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Abstract: Time series regression models are commonly used in

time series analysis. However, in modern applications, data are

often serially correlated and have an ultrahigh dimension and fat

tails, making it difficult to develop new time series analysis tools.

In this paper, we propose a novel Bernstein-type inequality for

high-dimensional linear processes, and apply it to investigate

two high-dimensional robust estimation problems: (1) a time

series regression with fat-tailed and correlated covariates and

errors, and (2) a fat-tailed vector autoregression. Our proposed

approach allows for exponential increases in the dimension with

the sample size, under mild moment and dependence conditions,

while ensuring consistency in the estimation process.
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1. Introduction

The growing prevalence of massive data sets has increased the impor-

tance of high-dimensional data analysis, and particularly, high-dimensional

linear regression. Specifically, consider the linear regression models

Yi = X>i β + ξi, i = 1, . . . , n,

where Yi, Xi, and ξi are the response, covariate, and error variables, re-

spectively. Various regularization methods have been used to estimate the

p-dimensional regression parameter vector, including those of Tibshirani

(1996), Zou and Hastie (2005), Fan and Li (2001), Bickel et al. (2009),

Meinshausen and Yu (2009), and many others; see Bühlmann and Van

De Geer (2011) for a comprehensive overview. Most investigations assume

that the covariates Xi (if it is a random design) and errors ξi are indepen-

dent and identically distributed (i.i.d.) Gaussian or sub-Gaussian random

variables, which can be too restrictive in practice.

On the one hand, serial correlation might occur when data are collected

over time, requiring, for example, a linear regression with time series regres-

sors and autoregressive errors (Harvey (1990), Tsay (1984), Shumway et al.
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(2000)). On the other hand, many applications involving time series data

are concerned with high-dimensional objects and fat-tailed distributions,

including those in quantitative finance (Cont (2001)), portfolio allocation

(Kim et al. (2012)), risk management (Koopman and Lucas (2008)), brain

networks (Friston (2011)), and geophysical dynamic studies (Kondrashov

et al. (2005)).

Previous works have examined linear regression with correlated errors.

Specifically, the Lasso estimator is studied for linear regression with au-

toregressive errors by Wang et al. (2007) and Yoon et al. (2013), weakly

dependent errors by Gupta (2012), and long memory errors by Kaul (2014).

However, these studies focus on cases in which the dimension p is small-

er than the sample size n, or the Gaussian assumption is imposed on the

error process. More recently, Wu and Wu (2016) and Chernozhukov et al.

(2021) used the framework of functional dependence measures to account

for both dependent covariates and errors in linear regression, allowing p to

increase with n at a polynomial rate, while maintaining consistency. How-

ever, a narrow range is still required for the dimension in the presence of

non-Gaussian and dependent errors. To address the ultrahigh-dimensional

cases, where p can grow exponentially with n, various robust methods have

been proposed for linear regression with i.i.d. fat-tailed errors, including the
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penalized Huber M -estimation (Fan et al. (2017), Loh (2017, 2021)), sparse

least trimmed squares (Alfons et al. (2013)), and ESL-Lasso (Wang et al.

(2013)), among others. In this study, we consider a robust estimation of a

time series regression, allowing for ultrahigh dimensions and fat-tailed and

correlated errors.

Vector autoregression (VAR) is another popular linear model for de-

scribing the evolution of a set of variables over time, and there has been

significant progress in estimating high-dimensional VAR models. Inspired

by its development in high-dimensional linear regression, Hsu et al. (2008),

Nardi and Rinaldo (2011), and Basu and Michailidis (2015) considered the

Lasso estimator with an `1-penalty. Kock and Callot (2015) established ora-

cle inequalities for high-dimensional VAR models. Han et al. (2015) adopted

a Dantzig-type penalization. Guo et al. (2016) proposed a Bayesian infor-

mation criterion based on residual sums of the least squares estimator to

estimate a high-dimensional banded autoregression. However, most of these

studies require the Gaussian assumption or the existence of a finite expo-

nential moment. In terms of econometric analysis, Sims (1980) raised the

concern that fat tails in VAR models can affect the validity of statistical

inference, and may lead to low degrees of freedom because of the estima-

tion of a possibly large number of parameters. Therefore, there is a need to
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investigate robust estimation methods for high-dimensional fat-tailed VAR

models.

In summary, we focus on tackling the challenges posed by high-dimensional

time series analysis with time series covariates, possibly correlated errors,

fat tails, and an ultrahigh dimension. This requires new statistical tools tai-

lored to the characteristics of these data sets. One of our key contributions

is a novel Bernstein-type inequality for the sum of a bounded transformation

of high-dimensional linear processes. This inequality is instrumental in ob-

taining consistent estimators under mild conditions, such as log p = o(nc),

for some c > 0.

The remainder of the paper is organized as follows. In Section 2, we in-

troduce the framework of high-dimensional linear processes and the impor-

tant quantities that characterize temporal and cross-sectional dependence.

We then present a new Bernstein-type inequality for high-dimensional lin-

ear processes. In Section 3, we investigate two robust estimation problems:

(1) a time series linear regression with correlated and fat-tailed covariates

and errors, and (2) autoregressive models with fat-tailed errors. We provide

simulation results in Section 4 to assess the empirical performance of the

robust estimators. All proofs are relegated to the Supplementary Material.

We first introduce some notation. For a vector β = (β1, . . . , βp)
>, let
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|β|1 =
∑

i |βi|, |β|2 = (
∑

i β
2
i )1/2, |β|0 = |{i : βi 6= 0}|, and |β|∞ =

maxi |βi|. Let Supp(β) be the support of β. For a matrix A = (aij)1≤i,j≤p ∈

Rp×p, let λi, for i = 1, . . . , p, be its eigenvalues and λmax(A) = maxi |λi|

be the spectral radius, λmin(A) = mini |λi|. Let κ(A) denote the condition

number of A. Denote |A|1 =
∑

i,j |aij|, ‖A‖1 = maxj
∑

i |aij|, ‖A‖∞ =

maxi
∑

j |aij|, the spectral norm ‖A‖ = ‖A‖2 = sup|x|2 6=0 |Ax|2/|x|2, and

the Frobenius norm ‖A‖F = (
∑

i,j a
2
ij)

1/2. Moreover, let tr(A) be the trace

of A, ‖A‖max = maxi,j |aij| be the entry-wise maximum norm, and |A| be

a matrix after taking the absolute value of A, that is, |A| = (|aij|)i,j. For

a random variable X and q > 0, define ‖X‖q = (E[|X|q])1/q. For two real

numbers x, y, set x∨ y = max(x, y). For two sequences of positive numbers

{an} and {bn}, we write an . bn if there exists some constant C > 0 such

that an/bn ≤ C as n → ∞, and write an � bn if an . bn and bn . an.

We use c0, c1, . . . and C0, C1, . . . to denote universal positive constants, the

values of which may vary in different contexts. Throughout the paper, we

consider the high-dimensional regime, allowing the dimension p to grow

with the sample size n, that is, we assume p = pn →∞ as n→∞.
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2. Bernstein-type Inequality for High-dimensional Linear Pro-

cesses

We consider a general framework of p-dimensional stationary linear pro-

cesses

Xi = (Xi1, . . . , Xip)
> = µ+

∞∑
k=0

Akεi−k, (2.1)

where µ ∈ Rp is the mean vector, A0 = Ip, Ak, for k ≥ 1, are p × p

coefficient matrices with real entries such that
∑∞

k=0 tr(A>k Ak) < ∞, εi =

(εi1, . . . , εip)
>, and εij, for i ∈ Z, 1 ≤ j ≤ p, are i.i.d. random variables

with a zero mean and finite variance. Kolmogorov’s three-series theorem

ensures that the linear process (2.1) is well defined. Many researchers have

worked on this model, including Bhattacharjee and Bose (2014, 2016), Liu

et al. (2015), and Chen et al. (2016), among others. One special case of

(2.1) is the stationary Gaussian process. If Ak = 0, for k > d, it becomes a

vector moving average process of order d (Reinsel (2003), Lütkepohl (2005),

Brockwell and Davis (2009)). Another important class of models covered by

(2.1) is the VAR model, which is widely used in economics and finance (e.g.,

Sims (1980), Stock and Watson (2001), Tsay (2005), Fan et al. (2011)).

The linear process (2.1) is a flexible multivariate model for correlated

data in that the coefficient matrices Ak capture both temporal and cross-
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sectional (spatial) dependence. Previous research has explored different

structural conditions on the matrices Ak. For example, Liu et al. (2015)

worked on a restrictive class of linear processes with matrices Ak that are

simultaneously diagonalizable, which implies the absence of spatial depen-

dence among the components. Bhattacharjee and Bose (2016) assumed that

lim p−1tr(Π) exists and is finite for any polynomial Π in {Ak, A>k }, a joint

convergence assumption that is difficult to verify. In this work, we impose

a condition on the decay rate of the spectral norms of Ak, which allows

for more general dependence structures and is easier to check in practice.

Assume that there exist 0 < ρp < 1 and 1 ≤ γp <∞ such that

‖Ak‖ = sup
|x|2 6=0

|Akx|2
|x|2

≤ γp · ρkp, (2.2)

for all k ≥ 0. This implies short-range dependence, in the sense that

the autocovariance matrices Cov(X0, Xj) =
∑∞

k=0AkA
>
k+j are absolutely

summable. The proposed quantities ρp and γp can capture temporal and

spatial dependence in the underlying high-dimensional process. In partic-

ular, ρp represents the strength of the temporal dependence, with smaller

values indicating faster decay rates and weaker temporal dependence. The

magnitude of γp naturally quantifies the spatial dependence. A notable

feature is that both γp and ρp may depend on p in the high-dimensional

regime. For example, when p is large, ρp may be a relatively large rate,
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close to one, indicating a slow decay speed. In fact, there exists an absolute

constant, independent of p and strictly smaller than one, such that (2.2)

can be rewritten as

‖Ak‖ ≤ γp · ρk/τp0 , for some τp ≥ 1. (2.3)

In particular, we define τp ≡ 1 if there exists ρ0 such that ρp ≤ ρ0 < 1,

and τp = log ρ0/ log ρp, for ρ0 satisfying 0 < ρ0 ≤ ρp, if ρp is large and

increases with p. In the latter case, it could happen that τ := τp is an

unbounded function in terms of the dimension p. Note that few studies have

examined measures of dependence quantified by the dimension p, despite

their relevance in analyzing high-dimensional time series. This feature is

illustrated by the high-dimensional VAR model in Example 1. Henceforth,

for notational simplicity, we omit the dimension subscript in γp, τp, and

refer to them as γ, τ . In addition, we assume τ ≤ n; otherwise, there may

exist very strong temporal dependence, in the sense that ‖Ak‖ is decaying

at a rate no faster than ρ
1/n
0 .

Example 1 (High-dimensional VAR Models). Consider the VAR(1) model

Xi = AXi−1 + εi, (2.4)

where A ∈ Rp×p is the transition matrix, and εi, for i ∈ Z, are i.i.d. error

vectors with mean zero and covariance matrix Ip. Equivalently, the mod-
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el can be represented by the moving average model Xi =
∑∞

k=0A
kεi−k, a

special case of (2.1) with Ak = Ak. The process is stable (and hence sta-

tionary) if and only if the spectral radius λmax(A) < 1 (Lütkepohl (2005)).

If A is symmetric, as λmax(A) = ‖A‖, condition (2.2) can be easily verified

with ρp = λmax(A) and γ = 1. For asymmetric A, it has a better interpre-

tation when we consider condition (2.3), and it could happen that τ may

increase with the dimension p. Consider the design A = (aij)
p
i,j=1, with

aij = λj−i+11{0 ≤ j − i ≤ B − 1}, for some 0 < λ < 1 and 1 ≤ B ≤ p.

Here, B depicts how many variables, at most, in Xi−1 have a spatial effect

on Xij. Figure 1 shows a plot of ‖Ak‖ under the numerical setup λ = 0.55,

B = 3, 4, and p = 20, 25, 30. As shown, ‖Ak‖ decays after a certain lag

that moves forward as p increases. This lag can be defined as τ in condi-

tion (2.3), so τ increases with p in this design. Additionally, the geometric

decay (its existence is shown later) occurs at a slow speed, which is further

evidence of large ρp (or large τ , equivalently). For example, when B = 3

and p = 30, ‖Ak‖ decreases from 1.35 to 0.1 over a broad lag range from

30 to 60. The peak of ‖Ak‖ before decay is defined as γ, indicating the

strength of spatial dependence. Comparing the two plots, we can see that

stronger spatial dependence with a larger B results in a larger γ.

Concentration inequalities play an important role in the study of sums
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Figure 1: The graph of ‖Ak‖ for B = 3, 4, and p = 20, 25, 30.

of random variables. A number of inequalities have been derived for in-

dependent random variables; see Bühlmann and Van De Geer (2011) for

a review. Bernstein’s inequality (Bernstein (1946)) is a powerful tool for

analyzing concentration behavior that provides an exponential inequali-

ty for sums of independent random variables that are uniformly bounded.

For example, let Y1, . . . , Yn be i.i.d. random variables such that EYi = 0,

Var(Yi) = σ2 <∞, and |Yi| ≤M , for all i. Then, for any x > 0, we have

P
( n∑
i=1

Yi ≥ x
)
≤ exp

{
− x2

2nσ2 + 2Mx/3

}
, (2.5)

which suggests two types of bound for the tail probability: a sub-Gaussian-

type tail exp{−x2/(Cnσ2)} in terms of the variance of
∑n

i=1 Yi, and a sub-

exponential-type tail exp{−x/(CM)} in terms of the uniform bound M .
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Bernstein-type inequalities have been developed for Markov chains and

temporally dependent processes with an additional order (log n in some

constant powers) in the sub-exponential-type tail; see, for example, Adam-

czak et al. (2008), Merlevède et al. (2009), Hang and Steinwart (2017), and

Zhang (2021). The problem of generalizing to high-dimensional time series

is quite challenging, and very few results have been obtained. Our first goal

is to establish a new Bernstein-type inequality for the sum of a bounded

transformation of the high-dimensional linear processes in (2.1).

Theorem 1. Let Xi be the linear process generated from (2.1), with Eεij =

0, Eε2ij = σ2 < ∞, and let condition (2.3) be satisfied. Let G : Rp → R

be a function with |G(u)| ≤ M , for all u ∈ Rp. Suppose there exists a

vector g = (g1, . . . , gp)
> with gi ≥ 0 and

∑p
i=1 gi = 1 such that the following

Lipschitz condition holds: for all u = (u1, . . . , up)
> and v = (v1, . . . , vp)

>,

|G(u)−G(v)| ≤
p∑
i=1

gi|ui − vi|. (2.6)

Then, for any x > 0, we have

P
( n∑
i=1

G(Xi)− EG(Xi) ≥ x
)
≤ 2 exp

{
− x2

C1nσ2τ 2γ2 + C2τMx

}
, (2.7)

where the constants C1 and C2 are given by

C1 =
16e2√

2πρ40[log(1/ρ0)]3
, C2 =

8e

log(1/ρ0)
.
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Remark 2. Equipped with our new inequality (2.7), we can investigate

the concentration properties of sums of bounded transformations of high-

dimensional linear processes that exhibit both temporal and cross-sectional

dependence, characterized by τ and γ, respectively. In the special case that

the processes are one-dimensional, denoted by Xi ∈ R, and τ = 1 and γ is

of a constant order that satisfies condition (2.2), our probability inequal-

ity (2.7) is just as sharp as the classical Bernstein inequality (2.5). Note

that our inequality is strictly sharper than the Bernstein-type inequalities

for univariate time series established by Merlevède et al. (2009) and Zhang

(2021). Recall that Merlevède et al. (2009) derived a concentration inequal-

ity for a univariate strong mixing process (Xi) with mean zero and upper

bounded by M in magnitude:

P
( n∑
i=1

Xi ≥ x
)
≤ exp

{
− Cx2

nv2 +M2 +M(log n)2x

}
, (2.8)

where v2 is the asymptotic variance of
∑n

i=1Xi/
√
n. Zhang (2021) obtained

a similar bound, with v2 represented in terms of functional dependence mea-

sures. In our framework of linear processes with condition (2.2) satisfied,

v2 � σ2γ2 can be computed for one-dimensional cases. Notably, our in-

equality is made sharper by removing the additional factor (log n)2 in the

sub-exponential-type bound.

To study high-dimensional time series, an important class of transfor-
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mations is linear combinations of transformed component processes, that

is, G(Xi) =
∑p

j=1 ajhj(Xij), where
∑n

j=1 |aj| = 1, hj : R → R are uni-

variate functions satisfying |hj(x)| ≤ M and |hj(x) − hj(y)| ≤ 1, for any

x, y ∈ R, and thus condition (2.6) is satisfied with gj = |aj|. As a special

case, when G(Xi) = hj(Xij), for a fixed 1 ≤ j ≤ p, the result provides a

concentration inequality for sums of each component process (Xij)i∈Z after

the transformation hj. This is useful when estimating the mean vector of

high-dimensional linear processes in a robust way, as discussed at the end

of this section. In Remark 2.3, we highlight that our inequality yields a rate

of `∞-norm convergence for the robust mean estimator, which is as sharp

as the optimal rate for i.i.d. processes.

Condition (2.3) requires that ‖Ak‖ decays geometrically up to the quan-

tity γ, and that the decay speed is controlled by τ . Chen et al. (2016)

worked on the same linear model under a weaker condition allowing poly-

nomial decay, namely, ‖Ak‖ = O((1 ∨ k)−α), for some α > 1, under which,

an exponential-type probability inequality does not hold, in general, even if

it is a one-dimensional process with a uniform bound. That is, if we relax

condition (2.2) to a polynomial decay, the concentration inequality delivers

an exact rate with algebraic decay for one-dimensional linear process; see

Theorem 14 in Chen and Wu (2018).
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In Theorem 1, we assume the existence of a finite variance of εij. If this

is relaxed to the existence of a finite exponential moment, a similar bound

can be achieved with G not necessarily bounded; see Theorem 2.

Theorem 2. In model (2.1), assume that Eεij = 0, E exp(c0|εij|) = θ <∞,

for some constant c0 > 0, and condition (2.3) is met. Then, for G satisfying

(2.6), it holds that

P
( n∑
i=1

G(Xi)− EG(Xi) ≥ x
)
≤ 2 exp

{
− x2

C3nθ2τ 2γ2 + C4γτx

}
, (2.9)

where the constants C3 and C4 depend on ρ0 and c0.

One immediate application of Theorem 1 is to estimate the mean vec-

tor for high-dimensional fat-tailed linear processes. From an M -estimation

viewpoint, we apply Huber’s estimator (Huber (1964)) of the mean vector,

denoted by µ̂ = (µ̂1, . . . , µ̂p)
>, with µ̂j as the solution of a to the equation

n∑
i=1

φν(Xij − a) = 0,

where φν(x) = (x∧ν)∨ (−ν) is the Huber function with the robustification

parameter ν > 0.

Theorem 3. Let Xi be generated from model (2.1), with Eεij = 0, Var(εij) =

1, µ = EXi, and max1≤j≤p Var(Xij) = µ2
2 < ∞. Choose ν � µ2

√
n/log p.

With probability at least 1− 4p−c, for some c > 0, it holds that

|µ̂− µ|∞ ≤ C(γ + µ2)τ

√
log p

n
, (2.10)
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under the scaling condition (γ + µ2)τ
√

log p/n → 0, where C is a positive

constant depending on c and the constants C1, C2 in Theorem 1.

Remark 3. Theorem 3 delivers a rate of `∞-norm convergence for the ro-

bust mean estimator µ̂, and involves a delicate interplay between the cross-

sectional dependence, temporal dependence, and the variance of the process.

If γ, µ2, and τ are all of a constant order, it follows that

|µ̂− µ|∞ = OP(
√

log p/n), (2.11)

under the scaling condition log p/n → 0. Note that (2.11) is as sharp

as the optimal rate provided in Theorem 5 of Fan et al. (2017) for the

concentration of the mean estimation for the i.i.d. case. Furthermore, it

is strictly sharper than existing Bernstein-type inequalities for time series,

such as those of Merlevède et al. (2009), Hang and Steinwart (2017), and

Zhang (2021).

3. Robust Estimation of Time Series Regression

In this section, we investigate a robust estimation of a high-dimensional

time series linear regression and autoregression with fat-tailed covariates

and errors. However, we expect our framework of high-dimensional lin-

ear processes and Bernstein-type inequalities to be useful in other high-
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3.1 Estimating Time Series Regression with Correlated Errors

dimensional estimation and inference problems that involve dependent and

non-sub-Gaussian random variables.

3.1 Estimating Time Series Regression with Correlated Errors

We work on linear regression models with a random design that involve

time dependent covariates and errors:

Yi = X>i β
∗ + ξi, (3.1)

with more justification provided as follows.

Assumptions

(A1) Xi is generated from the p-dimensional linear processXi =
∑∞

k=0Akεi−k,

where the components of εi are i.i.d. random variables, with E(εij) = 0

and Var(εij) = σ2
ε < ∞. Condition (2.3) is satisfied with γ and τ ,

which may depend on p.

(A2) ξi =
∑∞

k=0 bkηi−k is the error process, where ηi are i.i.d. random vari-

ables with E(ηi) = 0 and Var(ηi) = σ2
η < ∞, and bk ≤ Cρk for

universal constants 0 < ρ < 1 and C <∞.

(A3) Xi is strictly exogenous in the sense that (εi)i are independent of (ηi)i,

where (εi)i and (ηi)i are error processes of Xi and ξi, respectively, as

defined in (A1) and (A2).
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3.1 Estimating Time Series Regression with Correlated Errors

The framework (3.1) is quite general, because the linear process includes

a wide range of commonly used time series models. For linear regression

models with dependent errors, early works focused on a fixed design or

i.i.d. covariates. Wang et al. (2007) and Yoon et al. (2013) considered the

case where ξi follows an autoregressive process, which is one type of linear

process. Gupta (2012) examined the weakly dependent ξi introduced by

Doukhan and Louhichi (1999), and specifically discussed the AR(1) and

ARMA cases. Alfons et al. (2013) adopted the same format of moving

average errors, but assumed long memory dependence. More generally, Wu

and Wu (2016) and Chernozhukov et al. (2021) considered the nonlinear

Wold representation with Xi = g(. . . , εi−1, εi) and ξi = h(. . . , ηi−1, ηi).

We form a modified `1-regularized Huber estimator of β, given by

β̂ = arg minβ∈Rp

1

n

n∑
i=1

Φν((Yi −X>i β)w(Xi)) + λ|β|1,

where Φν is Huber loss function (Huber (1964))

Φν(x) =


x2/2, if |x| ≤ ν,

ν|x| − ν2/2, if |x| > ν,

defined with respect to the robustification parameter ν > 0. For additional

properties of the Huber regression, refer to Huber (1973), Yohai and Maron-

na (1979), Mammen (1989), Sun et al. (2020), and Fan et al. (2017), among
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3.1 Estimating Time Series Regression with Correlated Errors

others. Motivated by Loh (2021), w(x) : Rp → R is a weight function de-

fined by

w(x) = min
{

1,
b

|Bx|2

}
,

where b ∈ R is a fixed constant, and B ∈ Rp×p is a provided positive-

definite matrix. With such a choice of w(x), it always holds that |w(x)x|2 ≤

b/λmin(B) =: b0. In contrast to the regular Huber regression for well-

behaved Xi (e.g., Gaussian or sub-Gaussian), we incorporate an additional

weight function on the covariate process to account for the fat tails of Xi. In

Section S1, we conduct a simulation study for robust time series regression

estimation and examine the effect of w(x).

As a popular convention, β∗ is assumed to be sparse in the sense that

|β∗|0 = s. Denote the condition number of B as κ(B) = λmax(B)/λmin(B).

Theorem 4 describes the estimation consistency of β̂.

Theorem 4. Let Assumptions (A1), (A2), and (A3) be satisfied. Assume

b0(b0 + κ(B)γσε)τ
√
s
√

(log p)3/n→ 0. (3.2)

Choose ν � ση(n/ log p)1/2 and λ � b0ση(log p/n)1/2. With probability at

least 1− 8p−c, for some c > 0, it holds that

|β̂ − β|2 ≤ C
b0ση

λmin(E[w
2(Xi)
2

XiX>i ])

√
s log p

n
. (3.3)
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3.1 Estimating Time Series Regression with Correlated Errors

The scaling condition (3.2) to ensure consistency indicates a subtle in-

terplay between the dimensionality parameters (s, p, n), internal parameters

(τ, γ, σε), and known values b0 and κ(B) associated with the weight func-

tion w(x). The convergence rate (3.3) scales inversely with the quantity

λmin(E[w
2(Xi)
2

XiX
>
i ]), and suggests that we cannot shrink the covariates

too aggressively. If Xi is well behaved, with the existence of a finite ex-

ponential moment, one may eliminate the weight function and replace the

factor with the larger quantity λmin(E[XiX
>
i ]).

In the extensively studied regression setting with i.i.d. covariates, Fan

et al. (2017) provide an optimal convergence rate of |β̂ − β|2 for a weakly

sparse model under fat tails (the same as the minimax rate in Raskutti

et al. (2011)). In the special exact sparse case, their convergence rate is√
s(log p)/n, and it relies on the sub-Gaussian tail assumption for the co-

variates Xi. Loh (2021) allowed broader classes of distributions for Xi by

inserting a weight function to control the Euclidean norm of Xi, but re-

quired that the errors be drawn i.i.d. from a symmetric distribution, and

thus selected ν at a fixed constant order (cf. Theorem 1). In contrast, Fan

et al. (2017) waived the symmetry requirement by allowing ν to diverge in

order to reduce the bias induced by the Huber loss when the distribution

of ξi is asymmetric. We borrow ideas from both, and further account for
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3.1 Estimating Time Series Regression with Correlated Errors

time-dependent covariates and errors. Compared with Loh (2021), with

i.i.d. covariates and i.i.d. errors, our result requires a stronger scaling con-

dition (3.2) in terms of the dependence quantities γ, τ and a larger power

of log p to handle both dependent covariates and dependent errors.

Applying `1-regularization in time series regression, Wu and Wu (2016)

(cf. Theorem 5) dealt with correlated covariates and errors, and allowed

a wider class of stationary processes in a causal form. The linear error

process in our consideration falls in the weaker dependence range within

their framework. If γ, τ, ση = O(1), p = o(nq−1) is required for their regular

estimator, without accounting for robustness, where q > 2 is the order

of the finite moments for ξi. Chernozhukov et al. (2021) considered the

Lasso estimator for a system of time series regression equations, with one

regression equation as a special case, for which the allowed dimension is still

of a polynomial rate to ensure consistency by considering the performance

bound with respect to the prediction norm (cf. Corollary 5.4). Compared

with the two aforementioned works, we allow a much wider range for the

dimension p under mild conditions.

The tuning parameter ν plays a key role by adapting to errors with

fat tails. In practical applications, the optimal values of the tuning pa-

rameters ν and λ can be chosen using a two-dimensional grid search and
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3.2 Estimating Transition Matrix in VAR Models

cross-validation or an information-based criterion such as the AIC or BIC.

We leave the theoretical investigation of selecting the tuning parameters as

important future work.

3.2 Estimating Transition Matrix in VAR Models

VAR models are popular for studying the evolution of a set of endogenous

variables over time. Interpretations of large VAR models have been devel-

oped in various applications, such as policy analysis (Sims (1992)), financial

systemic risk analysis (Gourieroux and Jasiak (2011)), portfolio selection

(Ledoit and Wolf (2003)), functional genomics (Shojaie et al. (2012)), and

brain networks (Sameshima and Baccala (2014)).

Because a general VAR model of order d can be reformulated as a

VAR(1) model by appropriately redefining the random vectors, many works

(Han et al. (2015), Guo et al. (2016)) consider a model with lag 1, as

given in (2.4). Most works on high-dimensional VAR models require the

Gaussian assumption (Kock and Callot (2015), Basu and Michailidis (2015),

Han et al. (2015)) or some structure assumption stronger than the minimal

requirement λmax(A) < 1; for example, Han et al. (2015) imposed ‖A‖ < 1,

and Guo et al. (2016) considered banded A, with some decay condition on

‖Ak‖ free of p. For many VAR designs (Example 1 is one such), it could
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3.2 Estimating Transition Matrix in VAR Models

happen that ‖A‖ ≥ 1, and the dimension p, as the size of A, can play

a role in measuring the temporal and cross-sectional dependence. Basu

and Michailidis (2015) proposed stability measures to capture temporal

and cross-sectional dependence. From a different viewpoint, we fill the gap

between the spectral radius of a matrix and its spectral norm. The following

proposition provides a sufficient and necessary condition for λmax(A) < 1

by relating to the spectral norm.

Proposition 1. For any matrix A, it holds that λmax(A) < 1 if and only if

there exists some finite integer k such that ‖Ak‖ ≤ ρ0, given any universal

constant 0 < ρ0 < 1.

Letting τ = min{k ∈ Z+ : ‖Ak‖ ≤ ρ0} and γ = ρ−10 max0≤k≤τ−1 ‖Ak‖,

condition (2.3) holds for model (2.4) without extra requirements. We now

introduce the notation. Let a>j· be the jth row of A and sj be the cardinality

of the support set of aj·, that is, sj = |supp(aj·)| = |{i : aij 6= 0}|. Denote

s = max1≤j≤p sj and S =
∑p

i=j sj. For robustness, we first truncate the data

by obtaining X̃i = φν(Xi), where ν is the truncation parameter, determined

later. For notational convenience, we assume X0 is also observed. Based

on the truncated sample X̃i and the tuning parameter λ > 0, we propose
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3.2 Estimating Transition Matrix in VAR Models

estimating A by solving the following Lasso problem:

Â = arg minB∈Rp×p

1

n

n∑
i=1

|X̃i −BX̃i−1|22 + λ|B|1, (3.4)

which is equivalent to solving the p sub-problems:

âj· = arg minb∈Rp

1

n

n∑
i=1

(X̃ij − b>X̃i−1)
2 + λ|b|1. (3.5)

Before proceeding, we state the key assumptions on the process (2.4) and

some scaling conditions that guarantee the consistency of the robust esti-

mator Â.

Assumptions

(B1) Eεij = 0; Eε2ij = 1; max1≤j≤p ‖Xij‖q = µq <∞, for some q > 2.

(B2) µqγτs
2[(log p)/n](q−2)/(2q−2) → 0.

(B2′) µqγτS2[(log p)/n](q−2)/(2q−2) → 0.

Assumption (B1) imposes polynomial moment conditions on the un-

derlying VAR process. Assumption (B2) (or (B2′)) assumes a vanishing

scaling property. If µq, τ , and γ are of a constant order, (B2) reduces to

the scaling condition that involves s (or S), n, and p only.

Theorem 5. Let Assumptions (B1) and (B2) be satisfied. Choose the trun-

cation parameter ν � µq(n/ log p)1/(2q−2). Let Â be the solution of (3.4) with

λ � µqγτ(‖A‖∞ + 1)[(log p)/n](q−2)/(2q−2). It holds that

‖Â− A‖∞ ≤ Cµqγτ(‖A‖∞ + 1)s

(
log p

n

) 1
2
− 1

2q−2

, (3.6)
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3.2 Estimating Transition Matrix in VAR Models

with probability at least 1 − 8p−c, for some constant c > 0. If Assumption

(B2′) is satisfied, it also holds that

‖Â− A‖F ≤ C ′µqγτ(‖A‖∞ + 1)
√
S
(

log p

n

) 1
2
− 1

2q−2

, (3.7)

with probability at least 1− 8p−c, for some constant c > 0.

The obtained rates of convergence are governed by two sets of parame-

ters: (i) dimensionality parameters: the dimension p, sparseness parameter

s (or S), and sample size n; (ii) internal parameters: the moment µq, de-

pendence quantities τ and γ, and maximum absolute row sum ‖A‖∞. If we

assume that the internal parameters are of a constant order, we have

‖Â− A‖F = OP

(√
S
( log p

n

) 1
2
− 1

2q−2

)
.

To ensure consistency, the dimension p can be allowed to increase exponen-

tially with n, in view of the mild scaling condition. Guo et al. (2016), with

the same constant order of internal parameters, can only allow the narrower

range p = o(nc), for some 0 < c < (q− 4)/8 (cf. Condition 4(i)). For Gaus-

sian autoregressive models, proposition 4.1 of Basu and Michailidis (2015)

suggests the order in terms of dimension parameters as

‖Â− A‖F = OP

(√
S
√

log p

n

)
.

In the presence of fat tails and with the existence of a finite qth moment,

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0249



3.2 Estimating Transition Matrix in VAR Models

our result yields a slightly slower convergence rate, characterized by the

moment order q, and it becomes closer to their bound as q increases.

As an alternative method, a Dantzig-type estimation (Candes et al.

(2007), Cai et al. (2011), Han et al. (2015)) can be modified in a robust

way. Let Σk denote the autocovariance matrix of the process (Xi) at lag

k. The Yule–Walker equation A = Σ−10 Σ1 suggests that a good estimate Â

should have a small error in terms of ‖Σ0Â−Σ1‖max. Without direct access

to the autocovariance matrices Σ0 and Σ1, a natural approach is to find nice

estimators for them. Han et al. (2015) used sample autocovariance matrices,

yielding a good performance bound under Gaussianity. For fat-tailed cases,

we consider the robust estimators of the autocovariance matrices based on

the truncated sample:

Σ̂k =
1

n

n∑
i=1

X̃i−kX̃
>
i , for k = 0, 1.

The Dantzig- type estimator is then modified to solve the following convex

programming problem:

Â = arg minB∈Rp×p|B|1 s.t. ‖Σ̂0B − Σ̂1‖max ≤ λ, (3.8)

where λ > 0 is a tuning parameter. Observe that problem (3.8) can be

solved in parallel, that is, (3.8) is equivalent to p subproblems:

â·j = arg minb∈Rp|b|1 s.t. |Σ̂0b− Σ̂1uj|∞ ≤ λ, j = 1, . . . , p, (3.9)
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3.2 Estimating Transition Matrix in VAR Models

for any unit vector uj. Let a·1,a·2, . . . ,a·p be columns of A, and denote

s∗ = max1≤j≤p |supp(a·j)|. We can obtain Â by simply concatenating all

the columns â·j, that is, Â = (â·1, â·2, . . . , â·p). The next theorem delivers

an upper bound on the statistical accuracy.

Theorem 6. Let Assumption (B1) be satisfied. Let Â be the solution of

(3.8), with ν � µq(n/ log p)1/(2q−2) and λ � µqγτ(‖A‖1+1)[(log p)/n](q−2)/(2q−2).

With probability at least 1− 8p−c
′
, for some constant c′ > 0, it holds that

‖Â− A‖max ≤ Cµqγτ‖Σ−10 ‖1(‖A‖1 + 1)

(
log p

n

) 1
2
− 1

2q−2

, (3.10)

‖Â− A‖1 ≤ C ′µqγτ‖Σ−10 ‖1(‖A‖1 + 1)s∗
(

log p

n

) 1
2
− 1

2q−2

. (3.11)

Interestingly, the convergence rate of the modified Dantzig-type esti-

mator has a similar form to that of the robust Lasso estimator developed

in Theorem 5, if the included internal parameters for the process are of a

constant order. Both methods involve p parallel programming problems,

with the lasso-based method performing a row-by-row estimation, and the

Dantzig method performing a column-by-column estimation. The case of

‖A‖ < 1 studied by Han et al. (2015) is the special case where γ = 1 and

τ = 1 in our framework. The latter work imposes a more flexible sparse

condition, namely, that the transition matrix A belongs to a class of weakly

sparse matrices defined in terms of a strong `r-ball (0 ≤ r < 1). This condi-
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tion is also considered by Bickel and Levina (2008), Rothman et al. (2009),

Cai et al. (2011), and Cai and Zhou (2012) when estimating covariance and

precision matrices. For r = 0, it is the exact sparse case, and Theorem 1 in

Han et al. (2015) implies the dimension parameter order

‖Â− A‖1 = OP

(
s∗
√

log p

n

)
,

which is a bit sharper than our result (3.11). There is an additional cost for

fat-tailed processes with robustness absorbed. Note that we are also able

to derive the bound of ‖Â − A‖1 for weakly sparse A based on the result

(3.10).

4. Simulation Study

In this section, we evaluate the finite-sample performance of the robust

Lasso and Dantzig estimators proposed in Section 3.2, and compare it

with that of the traditional Lasso and Dantzig methods. A simulation

on time series linear regression is presented in the Supplementary Materi-

al. We consider the model (2.4), where εij are i.i.d. standardized Student’s

t-distributions with df = 5. We adopt the numerical setup of n = 50, 100

and p = 50, 100, 500, and set s = blog pc. For the true transition matrix

A = (aij), we consider the following designs:
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(1) Banded: A = (λ|i−j|1{|i− j| ≤ s}) and λ = 0.5.

(2) Block diagonal: A = diag{Ai}, where each Ai ∈ Rs×s follows the

structure in Example 1 with B = 2 and λi ∼ Unif(−0.8, 0.8).

(3) Toeplitz: A = (λ|i−j|) and λ = 0.5.

(4) Random Sparse: aii ∼ Unif(−0.8, 0.8) and aij ∼ N(0, 1), for (i, j) ∈

C ⊂ {(i, j) : i 6= j}, where C is randomly selected and |C| = s2.

To ensure stationarity of the VAR model, the designs in (1), (3), and (4)

are further scaled by a factor of 2λmax(A) to ensure that the spectral radius

of the transition matrix is less than one. Figure 2 shows the plot of ‖Ak‖

under the four designs, with p = 100, 500. These patterns of matrix A were

studied previously in Han et al. (2015), where the assumption ‖A‖ < 1

was necessary. In this study, we keep the designs of symmetric sparse and

weakly sparse matrices, presented in cases (1) and (3), respectively. For

these two cases, it holds that ‖Ak‖ = (λmax(A))k = (0.5)k, and condition

(2.3) is satisfied with τ = 1, γ = 1, and ρ0 = 0.5. However, for the designs

using asymmetric coefficient matrices (cases (2) and (4)), we allow ‖A‖ > 1,

and τ and γ in condition (2.3) may depend on the value of p.

In each repetition, we generate a process of length 2n. We run the

estimation procedure in (3.4) or (3.8) based on {X1, . . . , Xn} using a two-
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Figure 2: The graph of ‖Ak‖ for the four designs of A, with p = 100, 500

dimensional grid search for the tuning parameters ν and λ. For each (ν, λ)

in the grid, denote the estimator by Â(ν, λ). Then, (ν, λ) is chosen to

minimize n−1
∑2n

t=n+1 |Xt − Â(ν, λ)Xt−1|22, the average prediction error on

{Xn+1, . . . , X2n}. The following tables report the average and standard de-

viation (in parentheses) of the estimation error based on 1000 repetitions in

different matrix norms consistent with Theorem 5 and Theorem 6. As com-

parisons, we obtain the results for the robust methods and the traditional

versions (Lasso estimator in Tibshirani (1996) and Dantzig-based estimator

in Han et al. (2015)) in different designs.

From a statistical perspective, the tables indicate that both robust esti-

mation methods outperform the regular Lasso and Dantzig when the inno-
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p = 50, n = 100 Banded Block Toeplitz Random

Lasso L∞ 1.49 (0.060) 0.96 (0.072) 1.46 (0.143) 1.28 (0.124)

Lasso LF 1.56 (0.112) 1.22 (0.112) 1.55 (0.121) 1.30 (0.084)

Robust-Lasso L∞ 1.35 (0.049) 0.80 (0.078) 1.30 (0.072) 1.17 (0.065)

Robust-Lasso LF 1.37 (0.076) 1.05 (0.041) 1.36 (0.090) 1.23 (0.038)

Dantzig L1 2.01 (0.121) 1.91 (0.087) 2.02 (0.140) 2.40 (0.159)

Dantzig LF 2.10 (0.095) 1.92 (0.074) 2.04 (0.125) 2.69 (0.078)

Robust-Dantzig L1 1.86 (0.050) 1.08 (0.058) 1.86 (0.043) 1.47 (0.077)

Robust-Dantzig LF 1.90 (0.049) 1.41 (0.044) 1.89 (0.033) 2.02 (0.073)

p = 100, n = 50 Banded Block Toeplitz Random

Lasso L∞ 2.64 (0.205) 2.31 (0.093) 2.49 (0.308) 2.40 (0.114)

Lasso LF 2.73 (0.168) 2.44 (0.141) 2.74 (0.125) 2.48 (0.119)

Robust-Lasso L∞ 2.65 (0.073) 2.26 (0.101) 2.67 (0.039) 2.18 (0.084)

Robust-Lasso LF 2.67 (0.080) 2.38 (0.139) 2.69 (0.052) 2.32 (0.131)

Dantzig L1 3.13 (0.177) 2.70 (0.146) 3.15 (0.140) 3.21 (0.136)

Dantzig LF 3.16 (0.073) 3.06 (0.172) 3.58 (0.116) 3.75 (0.173)

Robust-Dantzig L1 1.80 (0.069) 1.82 (0.051) 1.72 (0.047) 1.51 (0.073)

Robust-Dantzig LF 2.78 (0.071) 2.01 (0.104) 2.77 (065) 2.45 (0.090)
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p = 500, n = 100 Banded Block Toeplitz Random

Lasso L∞ 4.99 (0.091) 4.12 (0.043) 4.27 (0.052) 4.49 (0.019)

Lasso LF 8.16 (0.070) 7.98 (0.004) 8.05 (0.021) 7.82 (0.052)

Robust-Lasso L∞ 4.80 (0.012) 3.31 (0.015) 3.55 (0.051) 3.40 (0.017)

Robust-Lasso LF 7.51 (0.120) 7.50(0.177) 7.69 (0.158) 6.69 (0.220)

Dantzig L1 5.03 (0.070) 5.64 (0.034) 5.18 (0.055) 5.43 (0.050)

Dantzig LF 8.64 (0.169) 9.03 (0.199) 9.18 (0.222) 8.43 (0.192)

Robust-Dantzig L1 4.51 (0.030) 4.50 (0.017) 4.69 (0.037) 4.69 (0.034)

Robust-Dantzig LF 7.11 (0.123) 7.05 (0.102) 7.09 (0.099) 6.76 (0.122)

vation vectors have a fat tail and the transition matrix exhibits a sparsity

pattern. In summary, our robust methods work particularly well for non-

Gaussian time series.

5. Conclusion

Conventional time series regression tools are inadequate when analyzing

high-dimensional temporal-dependent and fat-tailed data. In this paper,

we have proposed a novel Bernstein inequality for high-dimensional lin-

ear processes, thus contributing to the robust estimation theory of high-

dimensional time series regression in the presence of fat tails. The con-

vergence rate depends on the strength of the temporal and cross-sectional
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dependence, the moment condition, the dimension, and the sample size.

We allow the dimension to increase exponentially with the sample size as a

natural requirement of consistency. A statistical inference of the estimates,

such as hypothesis testing and constructing confidence intervals, requires

additional research in terms of asymptotic distributional theory. This is left

to future work.

Supplementary Material

The online Supplementary Material contains a simulation on time series

regression and the proofs of all the results presented in the paper.
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