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Abstract: A repeatedly measured outcome in longitudinal studies allows researchers to monitor how the outcome

changes over time. When an intervention affects the outcome and subjects initiate the intervention at different times

during the course of a study, it is essential to account for the varying time to intervention (TTI) in models of such

changes. In this study, we develop a piecewise polynomial regression model with TTI-varying coefficients that

describes the population mean outcome over time. The TTI-varying coefficients in the model enable us to capture

the population mean outcome trajectory, affected by both the intervention and the varying TTI. In observational

studies, other covariates can confound these effects, leading to estimation bias if not properly accounted for. To

mitigate this, we propose a double-weighted estimation procedure based on a kernel function and a generalized

propensity score. The proposed estimation procedure effectively corrects the estimation bias of the TTI-varying

coefficients and provides valid statistical inferences about the coefficients. We apply our approach to assess changes

in the population mean of an inflammation biomarker for HIV-infected adults in Haiti who initiate antiretroviral

therapy following the World Health Organization guideline.

Key words and phrases: Causal inference; Generalized propensity score; Kernel smoothing; Longitudinal data;

Piecewise polynomial regression; Varying coefficients model.
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2. Introduction

Modeling changes in an outcome over time is essential for patient assessment in biomedical stud-

ies. An analysis of longitudinal data in which the outcome is measured repeatedly for a subject can

successfully control extraneous, but unavoidable sources of variability among subjects. However,

interventions that affect the changes in the outcome can occur at different times during the course

of a longitudinal study. When the effect of the intervention depends on the time to intervention

(TTI), it is crucial to adjust for the TTI when modeling the longitudinal outcome trajectory; see

Wu and Tian (2008), Xing and Ying (2012), Liu et al. (2018), and Cho et al. (2020).

For example, an inflammation biomarker is one of the risk factors for adults infected with

human immunodeficiency virus (HIV). Because inflammation is a risk factor for other disease

progression, monitoring changes of the inflammation biomarker over time is essential. Antiretro-

viral therapy (ART) has proved effective in reducing inflammation, and is recommended for HIV-

infected adults (Kanters et al. (2016)). However, owing to limited resources, HIV-infected adults

in Haiti have initiated ART following the World Health Organization (WHO) guideline, leading to

these adults initiating ART at different times. As a result, it is important to study how the effect of

ART on changes in the inflammation biomarker is influenced by different ART initiation times.

It is straightforward to evaluate the TTI-varying effect of the intervention on the outcome by

assessing the population mean outcome trajectory if the data are observed in either of the following

circumstances: 1) the TTI is assigned randomly to subjects, or 2) all subjects undergo the inter-

vention at the same time. In observational studies in which the intervention is initiated following

a guideline, strategy, or other factors, neither of these circumstances are feasible. In particular, if
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factors that affect the TTI exist, estimating the population mean outcome trajectory is challenging.

For instance, suppose we wish to evaluate the intervention effect on the outcome when the TTI is

a specific value s. One approach is to estimate the mean outcome trajectory using subjects who

intervened at time s or nearby. However, it is likely that the subsample does not represent the study

population well in the presence of potential confounders. As a result, an estimated mean outcome

trajectory would be biased, unless the confounders are properly controlled.

In this study, we develop a piecewise polynomial regression model with TTI-varying coeffi-

cients that describes the marginal mean outcome over time. The proposed model smoothly con-

nects the polynomial functions before and after the intervention. The TTI-varying coefficients

allow us to explore the population mean outcome trajectory with respect to different times to in-

tervention. Therefore, the proposed marginal mean model captures both dynamic longitudinal

changes in the population mean outcome over time and the varying effect of the intervention along

with the times to intervention. A hypothesis test is proposed to select the most parsimonious model

that correctly specifies the population mean outcome pattern. If the intervention affects changes on

the outcome over time, the pattern of the repeated outcome is altered after the TTI. Therefore, we

develop another hypothesis test that investigates whether or not the intervention at a specific time

is effective.

We propose a double-weighted estimation procedure to estimate the TTI-varying coefficients,

while accounting for potential confounders that can cause selection bias under the weighted gen-

eralized estimating equations framework (Robins et al. (1994); Chen et al. (2010); Qu et al.

(2011)). Because the proposed approach contains two weights, that is, a kernel function and a
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generalized propensity score (GPS, Hirano and Imbens (2004)), we call it the double-weighted

estimation method. The kernel function up-weights subjects who initiate the intervention at a spe-

cific time, or nearby. The GPS links the TTI and the potential confounders. We propose a simple

and easy implementation to predict the GPS using the definition of the probability density func-

tion. Using the predicted GPS, the proposed procedure corrects the estimation bias effectively.

Our simulation studies show that an estimation procedure that does not control for the confounders

yields a biased estimator of the TTI-varying coefficients. In contrast, the double-weighted proce-

dure successfully corrects the bias, and provides valid statistical inferences about the TTI-varying

coefficients. We prove that the double-weighted estimator asymptotically follows a multivariate

normal distribution with a mean vector of the true coefficients under regularity conditions on the

GPS and the kernel function.

Repeated measures within each subject are likely to be correlated, and the degree of correla-

tions can vary with the TTI. The proposed estimation approach accommodates the within-subject

correlations, and improves the estimation efficiency of the TTI-varying coefficients. In addition,

the approach accounts for heterogeneous correlations across TTIs, without estimating nuisance

parameters associated with the working correlation structure that varies with the TTIs (Kim et

al. (2019)). When the repeated outcome is not continuous, specifying its full likelihood under a

marginal regression framework is challenging. The proposed estimation approach is readily ap-

plied to analyze repeated discrete outcome, because it requires only the first two moments.

The remainder of the paper proceeds as follows. In Section 2, we develop the piecewise

polynomial regression model with the TTI-varying coefficients. In Section 3, we propose the
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double-weighted estimation procedure and present statistical inferences about the TTI-varying co-

efficients. In Section 4, we implement the proposed approach by selecting a parsimonious model

and predicting the GPS. In Section 5, we apply the proposed approach to data from the afore-

mentioned HIV study, and explore changes in the population mean inflammation biomarker at two

different ART initiation times. Simulation studies and closing remarks are given in Sections 6 and

7, respectively.

3. Modeling the population mean outcome trajectory

For a typical framework of longitudinal studies with a varying TTI variable, we denote by T a real-

valued variable of time, T a bounded subset of (0,∞) such that T ∈ T, YT a real-valued response

variable at time T , Z a vector of q real-valued covariates, and S ∈ T a real-valued TTI variable.

Suppose that n subjects are drawn randomly from a population of interest and YT is measured

repeatedly during the course of the study. The longitudinal random sample of {YT , T, S,Z} is

denoted by {Yij, Tij, Si,Zi : i = 1, . . . , n; j = 1, . . . , ni}, where the TTI Si, covariate vector Zi,

and ni outcomes, Yi1, . . . , Yini
, at time points Ti1, . . . , Tini

, respectively, are measured for subject

i. We call Zi preintervention covariates, because it consists of covariates measured prior to an

intervention.

When a longitudinal study is designed, the same visit or assessment schedule is normally

planned for all individuals. In this regard, we assume that there exist no potential factors that

confound the associations between the measurement time T and the outcome YT . In practice,

the assessment times are likely not the same across all individuals for various reasons, including
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missed visits or simply visit times falling outside the predefined windows. This results in different

values of ni and Ti1, . . . , Tini
across individuals. In addition, the intervention can be initiated at

any time during the follow-up period; that is, there exist individuals such that Tij 6= Si, for all j.

Under the stable unit treatment value assumption (SUTVA, Imbens and Rubin (2015)) that

only one version of the intervention is used and no interference between subjects exists, we define

a potential outcome measured at time T if an intervention is initiated at time S since the baseline,

and denote it by Y (T, S). This follows from the unconfoundedness assumption between the mea-

surement and the outcome, and the consistency assumption that a potential outcome for subject i

at time Tij is observed as Yij = Y (Tij, Si). We are interested in estimating the average outcome

trajectory of individuals who intervened at S ∈ T, denoted by µ(T, S) = E{Y (T, S)}. There-

fore, we develop a marginal mean regression model that assesses changes in the population mean

outcome based on generalized linear models for longitudinal data (Liang and Zeger (1986)).

Suppose that µ(T, S) depends on T and S through a known link function of (·) (e.g., the logit

link function for Bernoulli random response variables, or the log link function for count response

variables). Assuming that the transformed mean response changes linearly over time T , but that

the rate of the change is altered by the intervention at time S, we formulate the following marginal

mean regression model with TTI-varying coefficients for the potential outcome Y (T, S):

{µ(T, S)} =

{ β0(S) + β1(S)T T ≤ S

α0(S) + α1(S)T T > S,

(3.1)

where β0(S), β1(S), α0(S), and α1(S) are unknown smooth functions of the TTI S. Because
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β1(S) and α1(S) are the rates of the change before and after the intervention, respectively, the

difference between β1(S) and α1(S) is the expected rate of the change due to the intervention at

time S. As a result, the TTI-varying effects of the intervention on the changes in {µ(T, S)} can

be obtained by accessing β1(S) and α1(S) with respect to the TTI S.

Under the continuity assumption of µ(T, S) in time T , we combine two segments in (3.1), and

propose the following TTI-varying coefficient piecewise linear model:

{µ(T, S)} = β0(S) + β1(S)T + β2(S)(T − S)+, (3.2)

where β2(S) = α1(S) − β1(S), and (T − S)+ = (T − S)I(T > S) is a truncated term with a

fixed knot of S and an indicator function I(T > S) being one if T > S and zero otherwise. As

a result, the change of the population mean outcome due to the intervention at time S is reflected

in the last term in model (3.2). For example, β2(S) = 0 indicates that the intervention at time S

does not alter the rate of the change in the outcome, because the linear pattern of the time-varying

outcome remains the same before and after the intervention. If β2(S) is a nonzero constant over

S ∈ T, the effect of the intervention remains the same, regardless of the TTIs.

The piecewise linearity assumption between the time and the transformed mean response can

be relaxed by developing a piecewise polynomial regression model with TTI-varying coefficients,

as follows:

{µ(T, S)} = β0(S) + β1(S)T + . . .+ βps(S)T ps + βps+1(S)(T − S)ps+ , (3.3)
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where (T − S)ps+ = (T − S)psI(T > S) is the ps degree truncated polynomial term, and the

degree of nonlinearity ps can vary with S. Note that model (3.3) smoothly connects two different

polynomial curves with a ps degree of the polynomial, under the restriction that their first ps − 1

derivatives are continuous in time T (Gallant and Fuller (1973)).

4. Statistical inference

In this section, we propose estimation procedures and discuss statistical inferences about the TTI-

varying coefficients in model (3.3) in observational studies in which the preintervention covariates

confound the associations between the TTI and the repeated outcomes.

4.1 Double-weighted estimation procedure

In order to control for covariates that could cause an estimation bias in µ(T, S), we propose a

double-weighted estimation procedure based on the inverse probability weighting scheme (Horvitz

and Thompson (1952)). Following Hirano and Imbens (2004) on propensity score analysis, we

assume that the TTI is independent of the potential outcome, conditional on the covariates, denoted

by Y (T, s) ⊥ S|Z, for s ∈ T. This assumption rules out any systematic selection into the TTI

based on unobservable covariates, and is called the “no hidden bias assumption.” The assumption

is a natural extension of the unconfoundedness assumption commonly used for binary treatments

(Rosenbaum and Rubin (1983); Heckman et al. (1998); Imbens (2000)).

Rosenbaum and Rubin (1983) show that adjusting for differences in the propensity score (i.e.,

the probability of receiving the treatment conditioning on the preintervention covariates) removes

the selection bias between treated and untreated individuals under the unconfoundedness assump-
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4.1 Double-weighted estimation procedure

tion. We define a GPS, denoted by f(s|Z), that is the conditional density of the TTI variable

given the covariates. We assume that every individual has a nonzero density of intervening at any

time point in T; that is, f(s|Z) > 0, for s ∈ T. Hirano and Imbens (2004) show that the GPS

exhibits the following properties: 1) within strata with the same value of f(s|Z), the occurrence

of the event S = s does not depend on the value of Z, that is, Z ⊥ I{S = s}|f(s|Z); and 2)

the TTI is unconfounded, given the GPS and the aforementioned unconfoundedness assumption.

The second property enables us to remove selection bias by using the GPS on the estimation of

µ(T, s). In particular, we can identify the causal parameter E{Y (T, s)} from the observed data as

µ(T, s) = E[E{Y (T, s)|f(s|Z) = c}] = E[E{YT |S = s, f(s|Z) = c}].

For the estimation of β0(S), . . . , βps+1(S) in model (3.3) at given values of TTI s and f(s|Zi),

we propose the following double-weighted generalized estimating equations:

n∑
i=1

µ̇>i A
−1/2
i Ri{ρ(s)}−1A−1/2i {Yi − µi(s)}

Ki(s)

f(s|Zi)
= 0, (4.4)

where µ̇i = ∂µi(s)/∂β(s), µi(s) = {µ(Ti1, s), . . . , µ(Tini
, s)}>, µ(Tij, s) = −1{Xijβ(s)},

Xij =
(
1, Tij, . . . , T

ps
ij , (Tij − s)ps+

)>, β(s) = {β0(s), β1(s), . . . , βps(s), βps+1(s)}>, Ai is a di-

agonal variance matrix of Yi = (Yi1, . . . , Yini
)>, Ri{ρ(s)} is a working correlation structure of

Yi with a nuisance smoothing function vector of ρ(s), and Ki(s) = K{(Si − s)/b(s)} is a kernel

function with a local bandwidth b(s). The kernel function up-weights subjects whose TTI is closer

to the given value of s for a consistent estimation of β(s). The GPS f(s|Zi) is used as an inverse

weight to eliminate the disparity between the study population and the sampling population (i.e.,

the group of subjects who intervened at s). Within-subject correlations are considered, while al-
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4.1 Double-weighted estimation procedure

lowing the degree of the correlations ρ(s) to vary with the TTIs. When the working correlation

structure is specified correctly, the efficient estimator can be obtained by solving (4.4), but this

requires estimating the unknown nuisance parameter vector ρ(s).

An alternative is to approximate Ri{ρ(s)}−1 in (4.4) as Ri{ρ(s)}−1 =
∑D

d=1 ηd(s)Bid, where

Bi1, . . . ,BiD are basis matrices and η1(s), . . . , ηD(s) are unknown varying coefficients. The

choice of a set of the basis matrices depends on the type of working correlation structure. For ex-

ample, if the compound symmetry structured is assumed, then Ri{ρ(s)}−1 = η1(s)Bi1+η2(s)Bi2,

where Bi1 is an identity matrix, and Bi2 is a matrix with zero on the diagonal, and one elsewhere.

If the first-order autoregressive, denoted by AR(1), structure is assumed, then Ri{ρ(s)}−1 ≈

η1(s)Bi1 + η2(s)Bi2, where Bi1 is an identity matrix, and Bi2 is a matrix with one on the sub-

diagonals, and zero elsewhere (Qu et al. (2000)). If Ri{ρ(s)} is unstructured, a set of basis

matrices can be obtained using an eigenvector decomposition method; see Zhou and Qu (2012)

and Cho and Qu (2015).

After extending (4.4) to a score vector of gi{β(s)} = hi{β(s)}Ki(s)/f(s|Zi), with

hi{β(s)} =


µ̇>i A

−1/2
i Bi1A

−1/2
i {Yi − µi(s)}
...

µ̇>i A
−1/2
i BiDA

−1/2
i {Yi − µi(s)}

 , (4.5)

an estimator of β(s) is obtained by minimizing the quadratic inference function (QIF, Qu et al.
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4.1 Double-weighted estimation procedure

(2000))

Q{β(s)} = nb(s) G{β(s)}>V{β(s)}−1G{β(s)}, (4.6)

where G{β(s)} =
∑n

i=1 gi{β(s)}/nb(s) and V{β(s)} =
∑n

i=1 gi{β(s)}gi{β(s)}>/nb(s).

This accounts for within-subject correlations, without needing to estimate the varying nuisance

parameter vector ρ(s) in Ri{ρ(s)}. As a result, the estimator is more efficient than the one

obtained under the working independent correlation structure. In addition, it is the most ef-

ficient of the estimators obtained from the same set of estimating equations in (4.5), because

Q{β(s)} optimally combines the extended scores by taking the inverse of their variability. With

β̂(s) = argminβ(s)Q{β(s)}, the mean outcome trajectory for the study population intervened at

time s is estimated as µ̂(T, s) = −1{β̂0(s) + β̂1(s)T + . . .+ β̂ps(s)T
ps + β̂ps+1(s)(T − s)ps+ }.

Note that when extreme propensity scores are present, a stabilized weight `(s) can be used

as gi{β(s)} = hi{β(s)}Ki(s)`(s)/f(s|Zi), where `(s) is an arbitrary function of S evaluated

at the TTI s, although a marginal density of the TTI is commonly used. The stabilized inverse

probability avoids obtaining an estimator of µ(T, s) that is dominated by repeated outcomes of

individuals with an extremely small value of f(s|Zi).

For statistical inferences about β̂(s), we demonstrate asymptotic properties of β̂(s). Note that

with undersmoothing, nb(s)5 → 0, Wilks’ phenomenon holds for the QIF. Therefore, we use the

QIF with undersmoothing to build a goodness-of-fit statistic to select the best degree of polynomial

in model (3.3), and to build a hypothesis test statistic to check whether or not the intervention at

time s is effective.
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4.2 Inference about the TTI-varying coefficients

Theorem 1. Let s be a fixed interior point in T and β0(s) be a true parameter vector. Under

the causal inference conditions discussed in Section 3.1, the regularity conditions in the Appendix,

nb(s)→∞, and nb(s)5 → 0, we have:

(i)
√
nb(s)

(
β̂(s)− β0(s)

)
d→ N

(
0, ϕK

∫ fZ(z)
f(s|z)dz{Φ(s)>Σ(s)Φ(s)}−1

)
, where d→ denotes

convergence in distribution, ϕK =
∫
K2(u)du, fZ(·) is the density function of Z, Φ(s) =

E[∂hi{β(Si)}/∂β(Si)|Si = s], and Σ(s) = E[hi{β(Si)}hi{β(Si)}>|Si = s];

(ii) Q{β̂(s)} d→ χ2
(ps+2)(D−1) if model (3.3) is specified correctly, where χ2

(ps+2)(D−1) is a chi-

squared distribution with (ps + 2)(D − 1) degrees of freedom.

It is well known that the kernel-based estimator is consistent, but biased (Li and Racine

(2007)), and that the bias term is O(b(s)2); see the proof of Lemma 1 in the Appendix for details.

Because the bias term contains first- and second-order derivatives, which are not easy to estimate

in practice, it is common practice to either ignore it or to undersmooth it with a slightly smaller

bandwidth than the optimal bandwidth satisfying nb(s)5 → 0, as shown in Theorem 1. Given the

optimal local bandwidthO(n−1/5), Theorem 1 (i) shows that the resultant estimator asymptotically

follows a multivariate normal distribution with a mean vector of the true coefficients at the specific

value of the TTI s.

4.2 Inference about the TTI-varying coefficients

It is of particular interest to perform a statistical inference about the last term βps+1(s) in model

(3.3), because βps+1(s) quantifies the effect of the intervention at time s on the change of the mean

outcome pattern. Given that Q{β0(s)} is an analog to the negative twice loglikelihood, a hypothe-

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0226



4.3 Kernel-weighted estimation procedure

sis test for H0 : βps+1(s) = 0 against Ha : βps+1(s) 6= 0 is conducted by comparing Q{β̃(s)} with

Q{β̂(s)}, where β̃(s) and β̂(s) are estimators obtained under H0 and Ha, respectively.

Theorem 2. Let s be a fixed interior point in T. Under the causal inference conditions in Section

3.1, the regularity conditions in the Appendix, nb(s)→∞, and nb(s)5 → 0, if the null hypothesis

is true, Q{β̃(s)} is as small as Q{β̂(s)}, and the test statistic W(s) = Q{β̃(s)} − Q{β̂(s)}

asymptotically follows a chi-squared distribution with one degree of freedom.

Theorem 2 indicates that the intervention at time s is effective if the test statistic W(s) is

larger than the (1 − α)th percentile of the chi-squared distribution with one degree of freedom at

a significance level of α. The hypothesis test is an analog to the traditional likelihood ratio test

that compares two nested models, because the null model is nested within the alternative model.

The test is useful and easy to implement, because estimating the limiting variance of βps+1(s) in

Theorem 1 (i) is difficult in practice, but not required in the proposed test.

4.3 Kernel-weighted estimation procedure

When no confounders exist (e.g., the TTI is randomized to subjects in a population), the following

kernel-weighted GEE and QIF can be used to estimate β(s):

n∑
i=1

µ̇>i A
−1/2
i Ri{ρ(s)}−1A−1/2i {Yi − µi(s)}Ki(s) = 0 (4.7)

and

QK{β(s)} = nb(s) GK{β(s)}>VK{β(s)}−1GK{β(s)}, (4.8)
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where GK{β(s)} =
∑n

i=1 gK,i{β(s)}/nb(s), gK,i{β(s)} = hi{β(s)}Ki(s), hi{β(s)} is defined

in (4.5), and VK{β(s)} =
∑n

i=1 gK,i{β(s)}gK,i{β(s)}>/nb(s). An estimator of β(s) can be

obtained by minimizing QK{β(s)}, denoted by β̂K(s) = argminβ(s)
QK{β(s)}. Note that (4.7)

is a special case of (4.4) with a constant value of f(s|Zi). Thus, none of the preintervention

covariates are related to the link between the TTI variable and the potential outcome. As a result,

the asymptotic properties in Theorems 1 and 2 can be used to perform a statistical inference about

β(s) based on QK{β(s)}. In Section 6, we show that the kernel-weighted estimation procedure

leads to a valid statistical inference about β(s), when no confounders exist.

5. Implementation

5.1 Selection of a parsimonious model

Choosing the best degree of polynomial ps in model (3.3) is essential to select a parsimonious

model that specifies the time-varying population mean outcome correctly. At the given value of

the TTI s, we provide an iterative two-step procedure that selects the local bandwidth b(s) and

polynomial degree ps in model (3.3).

1. Given a predetermined value of ps, we modify a leave-one-subject-out cross-validation

method (Rice and Silverman (1991)) and select the local bandwidth b′(s) by minimizing

the kernel-weighted least squares

b′(s) = argmin
b(s)>0

∑n
i=1

∑ni

j=1

{
Yij − µ̂(−i)(Tij, Si)

}2
K
{

(Si−s)
b(s)

}
∑n

i=1

∑ni

j=1K
{

(Si−s)
b(s)

} , (5.9)
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5.2 Prediction of the GPS

where µ̂(−i)(Tij, Si) is an estimate of the population mean at time Tij intervened at time Si,

with the bandwidth b(s) obtained from all data except the ith subject. The cross-validation

obtains a local bandwidth effectively by using the kernel-based weights accounting for the

distance between the data Si and the TTI of interest s. To hold the asymptotic properties

in Theorem 1, we obtain the optimal bandwidth b∗(s) by undersmoothing b′(s) in (5.9) as

b∗(s) = b′(s)n−1/20. Because b′(s) and b∗(s) are O(n−1/5) and O(n−1/4), respectively, the

condition for undersmoothing nb∗(s)5 → 0 in Theorem 1 is fulfilled.

2. Given the selected local bandwidth b∗(s), β̂(s) is obtained by minimizing Q{β(s)}. Fol-

lowing Theorem 1 (ii), we select ps as the best polynomial degree if Q{β̂(s)} is no greater

than the (1−α)th percentile of the chi-squared distribution with (ps + 2)(D− 1) degrees of

freedom at a significance level α.

In practice, we let the initial value of ps be one, which is the piecewise linear model (3.2), and

repeat Steps 1 and 2 by increasing ps by one until the criterion in Step 2 is met. This iterative pro-

cedure enables us to choose the most parsimonious model, based on Theorem 1 (ii) that Q{β̂(s)}

converges in distribution to χ2
(ps+2)(D−1) under the correctly specified model.

5.2 Prediction of the GPS

Modeling the GPS f(s|Zi) plays an important role in providing an accurate estimator of β(s). We

need to predict the GPS prior to minimizing Q{β(s)} when estimating β(s). We propose a simple

and easy implementation for predicting f(s|Zi) based on the definition of the probability density

function that f(s|Zi) = limd→0{F (s + d|Zi) − F (s − d|Zi)}/2d = limd→0E{I(s − d < S ≤
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5.2 Prediction of the GPS

s + d)|Zi}/2d, where F (s|Zi) = P (S ≤ s|Zi) is the conditional distribution function of s given

Zi. Given a small positive value of d∗, the GPS for subject i can be approximated as

f(s|Zi) ≈ E{Mi(s)|Zi}/2d∗, (5.10)

where Mi(s) = I(s− d∗ < Si ≤ s + d∗) is a Bernoulli random variable that indicates whether or

not subject i initiates the intervention at time s, or nearby. To avoid the curse of dimensionality due

to the multivariate covariate Zi, we model E{Mi(s)|Zi} in (5.10) under the following generalized

linear model with the logit link function:

E{Mi(s)|Zi} = P{Mi(s) = 1|Zi} =
exp{γ0(s) +

∑q
j=1 γj(s)Zij}

1 + exp{γ0(s) +
∑q

j=1 γj(s)Zij}
, (5.11)

where Zi = (Zi1, . . . , Ziq)
> and γ0(s), . . . , γq(s) are unknown TTI-varying coefficients. If the

logistic regression model in (5.11) is specified correctly, Fan et al. (1996) show that as d → 0,

E{Mi(s)|Zi}/2d
p→ f(s|Zi), under Condition (C4) in the Appendix.

We need to choose an optimal value of d∗ to predict f(s|Zi). We propose a cross-validation

approach based on an integrated squared error (ISE, Fan and Yim (2004))

ISE =

∫
{f̂d(s|z)− f(s|z)}2fZ(z)dzds

=

∫
f̂ 2
d (s|z)fZ(z)dzds− 2

∫
f̂d(s|z)f(s|z)fZ(z)dzds+

∫
f 2(s|z)fZ(z)dzds

=

∫
fZ(z)

{∫
f̂ 2
d (s|z)ds

}
dz− 2

∫
f̂d(s|z)f(s, z)dzds+

∫
f 2(s|z)fZ(z)dzds,
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where f̂d(s|z) estimates f(s|z) by conducting a logistic regression in (5.11) with a bandwidth d.

Because the last term of the quadratic expansion does not depend on d, a cross-validation is driven

by the first two terms in ISE as

CV (d) =
1

n

n∑
i=1

∫
f̂ 2
d,−i(s|Zi)ds−

2

n

n∑
i=1

f̂d,−i(Si|Zi), (5.12)

where f̂ 2
d,−i(s|Zi) is obtained from all data, except subject i, using the approximation in (5.10). The

optimal bandwidth is selected by minimizing CV (d) as d∗ = argmind>0CV (d), and is O(n−1/5),

like the bandwidth b′(s0) in (5.9) (Fan et al. (1996)). However, undersmoothing is not required for

this bandwidth, because undersmoothing uses a smaller bandwidth in order to eliminate the bias

asymptotically more quickly, while losing some efficiency. Because this results in a slower con-

vergence rate, the bandwidth d∗ with the order O(n−1/5) is fast enough to achieve the consistency

of the estimator of f(s|Zi) and the asymptotic results in Theorems 1 and 2.

6. Analysis of a guideline-based intervention study

In HIV-infected subjects, inflammations often result in other disease progression, such as cardio-

vascular disease and chronic anemia. Because ART is effective for reducing inflammations (Kan-

ters et al. (2016)), it is often recommended for HIV-infected adults. However, owing to limited

resources, such adults in Haiti have initiated ART following the WHO guideline of the early 2010s,

that is, ART is initiated when the CD4 cell count is below 200 or AIDS has developed. This leads

to different times of ART initiation, without knowing how these differing times would affect their

level of inflammation over time.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0226



As part of a clinical trial of an HIV study conducted in 2010 (Severe et al. (2010)), 816

HIV-infected adults in Haiti who meet the following baseline criteria are enrolled: older than 18;

CD4 counts between 200 and 350; AIDS-free; and no prior ART. A clinician meets all participants

monthly and starts the intervention when the WHO guideline is met. Interleukin 6 (IL-6) is an

inflammation biomarker of interest, and is collected approximately every six months over a three-

year period. Note that the value of IL-6 correlates positively with clinical severity in HIV-infected

adults. We apply the double-weighted estimating procedure and assess the TTI-varying coefficients

in model (3.3) with the identity link function at a specific value of the TTI s = 0.75 (i.e., ART is

initiated 9 months since the baseline) and 1.5 (i.e., ART is initiated 18 months since the baseline).

Note that five covariates at the baseline are observed prior to ART initiation. In Table 1, we

provide the kernel-weighted average of the observed baseline covariates, including gender, CD4

cell counts, hemoglobin, BMI, and age at s = 0.75 and 1.5. The results show that some covariates,

particularly on gender and CD4 cell counts, are not balanced between the two TTIs.

In order to adjust for differences in the covariates, we predict the GPS using the logis-

tic regression analysis at each value of s, conditioning on the preintervention covariates as

log [P{Mi(s) = 1|Zi}/P{Mi(s) = 0|Zi}] = γ0(s)+γ1(s)genderi+γ2(s)CD4i+γ3(s)hemoglobini+

γ4(s)BMIi + γ5(s)agei, where Mi(s) is one if |Si − s| < d∗, and is zero otherwise. The optimal

value of d∗ = 0.30 is selected using the cross-validation in (5.12). Based on the predicted GPS,

the double-weighted average of the baseline covariates is reported in Table 1. We confirm that

the differences in the covariates of gender and CD4 cell counts are reduced substantially using the

GPS analysis.
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Given the predicted GPS, we apply the iterative two-step procedure in Section 4.1 using the

Epanechnikov kernel function, and select b∗(s) = 0.46 and ps = 2 at s = 0.75 (i.e., Q{β̂(0.75)} =

2.248 < χ2
0.95,4 = 9.49), and b∗(s) = 0.31 and ps = 2 at s = 1.5 (i.e., Q{β̂(1.5)} = 3.09 <

χ2
0.95,4). For ps = 1, Q{β̂(0.75)} = 12.08 and Q{β̂(1.5)} = 10.42 are both greater than χ2

0.95,3 =

7.81. We estimate β(s) = (β0(s), β1(s), β2(s), β3(s))
> in

µ(T, s) = β0(s) + β1(s)T + β2(s)T
2 + β3(s)(T − s)2+, (6.13)

and provide the fitted mean IL-6 trajectories, µ̂(T, s) at s = 0.75 and 1.5 in Figure 1.

Figure 1 shows that µ̂(T, 0.75) and µ̂(T, 1.5) remain the same at the baseline, and increase

with a very similar rate of the change before ART initiation. These results indicate that the sample

selection biases in the two subsamples at s = 0.75 and 1.5 are corrected properly and thus, the

two fitted mean trajectories are very comparable before ART initiation. After ART is initiated,

µ̂(T, 0.75) and µ̂(T, 1.5) decrease, but the rate of the decrease lessens over time during the post-

treatment period. The fitted population mean no longer decreases at the end of the follow-up. As

a result, the greater the delay before initiating ART, the higher is the mean of IL-6. Of note is that

the population mean pattern appears to be comparable. Nevertheless, faster initiation of ART in

the study population had a more positive effect on reducing IL-6. We also check whether ART is

effective at s = 0.75 and 1.5 by testing H0 : β3(s) = 0 against Ha : β3(s) 6= 0 in model (6.13).

The test statistic W(s) in Theorem 2 is 9.49, with a p-value of 0.002, at s = 0.75, and 7.21, with a

p-value of 0.007, at s = 1.5. These results confirm that ART is significantly effective in reducing

the population mean of IL-6 in both cases at a significance level of 0.05.
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To demonstrate the importance of adjusting for confounders in the analysis of the guideline-

based intervention study, we fit model (6.13) at s = 0.75 and 1.5 using the kernel-weighted esti-

mation procedure in Section 3.3, and denote the fitted mean outcome trajectory by µ̂K(T, s). The

right panel of Figure 1 shows that during the pre-treatment period, µ̂K(T, 0.75) increases more

rapidly than µ̂K(T, 1.5). Although the initiation of ART is delayed in HIV-infected adults, the

fitted mean IL-6 of the population is lower during most of the follow-up period. Comparing the

two estimation procedures, µ̂K(T, 0.75) obtains using the kernel-weighted approach is larger than

that of the double-weighted approach in the smaller delay population over the follow-up period.

This phenomenon reverses in the greater delay population. The different fitted mean outcome tra-

jectories can be explained by the fact that the distribution of the baseline covariates is not balanced

across times to ART initiation, as shown in Table 1. Therefore, the distribution of participants

initiated at time s deviates from that of all participants drawn randomly from the study population.

As a result, it is likely that the kernel-weighted estimation procedure yields a biased estimate of

µ(T, s), whereas the double-weighted estimation procedure corrects the bias successfully.

7. Simulation studies

In this section, we use simulation studies to determine whether the double-weighted estimation

procedure effectively removes estimation bias problems when confounding factors exist. We also

show that the proposed method performs valid statistical inferences, including the parsimonious

model selection and the hypothesis test for the last term β2(S) in the piecewise linear regression

model, µ(T, S) = β0(S) + β1(S)T + β2(S)(T −S)+, where β0(S) = exp(0.1S − 0.15), β1(S) =
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cos(πS)/25− 1, and β2(S) = 0.03− 0.02S.

To simulate a longitudinal sample, we first generate the ith subject’s TTI Si, for i =

1, . . . , 1000, independently from a uniform distribution U(0.5, 2.5). Given the value of Si, we

generate five repeated outcomes for the subject i as

Yij = µ(Tij, Si) + εij = β0(Si) + β1(Si)Tij + β2(Si)(Tij − Si)+ + εij, (7.14)

where Ti1 = 0 indicates the time at the baseline, Tij = j + U(−2,−1), for j = 2, . . . , 5, resulting

in unequally spaced measurement time points between zero and four across subjects. The random

error is modeled with three confounders, denoted by Zi1, Zi2, and Zi3, as

εij = Zi1 + Zi2Tij + Zi3(Tij − Si)+ + eij, (7.15)

where Zi1, Zi2, Zi3, and eij are generated independently from a normal distribution with mean

zero and standard deviation 0.5, where E(εij) = 0 still holds. We then drop Yij if an indicator is

zero. This indicator is generated independently at visits j = 2, . . . , 5 for subject i from a Bernoulli

distribution with the success probability of 0.8. This results in a different number of repeated

outcomes across subjects.

To examine the performance of the double-weighted estimation approach, an indicator vari-

able of Mi(Si) is generated independently from a Bernoulli distribution with success probability

P{Mi(Si) = 1|Zi1, Zi2, Zi3} = exp (0.2Zi1 + 0.3Zi2 − 0.5Zi3) / {1 + exp (0.2Zi1 + 0.3Zi2 − 0.5Zi3)}.

From the 1000 subjects in the simulated sample, we drop subjects with Mi(Si) = 0 from the sam-
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ple, and consider the subsample in our analysis. Subjects in the subsample are likely to have a

higher value of Zi1 or Zi2 or a smaller value of Zi3, resulting in the sample selection problems. As

a result, Zi1, Zi2, and Zi3 are confounders that affect the TTI and the population mean outcome.

At a given TTI value of s = 1.5, we assess β(1.5) = (β0(1.5), β1(1.5), β2(1.5)) in (7.14) from

1000 simulated subsamples using Q{β(s)} and QK{β(s)} under the independence, AR(1), and

compound symmetry working correlation structures. Table 2 shows the average bias and mean

squared error (MSE) of the estimates. The results show that the kernel-weighted approach using

QK{β(s)} yields biased estimates, and that the direction and amount of the bias depends on the

level of confounder. Specifically, the average bias of β̂2(1.5) is negative and largest, because

the random error depends on Zi3, and Zi3 has the largest effect on the indicator Mi(Si) and the

formation of the subset. In contrast, the double-weighted approach using Q{β(s)} decreases the

average bias substantially.

We check the performance of the parsimonious model selection, and confirm that at a signifi-

cance level of 0.05, the proportion of rejecting the piecewise linear model is 0.057 and 0.056 under

the AR(1) and compound symmetry structures, respectively. We also conduct a statistical inference

about β2(1.5) in (7.14). Because the true value of β2(s) is zero at s = 1.5, we testH0 : β2(1.5) = 0

against Ha : β2(1.5) 6= 0 using the test statistic W(s) in Theorem 2 when the null hypothesis is

true. At a significance level of 0.05, the proportion of rejection is 0.047 and 0.054 under the AR(1)

and compound symmetry structures, respectively. According to Q-Q plots for the chi-squared dis-

tribution with one degree of freedom versus W(1.5) in Figure 2, the Q-Q plots follow the identity

line sufficiently well, because the null hypothesis is true. We conduct a similar test based upon
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QK{β(s)}, but the rejection rate increases to 0.119 and 0.124 under the AR(1) and compound

symmetry structures, respectively. Moreover, the test statistic no longer follows the chi-squared

distribution.

The repeated outcomes, Yi1, . . . , Yi5, are correlated, and Table 2 shows that the estimation ef-

ficiency of β(s) improves by accommodating the within-subject correlations (i.e., the AR(1) and

compound symmetry) as compared with ignoring the correlations (i.e., the independence struc-

ture). In particular, the true covariance matrix of Yi = (Yi1, . . . , Yi5)
> is 0.25(XiX

>
i + I5), where

Xi = (Xi1, . . . ,Xi5)
> with Xij =

(
1, Tij, (Tij − 2)+

)>, and I5 is the 5 × 5 identity matrix. The

AR(1) approximates the true correlation structure better than the compound symmetry does. This

is aligned with the smallest MSE under the AR(1) structure in all cases under consideration.

We also compare the performance of the two estimation approaches in cases where Zi1, Zi2,

and Zi3 are no longer confounding factors. We generate Mi(Si) independently from a Bernoulli

distribution with P{Mi(Si) = 1|Zi1, Zi2, Zi3} = 0.5, and include subjects with Mi(Si) = 1 in a

subsample. From the 1000 subsamples, we assess β(1.5) in (7.14) using QK{β(s)} and Q{β(s)}

under the three working correlation structures. Table 2 confirms that both the kernel-weighted and

double-weighted estimation procedures perform well in terms of both small biases and MSEs. In

sum, our simulation studies confirm that the proposed procedure performs well, regardless of the

presence of confounding factors.
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8. Conclusion

An intervention can occur at different times across individuals in studies where the effect of the

TTI on the repeated outcome remains uncertain. Wu and Tian (2008), Xing and Ying (2012),

Liu et al. (2018), and Cho et al. (2020) have proposed longitudinal models that account for the

varying TTI effect on the repeated outcome when no confounders exist. In observational studies,

the intervention is rather initiated based on other factors that confound the TTI effect. Controlling

for plausible confounders is a crucial, but challenging part of observational data analysis. This

becomes more critical and inevitable in longitudinal observational studies when the entire set of

repeatedly measured outcomes and the TTI are confounded as a whole.

As an example, the two fitted time-varying mean outcomes show discernibly different patterns

in the analysis of repeated IL-6 outcomes in Section 5. This shows that confounding factors can

occur in the WHO guideline-based intervention study, and the fitted mean without controlling for

the confounding factors deviates substantially from the population mean over time. In contrast, the

proposed double-weighted estimation procedure reduces the risk of estimation bias and achieves

a consistent estimator of the population mean outcome trajectory from samples in observational

studies.

The piecewise polynomial regression model with the TTI-varying coefficients and double-

weighted estimation procedure can also be applied to other types of longitudinal observational

studies with an event for which the timing is not controllable, such as physiological phenomena or

natural phenomena. The event would occur to subjects at different times during the follow-up pe-

riod, and could have a significant and different effect on the outcome. The proposed methodology
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Modeling the population mean trajectory

provides a way to assess the population mean outcome trajectory accurately and to examine the

effect of times to event on the outcome time-varying population mean outcome effectively.

Supplementary Material

Supplementary materials available online include an implementation algorithm and R codes of

simulation studies.
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Appendix

The following conditions are imposed to study the asymptotic properties of the estimator β̂(s) =

argminβ(s)Q{β(s)}.

(C1) There exists a β0(s) such thatE[hi{β(s)}Ki(s)/f(s|Zi)]→ 0 for all i if and only if β(s) =

β0(s).

(C2) The matrix Σ(s) is positive definite, and Φ(s) is of full rank. Σ(·) and Φ(·) are twice

continuously differentiable in a neighborhood of s.

(C3) β(·) is third continuous differentiable in a neighborhood of s. The inverse link function −1(·)

is strictly monotone and has a continuous third derivative. Thus, µ(T, ·) is third continuous

differentiable in a neighborhood of s,

(C4) The density functions fS,Z(·, ·) and fZ(·) are bounded, positive and third continuous differ-

entiable.

Lemma 1. Under the regularity conditions (C1)-(C4), the causal inference conditions in Section
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3.1, nb(s)5 → 0, and n→∞, we have

1√
nb(s)

n∑
i=1

gi{β0(s)}
d→ N

(
0,Σ(s)ϕK

∫
fZ(z)

f(s|z)
dz

)
.

Proof of Lemma 1. Recall gi{β(s)} = hi{β(s)}Ki(s)/f(s|Zi), Ki(s) = K{(Si − s)/b(s)},

µ(T, S) = E{Y (T, S)} and µi(Si) = (µ(Ti1, Si), . . . , µ(Tini
, Si))

>. We define εi(Si) =

(ε(Ti1, Si), . . . , ε(Tini
, Si))

> where ε(T, S) = Y (T, S) − E{Y (T, S)}. We can decompose

gi{β0(s)} = hi{β0(Si)}Ki(s)/f(s|Zi) + `i, where

hi{β(s)} =


µ̇>i A

−1/2
i Bi1A

−1/2
i {Yi − µi(Si)}

...

µ̇>i A
−1/2
i BiDA

−1/2
i {Yi − µi(Si)}

 =


µ̇>i A

−1/2
i Bi1A

−1/2
i εi(Si)

...

µ̇>i A
−1/2
i BiDA

−1/2
i εi(Si)



and

`i =


µ̇>i A

−1/2
i Bi1A

−1/2
i {µi(Si)− µi(s)}

Ki(s)
f(s|Zi)

...

µ̇>i A
−1/2
i BiDA

−1/2
i {µi(Si)− µi(s)}

Ki(s)
f(s|Zi)

 .

Consider the second term `i above first. Since K(·) has bound support, it is sufficient to

consider v such that |v − s| = O{b(s)}. Define µ̇(s) = ∂µ(T, s)/∂s, µ̈(s) = ∂2µ(T, s)/∂s2 and

ḟS(s, z) = ∂fS,Z(s, z)/∂s. By Taylor’s expansion and the symmetry of kernel
∫
uγK(u)du = 0
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for γ = 1, 3, 5, . . . , we have, for any t ∈ T,

E

[
{µ(t, Si)− µ(t, s)}Ki(s)

f(s|Zi)

]
=

∫ ∫
[(v − s)µ̇(s) + (v − s)2µ̈(s)/2 +O{(v − s)3}]K{(v − s)/b(s)}

f(s|z)
fS,Z(v, z)dvdz

by u =
(v − s)
b(s)

=

∫ ∫
[ub(s)µ̇(s) + {ub(s)}2µ̈(s)/2 + u3O{b(s)3}]K(u)

f(s|z)
fS,Z{s+ ub(s), z}b(s)dudz

=

∫ ∫
[ub(s)µ̇(s) + {ub(s)}2µ̈(s)/2]K(u)

f(s|z)
{fS,Z(s, z) + ub(s)ḟS(s, z)}b(s)dudz +O{b(s)5}

=

∫ ∫
u2b(s)3µ̇(s)ḟS(s, z)K(u)

f(s|z)
dudz +

∫ ∫
u2b(s)3µ̈(s)fS,Z(s, z)K(u)

2f(s|z)
dudz +O{b(s)5}

= b(s)3µK

{
µ̇(s)

∫
ḟS(s, z)

f(s|z)
dz +

µ̈(s)

2

∫
fS,Z(s, z)

f(s|z)
dz

}
+O{b(s)5}

= b(s)3µK

{
µ̇(s)

∫
ḟS(s, z)

f(s|z)
dz +

µ̈(s)

2

}
+O{b(s)5}. (A.1)

and thus E[{nb(s)}−1/2
∑n

i=1 `i] = O{
√
nb(s)5}. Note that

∫
fS,Z(s, z)/f(s|z)dz =∫

{f(s|z)fZ(z)}/f(s|z)dz =
∫
fZ(z)dz = 1. Since `i, i = 1, . . . , n, are independent, it is easy to

show that V ar[{nb(s)}−1/2
∑n

i=1 `i]→ 0 as nb(s)→∞. Therefore, {nb(s)}−1/2
∑n

i=1 `i = op(1)

can be shown under the assumption of undersmoothing (i.e., nb(s)5 → 0).

Now consider the first term hi{β0(Si)}Ki(s)/f(s|Zi). By the fact that E{K(s)|Z = z} =

f(s|z) + o{b(s)} (Fan et al. (1996)) and ε(Si) and (Zi, Ki(s)) are independent, we have

E

{
εi(Si)Ki(s)

f(s|Zi)

}
= E

[
E

{
εi(Si)Ki(s)

f(s|Zi)

∣∣∣εi(Si),Zi

}]
= E

[
εi(Si)

f(s|Zi)
E{Ki(s)|εi(Si),Zi}

]
= E

[
εi(Si)

f(s|Zi)
E{Ki(s)|Zi}

]
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=

∫ ∫
u

f(s|z)
[f(s|z) + o{b(s)}]fε,Z(u, z)dudz = 0,

and thus E[hi{β0(Si)}Ki(s)/f(s|Zi)] = 0. In addition, by a similar manner in (A.1) and the

independence of hi{β0(Si)}, i = 1, . . . , n, we can show

V ar

[
1√
nb(s)

n∑
i=1

hi{β0(Si)}
Ki(s)

f(s|Zi)

]
= E

[
1

nb(s)

n∑
i=1

hi{β0(Si)}hi{β0(Si)}>
K2
i (s)

f 2(s|Zi)

]
= Σ(s)ϕK

∫
fZ(z)

f(s|z)
dz +O{b(s)}. (A.2)

Then, the following result is obtained by the central limit theorem and Slutsky’s theorem, as

nb(s)5 → 0 and n→∞, we have

1√
nb(s)

n∑
i=1

gi{β0(s)}
d→ N

(
0,Σ(s)ϕK

∫
fZ(z)

f(s|z)
dz

)
.

♦

Lemma 2. Under the regularity conditions (C1)-(C4), the causal inference conditions in Section

3.1, and 1/nb(s) + b(s)→ 0, we have:

1

nb(s)

n∑
i=1

∂gi{β0(s)}
∂β(s)

p→ Φ(s);

1

nb(s)

n∑
i=1

gi{β0(s)}gi{β0(s)}>
p→ Σ(s)ϕK

∫
fZ(z)

f(s|z)
dz.
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Proof. By the symmetry of the kernel function K(·) and Taylor’s expansion, we have

E

[
1

nb(s)

n∑
i=1

∂gi{β0(s)}
∂β(s)

]

= E

[
1

nb(s)

n∑
i=1

∂hi{β0(s)}
∂β(s)

Ki(s)

f(s|Zi)

]
=

1

b(s)
E

{
Φ(s)K(s)

f(s|Z)

}
=

Φ(s)

b(s)

∫ ∫
K
(v − s

b

)fS,Z(v, z)

f(s|z)
dvdz

u=(s−s)/b(s)
=

Φ(s)

b(s)

∫ ∫
K(u)fS,Z{s+ ub(s), z}b(s)/f(s|z)dudz

= Φ(s)

∫ ∫
K(u)[fS,Z(s, z) + uO{b(s)}]/f(s|z)dudz

= Φ(s)

∫
K(u)fS,Z(s, z)

f(s|z)
dudz +O{b(s)2}

= Φ(s)

∫
K(u)du

∫
f(s|z)fZ(z)

f(s|z)
dz +O{b(s)2} = Φ(s) +O{b(s)2}

and it can be shown that variance of each element in {nb(s)}−1
∑n

i=1 ∂gi{β0(s)}/∂β(s) and

{nb(s)}−1
∑n

i=1 gi{β0(s)}gi{β0(s)}> is of order {nb(s)}−1. Then by the result in (A.2), the

desired results are proven. ♦

Proof of Theorem 1. By Taylor’s expansion, we have

G{β̂(s)} = G{β0(s)}+ Ġ{β̆(s)}{β̂(s)− β0(s)},

where G{β(s)} =
∑n

i=1 gi{β(s)}/nb(s), Ġ{β(s)} = ∂G{β(s)}/∂β(s), and β̆(s) lies between

β̂(s) and β0(s). Since Ġ{β̂(s)}>V{β̂(s)}−1G{β̂(s)} = 0, we have

Ġ{β̂(s)}>V{β̂(s)}−1G{β0(s)}+ Ġ{β̂(s)}>V{β̂(s)}−1Ġ{β̆(s)}{β̂(s)− β0(s)} = 0.
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It is rewritten as
√
nb(s)

{
β̂(s)− β0(s)

}
=

−
[
Ġ{β̂(s)}>V{β̂(s)}−1Ġ{β̆(s)}

]−1
Ġ{β̂(s)}>V{β̂(s)}−1

√
nb(s)G{β0(s)}.

It follows from Lemmas 1 and 2 and Slutsky’s theorem that

√
nb(s)

{
β̂(s)− β0(s)

}
d→ N

(
0, ϕK

∫
fZ(z)

f(s|z)
dz{Φ(s)>Σ(s)Φ(s)}−1

)
.

Now, we show that Q{β̂(s)} converges to the chi-squared distribution with (ps + 2)(D − 1)

degrees of freedom. By Taylor’s expansion and Lemma 2, we have

G{β̂(s)} = G{β0(s)}+ Ġ{β0(s)}
{
β̂(s)− β0(s)

}
+ op(1)

= [I(ps+2)D −Φ(s){Φ(s)>Σ(s)Φ(s)}−1Φ(s)>Σ(s)−1]G{β0(s)}+ op(1). (A.3)

By plugging (A.3) in Q{β̂(s)} = nb(s)G{β̂(s)}>V{β̂(s)}−1G{β̂(s)} and Lemma 2, Q{β̂(s)}

is rewritten as Q{β̂(s)} = H{β0(s)}>S1(s)H{β0(s)} + op(1), where S1(s) = I(ps+2)D −

Σ(s)−1/2Φ(s){Φ(s)>Σ(s)−1Φ(s)}−1Φ(s)>Σ(s)−1/2 and H{β(s)} =
√
nb(s)Σ(s)−1/2G{β0(s)}.

Following Lemma 1, Hn{β0(s)} converges to the standard multivariate normal distribution and

S1(s) is an idempotent and symmetric matrix with trace equal to (ps + 2)(D − 1). Consequently,

Q{β̂(s)} converges to the chi-squared distribution with (ps + 2)(D − 1) degrees of freedom. ♦

Proof of Theorem 2. We let β(s) = (β0, . . . , βps , βps+1)
> = (β∗(s)>, βps+1)

>. Under H0 :

βps+1 = 0, the true parameter vector of β(s) is β0(s) = (β∗0(s)
>, 0)>. By a similar manner
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in (A.1), the test statistic W(s) = Q{(β̃
∗
0(s)

>, 0)} −Q{(β̂
∗
(s)>, β̂ps)} is written as

W(s) = H{β0(s)}>Σ(s)−1/2{S2(s)− S3(s)}Σ(s)−1/2H{β0(s)}+ op(1),

where S2(s) = Φ(s){Φ(s)>Σ(s)−1Φ(s)}−1Φ(s)> and S3(s) = Φ∗(s){Φ∗(s)>Σ(s)−1Φ∗(s)}−1Φ∗(s)>

with Φ∗(s) = E[∂hi{β∗0(s)}/∂β∗(s)}]. Since S2(s) and S3(s) are idempotent and symmetric ma-

trices with trace equal to (ps + 2) and (ps + 1), respectively. As consequence, W(s) converges to

the chi-squared distribution with one degree of freedom. ♦
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Table 1: Kernel-weighted average and double-weighted average of five baseline covariates at s =
0.75 and 1.5, respectively.

Kernel weight Double weight
Covariate s = 0.75 s = 1.5 s = 0.75 s = 1.5
Female (%) 56.6 73.9 58.1 61.1
CD4 262.9 268.1 265.3 265.1
Hemoglobin 11.30 11.42 11.38 11.34
BMI 22.08 21.33 21.71 21.46
Age 37.79 37.34 38.10 37.64
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Table 2: Averages of bias and mean squared error (MSE) of estimates under the AR(1), compound
symmetry (CS), and independent (IN) working correlation structures when confounders exist (top)
and do not (bottom).

Confounders BIAS MSE
Exist Q{β(s)} QK{β(s)} Q{β(s)} QK{β(s)}

β0(s) -0.0016 0.0208 0.0028 0.0038
AR(1) β1(s) 0.0052 0.0419 0.0041 0.0060

β2(s) -0.0051 -0.0661 0.0089 0.0145
β0(s) -0.0005 0.0207 0.0031 0.0039

CS β1(s) 0.0064 0.0451 0.0047 0.0069
β2(s) -0.0085 -0.0719 0.0111 0.0161
β0(s) -0.0080 0.0130 0.0034 0.0039

IN β1(s) 0.0198 0.0652 0.0081 0.0116
β2(s) -0.0388 -0.1020 0.0235 0.0310

Confounders BIAS MSE
Not exist Q{β(s)} QK{β(s)} Q{β(s)} QK{β(s)}

β0(s) -0.0052 -0.0051 0.0031 0.0033
AR(1) β1(s) 0.0072 0.0078 0.0039 0.0040

β2(s) -0.0067 -0.0075 0.0088 0.0090
β0(s) -0.0054 -0.0053 0.0031 0.0033

CS β1(s) 0.0074 0.0078 0.0048 0.0050
β2(s) -0.0089 -0.0092 0.0108 0.0110
β0(s) -0.0118 -0.0117 0.0035 0.0038

IN β1(s) 0.0231 0.0238 0.0069 0.0072
β2(s) -0.0399 -0.0401 0.0218 0.0220
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Figure 1: Fitted mean IL-6 trajectories using Q{β(s)} (left) and QK{β(s)} (right) at s = 0.75
(dashed curves) and s = 1.5 (solid curves), respectively, under the AR(1) working correlation
structure.
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Figure 2: Quantile–quantile plots for the chi-squared distribution with one degree of freedom
versus the test statistic based on Q{β(s)} (top) and QK{β(s)} (bottom), when the null hypothesis
is true under the AR(1) (left) and compound symmetry (right) structures.
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