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Abstract:

When making important decisions, it is crucial to be able to quantify the uncer-

tainty and control the error of any classifiers. We propose a selective classification

framework that provides an “indecision” option for observations that cannot be

classified with confidence. The false selection rate (FSR), defined as the expected

fraction of erroneous classifications among all definitive classifications, provides a

useful error rate notion that trades a fraction of indecisions for fewer classification

errors. We develop a new class of locally adaptive shrinkage and selection (LASS)

rules for FSR control in the context of high-dimensional linear discriminant anal-

ysis (LDA). LASS is easy to analyze, exhibits robust performance across sparse

and dense regimes, and controls the FSR under weaker conditions than those of

existing methods. Lastly, we demonstrate the empirical performances of LASS

using both simulated and real data.

Key words and phrases: Classification with confidence, False discovery rate, Lin-

ear discriminant analysis, Risk control, Shrinkage estimation.
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1. Introduction

Linear discriminant analysis (LDA) is widely used in classification problems.

We focus on the basic setup, which assumes that the observations are p-

dimensional vector-valued features, drawn with equal probability from one

of the following two multivariate normal distributions:

N (µµµ1,Σ) (class 1) and N (µµµ2,Σ) (class 2). (1.1)

Let WWW ∈ Rp be a new observation. Denote µµµ = µµµ1+µµµ2
2

and ddd = µµµ1−µµµ2. The

procedure that achieves the minimal misclassification risk is Fisher’s linear

discriminant rule:

δF = I
{

(WWW − µµµ)>Σ−1ddd < 0
}

+ 2 · I
{

(WWW − µµµ)>Σ−1ddd ≥ 0
}
, (1.2)

which assigns WWW to class c if δF = c, for c = 1, 2. When µµµ1, µµµ2, and Σ

are unknown, common practice is to construct a data-driven LDA rule by

obtaining suitable estimates of the unknown quantities in (1.2). In a high-

dimensional setting, naive sample estimates become highly unstable, and

numerous regularized LDA rules have been proposed that achieve substan-

tial improvements in prediction accuracy (Friedman, 1989; Tibshirani et al.,
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1.1 Selective classification and FSR

2003; Witten and Tibshirani, 2009; Cai and Liu, 2011; Shao et al., 2011;

Mai et al., 2012; Cai and Zhang, 2019; among others). However, we still do

not know how to assess the uncertainty and control the decision errors in

a high-dimensional LDA. As such, we propose a selective classification ap-

proach that controls the false selection rate (FSR). We develop a new class

of data-driven LDA rules based on locally adaptive shrinkage and selection

(LASS), and show how to use LASS in decision-making scenarios to control

the FSR at a user-specified level.

1.1 Selective classification and FSR

Uncertainty quantification and error control are crucial in many sensitive

decision-making scenarios. Decision errors, which can be very expensive to

correct, are often unavoidable, owing to the intrinsic ambiguity of a clas-

sification problem. Consider the ideal setting in which the multivariate

normal parameters µµµ1, µµµ2, and Σ are known. Then, among all classifi-

cation rules, the LDA rule (1.2) achieves the minimum classification risk

1 − Φ

(
1

2

√
ddd>Σ−1ddd

)
, where Φ(·) is the cumulative distribution function

(CDF) of a standard normal variable. However, this minimum risk can still

be unacceptably high when the signal-to-noise ratio
√
ddd>Σ−1ddd is low. The

problem is exacerbated in practice, particularly in high-dimensional set-
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1.1 Selective classification and FSR

tings, where we must employ “plug-in” rules learned from limited training

data.

In contrast to conventional classification algorithms, which are forced to

classify all new observations, a useful strategy for uncertainty quantification

involves providing an indecision option (also referred to as an abstention

or a reject option) for any observations that cannot be classified with confi-

dence. The observations with indecisions can then be evaluated separately.

This strategy is attractive when the cost of handling indecisions is less than

that of fixing a classification error. To see how the proposed strategy aligns

with social and policy objectives, consider a high-consequence classification

scenario in which we need to assess the likelihood of a defendant becoming

a recidivist. Obviously, the social cost of incorrectly classifying a low-risk

individual as a recidivist is much higher than that of an indecision. Thus,

it is worth collecting additional contextual knowledge about the convicted

individual to mitigate this ambiguity. Similarly, in medical screening, a

misclassification can result in either missed medical care or unnecessary

treatments, both of which can be much more expensive than conducting a

more careful examination/evaluation of the patient.

Suppose we observe labeled training data Dtrain. The goal is to predict

the classes for m new observations Dtest = {WWW j : 1 ≤ j ≤ m}. We consider
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1.2 FSR control using LASS

a selective classification framework that makes definitive decisions only on

a selected subset of Dtest, and the remaining subjects receive indecisions

(i.e., be rejected for further investigation). The reject/indecision option,

which is much less expensive to handle, is considered as wasted opportu-

nity, rather than a severe error. We propose to controlling the FSR, which

is the expected fraction of erroneous classifications among all definitive clas-

sifications. Selective classification with FSR control provides an effective

approach to uncertainty quantification and error control. We demonstrate

that with the reject/indecision option, the FSR can be controlled at a user-

specified level. When the signal-to-noise ratio is low, the degree of ambigu-

ity in the classification task can be, in a sense, captured by the fraction of

indecisions in Dtest. Hence, a more powerful data-driven rule, subject to the

FSR constraint, means fewer indecisions, and less wasted effort performing

separate evaluations.

1.2 FSR control using LASS

The task of controlling the FSR in a high-dimensional LDA is challenging;

we start by discussing several limitations of existing works.

First, the methodology and theory of many high-dimensional LDA rules

(e.g., Cai and Liu, 2011; Shao et al., 2011; Mai et al., 2012; Cai and Zhang,
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2019) critically depend on strong sparsity assumptions, which may not hold

in practice. The sparsity assumption is counter-intuitive from the perspec-

tive of classification error control. Consider the simple case in which all

nonzero coordinates in ddd = µµµ1 − µµµ2 take the same value. Then, a larger l0

norm of ddd (i.e., nonsparse setting) virtually implies that the two classes are

better separated and, hence, it should become easier to control the clas-

sification risk. However, many state-of-the-art LDA rules lack theoretical

justifications, and often perform poorly in the supposedly easier nonsparse

setting (Section 5). Second, analyzing the error rate of a classifier often

requires a precise quantification of the quality of its outputs, which is in-

tractable, in general, due to the complexity of contemporary LDA rules. Fi-

nally, most learning algorithms focus on improving prediction performance,

rather than avoiding high-consequence decision errors. However, to tailor

existing algorithms to trade a fraction of indecisions for fewer classification

errors, how to calibrate suitable data-driven thresholds to control the FSR

at a user-specified level remain unclear.

We propose a class of FSR rules based on a LASS algorithm. LASS

consists of three steps: estimate a score according to the LDA rule (1.2);

ordering all individuals based on the estimated scores; and choose upper

and lower thresholds with which to select individuals into the two classes,
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1.3 Our contributions

with unselected individuals assigned to the indecision group. We prove

theories to establish the asymptotic validity of LASS for FSR control. A

key innovation in our method is the construction of intuitive and easy-

to-analyze shrinkage factors that are capable of reducing uncertainty with

much weaker assumptions on sparsity. LASS provides a principled and

theoretically solid LDA rule that performs comparably with state-of-the-

art classification rules (e.g., Cai and Liu, 2011; Shao et al., 2011; Cai and

Zhang, 2019) in the sparse setting, and substantially better under the non-

sparse setting. The theoretical adaptiveness of LASS to unknown sparsity

and its robust numerical performance across sparse and dense settings are

attractive, particularly in real-world applications in which we can only “bet

on sparsity”; this working assumption (of sparsity) can distort the hardness

of the problem, and hence lead to wrong choices of method.

1.3 Our contributions

Our work makes several contributions to the literature. First, selective

classification via FSR control provides a useful approach in risk-sensitive

decision-making scenarios, where classification errors may have a significant

effect on a person’s social, economic, or health status. Second, we develop

a novel shrinkage rule for estimating the linear discriminant score, which is
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effective for reducing uncertainty in high dimensions. The proposed rule is

intuitive, easy-to-analyze, and enjoys strong theoretical properties. Third,

we derive data-adaptive decision boundaries based on the shrunken LDA

rule to select and classify observations. Theoretical guarantees on FSR

control are established under much weaker conditions compared with those

of existing theories on sparse LDA.

1.4 Related works

Here, we discuss several related lines of research to further explain the

merits of LASS and place our contributions in context.

The idea of indecision, also referred to as a reject option, has been con-

sidered in several works in the classification literature (Herbei and Wegkamp,

2006; Franc et al., 2021).The intrinsic ambiguity in classification can also

be characterized using set-valued classifiers (Lei, 2014; Guan and Tibshi-

rani, 2022). In terms of interpretation, indecision means that we refrain

from making a decision in order to avoid misclassification, whereas the set-

valued output aims to guarantee that the true state matches one of our

output labels with high probability. We extend the notion of indecision

from a single-decision setup to a multiple-decision setup, where decision

errors become critical. The FSR framework provides a new tool for dealing
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with inflated errors when many units must be classified at the same time.

Under a high-dimensional sparse setting, Bickel and Levina (2004) show

that the naive Fisher’s rule performs no better than a random guess. Many

regularized LDA rules have been proposed to exploit the sparse structure

in data; including the shrunken centroid method (Tibshirani et al., 2003),

the LPD and AdaLDA rules (Cai and Liu, 2011; Cai and Zhang, 2019), and

other penalized or thresholding methods (Shao et al., 2011; Mai et al., 2012).

However, as we demonstrate in our numerical studies, these methods do

not work well under a nonsparse setting. LASS, which employs an adaptive

shrinkage rule with robust performance across sparse and dense regimes, is

provably valid for error rate control.

Exemplified by the James Stein estimator (James and Stein, 1992)

and Tweedie’s formula (e.g., Brown and Greenshtein, 2009; Efron, 2011;

Koenker and Mizera, 2014), shrinkage is a powerful and ubiquitous idea

in compound estimation. Under the independence assumption (i.e., Σ is a

diagonal matrix), implementing of the LDA rule (1.2) requires a compound

estimation of µµµ and ddd. Efron (2009), Greenshtein and Park (2009), and

Dicker and Zhao (2016) propose empirical Bayes (EB) methods (Tweedie’s

formula and g-estimation) for constructing “plug-in” LDA rules. EB shrink-

age can effectively reduce uncertainty in high dimensions, without the spar-
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1.5 Organization and notation

sity assumption. However, there are several drawbacks. First, existing EB

rules ignore correlations, which may lead to suboptimal shrinkage factors,

and hence inferior LDA rules. In contrast, LASS performs shrinkage in a

coordinate-wise shrinkage manner, which enjoys strong numerical and the-

oretical properties under dependence. Second, in contrast to EB “plug-in”

rules, which are rather complicated to analyze, the uncertainty quantifi-

cation of LASS is simple, enabling data-driven rules and theory on FSR

control.

1.5 Organization and notation

The remainder of the paper is organized as follows. Section 2 presents

the problem formulation and derives the oracle rule for FSR control. The

data-driven LASS is developed in Section 3, with its theoretical properties

established in Section 4. Numerical results are presented in Section 5.

Proofs and additional numerical results are relegated to the Supplementary

Material.

Summary of notation. Denote µµµ = µµµ1+µµµ2
2

, ddd = (d1, ..., dp)
> = µµµ1 − µµµ2,

X̄XX = (X̄1, . . . , X̄p)
> = (1/n1)

∑n1

i=1XXX i, and ȲYY = (Ȳ1, . . . , Ȳp)
> = (1/n2)

∑n2

i=1YYY i.

Ip denotes the p × p identity matrix. For matrix A and 1 ≤ w ≤ ∞, the

matrix lw norm is defined as ||A||w =sup|xxx|w≤1‖Axxx‖w. When v ∈ Rp is a
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vector, ‖v‖w is the vector lw norm ‖v‖w := (
∑p

i=1 v
w
i )

1/w
. The largest and

smallest eigenvalue of A are denoted by λmax(A) and λmin(A), respectively.

2. Problem Formulation

This section first introduces a generalized discriminant rule, then defines

the FSR, and finally outlines the roadmap.

2.1 The generalized discriminant rule

Let WWW be a new observation and S := S(WWW ) be a generic score, with a

larger (smaller) S indicating a higher chance of being in class 2 (class 1).

Suppose we need to classify m new observations {WWW j : 1 ≤ j ≤ m}, drawn

with equal probability from (1.1). It is natural to consider the following

generalized discriminant rule δδδ = (δj : 1 ≤ j ≤ m), where

δj = I {S(WWW j) < tl}+ 2 · I {S(WWW j) ≥ tu} , 1 ≤ j ≤ m. (2.1)

In the above, tl and tu represent the lower and upper thresholds, respec-

tively, with the requirement that tl ≤ tu. A key difference between the two

discriminant rules (2.1) and (1.2) is that (1.2) uses tl = tu = 0, whereas

(2.1) allows tl < tu. The interval (tl, tu) is called an ambiguity region. The
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true class of any observation that falls within this region cannot be deter-

mined with confidence. The values of tl and tu are determined according

to user-specified error rates, as discussed in the next subsection. It follows

that δj, defined in (2.1), can take three possible values in the action space

A = {0, 1, 2}, with δj = k indicating that we classify WWW j into class k, for

k = 1, 2, and δj = 0 indicating that we choose an indecision or rejection

option (Herbei and Wegkamp, 2006; Sun and Wei, 2011; Lei, 2014). Denote

{θj : 1 ≤ j ≤ m} ∈ {1, 2}m as the unknown true classes. Consider the

example of medical screening, where θj = 1 (θj = 2) indicates that the

patient is healthy (sick). Then, a patient with δj = 1 will not receive the

treatment, a patient with δj = 2 will receive the treatment, and a patient

with δj = 0 will be evaluated.

2.2 FSR

In risk-sensitive applications, we view misclassifications as severe errors,

and so need to control them at a low level. Under the selective inference

framework (Benjamini, 2010), the error rate is defined to assess the quality

of the selected subset, in which observations receive definitive classifications.

In contrast, the indecisions are viewed as wasted opportunities, and are used

to describe the notion of power.
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For the binary setting, we may encounter two types of misclassifications:

(θ = 1, δ = 2) and (θ = 2, δ = 1). If the two directions are symmetric, it is

natural to consider the FSR:

FSR = E

∑m
j=1 I (θj 6= δj, δj 6= 0){∑m

j=1 I(δj 6= 0)
}
∨ 1

 , (2.2)

where x ∨ y = max(x, y). The FSR is considered in Rava et al. (2021)

in a different context (fairness in machine learning), and is analogous to

the false discovery rate (FDR; Benjamini and Hochberg, 1995) in one-class

classification problems (outlier detection) (Bates et al., 2021; Angelopoulos

et al., 2021). The FSR reduces to the misclassification rate 1
m
E{
∑m

j=1(θj 6=

δj)} if indecisions are not allowed (i.e., δj 6= 0, for every 1 ≤ j ≤ m).

In the asymmetric situation, we define the class-specific FSR

FSRc = E

[∑m
j=1 I(δj = c, θj 6= c)

{
∑m

j=1 I(δj = c)} ∨ 1

]
, c = 1, 2. (2.3)

This provides a useful notion of an error in applications in which one type of

error is more sensitive than the other, and we need to set different tolerance

levels for the two types of errors (The class-specific FSRc is connected to,

but fundamentally different from the Neyman–Pearson classification frame-
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work (Scott and Nowak, 2005; Rigollet and Tong, 2011) for asymmetric

error control. The class-specific FSRc, as a concept under the selective in-

ference framework, is analogous to the FDR in multiple testing, whereas

Neyman–Pearson classification operates under the classical Type I/II error

paradigm in single hypothesis testing. Moreover, the two lines of research

focus on substantially different issues). To this end, we focus on the setup

that allows class-specific constraints: FSRc ≤ αc, for c = 1, 2. As a special

case, we can set α1 = α2 = α. Given that there is at least one classification

for each class, and if the class-specific constraints FSRc ≤ α are fulfilled

for both c = 1 and c = 2, then the global constraint FSR ≤ α defined in

(2.2) is also fulfilled asymptotically; a proof of this statement is provided

in Section S8 of the Supplementary Material.

The selective classification framework enables FSR control at a user-

specified level, which may not be possible without the indecision option.

However, the price we pay is the wasted opportunity of performing sep-

arate evaluations on the indecisions. The user-specified error bounds αc

reflect our tolerance levels of the associated risks. To simultaneously quan-

tify the degree to which the decisions can be trusted and minimize the

wasted effort, we consider a constrained optimization problem. Let ECC =

E
{∑m

j=1 I(θj = δj)
}

denote the expected number of correct classifications.
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2.2 FSR

The goal is to

maximize the ECC subject to FSRc ≤ αc, c = 1, 2. (2.4)

The constrained optimization formulation (2.4) has not been considered

under a classification setup, although the idea is related to the multiple

testing formulation in Sun and Cai (2007). There are several crucial dif-

ferences between the two formulations. First, Sun and Cai (2007) propose

minimizing the false nondiscovery rate (FNR), subject to a constraint on

the FDR. Under this multiple testing setup, we only have one alternative

state, and the decision takes values in {0, 1}. In contrast, the selective

classification formulation has two alternative states, and the decision takes

values in {0, 1, 2}. This requires new optimality theory. Second, in multi-

ple testing, each data point corresponds to the value of a one-dimensional

summary statistic (e.g., p-value or z-value). In contrast, the observation

W in our setup is a high-dimensional vector, which makes the theoretical

analysis significantly more challenging.
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2.3 Oracle rules for FSR control

2.3 Oracle rules for FSR control

In this subsection, we derive a class of oracle FSR rules. To motivate our

methodology, consider an asymptotically equivalent error rate (Supplemen-

tary Material Section S3), the marginal FSR

mFSRc =
E
{∑m

j=1 I(δj = c, θj 6= c)
}

E
{∑m

j=1 I(δj = c)
} . (2.5)

We aim to develop a selective classification rule that solves the following

constrained optimization problem: maximize the ECC subject to mFSRc ≤

αc, c=1, 2. Next, we prove an intuitive result that the optimal mFSR rule is

a thresholding rule based on the optimal LDA function Sπj ≡ (WWW j−µµµ)>Σ−1ddd

(or its monotone transformations).

Consider a generalized discriminant rule δδδ(t1, t2) = (δj : 1 ≤ j ≤ m) of

the form (2.1): δj = I (1− T j < t1) + 2I (T j < t2), for 1 ≤ j ≤ m, where

T j := T (W j) = P(θj = 1|W j) =
exp(Sπj )

exp(Sπj ) + 1
, and t1, t2 ∈ (0, 1) are the

lower and upper thresholds, respectively, satisfying t1 < 1 − t2. Because

T j is a monotone transformation of Sπj , generalized LDA rules based on

T j and Sπj , with suitably adjusted thresholds, are equivalent. We use T j

instead of Sπj to facilitate the development of a step-wise algorithm, which

is described at the end of this section.
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2.3 Oracle rules for FSR control

Let Qc(tc) be the mFSRc of δδδ(t1, t2), for c = 1, 2. Define the oracle

thresholds tcOR = sup {t : Qc(t) ≤ αc} , for c = 1, 2. To avoid assigning an

individual to multiple classes, we assume that α1 and α2 have been chosen

such that t1OR and t2OR are both less than or equal to 0.5 (This assumption

facilitates our theoretical development. If overlapping selection occurs in

practice, we can simply classify the individual to the class with a larger

class probability P (θj = c|W j), for c = 1, 2.). Define the oracle mFSR

procedure δδδOR = (δjOR : 1 ≤ j ≤ m), where

δjOR = I
(
1− T j < t1OR

)
+ 2 · I

(
T j < t2OR

)
. (2.6)

The next theorem shows that δδδOR is optimal.

Theorem 1. Let Dα1,α2 be the collection of all classification rules such that

for any δδδ ∈ Dα1,α2, mFSR1
δδδ ≤ α1 and mFSR2

δδδ ≤ α2. Then, ECCδδδ ≤

ECCδδδOR, for any δδδ ∈ Dα1,α2.

The thresholds t1OR and t2OR in the oracle rule (2.6) can be calculated

approximately using the following step-wise algorithm. Denote T (i) as the
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ith ordered statistic of {T 1, ..., Tm}. Let

k1 = min

{
1 ≤ j ≤ m :

1

j + 1

j∑
i=0

{
1− T (m−i)

}
≤ α1

}
, k2 = max

{
1 ≤ j ≤ m :

1

j

j∑
i=1

T (i) ≤ α2

}
.

(2.7)

As indicated by the theory in Section 4, t1OR and t2OR can be consistently

estimated by t̂1OR = min
(
1− T (m−k1), 0.5

)
and t̂2OR = min

(
T (k2), 0.5

)
, re-

spectively, under mild conditions. Here, 0.5 is imposed to avoid overlapping

selections. To see why the step-wise algorithm (2.7) makes sense, note that

the moving average 1
r

∑r
j=1 T

(j) provides an estimate of mFSR2 when r ob-

servations with the smallest T j are selected to class 2 (cf., Sun and Cai

(2007)). Hence, it follows from (2.7) that t̂2OR corresponds to the largest

threshold such that the estimated FSR2 is below α2. The explanation for

t̂1OR is similar.

Denote δδδ∗OR =
{
I(1− T j < t̂1OR) + 2 · I(T j < t̂2OR) : 1 ≤ j ≤ m

}
. The

next theorem shows that the step-wise algorithm (2.7) is valid.

Theorem 2. Consider the oracle setting in which T j are known, for j =

1, · · · ,m. Then, we have FSRk(δδδ∗OR) ≤ αk and mFSRk(δδδ∗OR) ≤ αk, for

k = 1, 2.

Remark 1. δδδ∗OR is asymptotically optimal in the sense that ECCδδδ∗OR/ECCδδδOR →

1 as m → ∞. This fact can be proved using similar arguments to those

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0219



2.4 Issues and roadmap

presented in the proof of Theorem 4.

2.4 Issues and roadmap

The FSR control in selective classification, which is closely related to the

FDR (Benjamini and Hochberg, 1995) control in multiple testing, presents

unique challenges in high-dimensional inference. In multiple testing, the

null distribution of the p-values is assumed to be known precisely; hence,

FDR rules, such as the Benjamini–Hochberg algorithm, can be derived to

determine a proper p-value threshold that upper bounds the FDR. However,

in classification, the scores (Sπj or T j) must be estimated from the training

data with noise. For state-of-the-art LDA rules in the high-dimensional

setting (Cai and Liu, 2011; Shao et al., 2011; Mai et al., 2012; Dicker and

Zhao, 2016; Cai and Zhang, 2019), the distributions of the estimated scores

(and hence the p-values) are, in general, unknown, rendering the uncertainty

quantification and analysis of the error rate intractable.

We take a different approach and develop a data-driven FSR rule in

two steps. In the first step, we provide an efficient and robust score Ŝj,

which employs a new shrinkage rule that works well across sparse and dense

regimes. In the second step, we develop a step-wise algorithm based on Ŝj.

Owing to the easy-to-analyze shrunken mechanism, we show that we can
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precisely quantify the uncertainty in the estimated score and its stochastic

contribution to the errors by running the algorithm, establishing the theory

on FSR control.

3. The Data-Driven LASS Procedure

The key step in estimating the score Sπj is to develop a good estimate for

ddd = µµµ1 −µµµ2. In high-dimensional settings, most regularized LDA rules bet

on the sparsity of ddd (e.g., Tibshirani et al., 2003; Shao et al., 2011) to reduce

the high variability in the sample estimates. However, the sparsity require-

ment, which may not hold in practice and often only serves as a working

assumption, is counter-intuitive in the sense that the two classes are better

separated because ddd has more nonzero elements. In contrast, Efron (2009),

Greenshtein and Park (2009), and Dicker and Zhao (2016) propose LDA

rules based on Tweedie-type shrinkage estimators of ddd, sidestepping the

sparsity assumption. Existing nonsparse LDA rules have two limitations.

First, Tweedie-type estimates are intractable to analyze, making it difficult

to assess the uncertainty in the classification. Moreover, Tweedie’s formula

requires that the elements in ddd must be independent, which leads to an

efficiency loss when the dependence structure is highly informative (Cai

and Liu, 2011; Shao et al., 2011). We propose an easy-to-analyze shrink-
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3.1 Methodology

age estimator that overcomes the above limitations. The methodology and

illustrative examples are provided in Sections 3.1 and Section S4, respec-

tively, of the Supplementary Material. The data-driven LASS procedure is

presented in Section 3.2.

3.1 Methodology

Let X̄k and Ȳk be the kth coordinate of X̄ and Ȳ , respectively. We consider

a class of shrinkage estimators

d̂dd = (d̂k : 1 ≤ k ≤ p) =
{

(X̄k − Ȳk)qk : 1 ≤ k ≤ p
}
, (3.1)

where qk ∈ (0, 1) is a coordinate-wise shrinkage factor. To effectively reduce

the uncertainty and to quantify the associated misclassification risks, qk

needs to be designed carefully such that it converges to 1/0 at appropriate

rates according to the strength of the signal. The proposed method chooses

the following class of qk:

qk :=
g1k

(
|X̄k − Ȳk|

)
g0

(
|X̄k − Ȳk|

)
+ g1k

(
|X̄k − Ȳk|

) , (3.2)

where g0 and g1k are the density functions of N
(

0, n1+n2

n1n2

)
and

N
({

(2 + b)
√
σ̂kk +

√
(2 + b)2σ̂kk + 4

}√
(n1+n2)
2n1n2

log p, n1+n2

n1n2

)
, respectively,
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3.1 Methodology

b > 0 is a small constant, and σ̂kk is the pooled sample variance of {Xik :

i = 1 . . . , n1} and {Yik : i = 1 . . . , n2}. The constant b > 0 is included in

the definition only for theoretical considerations. In practice, we can choose

b ≈ 0 or simply set b = 0. In all our simulations and data analyses, we

report the results with b = 0.1.

The behavior of qk is qualitatively different, depending on the strength

of dk. The following proposition shows an intuitively appealing demarcation

phenomenon of qk, implying that the multiplicative shrinkage rule (3.1)

produces effects similar to that of hard-thresholding rules: strong signals

are kept, and moderate/weak signals are suppressed.

Proposition 1. Consider qk defined in (3.2). Let ak =
{

(2 + b)
√
σkk +

√
(2 + b)2σkk + 4

}
and ε be an arbitrarily small constant. Define the following three groups:

G1 =

{
1 ≤ k ≤ p : |dk| > (ak/2 + ε)

√
(n1+n2)
2n1n2

log p

}
(strong signals);

G2 =

{
1 ≤ k ≤ p : |dk| = o(

√
(n1+n2)
2n1n2

log p)

}
(weak signals);

G3 =

{
1 ≤ k ≤ p : |dk| < (ak/2− ε)

√
(n1+n2)
2n1n2

log p and k /∈ G2

}
(moderate

signals).

Then, there exists γ > 0 independent of p, n1, and n2, such that

(a) 1− E(qk | k ∈ G1) = O(p−γ);
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3.2 The Data-Driven LASS Procedure

(b) E(qk | k ∈ G3) = O(p−γ);

(c) E(qk | k ∈ G2) = O(p−(1+γ)).

We mention some merits of the proposed shrinkage rule. First, under

the dense regime, the multiplicative factor qk can produce significantly less

noisy estimates than the original observations, while retaining more nonzero

coordinates than thresholding rules do. This leads to shrinkage rules with

robust and superior performance at different sparsity levels. Second, un-

like LDA rules based on Tweedie’s formula (Efron, 2009; Dicker and Zhao,

2016), the coordinate-wise shrinkage scheme in (3.2) does not require in-

dependence between dk. Finally, the multiplicative rule is easy to analyze

and leads to provably valid rules for FSR control.

3.2 The Data-Driven LASS Procedure

We propose estimating Sπj = (WWW j−µµµ)>Σ−1ddd by Ŝj =

(
WWW j −

X̄XX + ȲYY

2

)>
Σ̂−1d̂dd.

First, Σ̂−1 is the estimated precision matrix and d̂dd is the proposed shrinkage

estimate (3.1). The estimation of the precision matrix has been intensively

studied in the literature; see Liu and Luo (2015), Cai et al. (2016), Loh and

Tan (2018), Wang et al. (2013), Sun and Zhang (2013), and Yuan (2010) for

related works. In our numerical studies, we use the ACLIME estimator pro-

posed in Cai et al. (2011). Next, d̂dd = ((X̄1− Ȳ1)q1, . . . , (X̄p− Ȳp)qp), where
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qk is as defined in (3.2). Let T̂ j :=
exp(Ŝj)

1 + exp(Ŝj)
. Denote {T̂ (j) : 1 ≤ j ≤ m}

as the ordered statistics. Define

k1 = min

{
1 ≤ j ≤ m :

1

j + 1

j∑
i=0

(1− T̂ (m−i)) ≤ α1

}
, k2 = max

{
1 ≤ j ≤ m :

1

j

j∑
i=1

T̂ (i) ≤ α2

}
.

(3.3)

The data-driven LASS procedure is given by δ̂δδ = (δ̂1, . . . δ̂m), where

δ̂j = I
{

1− T̂ j < min
(

1− T̂ (m−k1), 0.5
)}

+ 2 · I
{
T̂ j ≤ min

(
T̂ (k2), 0.5

)}
.

(3.4)

Remark 2. If we choose α1 = α2 = 0.5, then indecisions are not allowed,

by (3.4). That is, LASS becomes a classical rule that makes definitive

classifications on all individuals. We show that LASS is still superior to

existing methods in both theory and numerical performance under this

classical setup (Corollary 1 in Section 4 and Section 5.1).

4. Theoretical Properties of LASS

This section studies the theoretical properties of the data-driven LASS pro-

cedure. We focus on the regime of n1+n2

n1n2
log p → 0, which requires that

the dimension does not grow too fast relative to the sample size. Here, We

consider issues related to FSR control and optimality in turn. A discussion
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of connections to existing works is given in Section S7 of the Supplementary

Material.

We first state and explain a few conditions needed in our theoretical

analysis.

(A1) The covariance matrix Σ = (σkl)1≤k,l≤p satisfies 0 < ε0 ≤ σkk ≤ 1/ε0,

for all 1 ≤ k ≤ p, where ε0 is a fixed positive constant.

(A1) is a standard condition in matrix analysis, and is satisfied when

the covariance matrix is well conditioned, as assumed in, for example, Bickel

and Levina (2008).

(A2) The estimated precision matrix Σ̂−1 satisfies ‖Σ̂−1 − Σ−1‖2
2 = o(1).

Consistent estimation of the precision matrix Σ−1 has been studied

intensively. Effective estimators and sufficient conditions for consistent es-

timation are discussed by, among others, Bickel and Levina (2008), Yuan

(2010), Liu and Luo (2015), Cai et al. (2016), and Avella-Medina et al.

(2018). A more detailed discussion of (A2) is provided in the Supplemen-

tary Material S9.

(A3) |G1| ≥ 1 and |G3| = O( n1n2

n1+n2
), where G1 and G3 are defined in Propo-

sition 1 and correspond to collections of strong and moderate coordinates,

respectively, of ddd.

In (A3), |G1| ≥ 1 provides a sufficient condition under which LASS

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0219



makes at least one definitive classification with high probability. As op-

posed to existing works that require the sparsity of both G1 and G3, we do

not impose an upper bound on |G1|. Our condition seems to be sensible,

because having more strong signals (dk ∈ G1) is helpful for distinguishing

the two classes, and what really hurts the performance of LDA rules is an

overwhelming number of nonzero elements of moderate strength (dk ∈ G3).

The condition |G3| = O( n1n2

n1+n2
) corresponds to a weaker notion of sparsity,

in the sense that the sparsity or approximate sparsity conditions in existing

works (e.g., Cai and Liu, 2011) are violated if |G3| � n1n2

n1+n2
. Note that

the conventional sparsity notion assumes that there are relatively few sig-

nals, whereas we require that relatively few signals of moderate strength

fall within the narrow range defined by G3, which eliminates the need for

the counter-intuitive sparsity condition on G1, as used in existing works.

The superiority of LASS under the dense signal setting is illustrated in our

numerical results (Section 5). The next theorem establishes the asymptotic

validity of LASS for FSR control.

Theorem 3. Let δ̂δδ be the data-driven LASS procedure defined in (3.4).

Under conditions (A1)–(A3), we have mFSRc
δ̂δδ
≤ αc + o(1) and FSRc

δ̂δδ
≤

αc + o(1), for c = 1, 2.

Our conditions on error rate control are substantially different in na-
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ture to those required by state-of-the-art LDA rules. First, the sparsity of

Σ−1 is not a necessary condition for our theory on FSR control (Note that

even when the sparsity of Σ−1 is needed for consistent estimation, the spar-

sity conditions on Σ−1 and ddd usually correspond to fundamentally different

notions in scientific studies. Our theory seems more sensible, because it

eliminates the need for the sparsity of ddd). Second, our theory needs neither

sparsity nor a consistent estimation of ddd. In particular, if
∑

i∈G1 d
2
i → ∞,

as long as
∑

i∈G1 d̂
2
i also goes to ∞, we can still perfectly separate the two

classes under condition (A3). Finally, in contrast to existing works, our

theory has no restrictions on the norm of ddd or Σ−1ddd. Note that estimation

and classification are fundamentally different tasks: the assumptions on the

norm are natural for estimation problems, but counter-intuitive for classifi-

cation problems, where larger norms make the classification task easier and

lead to lower error rates.

Next, we investigate the asymptotic optimality of LASS. Because the

moderate and weak signals have been shrunk to values close to zero, LASS is

asymptotically optimal if weak and moderate signals have negligible effects

or if strong signals have dominating effects. We formalize this intuition in

the next theorem.

Theorem 4. In addition to conditions (A1)–(A3), if either of the following
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two conditions hold

(A4)
∑

k/∈G1 d
2
k = o(1),

(A5)
∑

k∈G1 d
2
k →∞,

then we have mFSRc
δ̂δδ
≤ αc+o(1), FSRc

δ̂δδ
≤ αc+o(1), and

ECC
δ̂δδ

ECCδδδOR
= 1+o(1).

If we let α1 = α2 = 0.5, then the FSR control setup reduces to the classi-

cal setup where indecisions are not allowed. Let δδδ be a classification rule tak-

ing only values one or two, and define L(δδδ) = P {θj 6= δj|(XXX i, 1 ≤ i ≤ n1), (YYY i, 1 ≤ i ≤ n2)},

R(δδδ) = E {L(δδδ)}. A direct consequence of Theorem 4 is given below.

Corollary 1. (Risk consistency). Suppose we choose α1 = α2 = 0.5. Then,

under conditions (A1)–(A3) and one of (A4) and (A5) , we have R(δ̂δδ) −

R(δδδF )→ 0, where δδδF is the oracle Fisher’s rule.

5. Numerical Experiments

This section illustrates the numerical performance of LASS using both sim-

ulated and real data. The simulation considers two setups: the conventional

setup that does not allow indecisions (Section 5.1), and the selective clas-

sification setup that aims to control the FSR (Section 5.2). Two real data

sets are discussed in Section 5.3 and Section S6 of the Supplementary Ma-

terial. In all analyses, LASS is implemented using b = 0.1 in (3.2), and the

ACLIME method (Cai et al., 2016) is adopted for estimating Σ−1. For the
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5.1 Simulation: Conventional setup

simulated data, we take n1 = n2 = n.

5.1 Simulation: Conventional setup

We start with the classical setting in which no indecisions are allowed. We

compare LASS with the following methods: (a) Fisher’s rule, using the true

µµµ1, µµµ2, and Σ−1 (denoted “Oracle”), which serves as the optimal benchmark

for all classification rules; (b) the LPD rule proposed by Cai and Liu (2011)

(denoted “LPD”), which is implemented using the code provided on the

authors’ website; (c) the AdaLDA rule proposed by Cai and Zhang (2019)

(denoted “AdaLDA”), which is implemented using the code provided on the

authors’ website; (d) Fisher’s rule, using sample estimates of µµµ1, µµµ2, and Σ−1

(denoted “Naive”); specifically, Sπj is estimated as
(
WWW j − X̄XX+ȲYY

2

)>
Σ̂−1(X̄XX−

ȲYY ), where Σ̂−1 is the Penrose inverse of the sample covariance matrix; (e)

the L1 logistic regression method (denoted “Lasso”), here, we follow Lei

(2014) and choose the tuning parameter using cross-validation; and (f) the

empirical Bayes method proposed in Efron (2009) (denoted “Ebay”). We

use the R-package Ebay to estimate ddd, and estimate Σ−1 using a diagonal

matrix in which the diagonals are the inverses of the sample variances. We

present numerical results in the next two subsections to show that LASS

(a) is comparable to state-of-the-art methods in the sparse case, and (b)
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substantially outperforms competing methods in the dense case.

5.1.1 Sparse setting

Let µµµ1 = (0, ..., 0)> ∈ Rp, and µµµ2 be a vector with the first 10 entries being

0.5, the next 10 0.1(log p/n)1/2, and the rest zero. We consider the following

three correlation structures that are widely considered in the literature (Cai

and Liu, 2011; Cai and Zhang, 2019; Avella-Medina et al., 2018):

Model 1: Band graph. Let Σ−1 = Ω = (ωij)p×p, where ωii = 1, ωi,i+1 =

ωi+1,i = 0.35, ωi,i+2 = ωi+2,i = 0.175, and ωij = 0 if |i− j| > 2.

Model 2: AR(1) structure. Let Σ−1 = Ω = (ωij)p×p, where ωij = 0.3|i−j|.

Model 3: Block structure. Let Σ−1 = Ω = (B + δIp)/(1 + δ), where

bij = bji = 0.05 · Bernoulli(0.1) for 1 ≤ i ≤ p/2, and i < j ≤ p,

bij = bji = 0.05 for p/2 + 1 ≤ i < j ≤ p, bii = 1 for 1 ≤ i ≤ p, and

δ = max{−λmin(B), 0}+ 0.1.

The size of the training set is n = 400, with p varying from 500 to

1000. The misclassification rate is computed based on m = 2000 test points

generated from N (µµµ1,Σ) or N (µµµ2,Σ) with equal probability. We repeat the

experiment 100 times, and report the misclassification rates (in percentage)

in Table 1.
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p Oracle Naive LASS LPD AdaLDA LASSO Ebay
Model 1

500 13.74 29.39 14.78 15.78 14.79 15.75 15.93
600 13.64 33.12 14.72 15.52 14.55 15.78 15.66
700 13.81 38.51 15.02 15.80 14.85 16.10 15.99
800 13.64 47.72 14.87 15.89 14.81 16.12 15.62
900 13.70 41.66 14.44 17.41 14.75 16.31 15.79
1000 13.70 41.16 14.59 18.06 14.73 16.27 15.92

Model 2
500 14.82 30.68 15.98 16.61 15.77 16.72 16.03
600 14.81 34.45 16.15 16.68 15.77 16.84 16.35
700 14.79 39.08 16.21 16.67 15.86 16.92 16.36
800 14.71 47.83 16.13 16.77 15.91 16.98 16.02
900 14.87 41.79 16.19 18.14 15.86 17.08 16.37
1000 14.92 41.25 16.38 18.72 15.92 17.11 16.51

Model 3
500 21.16 36.20 22.93 23.83 23.71 24.21 23.31
600 20.87 39.44 23.14 24.23 24.04 24.69 23.48
700 21.00 42.81 23.52 24.69 24.49 25.03 23.88
800 20.99 48.59 23.82 25.00 24.87 25.28 24.08
900 21.02 44.22 24.29 25.78 25.37 26.01 24.48
1000 21.05 43.02 24.72 27.04 26.11 26.41 25.08

Table 1: Comparison of average misclassification rate in percentage. The small-
est error rate (after that by the oracle) in each setting is indicated in bold.

The Naive method can be substantially improved on by LPD, AdaLDA,

and LASSO, all of which make strong assumptions on the sparsity struc-

ture of the data-generating model. Although no method dominates, LASS

and AdaLDA seem to perform best among all methods considered. LASS

is comparable to AdaLDA in terms of the overall effectiveness across the

three settings. This is impressive because Cai and Zhang (2019) show that

AdaLDA is minimax optimal in sparse LDA. The next simulation shows

that in the nonsparse setting, LASS substantially outperforms AdaLDA.

Similarly to LASS, the Ebay method adopts the shrinkage idea and does

not make strong assumptions on the sparsity structure. Ebay performs
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reasonably well. However, it relies on the independence assumption, has

no theoretical guarantee on the convergence of the error rate, and is less

effective than LASS in all settings.

5.1.2 Dense setting

Consider the three models in the previous section. The choices of µµµ1 and Σ

are the same, but µµµ2 contains more nonzero entries: the first (p/4) entries

are 0.4, and the rest are zero. The misclassification rates (in percentage)

are summarized in Table 2. As expected, methods that rely heavily on the

sparsity assumption of ddd, such as LPD and AdaLDA, do not perform well.

We mention a few important patterns in the results. First, the performance

of LPD and AdaLDA deteriorates as p increases. This is undesirable, con-

sidering that the classification problem seems to have become easier, as

shown in the improved performance of the oracle rule. In many settings,

LPD and AdaLDA perform worse than Naive. Second, Ebay does relatively

well when p is small, but its performance also deteriorates as p increases.

Furthermore, the misclassification rates can be much higher than those of

the oracle benchmark. Third, LASS and Lasso substantially outperform the

competing methods in most settings. The performance of both improves

as p increases, exhibiting the same desirable trend as that of the oracle
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rule. LASS dominates Lasso, and the gap in the error rate is substantial in

several settings.

5.2 Simulation: FSR control

We now examine the selective inference setup in which the goal is to control

the FSR. For Naive, Lassom and Ebay, we first form an estimate for the

discriminant, denoted as Ŝj, and then use T̂ j =
exp(Ŝj)

1+exp(Ŝj)
in (3.3) and (3.4),

which serve as the base algorithm for FSR control. LPD and AdaLDA are

omitted, because they only produce the signs of the discriminants, and it

is unclear how to adjust the algorithms for FSR control.

Next, we present our results pertaining to FSR control in the sparse

settings considered in Section 5.1.1, but omit the results for the dense set-

tings in Sections 5.1.2. This is because when the classification task becomes

easy (as indicated by Table 2), the misclassification rate is so low that the

FSR framework is no longer needed.
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p Oracle Naive LASS LPD AdaLDA Lasso Ebay
Model 1

500 0.07 2.95 0.20 5.19 2.09 0.52 0.12
600 0.02 4.48 0.09 5.00 3.18 0.31 0.42
700 0.01 9.79 0.04 11.59 4.80 0.20 0.78
800 0.00 39.79 0.03 15.24 6.38 0.16 1.09
900 0.00 12.37 0.01 15.45 8.59 0.15 1.30
1000 0.00 8.42 0.01 11.29 10.17 0.12 1.54

Model 2
500 0.08 3.02 0.23 5.48 2.05 0.54 0.16
600 0.03 4.56 0.10 4.93 2.81 0.32 0.46
700 0.01 10.08 0.05 11.80 4.38 0.23 0.79
800 0.00 39.94 0.02 12.69 6.20 0.15 1.15
900 0.00 12.67 0.01 15.27 8.14 0.13 1.32
1000 0.00 8.36 0.01 11.31 9.42 0.10 1.56

Model 3
500 0.26 5.06 1.32 6.52 3.37 2.04 1.50
600 0.08 6.35 0.86 6.22 3.78 1.37 1.69
700 0.02 11.72 0.62 5.34 4.64 0.99 1.92
800 0.01 39.89 0.44 5.32 6.36 0.70 2.05
900 0.00 14.08 0.38 16.00 8.25 0.61 2.18
1000 0.00 10.05 0.36 18.96 10.47 0.51 2.22

Table 2: Comparison of average misclassification rates in percentage. The
smallest error rate (after that by the oracle) in each setting is indicated in
bold.

Consider the models in Section 5.1.1. We fix n = 400 and vary p

from 200 to 800. The target FSR1 and FSR2 levels are both set to 0.1.

The experiment is repeated for 100 times, and the average FSRs (shown

in the first two columns) and power (defined as ECC/m, and shown in the

last column) are reported in Figure 1. Our findings are as follows. First,

both Naive and Ebay fail to control the FSR. The Naive method becomes

worse as p increases. This corroborates the analysis in Bickel and Levina

(2004), which shows that LDA rules based on sample estimates suffer from

high dimensionality. Second, both Lasso and LASS control the FSR at
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the nominal level, showing that our proposed data-driven algorithm (3.3) is

effective for FSR control when equipped with reasonably good estimates of

the scores. Third, LASS controls the FSR at the nominal level accurately

across all settings. Lasso is conservative and has lower power.

Figure 1: Comparison of FSR and Power. Naive and Ebay fail to control the
FSR. LASS controls the FSR at the nominal level with the highest power.
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5.3 p53 Mutants Data

5.3 p53 Mutants Data

Finally, we perform classification on p53 mutants data (Danziger et al.,

2009), which consist of 16,772 tissue samples, and a p = 5, 407-dimensional

vector is measured for each sample. Among the 16,772 samples, 143 are

determined to be “active,” and the rest are determined to be “inactive.”

We randomly select 100 active samples and 100 inactive samples as our

training data, and then use the remaining 43 active samples and 50 random

inactive samples as our testing set. To make the classification problem more

difficult, an independent N (0, 40) noise variable is added to each gene in

both the training and the testing sets.

We follow the previous preprocessing steps: (a) the training data are

used to estimate the sample variances; (b) genes with variances greater than

102 or smaller than 10−2 are dropped,;and (c) the top 100 genes with the

largest t-statistics are used. The experiment is repeated 50 times, with the

results summarized in Tables 3 and 4.

Table 3 contains the results under the conventional setup. LASS per-

forms as well as the LPD and AdaLDA rules. However, all methods have

high misclassification rates. Hence, we consider FSR control. We set the

target FSR levels for both classes to 0.1. In Table 4, we compare the FSR

and power of different methods, showing that LASS effectively controls the
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Table 3: Misclassification rates of different methods.
LASS Naive LPD AdaLDA Lasso Ebay

Misclassification 30.73% 40.24% 32.34% 30.28% 31.23% 31.57%

Table 4: FSR and power comparison.
LASS Naive Lasso Ebay

FSR1 10.38% 41.90% 17.81% 32.01%
FSR2 11.51% 38.75% 16.00% 30.88%
Power 20.60% 59.38% 19.25% 68.41%

FSR, while Naive, Ebay, and Lasso fail to do so.

6. Conclusion

We have proposed a selective classification framework for high-dimensional

LDA problems. The proposed LASS procedure, which provides an inde-

cision option for observations that cannot be classified with confidence,

controls the FSR at user-specified levels. LASS is easy to analyze and has

robust performance across sparse and dense regimes.

There are several possible directions for future research. First, it would

be of interest to relax Condition (A2). Intuitively, if the signal to noise

ratio
√
ddd>Σ−1ddd is high, then some errors in estimating Σ̂−1 and d̂dd can be

tolerated without degrading the accuracy of LASS-type classifiers signifi-

cantly. Second, it is desirable to design model-free methods that guarantee

FSR control without requiring a consistent estimation of class probabilities.

Promising ideas include constructing knockoffs or mirror sequences, as in
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Barber and Candès (2015) and Leung and Sun (2021), and using conformal

techniques, as in Bates et al. (2021); Guan and Tibshirani (2022). Finally,

we have focused on the situation in which both the training and the test

data come from two classes. It would be of interest to generalize the frame-

work to handle a multi-class setup, and to develop new inference procedures

for detecting novel classes (outliers) in the test data.

Supplementary Material

Supplementary Material contains proofs of the main theorems, propositions,

corollaries, and technical lemmas, an argument establishing the asymptotic

equivalence of FSR and mFSR, additional numerical results and illustra-

tions, an example showing the advantage of using LASS rather than LPD, a

proof that class-specific FSR control implies global FSR asymptotic control,

and a discussion about condition (A2).
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