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Abstract: Hidden structures indicative of additional patterns relevant to the sci-

entific inquiry are generally ignored and thus, the classical spatial regression

analysis could miss important information carried by the latent variables. We

develop novel methodology for uncovering some of such possible structures and

patterns in spatial regression analysis. Our approach is to simultaneously model

regression terms and hidden jump sets that occur abruptly across space in the

presence of spatial dependence. An inequality for the homogeneity measure is

derived by which we establish the consistency of jump-set selection. We de-

vise a three-step computational algorithm based on a quasi-likelihood function

and homogeneity measure to uncover patterns related to jump coefficients. Un-

der suitable regularity conditions, we prove that the identification procedure is

consistent when the hidden jump sets, covariates, and spatial correlation are in-

corporated into the model from the outset. The simulation study also shows
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sound finite-sample properties. In a case study, we examine closely county-based

poverty rates in relation to industrial and racial compositions prior to the decline

of manufacturing in the Upper Midwest of the U.S. Our case study reveals im-

portant socio-economic factors on poverty and additionally interesting structures

and patterns not detected in classical spatial regression.

Key words and phrases: Homogeneity measure, quasi-likelihood ratio, spatial

statistics.

1. Introduction

Spatial regression analysis is widely used in many scientific disciplines such

as the social sciences and public health fields, for relating a response variable

to explanatory variables across space while assuming spatially correlated

errors (see, e.g., Cressie, 1993). In practice, the relation between the re-

sponse and the explanatory variables is viewed as of primary interest, while

accounting for spatial correlation in the error is understood to be important

for a proper inference about the relation. Although sensible and popular,

we believe this way of conducting regression analysis for spatial data can

miss structures in the data indicative of additional patterns relevant to a

scientific study. The objective of this paper is to develop and apply novel

methodology that helps to uncover some of such possible structures and

patterns in spatial regression analysis.
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The motivating case study is from a sociological research project that

studies poverty in relation to socio-economic factors. The response variable

of interest is a poverty rate and the explanatory variables are the indus-

trial structures and racial-ethnical compositions, observed at the county

level in six Upper Midwestern states (Figure 2). The traditional regression

analysis, which assumes independent errors, may not be valid due to the

presence of spatial dependence among counties. Spatial regression anal-

ysis assumes a regression mean as in the traditional regression analysis

and models spatial correlation in the error by, for example, simultaneous

autoregressive (SAR) models or conditional autoregressive (CAR) models

(see, e.g., Cressie, 1993). Although in the traditional spatial regression,

the parameters in the spatial correlation models can be estimated and in-

ferred by likelihood-based methods, their utility in practical interpretation

is generally limited. Moreover, as in any complex social and public health

system, it is highly plausible that the selected explanatory variables do not

fully explain the variation in the response variables and that the patterns af-

ter accounting for the explanatory variables may provide additional insight

into the scientific inquiry. On the other hand, the jump sets, if identified,

may reflect unknown factors and thus, are potentially valuable for eliciting

additional insight, for which we will develop new models and methods. For
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example, in the data analysis for the Midwest data, we find additional pat-

terns besides the explanatory variables that suggest more localized forces

could also shape the poverty processes.

We propose to simultaneously model regression of the response on the

explanatory variables and possible structural changes in space while ac-

counting for spatial correlation. In particular, we consider both Gaussian

and non-Gaussian responses in the exponential family of distributions. The

link function features not only a regression term but also a complementary

model such that the coefficient marking the change has the same absolute

value but opposite signs for the true jump set and its complement set. The

resulting models are no longer in the exponential family and pose a number

of statistical challenges. One, the parameters in the complementary models

may not be identifiable. Two, the true jump set is unknown and there are

many possibilities to consider as candidate jump sets. Three, even with

a correctly specified likelihood function, the computational burden can be

substantial and it may be infeasible to carry out the analysis. Four, the

presence of spatial correlation further complicates the estimation of param-

eters.

To address these challenges, the quasi-likelihood (QL) concept is adapted

to estimate the model parameters and a homogeneity measure is developed
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from a log-quasi-likelihood (log-QL) ratio to compare candidate jump sets.

Suitable QL estimating equations are derived for the regression coefficients,

the jump-set coefficients, and the parameters in the spatial covariance func-

tion. For computation, a three-step computational algorithm associated

with the log-QL ratio is devised to iteratively update the parameter es-

timates and the jump set. In classification trees, an analogous likelihood

ratio test is often used to determine a split (see, e.g., Zhang, 1998). In the

current literature, an approximation of the log-QL ratio associated with

an optimal estimating equation can be obtained by projecting the log-QL

function onto a subspace spanned by estimating functions in linear forms

(see, e.g., Li, 1993). Our innovation here is to derive new formula for choos-

ing a suitable reference point in the QL function so that the homogeneity

measure has a quadratic form, which will be shown to have considerable ad-

vantage over the linear form for finite samples such that positive deviance

values are guaranteed and the computation is relatively fast. A theoreti-

cally useful inequality for the homogeneity measure is derived, by which we

further establish the selection consistency in the sense that the probability

of selecting the true jump set tends to one.

The proposed method can also be applied for disease mapping mod-

els in public health. To explore spatial trends for response changes over
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geographic regions, finding jump sets (or clusters) that attribute to local-

ized forces besides of risk factors is important to predict disease propaga-

tion. Lin and Zhu (2020) proposed a heterogeneity measure quasi-likelihood

(HM-QL) method to simultaneously analyze spatial regression and clusters,

built for only Gaussian and Poisson responses. The homogeneity method we

develop here applies to the broader exponential family of distributions and

beyond. In addition, our homogeneity measure is based on the difference

between mean responses in contrast to the heterogeneity measure based on

the difference between two simple links. As a result, our approach provides

a more robust metric for identifying jump sets in more flexible settings than

the heterogeneity method, as can be seen in our simulation and case study.

2. Modeling and Testing

2.1 Generalized Complementary Models

Let D ⊂ R2 denote a continuous domain of interest. Suppose there are n

observations at sampling sites s1, . . . , sn ∈ D. At site si, let Yi ≡ Y (si)

denote the response variable, let xi ≡ (xi,1, . . . , xi,q)
′ denote a vector of q

non-constant explanatory variables. As has been mentioned in the intro-

duction, for data with a complex underlying structure, it is plausible that

besides known covariates, some unknown factors exist in certain regions
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2.1 Generalized Complementary Models

that elevate the intensity rates of an event. In this paper, we refer to a col-

lection of regions whose event intensity rates jump to a level significantly

higher than expected from a deterministic trend associated with xi as a

hidden jump set. Let ∆ ⊂ D denote a hidden jump set and let ∆c = D−∆

denote the complement set of ∆. Also, at site xi, let ςi denote a spatial

noise from a multivariate zero-mean Gaussian distribution with variance σ2
ς

and a correlation model with parameters τς . (The specific assumptions for

the correlation model can be found in the Appendix.)

Next, we develop an integrated model associated with xi, ∆, and a

spatial noise for Yi as follows. Let δi = I[si ∈ ∆] denote a “status variable”

indicating whether site si belongs to the jump set ∆, where I[·] denotes the

indicator function. Given ςi, let θ
∗
i = E(Yi|ςi) denote a conditional mean

function of Yi. Let g(·) denote a link function such that

g(θ∗i ) = β∗
0 + x

′
iβ + ξδδi + ςi, (2.1)

where β0 is a baseline, β = (β1, . . . , βq)
′ is a vector of regression coefficients

associated with xi, and ξδ denotes a jump coefficient associated with the

jump set. (More details about the link function can be found in Assumption

1 of the Appendix.) For the spatial noise, we assume that ςi does not

involve δi and xi. Also, conditional on ς1, . . . , ςn, Y1, . . . , Yn are assumed to

be independent.
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2.1 Generalized Complementary Models

Since in practice, the status variable δi is unknown, traditional sta-

tistical inference for generalized linear mixed models can not be directly

applied for the hidden model (2.1). To address this issue, we derive a com-

plementary model associated with Yi. Let θi = E(Yi), where by the double

expectation theorem, θi = EςE(Yi|ςi) ≡ Eς(θ
∗
i ) and Eς(·) denotes an expec-

tation over a probability space associated with the spatial noise. It thus

follows from (2.1) that

θi = Eς{g−1(β∗
0 + x

′
iβ + ξδδi + ςi)}. (2.2)

Let f̈(u) = ∂2g−1(u)/∂u2 denote a second-order derivative of g−1(u) with

respect to u. To find an approximation for θi from (2.2), we recall that ςi

does not involve xi and δi. Then, on the right-hand side of (2.2), we first

use a second-order Taylor series to expand g−1(β∗
0 + x

′
iβ + ξδδi + ςi)(≡ θ∗i )

with respect to ςi, and then compute an approximation for Eς(θ
∗
i )(≡ θi).

It can be shown that θi
.
= g−1{β∗

0 + x′
iβi + ξδδi + 0.5f̈(0)σ2

ς }. Note that

the offset parameter 0.5f̈(0)σ2
ς can be adjusted by the baseline β0. With

re-scaling the intercept parameter by setting β0 = β∗
0 + 0.5f̈(0)σ2

ς , we can

approximate θi by

g(θi) = β0 + x
′
iβi + ξδδi. (2.3)

Nevertheless, one important issue for model (2.3) is that the intercept β0 is a
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2.1 Generalized Complementary Models

combination of β∗
0 from model (2.1) and spatial variation σ2

ς from the spatial

noise, which would thus cause an identifiable problem for the intercept

parameter. Details to address this issue in a computation algorithm can be

seen in Section 3.1.

The model (2.3) can also be expressed as g(θi) = β0 + ξδ + x
′
iβi − ξδδ

c
i ,

where δci = I[si ∈ ∆c] denotes a complement status variable of δi. Let

Y = (Y1, . . . , Yn)
′, X = (x1, . . . ,xn)

′, δ = (δ1, . . . , δn)
′, δc = 1 − δ =

(δc1, . . . , δ
c
n)

′, and ς = (ς1, . . . , ςn)
′. Associated with the status vector δ, let

θδ = (θ1, . . . , θn)
′. A vector form for the mean responses can be expressed

as either θδ = g−1(β0 +Xβ + ξδδ) or θδc = g−1(βc0 +Xβ − ξδδ
c), where

βc0 = β0+ξδ. We refer to the two forms as the complementary models for the

marginal mean response vector related to δ. However, the status vector δ for

the true jump set ∆ is unknown. To search for δ, let ψα = (ψα,1, . . . , ψα,n)
′

denote a status vector for a candidate jump set Ψα, where ψα,i = I[si ∈ Ψα].

(Details on how to create candidate status vectors are discussed later.) Let

Ω = {ψ1, . . . ,ψN} denote a collection of candidate status vectors, where

N denotes the number of candidate status vectors. For simplicity, we also

use ψ = (ψ1, . . . , ψn) to denote ψα, unless clarity demands as in Section

3. Let ψc = 1−ψ denote a complement status vector for ψ. Likewise the

complementary models for the true status vector δ, for a given candidate
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2.2 A Likelihood Ratio Test for Candidate Status Vectors

status vector ψ ∈ Ω, we model the respective mean response vectors in

terms of ψ and ψc by

θψ = g−1(β0 +Xβ + ξψψ) and θψc = g−1(βc0 +Xβ + ξψcψ
c), (2.4)

where βc0 = β0+ξψ. Note that β0 is fixed at the same value for all ψ ∈ Ω as

that of the true model. The two forms in (2.4) are referred to as candidate

complementary models associated with ψ.

From the true complementary models associated with δ, we have θψ ̸=

θψc in general unless ψ = δ. Furthermore, we will show that θδ ≡ θψ ≡ θψc

if and only if ψ is (asymptotically) equal to δ (see details in the Appendix).

Hence, one way to estimate δ by candidate complementary models is to

choose δ̂ ∈ Ω such that θδ̂ and θδ̂c , where δ̂c = 1 − δ̂, are as close as

possible. Below we develop a likelihood ratio test to measure homogeneity

between θψ and θψc .

2.2 A Likelihood Ratio Test for Candidate Status Vectors

Let λψ = (β0,β
′, ξψ)

′ and λψc = (βc0,β
′, ξψc)

′ denote the parameters of inter-

est for the candidate complementary models (2.4). To evaluate homogeneity

between the pair of generalized complementary models in (2.4), we develop a

test statistic based on a QL ratio. Let Vλψ ≡ V (λψ, τ ) denote a covariance

matrix of Y associated with (2.1), where τ denotes a vector of covariance
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2.2 A Likelihood Ratio Test for Candidate Status Vectors

parameters. Note that from (2.1), we have g{E(Y |ς)} = β∗
0+Xβ+ξψψ+ς.

The covariance matrix Vλψ is therefore a function of λψ and τ , and the pa-

rameters τ are associated with those related to the spatial noises ς. (More

details about the covariance structure can be seen in Assumption 2.) Also,

let Λλψ ≡ V −1
λψ

denote the inverse matrix of Vλψ . Given an observed value

y of Y , a QL function (McCullagh and Nelder, 1989) for correlated data,

Υ{θ(λψ); τ} =

∫ θ(λψ)

θ(λ+)

Λ(t, τ )(y − t)dt, (2.5)

is particularly useful for estimating the unknown parameters λψ, where λ
+

is a given reference point.

To see whether the integration in the QL function Υ{θ(λψ); τ} of (2.5)

is line-independent, we first make two remarks on the covariance matrix

Vλψ . First, by Assumption 1(e) in the Appendix, the ith component of Vλψ

involves only θi and τ . Second, recall that given ς, Y are independent.

Since E(YiYj) = Eς{E(YiYj|ς)}, by an argument similar to the deriva-

tion for the complementary models in Section 2.1, we can conclude that

cov(Yi, Yj) involves only θi, θj, and τ . That is, the (i, j) entry of Vλψ

does not involve θk, i ̸= ȷ ̸= k. Let Λi,j denote the (i, j)th element of Λ.

We thus have ∂Λi,j/∂θk = 0 for i ̸= j ̸= k, and therefore V satisfies the

required condition for the existence of the QL function (McCullagh and

Nelder, 1989).
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2.2 A Likelihood Ratio Test for Candidate Status Vectors

Let Υ{θ(λψ); τ} and Υ{θ(λψc); τ} denote the QL functions associated

with θψ and θψc , respectively. A log-QL ratio between θψ and θψc is defined

as

H0{θ(λψ),θ(λψc)} = log

[
supλψ Υ{θ(λψ); τ}
supλψc Υ{θ(λψc); τ}

]
,

where supΥ(·) denotes the supremum function of Υ(·). By using a first-

order Taylor expansion for (2.5), the log-QL ratio can be approximated by

H{θ(λ̂ψ),θ(λ̂ψc)} as

H{θ(λ̂ψ),θ(λ̂ψc)} = (2n)−1{θ(λ̂ψ)− θ(λ̂ψc)}′(Λλ̂ψ +Λλ̂ψc ){θ(λ̂ψ)− θ(λ̂ψc)},

(2.6)

where λ̂ψ and λ̂ψc are QL estimates for λψ and λψc , respectively. (The QL

estimates are introduced in Section 2.3.) Details for the derivation process

can be seen in the Supplementary Material. We refer to H{θ(λ̂ψ),θ(λ̂ψc)}

in (2.6) as a homogeneity measure for the pair of generalized complementary

models at a given candidate status vector ψ ∈ Ω.

Finally, since ψ ≈ δ if and only if θ̂ψ ≈ θ̂ψc , where θ̂ψ = θ(λ̂ψ) and

θ̂ψc = θ(λ̂ψc), we propose to estimate the true status vector δ by minimizing

the homogeneity measure (2.6)

δ̂ = argminψ∈ΩH{θ(λ̂ψ),θ(λ̂ψc)}. (2.7)
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2.3 Estimating Equations

In (2.7), the estimated status vector δ̂ is called a homogeneous likelihood

ratio (HLR) estimate for δ.

2.3 Estimating Equations

To estimate the parameters in the complementary models (2.4), we develop

a set of QL estimating equations. Let Q1(λψ; τ ) = ∂Υ{θ(λψ); τ}/∂λψ ∈

Rq+2 denote a QL score function for λψ by taking a derivative of Υ{θ(λψ); τ}

with respect to λψ. Since the QL function (2.5) is well-defined under the

covariance structure Vλψ as shown in Section 2.2, the QL score function has

a unique root (McCullagh and Nelder, 1989) in probability as n → ∞. To

see this, we note from Assumption 3, n−1(∇λψθψ)
′Λλψ(∇λψθψ) converges

to a full-rank matrix as n→ ∞, where ∇ag ≡ ∇ag(a) denotes a Jacobian

matrix for a vector function g(a) with respect to a vector a. This thus

ensures that the system of equations (∇λψθψ)
′Λλψ{Y − θ(λψ)} = 0 has

a unique solution in probability as n → ∞. More details about the rela-

tionship between the derivative of Q1(λψ; τ ) and information matrix can

be seen the proof of Theorem 5 in Supplementary Material.

From (2.5), the QL score function for λψ = (β0,β
′, ξψ)

′ can be derived

as

Q1(λψ; τ ) = (∇λψθψ)
′Λλψ{Y − θ(λψ)}. (2.8)
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2.3 Estimating Equations

We define the first QL estimating equation as Q1(λψ; τ )|λψ=λ̂ψ = 0, where

the solution λ̂ψ = (β̂0, β̂
′
ψ, ξ̂ψ)

′ denotes the QL estimate for λψ. When θψ

is nonlinear, a Newton-Kantovorich method (Argyros, 2008) can be applied

to solve this QL estimating equation. Under Assumptions 1-3, the Newton

iteration for the QL estimating equation is convergent in probability as

n → ∞. The related result can be seen in Theorem 5, Corollary 3, and

Corollary 4, while more issues about convergence of the Newton iteration

can be seen in Karimireddy et al. (2019).

Since βc0 = β0 + ξψ, we estimate βc0 by β̂c0 = β̂0 + ξ̂ψ. So, in the part of

θψc in (2.4), now only β and ξψc need be estimated. Let λ∗
ψc = (β̂c0,β

′, ξψc)
′

denote the updated parameters of λψc . Also, let θ
∗
ψc ≡ g−1(β̂c0+Xβ+ξψcψ

c)

and Λλ∗
ψc

≡ Λ{(β̂c0,β′, ξψc), τ}. A QL score function for λ∗
ψc is given by

Q2(λ
∗
ψc ; τ ) = (∇λ∗

ψc
θ∗ψc)

′Λλ∗
ψc
(Y − θ∗ψc). (2.9)

We define the second QL estimating equation for β and ξψc as Q2(λ
∗
ψc ; τ )

∣∣
λ∗
ψc=λ̂

∗
ψc

=

0, where the solution λ̂∗
ψc = (β̂c0, β̂

′
ψc , ξ̂ψc)

′ denotes the QL estimate. Also,

λ̂ψc ≡ λ̂∗
ψc = (β̂c0, β̂

′
ψc , ξ̂ψc)

′ can be regarded as the QL estimate for λψc .

Finally, we use a variogram to estimate the covariance parameters

τ . Let θ̂ψ = g−1{β̂0 + Xβ̂ψ + ξ̂ψψ} denote an estimate of θψ and let

ϵψ = Y − θ̂ψ = (ϵ(s1), . . . , ϵ(sn))
′ denote a vector of residuals, which con-

tain information about the spatial errors. For a spatial random field, a
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variogram γ(h) = var{ϵ(si)− ϵ(sj)}, where h = ∥si − sj∥ denotes the Eu-

clidean distance between si and sj, is commonly used to quantify spatial

correlation. The variogram can be estimated by an empirical variogram

γ̂(h) =
∑

(si,sj)∈Eh){ϵ(si) − ϵ(sj)}2/|Eh|, where | · | denotes the cardinality

of a set and Eh = {(si, sj) : h − c0 < ∥si − sj∥ ≤ h + c0} for some c0 > 0

(Cressie, 1993). For a given variogram model γτ (h), the parameters τ can

be estimated by minimizing a weighted sum of squares:

τ̂ = arg minτ
∑
h

|Eh|{γ̂(h)/γτ (h)− 1}2. (2.10)

Details about the computational procedure are given in Section 3.1.

3. Jump Set Identification

3.1 Single Jump Set Identification

Recall that Ω = {ψ1, . . . ,ψN} is the collection of candidate status vectors,

and we aim to choose δ̂ ∈ Ω such that H{θ(λ̂δ̂),θ(λ̂δ̂c)} is minimized. In

practice, there are two issues for selecting suitable δ̂ from Ω: (i) the number

of candidate status vectors inΩmay be large, and (ii) most of the candidate

jump sets are misspecified. Recall that in the approximation process for θi

from (2.2) to (2.3), the intercept β0 is adjusted by an initial intercept β∗
0

of (2.1) and spatial variation σ2
ς . Since the variogram estimation (2.10) is
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3.1 Single Jump Set Identification

sensitive to misspecified models, and the intercept estimation could also be

affected by the offset parameter related to spatial noises, our estimation

method should be calibrated to ensure that every candidate model has a

same baseline. To maintain the intercept and covariance estimates to be

the same for all candidate models, we propose a three-step computational

algorithm, associated with a test to address the multiple testing issue, to

iteratively update the estimates of parameters and status vectors.

To develop the test for parameters, first note that it may happen

that H{θ(λ̂ψ),θ(λ̂ψc)} = 0 but there is no jump set. So, before us-

ing (2.7) to select the status vector, we use the following procedure to

test significance of ξ̂ψ. Specifically, let Hψ denote the null hypothesis

that ξψ ≤ 0 for ψ ∈ Ω. A QL Z-test statistic, Zψ = ξ̂ψ/σψ, is then

used to test Hψ, where σ2
ψ = var(ξ̂ψ). To compute σψ, we let Uψ =

{(∇ξψθψ)
′Λλψ(∇ξψθψ)}−1(∇ξψθψ)

′Λλψ . Under Hψ and the conditions given

in Theorem 4 of the Appendix, we can show that, as n→ ∞,

σ2
ψ = UψVλψU

′
ψ + op(1). (3.11)

However, in practice, Vλψ is unknown. We thus estimate Uψ by

Ûψ = {(∇ξψ θ̂ψ)
′Λ̂λψ(∇ξψ θ̂ψ)}−1(∇ξψ θ̂ψ)

′Λ̂λψ ,

where ∇ξψ θ̂ψ = ∇ξψθψ|λψ=λ̂ψ and Λ̂λψ = {V (λ̂ψ; τ̂ )}−1. A sandwich esti-
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3.1 Single Jump Set Identification

mate for σ2
ψ is given by σ̂2

ψ = ÛψṼλψÛ
′
ψ, where Ṽλψ is an estimate of Vλψ

by a sample covariance matrix of Y . Let φ denote a desired significance

level for Hψ. We thus reject Hψ if P (Z ≥ Zψ) ≤ 1 − (1 − φ)1/N , where Z

denotes the standard normal random variable.

In the following algorithm, for each iteration m, m = 1, 2, . . ., let β̂
(m)
0 ,

τ̂ (m), and δ̂(m) denote the estimates for the intercept β0, covariance pa-

rameters τ , and status vector δ, respectively. In the initial step of the

algorithm (i.e., m = 0), assume that τ̂ (0) ≡ 0. Then, we fit the comple-

mentary model (2.4) for each ψ ∈ Ω with the intercept estimate being

fixed at β̂
(0)
0 =

∑
Yi/n. We use (2.8) and (2.9) to obtain initial estimates

λ̂
(0)
ψ =

(
β̂
(0)
0 , β̂

(0)′

ψ , ξ̂
(0)
ψ

)′
for λψ and λ̂

∗(0)
ψc =

(
β̂
(0)
0 + ξ̂

(0)
ψc , β̂

(0)′

ψc , ξ̂
(0)
ψc

)′
for λ∗

ψc .

Import λ̂
(0)
ψ and λ̂

(0)
ψc ≡ λ̂

∗(0)
ψc into (2.7) to get an initial estimate δ̂(0) for

the status vector. Then, for iteration m = 1, . . ., conduct the following

Algorithm 1.

Algorithm 1: Three-Step Algorithm

Step 1. Update the intercept and covariance estimates

(i) Given δ̂(m−1) and τ̂ (m−1), use Q1{λδ̂(m−1) ; τ̂ (m−1)} = 0 in (2.8) to

get QL estimates λ̂δ̂(m−1) =
(
β̂0,δ̂(m−1) , β̂′

δ̂(m−1) , ξ̂δ̂(m−1)

)′
. Update the

intercept estimate to β̂
(m)
0 = β̂0,δ̂(m−1) .

(ii) Let ϵδ̂(m−1) = Y − θ̂δ̂(m−1) . Update τ̂ (m−1) to τ̂ (m) by (2.10).
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3.2 Multiple Jump Sets Identification

Step 2. Update estimates of jump coefficients for candidate models

(i) Let λ∗
ψ = (β̂

(m)
0 ,β′, ξψ)

′. Use Q1{λ∗
ψ; τ̂

(m)} = 0 in (2.8) to get QL

estimates λ̂
∗(m)
ψ = (β̂

(m)
0 , β̂

(m)′

ψ , ξ̂
(m)
ψ )′.

(ii) Use Q2{λ∗
ψc ; τ̂

(m)} = 0 in (2.9) to get QL estimates λ̂
∗(m)
ψc = (β̂

(m)
0 +

ξ̂
(m)
ψ , β̂

(m)′

ψc , ξ̂
(m)
ψc )′.

Step 3. Update an estimate for the status vector

(i) Test significance of ξ̂
(m)
ψ by the QL Z-test.

(ii) For ψ with significant ξ̂
(m)
ψ , import λ̂

(m)
ψ ≡ λ̂

∗(m)
ψ and λ̂

(m)
ψc ≡ λ̂

∗(m)
ψc

from Step 2 into (2.7) to update δ̂(m−1) to δ̂(m).

In Algorithm 1, we stop the iteration if δ̂(m) = δ̂(m−1). Otherwise, let

m = m+1 and repeat Steps 1-3. Since the homogeneity measure (2.6) is in

a linear form and the QL score function has a unique root under the given

dependence structure, convergence of the computational algorithm can be

seen in Corollary 5. More discussions about convergence can be found in

Section 6 and the Supplementary Material.

3.2 Multiple Jump Sets Identification

We now develop a sequential method to identify multiple jump sets based

on the identification procedure developed in Section 3.1. Assume that by

Algorithm 1, we have chosen k status vectors, say δ̂1, . . . , δ̂k, in the first k
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3.2 Multiple Jump Sets Identification

stages, k = 1, 2, . . . LetΩ(k+1) denote a collection of candidate status vectors

that has been updated at the (k+1)th-stage, and let ψ
(k+1)
α ∈ Ω(k+1) denote

a given candidate status vector. To mitigate collinearity in the multiple

jump-set model, we require δ̂1, . . . , δ̂k and ψ
(k+1)
α to be disjoint. That is,

each element in δ̂1 + · · · + δ̂k + ψ(k+1)
α is less than or equal to one. (How

to partition δ̂1, . . . , δ̂k and ψ
(k+1)
α such that they are disjoint can be seen in

Section 4.)

A multiple jump-set model for the mean response in terms of ψ
(k+1)
α

associated with δ̂1, . . . , δ̂k is given by

θ
ψ
(k+1)
α ;δ̂1,...,δ̂k

= g−1
{
β0 +Xβ +

k∑
j=1

ξδ̂j δ̂j + ξ
ψ
(k+1)
α

ψ(k+1)
α

}
, (3.12)

where β, ξδ̂1 , . . . , ξδ̂k , and ξψ(k+1)
α

are the coefficients for the covariates, the

estimated status vectors δ̂1, . . . , δ̂k, and the candidate status vector ψ
(k+1)
α ,

respectively. Let δ̂cj = 1 − δ̂j, j = 1, . . . , k, and ψ̄
(k+1)
α = 1 − ψ

(k+1)
α . The

complementary model then becomes

θ
ψ̄
(k+1)
α ;δ̂c1,...,δ̂

c
k
= g−1

{
βc0 +Xβ +

k∑
j=1

ξδ̂cj
δ̂cj + ξ

ψ̄
(k+1)
α

ψ̄(k+1)
α

}
, (3.13)

where βc0 = β0 +
∑k

j=1 ξδ̂j + ξ
ψ
(k+1)
α

. Note that models (3.12) and (3.13)

are analogous to the generalized complementary models (2.4) and thus, the

sequential identification procedure is the same as that for finding a single

jump set.
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4. Simulation Study

In this section, we conduct a simulation study to study consistency and con-

vergence of the proposed method for irregularly gridded data. Additional

simulations for regularly gridded data are presented in the Supplementary

Material with related discussions given in Section 6. In particular, we in-

troduce a partition method that can create disjoint (candidate) jump sets

for models (3.12) and (3.13) associated with irregularly gridded data.

To simulate irregularly gridded data, we use the geographic structure

of the poverty case study with n = 535 counties and five socio-economic

explanatory variables, x1 through x5. Three collections of geographic cells,

∆1, ∆2, and ∆3, are chosen to be the true jump sets with |∆1| = 20,

|∆2| = 50, and |∆3| = 50 (Figure A2 of the Supplementary Material).

Let δk,i = I[si ∈ ∆k] denote the status variables associated with ∆k, i =

1, . . . , 535, k = 1, 2, 3. For the lth simulation run, we generate θ∗i,l = β0 +

β1x1,i + β2x2,i + β3x3,i + β4x4,i + β5x5,i + ξ1δ1,i + ξ2δ2,i + ξ3δ3,i + ϵi,l, where

ϵi,l are simulated from a Gaussian distribution with mean zero, variance

0.0025, and correlation corr(ϵi,l, ϵj,l) = 0.5 exp(−0.005∥si − sj∥). Also, we

set the true regression coefficients to β0 = −1, β1 = 1, β2 = −0.5, β3 = 1,

β4 = −5, β5 = 1.5, and the jump coefficients ξ1 = 3, ξ2 = 2, and ξ3 = 1.

The simulated poverty rates are then given by Y ∗
i,l = exp(θ∗i,l)/{1+exp(θ∗i,l)},
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i = 1, . . . , 535, and transformed to Y l
i = log{Y ∗

i,l/(1− Y ∗
i,l)} (see Section 5).

There are a total of L = 200 simulation runs (or, replicates).

For jump set identification, we create an initial collection of candidate

jump sets by Ψ
(1)
αj = {si : αj ≤ Yi}, j = 1, . . . , N , where α1 < · · · < αN

denote a collection of thresholds. Let ψ
(1)
αj denote a candidate status vector

corresponding to the jump set Ψ
(1)
αj . Also, let I(1) ≡ {α1, . . . , αN} denote

an initial collection of thresholds, and let Ω(1) ≡ {ψ(1)
αj : j = 1, . . . , N}

denote an initial collection of candidate status vectors. Algorithm 1 is then

applied to identify a status vector from Ω(1) as an estimated status vector

for the jump set. If there is no significant estimated status vector, then the

identification procedure stops. Otherwise, a significant estimated status

vector δ̄
(1)
1 from Ω(1) is found and we continue as follows to ensure that the

required condition for model (3.12) be satisfied.

Figure 1(a) illustrates how to update each status vector in the first stage

so that they are disjoint in the second stage. First, with δ̄
(1)
1 ∈ Ω(1), we have

α(1) ∈ I(1) such that δ̄
(1)
1 ≡ ψ

(1)

α(1) . Also, let αj ∈ I(2) be a given threshold,

where I(2) = I(1) − α(1). Figure 1(a) depicts two possible relationships

between α(1) and αj: α
(1) > αj (case 1) or α(1) < αj (case 2), where Ψ

(1)

α(1)

and Ψ
(2)

α(1) denote the corresponding estimated jump set associated with

α(1) in the first and second stages, respectively. Also, we let Ψ
(1)
αj and Ψ

(2)
αj
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Figure 1: Examples for making disjoint jump sets by the partition method in

various stages. Chosen thresholds α(1) and α(2) and candidate threshold αj are

used to segment observations. (a) The partition process associated with α(1) cho-

sen from Stage 1. (b) The partition process associated with α(1) and α(2) chosen

from Stages 1 and 2, respectively.

denote the candidate jump set associated with αj in the first and second

stages, respectively. Thus, in case 1 (α(1) larger), the estimated jump set

associated with α(1) is the same in both stages with Ψ
(1)

α(1) ≡ Ψ
(2)

α(1) = {si :

α(1) ≤ Yi}, while the candidate jump set associated with αj is updated

from Ψ
(1)
αj = {si : αj ≤ Yi} to Ψ

(2)
αj = {si : αj ≤ Yi < α(1)}. In case 2

(αj larger), the candidate jump set associated with αj remains the same

in both stages with Ψ
(1)
αj ≡ Ψ

(2)
αj = {si : αj ≤ Yi}, while the estimated

jump set associated with α(1) is updated from Ψ
(1)

α(1) = {si : α(1) ≤ Yi} to

Ψ
(2)

α(1) = {si : α(1) ≤ Yi < αj}.
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Let ψ
(2)

α(1) and ψ
(2)
αj denote the corresponding status vectors for Ψ

(2)

α(1)

and Ψ
(2)
αj , respectively. Proceeding from the disjoint status vectors, we now

build a multiple jump-set model associated with δ̄
(2)
1 ≡ ψ

(2)

α(1) and ψ
(2)
αj for

analyzing the simulated data. Let µi = β0+β1x1,i+β2x2,i+β3x3,i+β4x4,i+

β5x5,i and µ = (µ1, . . . , µ535)
′. The multiple jump-set model associated with

thresholds α(1) and αj is

θ
ψ
(2)
αj

;δ̄
(2)
1

= g−1
{
µ+ ξ

δ̄
(2)
1
δ̄
(2)
1 + ξ

ψ
(2)
αj

ψ(2)
αj

}
, (4.14)

where ξ
δ̄
(2)
1

and ξ
ψ
(2)
αj

denote the jump coefficients associated with δ̄
(2)
1 and

ψ
(2)
αj , respectively. Our identification procedure in Sections 3.1 and 3.2 for

model (4.14) then searches over all thresholds αj ∈ I(2). If there is a

threshold, say α(2), associated with another estimated status vector, then

Figure 1(b) illustrates an example how to update the status vectors from

the second to the third stage.

For the lth simulation, we create candidate thresholds αlj = min{Y l
j :

j = 1, . . . , 535} + 0.001(j − 1), j = 1, 2, . . ., such that αlj is less than

max{Y l
j : j = 1, . . . , 535} + 0.001. Our HLR method is applied to analyze

the simulated data and is compared with an alternative approach by the

HM-QL method (Lin and Zhu, 2020). If two estimated status vectors δ̄k

and δ̄k′ are close in the sense that the difference of the estimated coefficients

|ξ̂δ̄k − ξ̂δ̄k′ | is less than 0.1, then they are considered to be the same. Also, if
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an estimated status vector has an estimated jump coefficient smaller than

0.1, then we leave out the estimated status vector. The final identified

jump sets are sorted by their corresponding p-values, from the smallest

to the largest. For the lth simulation, let ∆̄l
i,LR and ∆̄l

i,HM denote the

corresponding identified jump sets with the ith smallest p-value by the

HLR and HM-QL methods, respectively. ∆̄l
i,LR and ∆̄l

i,HM are used to be

estimates for ∆i, i = 1, 2, 3, by the HLR and HM-QL methods, respectively,

at the lth simulation. For convenience, we also use ∆̄i,LR and ∆̄i,HM to

denote ∆̄l
i,LR and ∆̄l

i,HM, respectively. The average numbers of counties in

∆i that have been classified into ∆̄i,· are

Ti,j = L−1

L∑
l=1

|∆̄l
i,· ∩∆j|, i, j = 1, 2, 3, (4.15)

and thus, Ti,i/|∆i| represents a true positive rate of ∆̄i,· for ∆i (Table 1).

Further, we let ∆̄4,· denote a collection of the identified jump sets other

than ∆̄1,·, ∆̄2,·, and ∆̄3,·, and ∆∅ denote a collection of counties without

jump coefficients. That is, ∆̄4,· = ∪i≥4∆̄i,· and ∆∅ = D −∆1 −∆2 −∆3.

Table 1 shows that our HLR method accurately identifies the jump sets

∆1 and ∆2 by ∆̄1,LR and ∆̄2,LR, respectively, in all the simulation runs.

Also, on average, the HLR method classifies 97% of ∆3 into ∆̄3,LR, while a

small proportion of ∆3 are classified to additional estimated jump sets. On

the other hand, although the HM-QL method can also accurately identify
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Table 1: The average numbers of counties in the true jump set ∆i, i = 1, 2, 3,

that were classified into ∆̄j,· by the homogeneous likelihood ratio (HLR) and het-

erogeneity measure quasi-likelihood (HM-QL) methods. The simulation result is

based on 200 replicates.

HLR HM-QL

True ∆̄1,LR ∆̄2,LR ∆̄3,LR ∆̄4,LR ∆̄1,HM ∆̄2,HM ∆̄3,HM ∆̄4,HM

∆1 20.0 0.00 0.00 0.00 20.0 0.00 0.00 0.00

∆2 0.00 50.0 0.00 0.00 0.00 44.3 5.70 0.00

∆3 0.00 0.00 48.5 1.50 0.00 5.90 30.2 6.80

∆∅ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∆1 in all the simulation runs, it has a tendency to under-detect a jump set

when the magnitude is relatively weak. For example, the HM-QL method

misses about 14% of the hot spots in ∆3, whose jump coefficient is equal to

1. We also test the difference of the true positive rates between the HLR

and HM-QL methods by a traditional Z-test. Specifically, for i = 1, 2, 3, let

T LR
i,i and THM

i,i denote the corresponding values of Ti,i by the HLR and HM-

QL methods, respectively. And, let P LR
i = T LR

i,i /|∆i| and PHM
i = THM

i,i /|∆i|

denote the true positive rates for ∆i by the HLR and HM-QL methods,

respectively. Let Diffi = P LR
i − PHM

i denote the difference of the true

positive rates between the HLR and HM-QL methods for ∆i, i = 1, 2, 3.

From Table 1, Diff2 and Diff3 have Z-ratios of 2.5 (p-value
.
= 0.01) and of
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Table 2: Simulation results by homogeneous likelihood ratio (HLR) and hetero-

geneity measure quasi-likelihood (HM-QL) methods. Means and standard errors

(in parentheses) for the estimated parameters with three jump sets ∆1, . . . ,∆3,

based on 200 replicates.

Variable β0 β1 β2 β3 β4 β5 ∆1 ∆2 ∆3

True -1.0 1.0 -0.5 1.0 -5.0 1.5 3.0 2.0 1.0

HLR -1.0 1.0 -0.5 1.0 -4.9 1.5 3.0 2.0 1.0

(0.04) (0.04) (0.03) (0.08) (0.19) (0.06) (0.01) (0.01) (0.01)

HM-QL -1.2 1.9 -0.6 1.5 -6.8 2.7 2.9 1.3 0.8

(0.1) (0.6) (0.1) (0.5) (1.1) (0.4) (0.05) (0.2) (0.1)

5.0 for (p-value
.
= 0.00), respectively. This provides evidence that the HLR

method outperforms the HM-QL method in identifying jump sets whose

jump coefficients are moderately small, based on the Z-test.

Additionally, Table 2 provides the estimation result by averaging the

estimated parameters across the L = 200 simulation runs for each method.

From Table 2, the HLR method estimates the model parameters well with

generally small biases and relatively stable standard errors. The HM-QL

method, in contrast, tends to underestimate the jump coefficients for ∆2

and ∆3, leading to larger biases for the parameter estimates. One possible

reason for this is that the HM-QL method uses a variable selection proce-
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dure to identify jump sets and thus, confounding effects could make serious

impact when the number of covariates is large. This result agrees with the

phenomenon that the HM-QL method has less power in identifying ∆2 and

∆3 than the HLR method.

5. Data Analysis for the Midwest Poverty

For illustration of the methodology developed in this paper, we examine

poverty in relation to the social and economic factors in the US based on

the 1960 census data in 535 counties of the five states in the Upper Midwest

(Illinois, Indiana, Michigan, Minnesota, and Wisconsin). The response is a

poverty rate, computed as the proportion of the county’s population living

below the poverty threshold. Let si denote the latitude and longitude of

the centroid of county i, and let Y ∗
i ≡ Y ∗(si) denote the poverty rate. The

observed poverty rate ranges are from 0.055 to 0.526 with a mean value of

0.245. As in Curtis et al. (2013), we take a logistic transformation of the

poverty rate Yi = log{Y ∗
i /(1− Y ∗

i )}.

The observed transformed poverty rates are mapped in Figure 2. A

QQ-plot (not shown here) for the transformed data indicates that Y =

(Y1, . . . , Yn)
′ follow a Gaussian distribution approximately. Thus in the

data analysis, we adopt an identity link function. A quasi-deviance method
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Figure 2: An image plot for the transformed poverty rates in the Midwest data.

(Lin, 2011) is applied and selects among the five explanatory variables,

namely, the proportions of the county population employed in agriculture

(x1), manufacturing (x2), services (x3), finance, insurance, and real estate

(FIRE) (x4), and the proportion of African American (x5). Let

µi = β0 + β1x1,i + β2x2,i + β3x3,i + β4x4,i + β5x5,i (5.16)

denote a marginal mean of Yi associated with the explanatory variables.

The estimates of the intercept β0 and the slopes β = (β1, . . . , β5)
′ by a

standard regression are given in Table A5 of Supplementary Material, and

the slopes are all significant.

When setting five states as five known jump sets, we find that most
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estimates for the jump coefficients are not significant. This finding sug-

gests that spatial pattern of jump sets would not follow the state bound-

aries, thereby nullifying the utility of standard spatial regimes. To iden-

tify more localized but hidden jump sets besides the explanatory variables,

we apply our HLR method. First, we sort the transformed poverty rates,

from the largest to smallest ones, to be Y(1) > Y(2) > · · · > Y(535). Let

αj ≡ Y(j) denote a candidate threshold. A candidate status variable asso-

ciated with the threshold αj for county i is given by ψαj ,i = I[αj ≤ Yi].

Let ψαj = (ψαj ,1, . . . , ψαj ,535)
′ denote the status vector associated with αj

and let Ω = {ψαj : j = 1, . . . , 535} denote the collection of the resulting

status vectors. We then use the identification procedure similar to the one

used in the simulation to sequentially identify the multiple jump sets by

the HLR method. Additionally, similar to the simulation, we also combine

two identified jump sets if difference between the corresponding estimated

jump coefficients is not significant.

By the HLR method, five jump sets, namely, ∆̄1, . . . , ∆̄5 are identified.

Figure 3(a) shows locations of the five jump sets with |∆̄1| = 5, |∆̄2| = 25,

|∆̄3| = 63, |∆̄4| = 126, and |∆̄5| = 176. Note that the five jump sets

include about 74% of total counties, and as can be seen from Figure 3(a),

the identified counties are distributed quite randomly in the study area.
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Figure 3: (a) A map for counties in the five identified jump sets, ∆̄1, . . . , ∆̄5,

from the data analysis. (b) An image plot for the estimated poverty rates from

the final jump-set model.

These phenomena may thus render traditional clustering methods infeasible

to find geographic clusters. For example, we also apply the spatial scan

(SatScan) method to analyze the Midwest data, but SatScan does not yield

any geographic cluster. Thus, both approaches appear to be under-powered.

The final estimated model for the marginal mean response is thus given by

θ̂i = µ̂i +
5∑
j=1

ξ̂∆̄jδ∆̄j(si), (5.17)

where δ∆̄j(si) is the status variable for ∆̄j, and ξ̂∆̄j is an estimate for the

jump coefficient associated with ∆̄j. The parameter estimates are given in

Table A5 of the Supplementary Material, along with the standard errors
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by Corollary 2 of the Appendix. Additionally, the estimated spatial corre-

lation function is ρ̂i,j = 0.62 exp(−0.005∥si− sj∥), with a moderate spatial

correlation ranging from 0.48 to 0.62 for counties within 50 km of each

other. The estimated poverty rates θ̂ = (θ̂1, . . . , θ̂535)
′ by the HLR method

are mapped in Figure 3(b), which are similar to the observed poverty rates

in Figure 2.

To compare the models with and without jump sets (5.16)-(5.17), we

compute a weighted least squares (WLS) (Y − θ̂)′V̂ −1(Y − θ̂), where V̂

is an estimate of the covariance matrix for Y . As can be seen from Table

A5 of the Supplementary Material, accounting for jump sets in the model

substantially improves the model fit based on the WLS values. The re-

gression coefficients and the jump coefficients for the five jump sets are all

significant. Five jump sets are identified and the counties in the same jump

set tend to be close to one another geographically. The counties in the

jump sets ∆̄1 and ∆̄2 have the higher poverty rates and tend to concentrate

in the northern and southern parts of the study region. Many counties

along the shores of the Great Lakes are in the complement of the jump sets

with low poverty rates, which is plausible due to the positive association

with strong, stable manufacturing jobs in the area during this period of

pre-deindustrialization. The spatial pattern of jump sets suggests smaller
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scale, more localized forces are at play in generating county poverty rates.

Ultimately, results direct future research to examine shared attributes and

processes among the five collections of place-types, perhaps including the

ways in which industrial and racial forces interact.

Further, for the study region as a whole, the proportions of agriculture

and service employment as well as the proportion of African Americans are

positively related to poverty, whereas those of manufacturing and FIRE

have a negative relation. This pattern reflects a greater vulnerability to

poverty among places that were more reliant upon agriculture and services

as compared to places more reliant up on manufacturing and the FIRE

industries. Above and beyond the influence of industry, poverty rates were

higher in counties with larger concentrations of African Americans (x5), a

racialized group historically marginalized in American society.

6. Conclusions and Discussion

Here we have developed novel methodology for simultaneous regression and

jump-set analysis for the case study of poverty history in the Upper Midwest

of the US. Since the hidden jump sets are unknown, the proposed gener-

alized complementary models are different from the traditional generalized

linear models. We have also proposed a partition approach associated with
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the complementary models to create candidate jump sets and developed a

novel homogeneity measure from an approximation of the log-QL likelihood

ratio to connect jump set identification and regression analysis. Since the

homogeneity measure is in a quadratic form and the proposed score func-

tion has a unique root, the three-step computational algorithm achieves

convergence fairly quickly. Particularly, in the simulation study shown in

the Supplementary Material, the HLR method for Gaussian responses takes

only one iteration toward convergence almost every time (Table A1). A QL

Z-ratio test shown in Section 3.1 is also proposed to evaluate whether a

hidden jump set exists.

In addition, we have established a large-sample property (consistency)

for the HLR method in a series of theorems. A simulation study in the

Supplementary Material shows that the HLR method is also consistent in

jump set identification rates and parameter estimation for Gaussian and

Poisson responses (Tables A1 and A2). That is, as sample size increases,

the identification accuracy for jump sets increases and the sample variance

for estimates decreases. The finite-sample properties in the simulation study

have supported the theory. Thus, the proposed method based on the QL

homogeneity measure is both theoretically justified and computationally

feasible. In another simulation study (not shown here), we have found that
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the more similar candidate jump sets are to the true jump set, the closer

the corresponding homogeneity measures are to zero. For example, for the

jump set |∆3| shown in Figure A2 of the Supplementary Material with

|∆3| = 150, an average value of the simulated homogeneity measures for ∆3

over 200 replicates is about 1.1, while those for candidate jump sets with

numbers of counties to be 120, 130, and 140 are 68, 42, and 20, respectively.

For the HLR method, the computation time would depend on the num-

ber of candidate jump sets. For example, in analysis of the Midwest data,

535 candidate jump sets were considered, and the HLR method would take

4 hours to get convergence. However, in the simulation for 12 × 12 grids

of the Gaussian responses, it would take only 20 minutes for one simula-

tion setting (500 replicates). Additionally, we have shown that estimates

by the HLR method have asymptotic normality, and used a WLS error as

a criterion for model selection in the data analysis. In a simulation study

shown in the Supplementary Material that has a high proportion of coun-

ties included in the jump sets, we have found that the HLR method can

identify all the true jump sets accurately and give unbiased estimates for

most coefficients (Tables A3 and A4). To further evaluate whether the WLS

error is suitable for model selection, we have computed the WLS error in

the simulation. The simulation results show that an average of WLS errors
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for the (final) jump set model is about 0.5, while that for the traditional

regression model is about 50 (Table A4). These results support the use of

WLS errors for the data analysis. To further improve the accuracy and effi-

ciency of our methodology, we could consider more flexible ways of creating

candidate jump sets. Another natural extension of our methodology would

be simultaneous identification of jump sets in space and change points in

time by creating spatio-temporal status vectors, which we leave for future

investigation.

Appendix: Assumptions and Theorems

To ensure a unique root for a score function of the QL function, we make

some assumptions for the QL function to exist.

Assumption 1. (a) The mean functions satisfy max{|θi|4 : i = 1, . . . , n}

is finite. (b) The explanatory variables xi are not multiples of a binary

variable. (c) The link function g(·) is one-to-one. (d) The first- and second-

order derivatives of the link function g(·) are continuous. (e) There exists

a smooth function V (·) such that var(Yi) = V (θi, σ), where σ is a nuisance

parameter.

We next impose mixing conditions for the responses to ensure the valid-

ity of the QL estimation for the jump-set model. Let Ξ ⊆ D and let
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YΞ =
∏
si∈Ξ Y (si). Let ρk,l(h) = sup

{
|corr(YΞ1 ,YΞ2)| : |Ξ1| ≤ k, |Ξ2| ≤

l, d(Ξ1,Ξ2) ≥ h
}
, where corr(·, ·) denotes a correlation function, and d(Ξ1,Ξ2) =

inf{∥s1 − s2∥ : si ∈ Ξi} (see, e.g., Lin, 2008).

Assumption 2. The mixing coefficient ρk,l(h) satisfies the following con-

ditions: (a) ρ1,1(h) = O(h−2−k1) for some k1 > 0. (b) ρk,l(h) = o(h−2) for

k + l ≤ 4. (c) ρ1,1(h) is positive definite.

By Assumption 2(a), we have
∑n

i=1 Λi,j = O(1) for all j = 1, . . . , n and

thus it is reasonable to make the following assumption.

Assumption 3. The information matrix −n−1(∇λδθδ)
′Λλδ(∇λδθδ) con-

verges to a positive-definite matrix I(λδ; τ ) as n→ ∞.

Let
P−→ and

L−→ denote convergence in probability and in distribution,

respectively, as n → ∞. Also, let o∗(nq) denote a vector containing either

0 or 1 with a sum on the order o(nq) as n → ∞. Let ψ0 be a given status

vector with ψ0 = δ+o
∗(n1/2). We have the following results for asymptotic

properties of the HLR method.

Theorem 1. Suppose nδ = O(n) and Assumptions 1–3 hold. Then, at

each iteration m = 0, 1, 2, . . . of Algorithm 1, the QL estimates λ̂
(m)
ψ0

are

consistent in the sense that λ̂
(m)
ψ0

P−→ λδ, as n→ ∞.
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Theorem 1 states that, when a candidate status vector and the true status

vector are asymptotically equivalent, the QL estimates associated with the

corresponding candidate model are consistent. In more typical iterative es-

timation methods, the consistency of regression parameter estimates hinges

on the consistency of covariance parameter estimates (Guyon, 1995). Here,

in contrast, the estimates of the regression coefficients and the jump co-

efficient can be consistent, even if the covariance parameter estimates are

biased.

Corollary 1. Under the assumptions of Theorem 1, we have λ̂
(m)
ψ

P−→ λδ

and λ̂
(m)
ψc

P−→ λδc if and only if ψ ≡ ψ0 = δ + o∗(n1/2), where λδc =

(β0 + ξδ,β
′,−ξδ)′.

The asymptotic normality of λ̂
(m)
ψ0

and λ̂
(m)
ψc0

can be established on the con-

sistency in the following Corollary 2.

Corollary 2. Under the assumptions of Theorem 1, we have, as n → ∞,

n1/2λ̂
(m)
ψ0

L−→ N
(
λδ, I

−1(λδ; τ
†)
)
and n1/2λ̂

(m)
ψc0

L−→ N
(
λδc , I

−1(λδc ; τ
†)
)

where I(λδ; τ
†) is given in Assumption 3. Moreover, if the selected vari-

ogram model is correctly specified, then, as n→ ∞, n1/2λ̂
(m)
ψ0

L−→ N (λδ, I
−1(λδ; τ )),

and n1/2λ̂
(m)
ψc0

L−→ N (λδc , I
−1(λδ; τ )).

Let nψ =
∑n

i=1 ψi and nδ =
∑n

i=1 δi. The following Theorems 2 and
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3 show that the QL homogeneity measure (2.6) has a (unique) minimum

value when the candidate jump set is (asymptotically) equal to the true

jump set. These results consequently ensure the selection consistency for

the proposed jump-set identification procedure.

Theorem 2. Suppose nδ = O(n), nψ = O(n), and Assumptions 1–3

hold. Then, at each iteration m = 0, 1, . . . of Algorithm 1, we have an

inequality minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
≥ 0, with probability one. In ad-

dition, the equality (asymptotically) holds if and only if ψ ≡ ψ0; that is,

H
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
= op(n

−1) if and only if ψ = δ + o∗(n1/2).

Assume that Ω (asymptotically) contains the true status vector δ in the

sense that at least one status vectorψ0 is inΩ. By Theorem 2,H
{
θ(λ̂

(m)
ψ0

),θ(λ̂
(m)
ψc0

)
}

is (asymptotically) equal to zero, where ψc
0 = 1−ψ0. This implies that ψ0

minimizesH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
, which gives existence of minψ∈ΩH

{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
.

Recall that the estimated status vector at the mth iteration of Algorithm

1 is denoted by δ̂(m) = minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
. Then, we have the

following result about the consistency of the jump-set selection.

Theorem 3. Suppose that Ω (asymptotically) contains the true status vec-

tor δ and that the assumptions of Theorem 2 hold. We have, at each iter-

ation m = 0, 1, . . . of Algorithm 1, δ̂(m) = minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
if

and only if δ̂(m) = δ + o∗(n1/2).
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Theorem 3 states that the estimated status vector from the minimizer

of the homogeneity measure is asymptotically equivalent to the true status

vector. That is, Algorithm 1 asymptotically selects the true jump set and

thus is consistent in the jump-set identification. We consider the asymptotic

behavior of the case that there is no jump set (i.e., δ = 0).

Theorem 4. Suppose that there is no jump set and Assumptions 1–3 hold.

Then, the following results hold. (a) The difference between the two jump

coefficient estimates is asymptotically equivalent such that (ξ̂ψ+ ξ̂ψc)
P−→ 0

for any ψ ∈ Ω, as n → ∞. (b) The test statistic Zψ follows the standard

normal distribution.

By Theorem 4, when there is no jump set, the test statistic Zψ is asymp-

totically normal and thus an approximate normal test can be performed.

Finally, we provide theorems for convergency of the proposed methods.

Theorem 5. Under Assumptions 1–3, the derivative of n−1Q̇(λδ; τ ) con-

verges in probability to the positive-definite matrix I(λδ; τ ) of Assumption

3 as n → ∞. Furthermore, the derivative of the QL function is uniformly

bounded in probability as n → ∞. That is, ∥Q̇(λδ; τ )∥ ≤ M in probability

as n→ ∞.

Corollary 3. Under Assumptions 1-3, Q̇(λδ; τ ) satisfies the Lipschitz con-
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dition in probability as n→ ∞. That is, ∥Q̇(λδ; τ )−Q̇(λ∗
δ ; τ )∥ ≤ l∥λδ−λ∗

δ∥

in probability for some l > 0 as n→ ∞.

Corollary 4. Under Assumptions 1-3, a Newton iteration of the QL func-

tion is globally convergent in probability as n→ ∞.

Corollary 5. Under Assumptions 1-3, the iterative procedure of Algorithm

1 converges in probability as n→ ∞.

The proofs of the above theorems are given in the Supplementary Ma-

terial.

Supplementary Material

Technical details, extra simulation studies and computer codes can be found

in the Supplementary Material.
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