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Abstract: This paper proposes a novel signed β-model for directed signed network,

which is frequently encountered in application domains but largely neglected in

literature. The proposed signed β-model decomposes a directed signed network

as the difference of two unsigned networks and embeds each node with two latent

factors for in-status and out-status. The presence of negative edges leads to a

non-concave log-likelihood, and a one-step estimation algorithm is developed to

facilitate parameter estimation, which is efficient both theoretically and compu-

tationally. We also develop an inferential procedure for pairwise and multiple

node comparisons under the signed β-model, which fills the void of lacking un-

certainty quantification for node ranking. Theoretical results are established for

the coverage probability of confidence interval, as well as the false discovery rate

(FDR) control for multiple node comparison. The finite sample performance of

the signed β-model is also examined through extensive numerical experiments on

both synthetic and real-life networks.
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1. Introduction

Network data has attracted increasing attention from different scientific

communities, due to its flexibility in describing various pairwise relations

among multiple objects of interest. In literature, various network models

have been developed, such as the Erdös-Rényi model (Erdös and Rényi,

1960), the stochastic block model (Holland et al., 1983; Zhao et al., 2012),

the β-model (Chatterjee et al., 2011), the latent space model (Hoff et al.,

2002), and the network embedding model (Zhang et al., 2022). Among

them, the β-model is one of the most popular models (Rinaldo et al., 2013;

Karwa and Slavković, 2016; Graham, 2017; Chen et al., 2021), which explic-

itly represents each node i with a numeric factor βi to accommodate degree

heterogeneity. Yet, most existing development of the β-model focuses on

undirected and unsigned networks, and it is only recently that the directed

β-model (Yan et al., 2016, 2019) has been developed to analyze directed

unsigned networks.

In this paper, we propose a novel signed β-model for directed signed

network, which is frequently encountered in various application domains but
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largely neglected in literature. For instances, on many social network plat-

forms such as Facebook or Twitter, users may send likes (positive edges) or

dislikes (negative edges) to other users’ posts, leading to a directed signed

social network. In a citation network, authors may cite papers of other

authors, where the citations can be categorized as either endorsement (pos-

itive edges) or criticism (negative edges). One interesting feature of directed

signed network is the so-called status theory (Guha et al., 2004), which es-

sentially suggests that a directed signed edge pointing from one node to

another highly depends on their relative status. The status theory follows

from the intuition that nodes with higher status tend to be more influential

in the network and attract more attention from nodes with lower status

(Leskovec et al., 2010).

Motivated by the status theory, the proposed signed β-model aims at

quantifying the bi-faceted roles of each node, including its in-status and

out-status. It models the probability of a directed signed edge from node i

to node j in such a way that it is determined by both the out-status factor

of node i and the in-status factor of node j. More specifically, a node with

lower out-status tends to send more negative edges and less positive edges

to other nodes with low in-status, whereas a node with higher in-status

tends to receive more positive edges and less negative edges from other
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nodes with high out-status. Furthermore, the signed β-model decomposes

the directed signed network as the difference of two directed unsigned net-

works, corresponding to the positive and negative edges, respectively. The

presence of negative edges leads to a non-concave log-likelihood, casting

great challenges for parameter estimation. To circumvent the difficulty, a

one-step estimation algorithm is developed, in which a single update is con-

ducted from an initial estimate obtained via estimating equation. Besides

computational efficiency, asymptotic estimation efficiency of the one-step

estimate is also established. The signed β-model also admits some novel

inferential procedures for pairwise and multiple node comparisons with re-

spect to either in-status or out-status, with theoretical guarantees on the

coverage probability of confidence interval, as well as the FDR control for

multiple node comparison.

Contribution. The main contribution of this paper is three-fold.

First, it proposes a novel statistical model for the under-investigated di-

rected signed network, which decomposes it as the weighted difference of

two unsigned network, and embeds each node with two latent factors for

in-status and out-status. Second, it develops an efficient one-step estima-

tion algorithm to address the non-concavity of the log-likelihood induced

by the negative edges, as well as an estimation procedure for the nega-
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tive sparsity parameters, which guarantees a theoretically efficient estimate

and overcomes the computational-statistical gap. Third, to the best of our

limited knowledge, this paper is the first attempt to provide an inferential

procedure for pairwise and multiple node comparisons in directed signed

networks, which fills the void of lacking uncertainty quantification for node

ranking.

Related works. In addition to the directed β-model, there have been

some recent works on directed unsigned networks, including the stochas-

tic co-block model (Rohe et al., 2016), and the network embedding model

(Zhang et al., 2022). All these models represent each node with two sets of

latent factors, but largely rely on the nature of binary networks and can-

not be directly extended to accommodate negative edges. Moreover, there

have also been some other works in machine learning literature on commu-

nity detection in undirected signed networks, such as Chiang et al. (2012),

Chiang et al. (2014), Cucuringu et al. (2019) and Cucuringu et al. (2021).

Most of these works focus on the balance theory for undirected signed net-

work (Heider, 1946; Cartwright and Harary, 1956), which is substantially

different from the status theory induced by the directed edges.

The proposed model is also related to the Rasch model (Haberman,

1977; Chen et al., 2023) in item response theory, which also relies on the ex-
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ponential family assumption and thus cannot be applied to directed signed

network. The Bradley-Terry model (Chen et al., 2019; Gao et al., 2023;

Han et al., 2020; Chen et al., 2022) has also been widely used for rank-

ing problems, where the pairwise comparison is determined by the latent

scores assigned to each item in the comparison. Yet, the Bradley-Terry

model model is particularly designed for the “skew-symmetric” network,

and it remains unclear how to extend the latent scores to incorporate both

in-status and out-status in directed signed network.

Organization of the paper. The rest of the paper is organized as

follows. Section 2 presents the proposed signed β-model for directed signed

network as well as a one-step estimation algorithm. Section 3 establishes

the uniform estimation consistency and asymptotic normality of the one-

step estimate. Section 4 presents the inferential procedures for pairwise and

multiple node comparisons, as well as their theoretical guarantees. Section

5 conducts numerical experiments on synthetic and real-life networks to

examine the finite sample performance of the proposed model. Section

6 concludes the paper with a brief discussion, and technical proofs and

necessary lemmas are provided in the Appendix.

Throughout this paper, we use c to denote a generic positive constant

whose value may vary according to context. For two nonnegative sequences
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an and bn, an . bn means there exists a positive constant c such that

an ≤ cbn when n is sufficiently large. For a vector h, let h[1:d] denote its

first d entries; for a matrix H, let H[1:d,1:d] denote its upper left d× d block.

2. Proposed method

Suppose a directed signed network G is observed, with n nodes labeled by

[n] = {1, ..., n} and an adjacency matrix Y = (yij)n×n with yij ∈ {−1, 0, 1}.

Here, yij = 1 if there is a positive edge from node i to node j, yij = −1

if there is a negative edge from node i to node j, and yij = 0 if no edge

is observed at all. Suppose no self loop is allowed, and thus yii = 0 for all

i ∈ [n].

2.1 Signed β-model

The proposed signed β-model first decomposes G as the difference of two

unsigned networks. Specifically, it formulates yij = z+
ij − z−ij , where z+

ij and

z−ij are two independent Bernoulli random variables, and

Pr(z+
ij = 1) =

eαi+βj

1 + eαi+βj
, and Pr(z−ij = 1) =

κi
1 + eαi+βj

.

Here, αi + βj measures the relative status between nodes i and j, and

κi ∈ {κ00, κ01} with 0 < κ00 < κ01 < 1 quantifies two different patterns of

sending negative edges.
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It is clear that as αi+βj increases, node i is more likely to send a positive

edge and less likely to send a negative edge to node j. The probability mass

function of yij can be specified as

p(y | αi + βj, κi) =



e2(αi+βj) + eαi+βj(1− κi)
(1 + eαi+βj)2

, if y = 1;

eαi+βj(1 + κi) + (1− κi)
(1 + eαi+βj)2

, if y = 0;

κi
(1 + eαi+βj)2

, if y = −1.

(2.1)

It is interesting to note that (2.1) accommodates the status theory (Guha

et al., 2004; Leskovec et al., 2010) for directed signed network, where βj

represents the in-status for node j and αi represents the out-status for node

i. It implies that a node with higher in-status tends to receive more positive

edges, and a node with higher out-status tends to send more positive edges.

The signed β-model is flexible and includes the standard β-model (Chat-

terjee et al., 2011; Graham, 2017) and the directed β-model (Yan et al.,

2016) as its special cases. Particularly, the signed β-model reduces to the

directed β-model if all κi’s are set as 0, and the standard β-model if we

further set βi = αi. More interestingly, if we set κi = 1, the signed β-model

reduce to two separate β-models, one for z+ and the other for z−, except

that Ez+ increases as αi + βj increases, while Ez− decreases as αi + βj in-

creases. However, as negative edges are often much less frequently observed

than positive edges in signed networks (Tang et al., 2016), it is more appro-
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2.1 Signed β-model9

priate to employ small κi in the signed β-model. In particular, we suppose

κi could take two different values, κi ∈ {κ00, κ01}, to characterize two differ-

ent patterns of sending negative edges, where κ00 < κ01 and both of them

may decay with n to accommodate sparse networks. For example, we may

employ an extremely small κ00 for nodes who rarely send negative edges,

while κ01 could be estimated from data for those nodes who occasionally

send negative edges. An estimation procedure determining the class of each

κi and the value of κ01 is provided in the supplement. The signed β-model

is also closely related with the ordinal regression model (Hoff, 2021) when

yij is regarded as ordinal response.

Note that the parameters are not identifiable in (2.1), as one can add

a constant to αi and subtract it from βj without affecting the distribution

of yij. We thus set βn = 0 for identifiability, and denote θ = (α>,β>)> ∈

R2n−1 as the unknown parameters to be estimated, with α = (α1, ..., αn)>

and β = (β1, ..., βn−1)>. We also denote κ = (κ1, ..., κn)> as the sparsity

parameters for negative edges. The presence of negative edges in the di-

rected signed network casts new challenges to the analysis of the signed

β-model. Specifically, define lij(αi + βj;κi) = log p(yij | αi + βj;κi) as the

log-likelihood for edge yij. Then, given that yij’s are mutually independent,
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the log-likelihood function of G takes the form

l(θ;κ) =
n∑

i,j=1,i6=j

lij(αi + βj;κi). (2.2)

As the positive value of κi leads to a non-concave lij with respect to αi and

βj, which further leads a non-concave log-likelihood function with respect to

θ, the standard maximum likelihood estimation as in Yan et al. (2016) is no

longer feasible. To facilitate parameter estimation, we develop an efficient

one-step estimation algorithm, which does not require global optimum but

still achieves asymptotical efficiency. In sharp contrast to the asymptotic

analysis in Yan et al. (2016), the signed β-model is generally not a member

of exponential family, and thus it becomes substantially more challenging

to quantify the asymptotic behavior of the one-step estimate.

2.2 One-step estimation

To circumvent the non-concavity issue of l(θ;κ) in (2.2), the proposed one-

step estimation algorithm performs a single update from an initial estimate

of θ obtained from the estimating equation approach. We assume known

κ and conduct the asymptotic analysis in the sequel, while an estimation

procedure for κ and its asymptotic properties are deferred to the supple-

ment.
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First, it follows from (2.1) that

Eyij =
eαi+βj − κi
1 + eαi+βj

.

Denote F (θ;κ) = (F1(θ;κ), ..., F2n−1(θ;κ))>, with

Fi(θ;κ) =
n∑

k=1,k 6=i

yik −
eαi+βk − κi
1 + eαi+βk

, for i ∈ [n],

Fn+j(θ;κ) =
n∑

k=1,k 6=j

ykj −
eαk+βj − κk
1 + eαk+βj

, for j ∈ [n− 1].

Then the initial estimate of θ can be obtained by solving the following

estimating equations,

F (θ;κ) = 0. (2.3)

As will be shown in Theorem 1, (2.3) has a unique solution, denoted as

θ̌ = (α̌>, β̌
>

)>. We remark that θ̌ is derived in the same way as in Yan et al.

(2016), which can be further refined via a one-step estimation algorithm.

Let β̌n = 0, and define

ǔi =− ∂2l(θ̌;κ)

∂α2
i

= −
n∑

k=1,k 6=i

l′′ik(α̌i + β̌k;κi), for i ∈ [n],

ǔn+j =− ∂2l(θ̌;κ)

∂β2
j

= −
n∑

k=1,k 6=j

l′′kj(α̌k + β̌j;κk), for j ∈ [n− 1],

(2.4)

and let ǔ2n =
∑n

i=1 ǔi −
∑n−1

j=1 ǔn+j. As will be shown in the proof of

Theorem 2, the inverse Fisher information matrix
{
−∂2l(θ̌;κ)/∂θ2

}−1
can
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be approximated by

Ȟ =

Ȟ11 Ȟ12

Ȟ>12 Ȟ22

 , (2.5)

where Ȟ11 = diag(ǔ−1
1 , ..., ǔ−1

n ) + ǔ−1
2n1n1

>
n , Ȟ22 = diag(ǔ−1

n+1, ..., ǔ
−1
2n−1) +

ǔ−1
2n1n−11

>
n−1, and Ȟ12 = −ǔ−1

2n1n1
>
n−1. Here 12n−1 denotes a vector with all

ones. Then the one-step estimate is given as

θ̂ = θ̌ + Ȟ

{
∂l(θ̌;κ)

∂θ

}
, (2.6)

which is equivalent to

α̂i = α̌i + ǔ−1
i

∂l(θ̌;κ)

∂αi
+ ǔ−1

2n

n∑
k=1

∂l(θ̌;κ)

∂αk
− ǔ−1

2n

n−1∑
l=1

∂l(θ̌;κ)

∂βl
, for i ∈ [n],

β̂j = β̌j + ǔ−1
n+j

∂l(θ̌;κ)

∂βj
− ǔ−1

2n

n∑
k=1

∂l(θ̌;κ)

∂αk
+ ǔ−1

2n

n−1∑
l=1

∂l(θ̌;κ)

∂βl
, for j ∈ [n− 1].

The final estimate is denoted as θ̂ = (α̂>, β̂
>

)> = (α̂1, ..., α̂n, β̂1, ..., β̂n−1)

and β̂n = 0. It is worthy pointing out that the one-step estimation in (2.6)

needs not to calculate the inverse Hessian matrix as standard Newton-

Raphson update, and thus is computationally more efficient. More impor-

tantly, this one-step estimation also attains asymptotic estimation efficiency

without assuming the intractable global optimum, as will be shown in The-

orem 2.
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3. Asymptotic theory

This section establishes the uniform consistency and asymptotic normality

of the one-step estimate θ̂ in Section 2.2. Let θ∗ = (α∗1, ...α
∗
n, β

∗
1 , ..., β

∗
n−1)>

denote the true parameters, and ‖θ∗‖∞ = max{|α∗1|, ..., |α∗n|, |β∗1 |, ..., |β∗n−1|}.

For i, j ∈ [n], let

ui = E
{
−∂

2l(θ∗;κ)

∂α2
i

}
, vi =

n∑
k=1,k 6=i

(1 + κi)e
α∗i+β∗k

(1 + eα
∗
i+β∗k)2

, wi =
n∑

k=1,k 6=i

var(yik),

un+j = E
{
−∂

2l(θ∗;κ)

∂β2
j

}
, vn+j =

n∑
k=1,k 6=j

(1 + κk)e
α∗k+β∗j

(1 + eα
∗
k+β∗j )2

, wn+j =
n∑

k=1,k 6=j

var(ykj),

(3.1)

where u2n = E {−∂2l(θ∗;κ)/∂β2
n} is defined by u2n =

∑n
i=1 ui−

∑n−1
j=1 un+j.

We define two matrices as following, which will be shown as the asymptotic

covariance matrices for θ̌ and θ̂ in Theorems 1 and 2,

Σ =

Σ11 Σ12

Σ>12 Σ22

 and H =

H11 H12

H>12 H22

 ,

where Σ12 = −w2nv
−2
2n 1n1

>
n−1, H12 = −u−1

2n1n1
>
n−1, and

Σ11 = diag(w1v
−2
1 , ..., wnv

−2
n ) + w2nv

−2
2n 1n1

>
n ,

Σ22 = diag(wn+1v
−2
n+1, ..., w2n−1v

−2
2n−1) + w2nv

−2
2n 1n−11

>
n−1,

H11 = diag(u−1
1 , ..., u−1

n ) + u−1
2n1n1

>
n ,

H22 = diag(u−1
n+1, ..., u

−1
2n−1) + u−1

2n1n−11
>
n−1.
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We first establish the uniform consistency and asymptotic normality of

the initial estimate θ̌ from the first step.

Theorem 1. Suppose ‖θ∗‖∞ ≤ c log n with 0 < c < 1/40 and ‖κ−κ∗‖∞ .

e12‖θ∗‖∞ log n/n. Then as n goes to infinity, with probability at least 1−c1/n

for a constant c1, it holds true that (2.3) has a unique solution θ̌, which

satisfies that

‖θ̌ − θ∗‖∞ . e6‖θ∗‖∞

√
log n

n
. (3.2)

Further, for any fixed d, (θ̌ − θ∗)[1:d] is asymptotically multivariate normal

with mean 0 and covariance matrix given by the upper d× d block of Σ.

Theorem 1 shows that the initial estimate θ̌ is a fairly good estimate

and converges to θ∗ at a fast rate. The asymptotic variance of θ̌i is given

as

avar(θ̌i) = wiv
−2
i + w2nv

−2
2n ,

where the term w2nv
−2
2n is due to the identifiability constraint that βn = 0.

Further, if G is an unsigned network with κ1 = ... = κn = 0, then wi = vi

and avar(θ̌i) = v−1
i + v−1

2n , which coincides with the result in Theorem 2

of Yan et al. (2016). More interestingly, Theorem 1 holds true for sparse

signed networks by allowing ‖θ∗‖∞ ≤ c log n, which matches up with the

existing sparsity results for unsigned β-model (Yan et al., 2016).
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We are now ready to establish the consistency and asymptotic normality

of θ̂.

Theorem 2. Under the same condition of Theorem 1, with probability at

least 1− c2/n for a constant c2, we have

‖θ̂ − θ∗‖∞ . e2‖θ∗‖∞

√
log n

n
. (3.3)

Further, for any fixed d, (θ̂ − θ∗)[1:d] is asymptotically multivariate normal

with mean 0 and covariance matrix given by the upper d× d block of H.

Theorem 2 shows that the one-step estimate θ̂ also converges to θ∗ at

a fast rate, and its asymptotic variance is given as

avar(θ̂i) = u−1
i + u−1

2n ,

where the term u−1
2n is also due to the identifiability constraint that βn = 0.

It is important to remark that the one-step estimate θ̂ is as efficient as the

global maximizer of the non-concave log-likelihood function of (2.2), which

is difficult to obtain in directed signed networks, if not impossible. Propo-

sition 1 shows that θ̂ outperforms the initial estimate θ̌ asymptotically by

reducing the estimation variance, confirming the advantage of the one-step

estimate.

Proposition 1. Under the same conditions of Theorem 1, we have avar(θ̌i) ≥

avar(θ̂i).
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We should point out that the efficiency gain in Proposition 1 is non-

negligible, even in the sparse regime. For example, suppose β∗1 = ... = β∗n =

0, and let α∗i → −∞ and κi → 0, and then both positive and negative edges

are sparse. It can be verified that
wiv
−2
i

u−1
i

→ 1 + κi

eα
∗
i
, and thus avar(θ̌i)

avar(θ̂i)
> 1

as long as κi = ω(eα
∗
i ), which implies a non-negligible gain in terms of the

asymptotic variance.

4. Inference for node ranking

Node ranking has been an important task in network data analysis (Wasser-

man and Faust, 1994), which aims to rank nodes based on their importance

or centrality. In literature, many ranking algorithms have been developed

for node ranking in directed unsigned networks, including Freeman (1978);

Latora and Marchiori (2007); Page et al. (1999); Kleinberg (1999). These

algorithms have also been extended to directed signed network, such as

Bonacich and Lloyd (2004); Zolfaghar and Aghaie (2010); Shahriari and

Jalili (2014); readers may refer to Tang et al. (2016) for a complete litera-

ture review on node ranking in directed signed networks. Despite the rich

literature, most aforementioned algorithms are intuition driven and lack of

theoretical justification, not to mention developing an inferential framework

to conduct uncertainty quantification for node ranking. Based on the signed
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β-model, this section develops some inferential procedures for pairwise and

multiple node comparisons with respect to either in-status or out-status.

4.1 Pairwise comparison

The statistical inference for α∗i − α∗j and β∗i − β∗j represents the relative

differences between nodes i and j in terms of their in-status and out-status,

respectively. For i ∈ [n] and j ∈ [n− 1], define

ûi = −∂
2l(θ̂;κ)

∂α2
i

, and ûn+j = −∂
2l(θ̂;κ)

∂β2
j

. (4.1)

Further, for any i 6= j ∈ [2n− 1], define

δ̂2
ij = û−1

i + û−1
j , and (δ∗ij)

2 = u−1
i + (u∗j)

−1. (4.2)

We first establish the asymptotic normality for both (α̂i− α̂j) and (β̂i− β̂j).

Theorem 3. Under the same condition of Theorem 1, for any i 6= j ∈ [n],

it holds true that

δ∗−1
ij

{
(α̂i − α̂j)− (α∗i − α∗j )

}
→ N(0, 1),

δ∗−1
n+i,n+j

{
(β̂i − β̂j)− (β∗i − β∗j )

}
→ N(0, 1)

(4.3)

in distribution. Furthermore, we also have

δ̂−1
ij

{
(α̂i − α̂j)− (α∗i − α∗j )

}
→ N(0, 1),

δ̂−1
n+i,n+j

{
(β̂i − β̂j)− (β∗i − β∗j )

}
→ N(0, 1)

(4.4)

in distribution.
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According to (4.3), the asymptotic variance for α̂i − α̂j is δ∗ij which is

defined in (4.2), suggesting that the proposed estimate for α∗i −α∗j is oracle,

in the sense that its asymptotic distribution is the same as the maximum

likelihood estimate with known {αk}k 6=i,j and {βj}n−1
j=1 .

Furthermore, given the asymptotic normality results in Theorem 2, we

can construct a confidence interval for α∗i − α∗j as

CI(α∗i − α∗j ) =
[
(α̂i − α̂j)− Zα/2δ̂ij, (α̂i − α̂j) + Zα/2δ̂ij

]
,

and a confidence interval for βi − βj as

CI(β∗i − β∗j ) =
[
(β̂i − β̂j)− Zα/2δ̂n+i,n+j, (β̂i − β̂j) + Zα/2δ̂n+i,n+j

]
,

where Zα denotes the α-th upper percentile of the standard normal dis-

tribution. Furthermore, we can also test whether α∗i > α∗j based on the

indicator 1{(α̂i−α̂j)−Zα/2δ̂ij>0}, and similarly for testing β∗i > β∗j .

4.2 Multiple comparison

We now focus on some particular node i ∈ [n], and find its relative rank

within a subgroup of nodes. We take out-status for illustration, and similar

procedure can be developed for in-status. Particularly, let S ⊆ [n]/{i} be

the subgroup of nodes, and K = |S|. For each k ∈ S, we want to test

H
(k)
0 : α∗i = α∗k v.s. H(k)

a : α∗i 6= α∗k.
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4.2 Multiple comparison19

We employ the Benjamini-Hochberg procedure (Benjamini and Yeku-

tieli, 2001) to control the false discovery rate for this multiple testing prob-

lem. Let pk denote the p-value for testing H
(k)
0 , which takes the form

pk = 2
{

1− Φ
(
δ̂−1
ik |α̂i − α̂k|

)}
,

where Φ(·) is the cumulative distribution function of the standard normal

distribution. We order the K p-values as p(1) ≤ ... ≤ p(K), and define

r = max
1≤l≤K

{
l : p(l) ≤ αl

KL

}
, (4.5)

which is a modification of the traditional Benjamini-Hochberg procedure

(Theorem 1.3, Benjamini and Yekutieli, 2001). Here α > 0 is a given

significance level, and L =
∑K

l=1 1/l. Then, for any k ∈ S, we reject H
(k)
0 if

pk ≤ p(r). If the set in (4.5) is empty, we reject all null hypotheses.

Let S0 = {k ∈ S : α∗i = α∗k} be the set of true null hypotheses, then the

false discovery rate for the Benjamini-Hochberg procedure takes the form

FDR = E

( ∑
k∈S0 1{pk≤p(r)}

max
{∑

k∈S 1{pk≤p(r)}, 1
}) = E

(∑
k∈S0 1{pk≤ αr

KL
}

max{r, 1}

)
.

Theorem 4. Under the same condition of Theorem 1, further suppose

e20‖θ∗‖∞K0n
−1/2(log n)2 = o(1), with K0 = |S0|. Then, we have

FDR ≤ αK0

K

(
1 +

1

L

)
+ o(1).
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Theorem 4 immediately implies that whenK0 is dominated by e−20‖θ∗‖∞n1/2(log n)−2,

the false discovery rate of the Benjamini-Hochberg procedure is upper bounded

by α asymptotically as long as K0

K

(
1 + 1

L

)
≤ 1, which is a fairly mild con-

dition since K0 ≤ K and L is roughly logK.

5. Numerical experiments

This section examines the finite sample performance of the proposed one-

step estimate as well as the inferential procedures, where the sparse factor

κ is estimated as described in the supplement and the estimating equation

in (2.3) is solved by Newton’s method.

5.1 Simulation

The simulated directed signed networks are generated as follows. We first

generate 10 groups of nodes, where nodes in the same group have the same

in-status and out-status. Specifically, let ψi ∈ {1, . . . , 10} denote the group

membership of node i, generated independently from a multinomial dis-

tribution with probabilities (0.15× 1>5 , 0.05× 1>5 ) to accommodate unbal-

anced groups. We then set α∗i = aψi ∼ N(−0.5, 0.5), β∗i = bψi ∼ N(0, 0.5)

and β∗n = 0. The directed edges, yij, are then generated independently

from (2.1). The κi are randomly generated from {κ00, κ01} with Pr(κi =
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5.1 Simulation21

κ01) = 0.8. Various scenarios are considered, with n ∈ {200, 600, 1000},

κ01 ∈ {0.05, 0.1, 0.2, 0.25} and κ00 = 0.001.

In each scenario, the averaged estimation errors, measured by ‖θ̂ −

θ∗‖∞ and ‖θ̂− θ∗‖2
2/(2n− 1), over 500 independent replications with their

standard errors are reported in Tables 1 and 2. The averaged coverage

frequencies of the 95% confidence interval for 100 randomly selected α̂i−α̂j,

together with their standard errors, are reported in Table 3. In addition,

we randomly select a node from the group with the largest in-status, and

compare the in-status of this node with the rest nodes in this group and the

first 10 nodes from each of the other groups. The averaged false discovery

proportions (FDP) and power, as well as their standard errors, are reported

in Tables 4 and 5. We also report these evaluation metrics of the initial

estimate θ̌ for comparison.

It is evident from Tables 1 and 2 that the estimation errors for both θ̌

and θ̂ decrease as n increases, which validates the asymptotic estimation

consistency in Theorems 1 and 2. Also, the performance of θ̂ is consis-

tently better than that of θ̌ in all scenarios, which is expected according

to Theorem 2. It is also interesting to note that the estimation errors of θ̂

are fairly robust against the sparsity level of the negative edges. In Table

3, it is clear that the coverage frequencies for the 95% confidence interval
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Table 1: The averaged estimation errors over 500 independent replications

and their standard errors in parenthesis

n κ01 = 0.05 κ01 = 0.1 κ01 = 0.2 κ01 = 0.25

‖θ̌ − θ∗‖∞

200 0.6087 (0.1098) 0.6210 (0.1179) 0.6873 (0.1296) 0.7483 (0.1467)

600 0.3756 (0.0617) 0.4415 (0.0697) 0.6474 (0.0923) 0.7528 (0.1007)

1000 0.3057 (0.0483) 0.3929 (0.0686) 0.6352 (0.0862) 0.7445 (0.0865)

‖θ̂ − θ∗‖∞

200 0.5905 (0.1003) 0.5908 (0.1064) 0.6196 (0.1103) 0.6616 (0.1237)

600 0.3603 (0.0577) 0.3820 (0.0581) 0.5070 (0.0784) 0.5939 (0.0892)

1000 0.2899 (0.0453) 0.3133 (0.0511) 0.4666 (0.0749) 0.5690 (0.0759)

Table 2: The averaged mean squared errors over 500 independent replica-

tions and their standard errors in parenthesis

n κ01 = 0.05 κ01 = 0.1 κ01 = 0.2 κ01 = 0.25

‖θ̌−θ∗‖22
2n−1

200 0.0467 (0.0296) 0.0473 (0.0299) 0.0508 (0.0324) 0.0525 (0.0309)

600 0.0147 (0.0103) 0.0156 (0.0093) 0.0180 (0.0085) 0.0195 (0.0090)

1000 0.0091 (0.0067) 0.0093 (0.0060) 0.0107 (0.0070) 0.0114 (0.0066)

‖θ̂−θ∗‖22
2n−1

200 0.0449 (0.0289) 0.0449 (0.0292) 0.0468 (0.0298) 0.0478 (0.0290)

600 0.0141 (0.0100) 0.0144 (0.0093) 0.0157 (0.0082) 0.0168 (0.0084)

1000 0.0088 (0.0067) 0.0087 (0.0061) 0.0096 (0.0066) 0.0100 (0.0063)
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5.2 Signed citation network23

Table 3: The averaged coverage frequencies of the 95% confidence interval

over 500 independent replications for 100 randomly selected pairs (i, j), and

their standard errors in parenthesis

n κ01 = 0.05 κ01 = 0.1 κ01 = 0.2 κ01 = 0.25

Coverage

Frequency

(θ̌)

200 0.9371 (0.0185) 0.9341 (0.0245) 0.9051 (0.0603) 0.8886 (0.0817)

600 0.9423 (0.0166) 0.9206 (0.0491) 0.8887 (0.0921) 0.8852 (0.0944)

1000 0.9431 (0.0145) 0.9319 (0.0339) 0.9248 (0.0439) 0.9211 (0.0472)

Coverage

Frequency

(θ̂)

200 0.9441 (0.0124) 0.9419 (0.0155) 0.9218 (0.0388) 0.9043 (0.0610)

600 0.9477 (0.0098) 0.9353 (0.0237) 0.8979 (0.0778) 0.8895 (0.0894)

1000 0.9466 (0.0101) 0.9399 (0.0188) 0.9262 (0.0415) 0.9217 (0.0471)

are close to the nominal level as n grows, which supports the asymptotic

normality results in Theorem 3. As for multiple testing, as shown in Tables

4 and 5, the false discovery proportion is way below 0.05 in all scenarios and

the power increases as n grows, justifying the false discovery rate control in

Theorem 4. Similarly, the performance of θ̂ is better than θ̌.

5.2 Signed citation network

We now apply the proposed method to analyze a real-life signed citation

network (Kumar, 2016), which is collected based on citations within the
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Table 4: The averaged FDP over 500 independent replications and their

standard errors in parenthesis

n κ01 = 0.05 κ01 = 0.1 κ01 = 0.2 κ01 = 0.25

FDP (θ̌)

200 0.0013 (0.0062) 0.0015 (0.0063) 0.0030 (0.0094) 0.0051 (0.0122)

600 0.0027 (0.0095) 0.0065 (0.0176) 0.0289 (0.0539) 0.0341 (0.0618)

1000 0.0053 (0.0233) 0.0077 (0.0301) 0.0182 (0.0572) 0.0240 (0.0676)

FDP (θ̂)

200 0.0014 (0.0069) 0.0014 (0.0060) 0.0027 (0.0089) 0.0042 (0.0112)

600 0.0025 (0.0089) 0.0048 (0.0143) 0.0225 (0.0447) 0.0296 (0.0570)

1000 0.0050 (0.0229) 0.0065 (0.0265) 0.0154 (0.0512) 0.0227 (0.0652)

Table 5: The averaged power over 500 independent replications and their

standard errors in parenthesis

n κ01 = 0.05 κ01 = 0.1 κ01 = 0.2 κ01 = 0.25

Power (θ̌)

200 0.6610 (0.1068) 0.6440 (0.1220) 0.6553 (0.1355) 0.6652 (0.1410)

600 0.7871 (0.0712) 0.7935 (0.0767) 0.8029 (0.0920) 0.8042 (0.0937)

1000 0.8370 (0.0608) 0.8388 (0.0609) 0.8432 (0.0634) 0.8468 (0.0624)

Power (θ̂)

200 0.6531 (0.1087) 0.6428 (0.1185) 0.6558 (0.1303) 0.6670 (0.1346)

600 0.7863 (0.0712) 0.7935 (0.0753) 0.8041 (0.0872) 0.8071 (0.0898)

1000 0.8375 (0.0605) 0.8395 (0.0605) 0.8438 (0.0625) 0.8494 (0.0609)
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5.2 Signed citation network25

natural language processing (NLP) community during 1975-2013. Partic-

ularly, each author is represented as a node, which sends edges to other

nodes by citing their papers. According to the citation sentiments, the

citations can be categorized into “endorsement”, “criticism” and “neural”.

Both “endorsement” and “neural” are treated as positive edges, while “crit-

icism” is treated as negative edge. We remove all authors who send or

receive less than 5 edges, as well as about 80 authors who send or re-

ceive more negative edges than positive edges, leading to spuriously high

out-status or low in-status. This pre-processing step leads to a directed net-

work with 1849 nodes, 56517 positive edges and 3726 negative edges. We

set κi = κ00 = 0.001 for those nodes who do not send negative edges, and

κi = κ01 for the rest, with κ01 estimated as described in the supplement.

The left panel of Figure 1 shows the in-degrees for the 10 nodes with

highest estimated in-status. In particular, each bar above the x-axis shows

the positive in-degree
∑n

j=1,j 6=i yji1{yji>0}, while the bar below the x-axis

shows the negative in-degree
∑n

j=1,j 6=i |yji|1{yji<0}. The black line further

shows the estimated β̂i for the 10 nodes after rescaling. The right panel

of Figure 1 shows the out-degrees for the 10 nodes with highest estimated

out-status. It can be seen that the estimated in-status is highly positively

correlated with the positive in-degree, reflecting the attractiveness or pop-
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5.2 Signed citation network26

ularity of the node; whereas the estimated out-status is highly positively

correlated with the positive out-degree, reflecting the social status of the

node to some extent. It is also interesting to note that in the right panel,

the 6th node actually sends out less positive edges than the 7th node, but

it possesses a higher out-status as it also sends out less negative edges.

To further scrutinize the results in Figure 1, we note that the 10 nodes

with highest estimated in-status are Christopher Manning, Daniel Klein,

Michael Collins, Salim Roukos, Franz Josef Och, Fernando Pereira, Daniel

Marcu, Philipp Koehn, Vincent J. Della Pietra and Eugene Charniak.

Clearly, they are all highly cited researchers in the NLP community, with

google scholar citation counts ranging from 25000 to 189000. We also note

that the 10 nodes with highest estimated out-status are Joakim Nivre, Noah

Smith, Mirella Lapata, Timothy Baldwin, Christopher Manning, Chris

Callison-Burch, Junichi Tsujii, Eduard Hovy, Dan Roth and Regina Barzi-

lay. These researchers are very active and productive, with number of

publications ranging from 254 to 732, according to google scholar. It is also

interesting to note that Christopher Manning is among both lists, who is

well regarded as an influential and productive NLP expert.

Furthermore, we give two examples of node comparison with respect

to their in-status. Specifically, in each example, we choose a node i and
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Figure 1: The left panel shows the positive in-degree (above x-axis) and

negative in-degree (below x-axis) for the 10 nodes with largest β̂i. The black

line shows the corresponding β̂i after rescaling. The right panel shows the

positive out-degree (above x-axis) and negative out-degree (below x-axis)

for the 10 nodes with largest α̂i. The black line shows the corresponding α̂i

after rescaling.

compare it with a randomly chosen subset S = {ik : k = 1, ..., 50} with

respect to in-status. Figure 2 shows the in-degree of nodes in {i} ∪ S after

reordering, where each bar above the x-axis shows the positive in-degree and

the bar below the x-axis shows the negative in-degree. The solid line shows

the estimated in-status for the 51 nodes after rescaling, where the diamond

represents node i, and the items represent nodes in S. In the left panel, it is
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5.2 Signed citation network28

clear that the leftmost 14 nodes are significantly less attractive than node

i whereas the rightmost 16 nodes are significantly more attractive. It is

further shown that the in-status of the rightmost 13 nodes are significantly

different from that of node i simultaneously. In the right panel, node i is

chosen to be Christopher Manning, and it is evident that his in-status is

significantly higher than that of all nodes in S simultaneously.
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Figure 2: The estimated β̂j for j ∈ {i} ∪ S after rescaling in two exam-

ples, where the diamond represents node i, and the items represent nodes

in S. Both triangles and inverted triangles indicate statistical significance

at level 95% in comparison with node i, whereas inverted triangles also in-

dicate statistical significance for multiple testing. The bars further show

the positive/negative in-degrees for these nodes.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0236



29

6. Conclusion

This paper proposes a general signed β-model for directed signed network,

which embeds each node with two latent factors for in-status and out-status

and includes the standard β-model and the directed β-model as special

cases. We develop an efficient one-step estimation algorithm for parameter

estimation and inferential procedure for node comparison, which leads to a

computationally feasible estimation with asymptotic estimation efficiency.

Note that the proposed model builds upon the mutual independence be-

tween the latent variables z+
ij and z−ij , it is thus of interest to relax this

assumption and consider correlated latent variables. This will bring chal-

lenges in both computation and theoretical derivation, as the resultant like-

lihood function can be more complex than (2.2) and the current one-step

estimation procedure is no longer applicable. Further, it is also interesting

to extend the current procedure to analyze much sparser signed networks

with exploitation of regularization method (Zhang et al., 2021). We leave

it for future investigation.

Supplementary Material

In the supplement, we provide technical proofs for all the theoretical results,

as well as an estimation procedure for κ.
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