Delaigle–Hall condition is specific to infinite-dimensional data.

Note that Assumption 1 on a covering number restricts the available class

of functional data. This is unavoidable as long as we handle the properties of

functional data in a uniform way using the notion of metric entropy. A possible

way to avoid this is to use a spectral decomposition-based approach, as in Hall

and Horowitz (2007), which deals directly with the randomness of functional

data without entropy.
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The considered classifier is typical and also different from modern adaptive

methods, such as neural networks. However, owing to this simplicity, we suc-

ceed in clarifying the theoretical properties with a perfect classification. More-

over, because analyses of adaptive methods are often extensions of analyses for

simple methods, our results may serve as a basis for further research.

Supplementary Material

The Supplementary Material contains detailed proof of the main theorem and

examples that satisfy conditions.
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