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Abstract: Given a fixed-sample-size test that controls the error probabilities under

two specific arbitrary distributions, we propose and analyze a 3-stage test and two

4-stage tests. For each test, we specify a novel, concrete, non-conservative design,

and establish a first-order asymptotic approximation for the expected sample

size under the two prescribed distributions as the error probabilities go to zero.

As a corollary, we show that the proposed multistage tests can asymptotically

achieve the optimal expected sample size under these two distributions in the

class of all sequential tests with the same error control. Furthermore, the tests

are shown to be more robust than Wald’s sequential probability ratio test when

applied to one-sided testing problems and the error probabilities under control

are small. We apply these general results to testing problems in the independent

and identically distributed setup and beyond, such as testing the correlation

coefficient of a first-order autoregressive process or testing the transition matrix

of a finite-state Markov chain, and illustrate them in various numerical studies.
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1. Introduction

A typical motivation for employing a sequential test, that is, a testing pro-

cedure with a sample size that depends on the collected observations, is

that its average sample size can be much smaller than that of the corre-

sponding fixed-sample-size test. One of the first tests of this kind was the

double sampling procedure in Dodge and Romig (1929), a precursor to the

sequential probability ratio test (SPRT) and the field of “sequential analy-

sis” (Wald (1947)). However, implementing the SPRT and most sequential

tests in the literature (see, e.g., Tartakovsky et al. (2014)) requires contin-

uous monitoring of the data collection process. This is often inconvenient,

if not infeasible, in application areas such as sampling inspection (Dodge

and Romig (1929)), clinical trials (Jennison and Turnbull (1999), Bartroff

et al. (2012)), and educational assessment (Wang et al. (2016)). As a result,

such applications focus on multistage tests, also known as group-sequential

tests, where the implementation requires collecting only a small number of

groups of samples.

Works on multistage tests, such as Armitage et al. (1969), Pocock

(1977), O’Brien and Fleming (1979), Pocock (1982), Wang and Tsiatis

(1987), Emerson and Fleming (1989), Eales and Jennison (1992), Pam-

pallona and Tsiatis (1994), Barber and Jennison (2002), typically focus on
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testing the mean of independent and identically distributed (i.i.d.) Gaussian

observations with a known variance, are designed to control predetermined

type-I and type-II error probabilities under two specific distributions, and

require equal stage sizes. Free parameters, if any, as in Wang and Tsiatis

(1987), are selected to optimize the expected sample size under a certain

distribution, for example, the one under which the type-II error probability

is controlled. This optimization is performed using dynamic programming

in Eales and Jennison (1992) and Barber and Jennison (2002).

Multistage tests with unequal and random stage sizes have been consid-

ered by Lan and DeMets (1983), Kim and DeMets (1987), Jennison (1987),

and Lai and Shih (2004). The latter work also studies more general testing

problems related to the parameters of an exponential family.

In all of the aforementioned works, the stage sizes are treated as user-

specified inputs. However, Lorden (1983) showed that a 3-stage test with

properly designed stages can achieve the optimal expected sample size un-

der both hypotheses among all sequential tests with the same or smaller

error probabilities, asymptotically as the latter go to zero. In the case of

two simple hypotheses for i.i.d. data, this was shown for multistage tests

with deterministic stage sizes (Section 2 of Lorden (1983)). In the case of

composite hypotheses for the one-sided testing problem in a one-parameter
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exponential family, this was shown for multistage tests with adaptive stage

sizes, that is, they can depend on data from previous stages (Section 3 of

Lorden (1983)). Such multistage tests are also considered in Bartroff and

Lai (2008a;b), who propose a less conservative design. These asymptotic

optimality results all require certain assumptions on the decay rates of the

prescribed error probabilities, which are not allowed to go to zero very

asymmetrically.

In the present work, we focus on the design and analysis of multistage

tests with deterministic stage sizes, and strengthen, extend, and general-

ize the results in Section 2 of Lorden (1983). First, unlike the previously

mentioned works, we do not require i.i.d. observations. Instead, we assume

a fixed-sample-size test is given that can control the type-I and type-II

error probabilities under two specific distributions below arbitrary levels.

Given this, we introduce and analyze a 3-stage test, that generalizes the

one in Section 2 of Lorden (1983), and two novel 4-stage tests. For each

test, we propose a concrete design that guarantees non-asymptotic and non-

conservative error control. The designs require knowledge of the number of

observations and the threshold the fixed-sample-size test requires in order

to achieve certain error control. While there are not, in general, explicit

formulae for these quantities, they can be estimated via simulation. For this
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task, we also propose an efficient importance sampling approach, which is

necessary in the case of small error probabilities, where a plain Monte Carlo

approach may be inefficient or even infeasible (see, e.g., Bucklew (2010)).

In order to obtain theoretical insights about the proposed multistage

tests, we impose some structure on the above general setup. Specifically,

we assume that there exist thresholds for which the error probabilities of

the fixed-sample-size test under the two prescribed distributions decay ex-

ponentially fast in the sample size. Based on this assumption, we establish

first-order asymptotic approximations for the expected sample sizes of the

proposed multistage tests under the distributions where the error proba-

bilities are controlled, as the latter go to zero. For the 3-stage test, the

relative decay of the error probabilities is allowed to be much more asym-

metric than the one required in Section 2 of Lorden (1983). Even more

asymmetric decay is allowed for the two 4-stage tests.

When the given fixed-sample-size test is the likelihood ratio test, the

proposed multistage tests are shown, similarly to the SPRT, to achieve the

optimal expected sample size under the two prescribed distributions in the

family of all sequential tests with the same or smaller error probabilities,

to a first-order asymptotic approximation as the latter go to zero. The

difference is that the asymptotic optimality of the multistage tests, unlike
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that of the SPRT, requires certain restrictions on how asymmetrically the

error probabilities decay (which are less strict for the 4-stage tests than for

the 3-stage test).

In order to obtain a more complete picture for this comparison, we es-

tablish a distribution-free asymptotic upper bound on the expected sample

sizes of the proposed multistage tests as at least one of the two prescribed

error probabilities goes to zero. This reveals that, when the prescribed

error probabilities are small, these multistage tests are much more robust

than the SPRT, whose expected sample size can be inflated when the true

distribution is “between” the prescribed ones (see, e.g., Bechhofer (1960)).

We illustrate the proposed methodology and the above asymptotic re-

sults in numerical studies for various testing problems. Indeed, the distribu-

tional assumptions for our asymptotic analysis can be shown to hold, using

the Gärtner–Ellis theorem from large deviation theory (see, e.g., Dembo and

Zeitouni (1998)), for various testing problems beyond the i.i.d. setup. Two

specific examples, used in our numerical studies, are testing the correlation

coefficient of a first-order autoregression series and testing the transition

matrix of an irreducible and recurrent finite-state Markov chain.

The remainder of this paper is organized as follows. In Section 2, we

formulate the testing setup. In Section 3, we introduce and design the
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proposed multistage tests. In Section 4, we establish our asymptotic theory.

In Section 5, we conclude and discuss potential extensions. In Section

S1 of the Supplementary Material, we state sufficient conditions for the

asymptotic analysis of Section 4. In Section S2, we develop an importance

sampling approach for the efficient implementation of the proposed design

when the error probabilities are small. In Section S3, we illustrate the

general theory in three specific testing problems. In Section S4, we present

our numerical studies. All proofs are presented in Section S5.

Next, we introduce some notations. We denote by N the set of positive

integers, that is, N ≡ {1, 2, . . .}, and by R the set of real numbers. For

x, y ∈ R, we set x ∧ y ≡ min{x, y} and x ∨ y ≡ max{x, y}. For positive

sequences (xn), (yn), we write xn ∼ yn for limn(xn/yn) = 1, xn ≳ yn for

limn (xn/yn) ≥ 1, xn ≲ yn for limn (xn/yn) ≤ 1, xn ≪ yn for xn/yn → 0,

and xn ≫ yn for xn/yn → ∞.

2. Problem formulation

We consider a sequence of S-valued random elements, X ≡ {Xn, n ∈ N},

where (S,S) is an arbitrary measurable space. For any n ∈ N, we denote

by Fn the σ-algebra generated by the first n terms of this sequence, that is,

Fn ≡ σ(X1, . . . , Xn). We denote by P the distribution of X, assume that
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it belongs to some family, P , and consider the following hypothesis testing

problem:

H0 : P ∈ P0 versus H1 : P ∈ P1, (2.1)

where P0 and P1 are disjoint subsets of P .

We assume that the data can be collected sequentially, and that it is

possible to decide after each observation whether or not to stop sampling.

Thus, if τ is the total sample size of a testing procedure and d is its decision,

with Hi being selected when d = i for i ∈ {0, 1}, we say that χ ≡ (τ, d)

is a test for (2.1) if τ is a stopping time with respect to the filtration

{Fn, n ∈ N} and d is an Fτ -measurable Bernoulli random variable, that is,

{τ = n}, {τ = n, d = i} ∈ Fn for every n ∈ N and i ∈ {0, 1}.

We refer to a test as a fixed-sample-size test if τ is deterministic and

as a multistage test if τ can take a small number of values. We denote

by C the family of all tests, and we further introduce a subfamily of tests

that control the two types of error probabilities under two specific, but

arbitrary, distributions. Specifically, we fix P0 ∈ P0 and P1 ∈ P1, and, for

any α, β ∈ (0, 1), we denote by C(α, β) the family of tests whose type-I

error probability under P0 does not exceed α and whose type-II probability

under P1 does not exceed β, that is,

C(α, β) ≡ {(τ, d) ∈ C : P0(d = 1) ≤ α and P1(d = 0) ≤ β}. (2.2)
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For each i ∈ {0, 1}, we denote by Ei the expectation under Pi, and by

Li(α, β) the optimal expected sample size in C(α, β) under Pi, that is,

Li(α, β) ≡ inf {Ei[τ ] : (τ, d) ∈ C(α, β)} . (2.3)

First, we aim to introduce 3-stage and 4-stage tests with deterministic

stage sizes that can be designed to belong to C(α, β) for any given α,

β ∈ (0, 1). For this design, we only require the existence of a fixed-sample-

size test that can provide such error guarantees. Thus, our only standing

assumption throughout this paper is that there is a sequence of test statis-

tics, T ≡ {Tn, n ∈ N}, such that, for every n ∈ N, Tn is Fn-measurable

and, for any α, β ∈ (0, 1), there exist n ∈ N and κ ∈ R so that the fixed-

sample-size test that rejects H0 if and only if Tn > κ belongs to C(α, β).

Suppressing the dependence on T , we denote by n∗(α, β) the smallest such

sample size, that is,

n∗(α, β) ≡ min
{
n ∈ N : ∃κ ∈ R so that P0(Tn > κ) ≤ α

and P1(Tn ≤ κ) ≤ β
}
,

(2.4)

and by κ∗(α, β) any of the corresponding thresholds. In Section S2 of the

Supplementary Material, we discuss the computation of these quantities in

practice when they do not admit closed-form expressions.

Second, we aim to show that, when the test statistic T is selected appro-

priately, the proposed multistage tests achieve the optimal expected sample
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2.1 The one-sided testing problem

size in C(α, β) under both P0 and P1, that is, L0(α, β) and L1(α, β), to a

first-order asymptotic approximation as α, β → 0. For this asymptotic op-

timality result, we need some additional distributional assumptions, which

we state in Section 4.

We end this section by illustrating the above testing formulation using

the generic one-sided testing problem, which we use in all our examples and

numerical studies in Sections S3–S4 of the Supplementary Material.

2.1 The one-sided testing problem

Suppose that the family of plausible distributions, P , is parametrized by

a scalar parameter, µ, taking values in an open interval M ⊆ R. That is,

if we denote by Pµ and Eµ the distribution and expectation, respectively,

of X when the true parameter is µ, then P = {Pµ : µ ∈ M}. Moreover,

suppose the testing problem of interest is whether the true parameter µ is

smaller or larger than some user-specified value, µ∗ ∈M , that is,

H0 : µ < µ∗ versus H0 : µ > µ∗, (2.5)

or equivalently, P0 = {Pµ : µ < µ∗} and P1 = {Pµ : µ > µ∗}. Suppose

further that the type-I error probability must be controlled below α when

µ = µ0, and the type-II error probability must be below β when µ = µ1,

where α, β ∈ (0, 1) and µ0, µ1 ∈ M , µ0 < µ∗ < µ1. Then, this is a special
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case of the framework introduced in this section, with Pi = Pµi
, i ∈ {0, 1}.

Remark 1. In the context of the above one-sided testing problem, a test

χ ≡ (τ, d) in C(α, β) should ideally control the type-I error probability

below α for every µ ≤ µ0 and the type-II error probability below β for

every µ ≥ µ1, that is,

Pµ(d = 1) ≤ α for every µ ≤ µ0

Pµ(d = 0) ≤ β for every µ ≥ µ1.

(2.6)

This is obviously the case for the fixed-sample-size test that rejects H0 if

and only if Tn > κ when

Pµ0(Tn > κ) = sup
µ≤µ0

Pµ(Tn > κ), Pµ1(Tn ≤ κ) = sup
µ≥µ1

Pµ(Tn ≤ κ). (2.7)

If the monotonicity property (2.7) holds for every n ∈ N and κ ∈ R, then

the uniform error control in (2.6) will also hold for the proposed multistage

tests in this work.

3. The multistage tests

In this section, we introduce and analyze the multistage tests that we con-

sider in this work.
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3.1 The 3-stage test

3.1 The 3-stage test

We first introduce and analyze a test that offers two opportunities to accept

the null hypothesis and two to reject it. Its implementation requires the

specification of three positive integers, n0, n1, N , and three real thresholds,

κ0, κ1, K, so that

n0 ∨ n1 ≤ N and κ0 ≤ κ1 if n0 = n1. (3.1)

Specifically, n0 (resp. n1) is the number of observations collected by the first

opportunity to accept (resp. reject) H0, and N is the maximum number of

observations that can be collected.

Given these parameters, the test proceeds as follows:

(i) n0 ∧ n1 observations are initially collected.

• If n0 ≤ n1 and Tn0 ≤ κ0, then H0 is accepted.

• If n1 ≤ n0 and Tn1 > κ1, then H0 is rejected.

(ii) If no decision has been reached yet, (n0 ∨ n1) − (n0 ∧ n1) additional

observations are collected.

• If n0 ≤ n1 and Tn1 > κ1, then H0 is rejected.

• If n1 ≤ n0 and Tn0 ≤ κ0, then H0 is accepted.
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3.1 The 3-stage test

(iii) If no decision has been reached yet, N − (n0 ∨ n1) additional obser-

vations are collected, and H0 is rejected if and only if TN > K.

To avoid a possible overlap between acceptance and rejection regions when

n0 ∨ n1 = N , we include the convention that whenever the test reaches its

final stage, the only effective threshold is K.

This testing procedure can be implemented by collecting at most three

samples of deterministic sizes. In what follows, we refer to it as the 3-stage

test and denote it by χ̃ ≡ (τ̃ , d̃).

Remark 2. This test was first proposed in Section 2 of Lorden (1983),

where X is an i.i.d. sequence and the test statistic, T , is the average log-

likelihood ratio between P1 and P0. Our setup here is essentially universal,

because the only assumption in this section about X and T is that the

corresponding fixed-sample-size test can control the error probabilities be-

low arbitrary, user-specified levels, that is, that n∗(α, β) is finite for every

α, β ∈ (0, 1). Moreover, we next propose a concrete and non-asymptotic

specification of the design parameters, which is novel and practically useful,

even in the specific setup of Section 2 of Lorden (1983).
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3.1 The 3-stage test

3.1.1 Error control

By the definition of the 3-stage test, it follows that, for any selection of its

parameters and any P ∈ P ,

P(d̃ = 1) ≤ P (Tn1 > κ1) + P (TN > K) , (3.2)

P(d̃ = 0) ≤ P (Tn0 ≤ κ0) + P (TN ≤ K) . (3.3)

Consequently, if the sample size and the threshold are

n0 = n∗(γ, β) and κ0 = κ∗(γ, β) for some γ ∈ [α ∨ β, 1) (3.4)

in the first opportunity to accept H0,

n1 = n∗(α, δ) and κ1 = κ∗(α, δ) for some δ ∈ [α ∨ β, 1) (3.5)

in the first opportunity to reject H0, and

N = n∗(α, β) and K = κ∗(α, β) (3.6)

in the final stage, then by (3.2) with P = P0, and by (3.3) with P = P1, we

have P0(d̃ = 1) ≤ 2α and P1(d̃ = 0) ≤ 2β. This observation leads to the

following theorem.

Theorem 1. Let α, β ∈ (0, 1). If the design parameters are selected ac-

cording to (3.4)–(3.6), with α and β replaced by α/2 and β/2, respectively,

then (3.1) is satisfied and χ̃ ∈ C(α, β).
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3.1 The 3-stage test

Proof. Condition (3.1) can be verified using the following straightforward

observations:

n∗(α1, β1) ≤ n∗(α2, β2) if α1 ≥ α2 and β1 ≥ β2, (3.7)

κ∗(α1, β1) ≤ κ∗(α2, β2) if n∗(α1, β1) = n∗(α2, β2) and α1 ≥ α2, β1 ≤ β2.

The proof that χ̃ ∈ C(α, β) follows by the discussion preceding this theorem.

Theorem 1 specifies a design for χ̃ ∈ C(α, β) up to two free parameters,

γ, δ ∈ [(α∨β)/2, 1). Increasing the value of γ (resp. δ) reduces the number

of observations until the first opportunity to accept (resp. reject) H0, but

increases the probability of continuing to the final stage. To solve this trade-

off, in Subsection (3.1.3), we propose selecting γ (resp. δ) to minimize an

upper bound on E0[τ̃ ] (resp. E1[τ̃ ]) that is independent of δ (resp. γ).

3.1.2 The expected sample size

By the definition of the 3-stage test, it follows that, for any P ∈ P ,

• if n0 ≤ n1 < N , then

E[τ̃ ] = n0+(n1−n0)·P (Tn0 > κ0)+(N−n1)·P

 Tn0 > κ0

Tn1 ≤ κ1

 , (3.8)

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0235



3.1 The 3-stage test

• if n1 ≤ n0 < N , then

E[τ̃ ] = n1+(n0−n1)·P (Tn1 ≤ κ1)+(N−n0)·P

 Tn1 ≤ κ1

Tn0 > κ0

 , (3.9)

where E is the expectation under P.

Applying to these identities the inequality

max{0,P(A)− P(Bc)} ≤ P(A ∩B) ≤ P(A),

we obtain, for any selection of the design parameters, the following bounds:

E[τ̃ ] ≥ n0 · P(Tn1 ≤ κ1) + (N − n0) · (P(Tn0 > κ0)− P(Tn1 > κ1))
+

E[τ̃ ] ≤ n0 + (N − n0) · P(Tn0 > κ0) (3.10)

and

E[τ̃ ] ≥ n1 · P(Tn0 > κ0) + (N − n1) ·
(
P(Tn1 ≤ κ1)− P(Tn0 ≤ κ0)

)+
E[τ̃ ] ≤ n1 + (N − n1) · P(Tn1 ≤ κ1). (3.11)

When, in particular, the design parameters are selected as in Theorem

1, by (3.10) with P = P0, we obtain

n0 · (1− α/2) + (N − n0) · (γ − α/2) ≤ E0[τ̃ ] ≤ n0 + (N − n0) · γ,

where γ ∈
[
(α ∨ β)/2, 1

)
, n0 = n∗(γ, β/2), N = n∗(α/2, β/2),

(3.12)
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3.1 The 3-stage test

and by (3.11) with P = P1, we obtain

n1 · (1− β/2) + (N − n1) · (δ − β/2) ≤ E1[τ̃ ] ≤ n1 + (N − n1) · δ,

where δ ∈
[
(α ∨ β)/2, 1

)
, n1 = n∗(α/2, δ), N = n∗(α/2, β/2).

(3.13)

We can see that, at least when α (resp. β) is small, the upper bound in

(3.12) (resp. (3.13)) is approximately equal to the lower bound and, thus, it

provides an accurate approximation to E0[τ̃ ] (resp. E1[τ̃ ]). This observation

motivates the method for selecting the free parameters, γ and δ, which we

present next.

3.1.3 Specification of the free parameters

For any given α, β ∈ (0, 1), we suggest selecting γ (resp. δ) to minimize the

upper bound in (3.12) (resp. (3.13)) over a grid L̃α,β of [(α ∨ β)/2, 1), that

is, as follows:

γ̃ ≡ argmin
γ∈L̃α,β

{
n∗(γ, β/2) +

(
n∗(α/2, β/2)− n∗(γ, β/2)

)
· γ

}
δ̃ ≡ argmin

δ∈L̃α,β

{
n∗(α/2, δ) +

(
n∗(α/2, β/2)− n∗(α/2, δ)

)
· δ
}
,

(3.14)

where we suppress the dependence of γ̃ and δ̃ on α and β to lighten the

notation, and we allow ties to be solved in an arbitrary way. In practice,

the grid L̃α,β should, of course, be selected as fine as possible, given the

computational constraints involved with the evaluation of the function n∗.
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3.2 The 4-stage tests

Nevertheless, as show in the next section, it suffices to have a grid length

that goes to zero as fast as | log(α ∧ β)|−1 as α, β → 0 in order to achieve

asymptotic optimality under both P0 and P1 for a large class of testing

problems.

3.2 The 4-stage tests

Next, we introduce and analyze two novel tests, χ̂ ≡ (τ̂ , d̂) and χ̌ ≡ (τ̌ , ď).

These tests differ from that of the previous subsection only in that the first

(resp. second) one allows for stopping and accepting (resp. rejecting) the

null hypothesis if the value of the test statistic after collecting N0 (resp.

N1) observations is smaller (resp. larger) than K0 (resp. K1). Here, N0, N1

are additional positive integers and K0, K1 are additional real thresholds

such that

n0 ≤ N0 ≤ N and K0 ≤ κ1 if N0 = n1,

n1 ≤ N1 ≤ N and κ0 ≤ K1 if n0 = N1.

(3.15)

Both tests can be implemented by collecting at most four samples of

deterministic sizes, and, thus, we refer to them as 4-stage tests. To avoid

repetition, we present a detailed analysis for χ̂, and only state the corre-

sponding results for χ̌.

Specifically, given the above parameters, χ̂ proceeds as follows:
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3.2 The 4-stage tests

(i) n0 ∧ n1 observations are initially collected.

• If n0 ≤ n1 and Tn0 ≤ κ0, then H0 is accepted.

• If n1 ≤ n0 and Tn1 > κ1, then H0 is rejected.

(ii) If no decision has been reached yet,
(
(n0 ∨ n1) ∧ N0

)
− (n0 ∧ n1)

additional observations are collected.

• If n0 ≤ n1 ≤ N0 and Tn1 > κ1, then H0 is rejected.

• If n0 ≤ N0 ≤ n1 and TN0 ≤ K0, then H0 is accepted.

• If n1 ≤ n0 ≤ N0 and Tn0 ≤ κ0, then H0 is accepted.

(iii) If no decision has been reached yet, (n1 ∨ N0) −
(
(n0 ∨ n1) ∧ N0

)
additional observations are collected.

• If n1 ≤ N0 and TN0 ≤ K0, then H0 is accepted.

• If N0 ≤ n1 and Tn1 > κ1, then H0 is rejected.

(iv) If no decision has been reached yet, N − (n1 ∨N0) additional obser-

vations are collected and H0 is rejected if and only if TN > K.

Similarly to the 3-stage test, to avoid possible overlap between acceptance

and rejection regions when n1 ∨ N0 = N , we include the convention that

when the test reaches its final stage, K is the only effective threshold.
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3.2 The 4-stage tests

3.2.1 Error control

By the definition of χ̂, it follows that, for any selection of its parameters

and any P ∈ P ,

P(d̂ = 1) ≤ P (Tn1 > κ1) + P (TN > K) , (3.16)

P(d̂ = 0) ≤ P (Tn0 ≤ κ0) + P (TN0 ≤ K0) + P (TN ≤ K) . (3.17)

Therefore, if we select n0, n1, N , κ0, κ1, K as in (3.4)–(3.6), and also

N0 = n∗(γ′, β) and K0 = κ∗(γ′, β) for some γ′ ∈ [α ∨ β, γ], (3.18)

then by (3.7), it follows that conditions (3.1) and (3.15) are satisfied. More-

over, by (3.16) with P = P0, and by (3.17) with P = P1, it follows that

P0(d̂ = 1) ≤ 2α and P1(d̂ = 0) ≤ 3β.

Using a similar analysis, if n0, n1, N , κ0, κ1, K are selected as in (3.4)–

(3.6) and

N1 = n∗(α, δ′) and K1 = κ∗(α, δ′) for some δ′ ∈ [α ∨ β, δ], (3.19)

then conditions (3.1) and (3.15) are satisfied, and P0(ď = 1) ≤ 3α and

P1(ď = 0) ≤ 2β. Thus, we have shown the following theorem.

Theorem 2. Let α, β ∈ (0, 1).

(i) If the design parameters of χ̂ are selected according to (3.4)–(3.6)
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and (3.18), with α and β replaced by α/2 and β/3, respectively, then

conditions (3.1) and (3.15) are satisfied and χ̂ ∈ C(α, β).

(ii) If the design parameters of χ̌ are selected according to (3.4)–(3.6)

and (3.19), with α and β replaced by α/3 and β/2, respectively, then

conditions (3.1) and (3.15) are satisfied and χ̌ ∈ C(α, β).

Theorem 2 specifies designs for χ̂ and χ̌ that guarantee the desired

error control up to three free parameters, γ, γ′, δ and γ, δ, δ′, respectively.

We next propose a specific selection for these parameters, similar to the one

for the 3-stage test in Subsection 3.1.3.

3.2.2 The expected sample size

By the definition of χ̂, it follows that, for any P ∈ P ,

• if n0 ≤ n1 ≤ N0 ≤ N , then

E[τ̂ ] = n0 + (n1 − n0) · P (Tn0 > κ0) + (N0 − n1) · P

 Tn0 > κ0

Tn1 ≤ κ1



+ (N −N0) · P


Tn0 > κ0

Tn1 ≤ κ1

TN0 > K0

 , (3.20)
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• if n0 ≤ N0 ≤ n1 ≤ N , then

E[τ̂ ] = n0 + (N0 − n0) · P (Tn0 > κ0) + (n1 −N0) · P

 Tn0 > κ0

TN0 > K0



+ (N − n1) · P


Tn0 > κ0

TN0 > K0

Tn1 ≤ κ1

 , (3.21)

• if n1 ≤ n0 ≤ N0 ≤ N , then

E[τ̂ ] = n1 + (n0 − n1) · P (Tn1 ≤ κ1) + (N0 − n0) · P

 Tn1 ≤ κ1

Tn0 > κ0



+ (N −N0) · P


Tn1 ≤ κ1

Tn0 > κ0

TN0 > K0

 . (3.22)

Applying to these identities the inequalities

max{P(A)− P(Bc)− P(Cc), 0} ≤ P(A ∩B ∩ C) ≤ P(A),

we obtain, for any selection of the design parameters, the following bounds:

E[τ̂ ] ≥ n0 · P(Tn1 ≤ κ1) + (N0 − n0) ·
(
P(Tn0 > κ0)− P(Tn1 > κ1)

)
+ (N −N0) · (P(TN0 > K0)− P(Tn0 ≤ κ0)− P(Tn1 > κ1))

+ ,

E[τ̂ ] ≤ n0 + (N0 − n0) · P(Tn0 > κ0) + (N −N0) · P(TN0 > K0) (3.23)
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and

E[τ̂ ] ≥ n1 ·
(
P(Tn0 > κ0)− P(TN0 ≤ K0)

)
+ (N − n1) ·

(
P(Tn1 ≤ κ1)− P(Tn0 ≤ κ0)− P(TN0 ≤ K0)

)
E[τ̂ ] ≤ n1 + (N − n1) · P(Tn1 ≤ κ1).

(3.24)

When, in particular, the parameters of χ̂ are selected as in Theorem

2(i), by (3.23) with P = P0, we obtain

E0[τ̂ ] ≤ n0 + (N0 − n0) · γ + (N −N0) · γ′,

E0[τ̂ ] ≥ n0 · (1− α/2) + (N0 − n0) · (γ − α/2)

+ (N −N0) · ((1− α/2)− (1− γ)− (1− γ′))+,

where (α/2) ∨ (β/3) ≤ γ′ ≤ γ < 1, n0 = n∗(γ, β/3),

N0 = n∗(γ′, β/3), N = n∗(α/2, β/3),

(3.25)

and by (3.24) with P = P1, we obtain

n1 · (1− 2β/3) + (N − n1) · (δ − 2β/3) ≤ E1[τ̂ ] ≤ n1 + (N − n1) · δ,

where δ ∈
[
(α/2) ∨ (β/3), 1

)
, n1 = n∗(α/2, δ), N = n∗(α/2, β/3). (3.26)

A similar analysis shows that when the parameters of χ̌ are selected

according to Theorem 2(ii), then

n0 · (1− 2α/3) + (N − n0) · (γ − 2α/3) ≤ E0[τ̌ ] ≤ n0 + (N − n0) · γ,

where γ ∈
[
(α/3) ∨ (β/2), 1

)
, n0 = n∗(γ, β/2), N = n∗(α/3, β/2), (3.27)
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and

E1[τ̌ ] ≤ n1 + (N1 − n1) · δ + (N −N1) · δ′,

E1[τ̌ ] ≥ n1 (1− β/2) + (N1 − n1) (δ − β/2)

+ (N −N1) · ((1− β/2)− (1− δ)− (1− δ′))+,

where (α/3) ∨ (β/2) ≤ δ′ ≤ δ < 1, n1 = n∗(α/3, δ),

N1 = n∗(α/3, δ′), N = n∗(α/3, β/2).

(3.28)

Remark 3. Compared with the corresponding bounds for the 3-stage test,

with the same selection of δ (resp. γ), E1[τ̂ ] is close to E1[τ̃ ] (resp. E0[τ̌ ] is

close to E0[τ̃ ]) when β (resp. α) is small. Indeed, the additional stage in χ̂

(resp. χ̌) is useful mainly for reducing the expected sample size under P0

(resp. P1). This is illustrated in Figure 4 of the Supplementary Material.

3.2.3 Specification of the free parameters

We start with the specification of the free parameters of χ̂. For any α, β ∈

(0, 1), we suggest selecting (γ, γ′) (resp. δ) to minimize the upper bound in

(3.25) (resp. (3.26)) in the following way:

(γ̂, γ̂′) ≡ argmin
γ,γ′∈L̂α,β , γ′≤γ

{
n∗(γ, β/3) +

(
n∗(γ′, β/3)− n∗(γ, β/3)

)
· γ

+
(
n∗(α/2, β/3)− n∗(γ′, β/3)

)
· γ′

}
,

δ̂ ≡ argmin
δ∈L̂α,β

{
n∗(α/2, δ) +

(
n∗(α/2, β/3)− n∗(α/2, δ)

)
· δ
}
,

(3.29)
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where L̂α,β is a grid of [(α/2) ∨ (β/3), 1).

Similarly, we suggest selecting the free parameters of χ̌, γ (resp. (δ, δ′))

to minimize the upper bound in (3.27) (resp. (3.28)):

δ̌ ≡ argmin
δ∈Ľα,β

{
n∗(γ, β/2) +

(
n∗(α/3, β/2)− n∗(γ, β/2)

)
· γ

}
,

(δ̌, δ̌′) ≡ argmin
δ,δ′∈Ľα,β , δ′≤δ

{
n∗(α/3, δ) +

(
n∗(α/3, δ′)− n∗(α/3, δ)

)
· δ

+
(
n∗(α/3, β/2)− n∗(α/3, δ′)

)
· δ′

}
,

(3.30)

where Ľα,β is a grid of [(α/3) ∨ (β/2), 1).

As in the 3-stage test, the grids should ideally be as fine as possible,

subject to computational constraints related to the evaluation of the func-

tion n∗. However, we will show that letting the grid length go to zero as

fast as | log(α ∧ β)|−1 as α, β → 0 suffices to achieve asymptotic optimality

under P0 and P1 for a large class of testing problems.

4. Asymptotic analysis

In this section, we obtain asymptotic bounds and approximations for the

expected sample sizes of the multistage tests of the previous section as

α, β → 0. For this analysis, we need to impose some structure on the

almost universal setup we have considered so far.
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4.1 Assumptions on the testing problem

Throughout this section, we assume that P0 and P1 are mutually absolutely

continuous when restricted to Fn, for any n ∈ N, and we denote by Λ ≡

{Λn, n ∈ N} and Λ̄ ≡ {Λ̄n, n ∈ N} the corresponding log-likelihood ratio

and average log-likelihood ratio statistics, respectively,

Λn ≡ log
dP1

dP0

(Fn) and Λ̄n ≡ 1

n
Λn, n ∈ N. (4.1)

Moreover, we assume there are numbers I0, I1 > 0 so that

P0(Λ̄n → −I0) = P1(Λ̄n → I1) = 1, (4.2)

for any ϵ > 0,
∞∑
n=1

P0(Λ̄n > −I0 + ϵ) +
∞∑
n=1

P1(Λ̄n ≤ I1 − ϵ) <∞. (4.3)

These assumptions imply (see, e.g., (Tartakovsky et al.; 2014,Lemma 3.4.1

and Theorem 3.4.2)) asymptotic approximations for the optimal expected

sample sizes L0(α, β) and L1(α, β), defined in (2.3), as well as the asymp-

totic optimality under P0 and P1 of Wald’s SPRT χ′ ≡ (τ ′, d′), where

τ ′ ≡ inf{n ∈ N : Λn /∈ (−A,B)} and d′ ≡ 1{Λτ ′ ≥ B}, (4.4)

with A and B selected, for example, as A = | log β| and B = | logα|.

Specifically, under the above assumptions, as α, β → 0,

E0[τ
′] ∼ L0(α, β) ∼

| log β|
I0

and E1[τ
′] ∼ L1(α, β) ∼

| logα|
I1

. (4.5)
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4.1.1 The i.i.d. setup

When X is an i.i.d. sequence with common density fi under Pi with respect

to some dominating measure ν, for i ∈ {0, 1}, and the Kullback–Leibler

divergences are positive and finite, that is,

D(f0∥f1) ≡
∫

log(f0/f1)f0 dν ∈ (0,∞)

D(f1∥f0) ≡
∫

log(f1/f0)f1 dν ∈ (0,∞),

(4.6)

then the log-likelihood ratio statistic in (4.1) becomes

Λn =
n∑

i=1

f1(Xi)

f0(Xi)
, n ∈ N, (4.7)

and assumptions (4.2)–(4.3) hold with I0 = D(f0∥f1) and I1 = D(f1∥f0)

(for more details, see Subsection S1.3 of the Supplementary Material).

4.2 Assumptions on the test statistic

With respect to the test statistic, T , throughout this section, we assume

there are real numbers J0, J1, with J0 < J1, so that

P0(Tn → J0) = P1(Tn → J1) = 1, (4.8)

and, for every κ ∈ (J0, J1), the error probabilities of the fixed-sample-size

test that rejects H0 if and only if Tn > κ go to zero exponentially fast in n.

Specifically, we assume there are nonnegative, convex, continuous functions

ψ0, ψ1 : R → [0,∞], so that
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- [J0, J1] is a subset of the effective domains of ψ0 and ψ1,

- ψ0(J0) = 0 and ψ0 is strictly increasing in [J0, J1],

- ψ1(J1) = 0 and ψ1 is strictly decreasing in [J0, J1],

- for every κ ∈ (J0, J1),

lim
n

1

n
logP0(Tn > κ) = −ψ0(κ), (4.9)

lim
n

1

n
logP1(Tn ≤ κ) = −ψ1(κ). (4.10)

Remark 4. 1) When Tn = Λ̄n, (4.8) follows from (4.2) and (4.9)–(4.10)

imply (4.3), with J0 = −I0 and J1 = I1.

2) In Section S1 of the Supplementary Material we state sufficient conditions

for the existence of functions ψ0 and ψ1 that satisfy (4.9)–(4.10), which we

also specify. In Section S3, we show that these sufficient conditions are

satisfied in various testing problems and for different test statistics. The

graphs of ψ0 and ψ1 in each of these examples are plotted in Figures 1a, 1c

and 1e of the Supplementary Material.

3) In the i.i.d. setup of Subsection 4.1.1, the above assumptions hold when

T = Λ̄, as long as (4.6) holds (see Subsection S1.3).

The above assumptions suffice for obtaining first-order asymptotic up-

per bounds on the expected sample sizes of the proposed multistage tests
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under P0 and P1 as α, β → 0. When T = Λ̄, they also suffice for obtaining

matching lower bounds. However, in order to establish such lower bounds

when T ̸= Λ̄, we need to additionally assume that

∃ a neighborhood of J1 in which ψ0 is finite and (4.9) holds

∃ a neighborhood of J0 in which ψ1 is finite and (4.10) holds.

(4.11)

In Section S1, we also state sufficient conditions for (4.11), which hold for

all the test statistics, different from Λ̄, that we consider in Section S3.

4.3 Asymptotic analysis for multistage tests

We now focus on the multistage tests introduced in Section 3 and establish

the main theoretical results of this work. They are based on asymptotic

bounds and approximations for n∗(α, β) as α, β → 0, which are presented

in Section S5.1 of the Supplementary Material.

4.3.1 An upper bound on the maximum sample size

By the definition of the multistage tests and the selection of their parameters

according to Theorems 1 and 2, it follows that, for any α, β ∈ (0, 1) and

any choice of the free parameters, τ̃ , τ̂ , τ̌ ≤ n∗(α/3, β/3). Consequently,

in view of Theorem S2 of the Supplementary Material,

τ̃ , τ̂ , τ̌ ≲
| log(α ∧ β)|

C
as α, β → 0, (4.12)
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where C is defined as

C ≡ sup
κ∈(J0,J1)

{ψ1(κ) ∧ ψ0(κ)} , (4.13)

which, in the i.i.d. setup of Subsection 4.1.1, is wellknown as the Chernoff

information (see, e.g., (Dembo and Zeitouni; 1998,Corollary 3.4.6)).

On the other hand, even when X is an i.i.d. sequence, the SPRT not

only does not have a bounded sample size, but even its expected sample

size under some P ∈ P , in contrast to P0 and P1, can be much larger than

n∗(α, β) when α and β are small. Indeed, consider a P ∈ P under which

Λ is a random walk whose increments have a zero mean and finite variance

σ2. The expected sample size under such a P of the SPRT, defined in (4.4),

with A = | log β| and B = | logα|, is

E[τ ′] ≈ | logα|| log β|/σ2, (4.14)

where ≈ becomes an equality in the absence of overshoot over the bound-

aries (see, e.g., (Tartakovsky et al.; 2014,Chapter 3.1.1.2)). Comparing this

approximation with the upper bound in (4.12), all of the proposed multi-

stage tests outperform the SPRT under such a P when α and β are small.

This robustness property of the proposed multistage tests is illustrated in

Figure 4 of the Supplementary Material.
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4.3.2 Asymptotic analysis under P0 and P1

By the asymptotically optimal performance in (4.5), it follows that, as

α, β → 0,

E1[τ̃ ], E1[τ̂ ], E1[τ̌ ] ≳
| logα|
I1

and E0[τ̃ ], E0[τ̂ ], E0[τ̌ ] ≳
| log β|
I0

,

for any selection of the free parameters and any choice of the test statistic.

In the next lemma, we obtain a sharper asymptotic lower bound when T is

not Λ̄, but satisfies condition (4.11).

Lemma 1. Suppose that T ̸= Λ̄ and (4.11) holds. Then, for any selection

of the free parameters, as α, β → 0,

E1[τ̃ ], E1[τ̂ ], E1[τ̌ ] ≳
| logα|
ψ0(J1)

and E0[τ̃ ], E0[τ̂ ], E0[τ̌ ] ≳
| log β|
ψ1(J0)

.

We next state the main results of this section, from which the previous

asymptotic lower bounds are attained with an appropriate selection of the

free parameters. To avoid repetition, we state these results only when

| logα| ≳ | log β|; analogous results hold when | logα| ≲ | log β|. Moreover,

we denote by l̃α,β, l̂α,β and ľα,β the lengths of the grids L̃α,β, L̂α,β and Ľα,β,

respectively, introduced in Subsections 3.1.3 and 3.2.3.

Theorem 3. Suppose that T = Λ̄. Let the free parameters be selected ac-

cording to (3.14) for the 3-stage test χ̃, and according to (3.29) and (3.30)
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for the 4-stage tests χ̂ and χ̌, respectively. Moreover, suppose that, as

α, β → 0,

l̃α,β, l̂α,β, ľα,β ≲ | log(α ∧ β)|−1. (4.15)

(i) If α, β → 0 so that | logα| ≳ | log β|, then

E1[τ̃ ] ∼ E1[τ̂ ] ∼ E1[τ̌ ] ∼
| logα|
I1

∼ L1(α, β).

(ii) If, also, | logα| ≲ | log β|/βr for some r > 0, then

E0[τ̂ ] ∼
| log β|
I0

∼ L0(α, β).

(iii) If, also, | logα| ≲ | log β|r for some r ≥ 1, then

E0[τ̃ ] ∼ E0[τ̌ ] ∼
| log β|
I0

∼ L0(α, β).

Theorem 4. Suppose that T ̸= Λ̄ and condition (4.11) holds. Let the free

parameters be selected as in Theorem 3 and the grid lengths satisfy (4.15).

(i) If α, β → 0 so that | logα| ≳ | log β|, then

E1[τ̃ ] ∼ E1[τ̂ ] ∼ E1[τ̌ ] ∼
| logα|
ψ0(J1)

∼ I1
ψ0(J1)

L1(α, β).

(ii) If also | logα| ≲ | log β|/βr for some r > 0, then

E0[τ̂ ] ∼
| log β|
ψ1(J0)

∼ I0
ψ1(J0)

L0(α, β).
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(iii) If also | logα| ≲ | log β|r for some r ≥ 1, then

E0[τ̃ ] ∼ E0[τ̌ ] ∼
| log β|
ψ1(J0)

∼ I0
ψ1(J0)

L0(α, β).

Remark 5. 1) Condition (4.11) in Theorem 4 is used only to obtain the

asymptotic lower bounds in Lemma 1; that is, it is not needed to establish

the corresponding asymptotic upper bounds.

2) As shown in their proofs, Theorems 3 and 4 remain valid as long as the

free parameters satisfy certain mild asymptotic relationships with the error

probabilities, found in (S5.61), (S5.64) and (S5.66); that is, they do not

have to be selected as the solutions to the minimization problems proposed

in Subsections 3.1.3 and 3.2.3.

3) Part (i) in Theorems 3 and 4 states that under P1, all multistage tests

in this work achieve the asymptotically optimal performance when T = Λ̄,

and have the same asymptotic relative efficiency when T ̸= Λ̄ and condition

(4.11) holds, as α, β → 0 so that | logα| ≳ | log β|. On the other hand, parts

(ii) and (iii) imply that the corresponding results under P0 hold as long as

α does not go to zero much faster than β, and that this constraint is much

stricter for χ̃ and χ̌ than it is for χ̂. This suggests that χ̂ will outperform

χ̃ and χ̌ under the null hypothesis when α is much smaller than β. This

insight is supported by Figures 2, 3, and 4 in the numerical studies presented

in the Supplementary Material.
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4) Analogous results hold when α, β → 0 so that | logα| ≲ | log β|.

5) The asymptotic optimality under both P0 and P1 of the 3-stage test with

T = Λ̄ is established in Section 2 of Lorden (1983), in the i.i.d. setup of

Subsection 4.1.1, as α, β → 0 so that | log β|/r ≲ | logα| ≲ r | log β| for some

r ≥ 1. Therefore, apart from extending it to a more general distributional

setup, we generalize this result even in the i.i.d. case. Indeed, from (i) and

(iii) of Theorem 3 and the previous remark we conclude that the asymptotic

optimality of the 3-stage test under both P0 and P1 holds as α, β → 0 so

that | log β|1/r ≲ | logα| ≲ | log β|r for some r ≥ 1. At the same time,

we show how adding one additional stage can further relax this asymptotic

requirement. Specifically, from Theorem 3 and the previous remark we

conclude that the 4-stage test χ̂ is asymptotically optimal under both P0

and P1 as α, β → 0 so that | log β|1/r ≲ | logα| ≲ | log β|/βk for some r ≥ 1

and k > 0. Similarly, the 4-stage test χ̌ is asymptotically optimal under

both P0 and P1 as α, β → 0 so that | logα|1/r ≲ | log β| ≲ | logα|/αk for

some r ≥ 1 and k > 0.

5. Conclusion

Given a fixed-sample-size test that controls the error probabilities at two

specific distributions, we design and analyze a 3-stage and two 4-stage tests,
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with deterministic stage sizes, that guarantee the same error control. Under

general distributional assumptions, which hold for many testing problems

beyond the i.i.d. setup, we also obtain asymptotic approximations for their

expected sample sizes under the two distributions at which we control the

error probabilities, as the latter go to zero. When, in particular, the test

statistic is the average log-likelihood ratio between these two distributions,

these tests attain asymptotically the optimal expected sample sizes under

the two distributions in the family of all sequential tests with the same error

control, similarly to the corresponding SPRT.

The above asymptotic optimality properties require certain constraints

on how asymmetrically the two error probabilities go to zero. These con-

straints are removed in Xing and Fellouris (2022; 2023), in an i.i.d. setup,

using a multistage test in which the test statistic is the corresponding log-

likelihood ratio, and the number of stages is a function of the two user-

specified error probabilities. Our results can be used to extend theirs be-

yond the i.i.d. setup and to general test statistics.

In order to design multistage tests that achieve asymptotic optimality

under every plausible distribution, or in the presence of nuisance parame-

ters, at least some stage sizes need to be adaptive, as in Section 3 of Lorden

(1983), Hayre (1985), Bartroff (2007), Bartroff and Lai (2008a). In the
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first work, a uniform asymptotic optimality property is established for i.i.d.

data whose distribution belongs to an exponential family and under the

assumption of symmetric error probabilities. Ideas from the present work

may be used to extend these results to more general distributional setups

and more asymmetric error probabilities.

Finally, another direction of interest is the application of multistage

tests, as considered in this work, in a multiple testing setup, similarly to

Malloy and Nowak (2014) and Xing and Fellouris (2023).

Supplementary Material

The online Supplementary Material contains sufficient conditions for the

asymptotic analysis, an importance sampling approach for the efficient im-

plementation of the proposed tests when the error probabilities are small,

three specific testing problems, two numerical studies that illustrate the

general theory, and proofs of all main results and supporting lemmas.
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