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A MORE EFFICIENT ISOMORPHISM CHECK

FOR TWO-LEVEL NONREGULAR DESIGNS

Chunyan Wang1 and Robert W. Mee2

1Renmin University of China and 2University of Tennessee

Abstract: In this paper, we propose some new necessary and sufficient conditions for identifying

isomorphism in two-level fractional factorial designs, using a parallel flats structure. A new

algorithm for checking isomorphism is provided accordingly. The proposed algorithm is simple

and general, and can be used for either regular or nonregular designs. By taking advantage of

the parallel flats structure when it exists, the method is much faster than current methods for

assessing the isomorphism of nonregular two-level designs. Examples are given to illustrate the

results. An efficient implementation of the proposed algorithm in Matlab can be found in the

online Supplementary Material.

Key words and phrases: Algorithm, equivalent group, parallel flats, two-level fractional factorial.

1. Introduction

In this study, we restrict our attention to two-level fractional factorial designs,

which are extremely popular screening designs. Two fractional factorial designs are

called isomorphic if and only if one design can be obtained from the other by row

permutations, column permutations, and level permutations within columns. Two
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A MORE EFFICIENT ISOMORPHISM CHECK FOR TWO-LEVEL NONREGULAR DESIGNS 2

isomorphic designs share the same statistical properties in some classical ANOVA

models, and thus are considered essentially the same. Thus, determining isomorphism

is important both in theory and in practice.

Given the simple algebraic structure of regular designs, the earliest studies on

isomorphism checks focused on such designs. Draper and Mitchell (1967, 1968) proved

that two isomorphic regular designs must have the same word length pattern. Draper

and Mitchell (1970) further showed that two isomorphic regular designs must have the

same letter pattern. The letter pattern counts the frequency of letters in words of

different lengths. Agreement in letter pattern implies having the same word length

pattern. Note that designs with the same letter pattern are not necessarily isomorphic;

see Chen and Lin (1991), who disprove a conjecture of Draper and Mitchell (1970).

Chen, Sun, and Wu (1993) first proposed necessary and sufficient conditions by

“applying some algebraic and combinatorial methods” to identify isomorphic regular

designs. By matching the factors using their delete-one-factor projections, Xu (2009)

greatly improved the isomorphism checking procedure of Chen, Sun, and Wu (1993),

and developed a sequential algorithm for constructing efficient two-level regular designs.

Shrivastava and Ding (2010) provided a new approach for testing the isomorphism of

two-level regular designs by modeling them as simple bipartite graphs. Liu, Yang, and

Liu (2011) proposed the three-dimensional letter interaction pattern matrix (LIPM),

showing that it can uniquely determine a design, and thus be an efficient tool for

checking isomorphism.

For isomorphism in general two-level fractional factorial designs (which can be
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either regular or nonregular), Ma, Fang, and Lin (2001) introduced the NIU algorithm

based on the centered L2-discrepancy, and Fang and Zhang (2004) proposed the

minimum aberration majorization criterion based on the generalized word length

pattern. However, the centered L2-discrepancy and generalized word length pattern

do not uniquely determine an isomorphism class, and so can only be used for initial

screening for non-isomorphism. Clark and Dean (2001) were the first to present

necessary and sufficient conditions for any two designs to be isomorphic, using the

Hamming distance matrices of their projection designs and providing a checking

algorithm. Beyond the Hamming distance matrices, Ye (2003), Cheng and Ye (2004),

and Pang and Liu (2011) developed other necessary and sufficient conditions, as well as

algorithms for checking isomorphism using indicator functions. Lin and Cheng (2012)

proposed several efficient initial screening methods for distinguishing designs based on

the count vector. They proved that their split-count matrix N sp is more efficient than

initial screening methods based on CFV,GWLP,Ku, and CD2
2. Further details about

these measures can be found in Deng and Tang (1999), Tang and Deng (1999), Xu

(2003), and Ma, Fang, and Lin (2001). For other developments related to design

isomorphism and complete enumeration results, see Stufken and Tang (2007), Sun, Li,

and Ye (2008), Shrivastava and Ding (2010), Schoen, Eendebak, and Nguyen (2010),

Ke et al. (2023), and Weng, Fang, and Elsawah (2023).

Parallel flats designs (PFDs), introduced in Connor and Young (1961), are a class

of nonregular designs that retain some of the simplicity of regular fractional factorial

designs. PFDs have received widespread attention, because they enjoy many desirable
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properties; see, for example, Srivastava and Li (1996), Liao et al. (1996), Srivastava

and Chopra (1973), and Jones et al. (2019). More recently, Wang and Mee (2021)

give a comprehensive review of two-level PFDs and develop a general theory. Edwards

and Mee (2023) systematically study the structure of nonregular two-level designs, and

connect the block diagonal information matrix of nonregular designs to the parallel

flats structure.

This study aims to provide some new necessary and sufficient conditions for

identifying isomorphism in two-level fractional factorial designs, by incorporating the

parallel flats structure of two-level nonregular designs. A new algorithm for checking

isomorphism is provided that is simple and applicable to both regular and nonregular

designs. For nonregular designs with a parallel flats structure, the method is much

faster than existing methods. Two examples are given to illustrate the results.

The rest of the paper is organized as follows. Section 2 gives some preliminary

notation. In Section 3, we propose some necessary and sufficient conditions for

identifying isomorphism in two-level fractional factorial designs. In Section 4, we

propose a new algorithm for checking isomorphism and present several examples.

Section 5 concludes the paper.

2. Preliminary notation and results

A regular 2n−p design is also known as a single flat design, in the sense that it

consists of all treatment combinations x = (x1, x2, . . . , xn) that satisfy the equation

A � x = c, where A = (aij) is a p × n alias matrix over GF[2] of rank p (GF[2], the

Galois Field of order 2, is a finite field consisting of two elements, where the operations

Statistica Sinica: Preprint 
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of addition and multiplication are performed over the set {0,1} modulo 2 (Mukerjee

and Wu, 2006, p.18), c is a p × 1 vector with levels ±1, and A � x is defined as the

p × 1 vector with ith element xai11 · · · xainn . For given A, one has 2p different options

for the vector c, corresponding to the 2p disjoint single flats; the full 2n design is the

concatenation of these. Taking f single flats corresponding to C = [c1, . . . , cf ], we

obtain a PFD with f flats (f -PFD). Thus, an f -PFD is determined by the pair (A,C).

For even f , the matrix C can sometimes be reduced, such that the design is an

(f/2)-PFD composed of flats of size 2n−(p−1). If an f -PFD cannot be reduced in

this way, it is said to be of minimal form (Edwards and Mee, 2023); without loss of

generality, we assume the f -PFD is of this form. Following Edwards and Mee (2023),

a two-level design defined by (A,C) with N runs and n factors is an f -PFD with

1 ≤ f ≤ N . When f = 1, it is a regular design, and any 2-PFD reduces to f = 1.

When f = N , it is an N -PFD composed of flats of size 1, with p = n; in this case, there

is no special structure, because an N -PFD is determined by an (A,C) pair, where A is

an identity matrix of order n and C is a transpose of the design. Cheng (2014, p.139)

excludes the case of f = N , considering only p < n. The best gains in our isomorphism

check occur for f -PFDs with 3 < f ≤ N/2.

Some new necessary and sufficient conditions for identifying isomorphism designs

can be proposed based on their (A,C) pairs, and a new algorithm for checking

isomorphism is provided accordingly. Using a parallel flats structure, the proposed

algorithm can greatly reduce the computational effort compared with that of existing

algorithms. This is the subject and motivation of our study.
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3. Necessary and sufficient conditions for isomorphism

Benefiting from the parallel flats structure, in this section, we propose several

necessary and sufficient conditions for identifying isomorphism in two-level fractional

factorial designs.

Let D1, D2 be two 2-level designs with N runs and n factors. Without loss of

generality, suppose that the first row of both designs consist entirely of +1. Then,

for i = 1, 2, Di must be determined by (Ai, Ci) with N = fi × 2n−pi , for some fi and

pi. There is a column consisting entirely of +1 in Ci, and we denote the single flat

corresponding to this column as D0i. We focus only on the case f1 = f2; otherwise,

the two designs are non-isomorphic.

Following Wang and Mee (2021), two f -PFDs are called equivalent if one f -PFD

can be obtained from the other by row permutations and column sign switches. Thus,

equivalent designs must be isomorphic. The following lemma is obvious.

Lemma 1. If D1 and D2 are isomorphic, there exists a column permutation to make

them equivalent.

Then, we have the following result, which is taken from Wang and Mee (2021).

Proposition 1. If A1 = A2, then D1 and D2 are equivalent if and only if C1 and C2

belong to the same group. Therein, the group of Ci is

GCi
= {Cij ◦ Ci : j = 1, 2, . . . , f}, with Cij ◦ Ci = {Cij ∗ Ci1, . . . , Cij ∗ Cif}, (3.1)

where Cij represents the jth column of Ci, for i = 1, 2 and j = 1, . . . , f, and

α ∗ β = (α1β1, . . . , αfβf )
T , for any two column vectors α = (α1, . . . , αf )

T and

β = (β1, . . . , βf )
T .
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In Proposition 1, the two f -PFDs are assumed to have the same A matrix.

However, two equivalent designs can have different A matrices, because the (A,C)

pair representing a PFD is not unique. Now, we propose a general theory for checking

the equivalence of two f -PFDs.

Theorem 1. Let D1, D2 be two f -PFDs with N runs and n factors, where Di is

determined by (Ai, Ci), both of minimal form, with N = f × 2n−p, for i = 1, 2. Then,

D1 and D2 are equivalent if and only if (i) the row spaces of A1 and A2 are equal, and

(ii) when (A2, C2) is re-expressed as (A′2, C
′
2), so that A′2 = A1, the corresponding C ′2

belongs to the same group as C1.

Proof. We first consider the sufficiency of the conditions. If the row spaces of A1 and

A2 are the same, then D01 and D02 are equal up to row permutations, and hence are

equivalent. Thus, we can choose A′2 to equal A1. By condition (ii), C ′2 is in the same

group as C1, so by Wang and Mee (2021, Theorem 1), D1 and D2 are equivalent.

Next, we prove the necessity, in two parts. First, if (i) does not hold, then D01 and

D02 are nonequivalent 2n−p designs. They are based on at least one different generator,

and thus must have at least 2p−1 different defining words. Let W1 be the defining words

for D01, and W2 be the set of defining words for D02. Denote the set of words in W1

but not in W2 as W1 \W2, and the set of words in W2 but not in W1 as W2 \W1. The

cardinality of each of these sets is at least 2p−1. Suppose D1 and D2 are equivalent.

Then, the words in W1 \W2 can be removed in D1, and the words in W2 \W1 can be

removed in D2. Consider the words in W1 \W2. There exist 2p−1 words in W1 \W2,

corresponding to p independent words of W1 and all the odd-order interactions of these

Statistica Sinica: Preprint 
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p words. Let W̄1 be this set of 2p−1 words. We have W̄1 ⊂ W1 \W2. Because all words

in W1 \W2 are removed from D1, for each of the 2p−1 words in W̄1, the sum of the

values of the word in all f flats of D1 should be zero. This indicates that each row of

K(C1) sums to zero, where K(C1) is the 2p−1 × f matrix generated by the p rows of

C1 and all its odd-order interaction rows. Design CT
1 must be a foldover design, and

thus D1 can be reduced to a (f/2)-PFD. Similarly, D2 can be reduced to a (f/2)-PFD

by considering the words of W2 \ W1. Thus, if D1 and D2, based on nonequivalent

single flats D01 and D02, respectively, are equivalent, then both can be reduced. This

contradicts our assumption that both (A1, C1) and (A2, C2) are of minimal form.

Now, we consider the second part of the necessity proof. If (i) holds, then D01 and

D02 are equivalent, and so D01 = D02 up to row permutation. Then, by Wang and

Mee (2021, Theorem 1), if (ii) does not hold, then D1 and D2 are not equivalent.

Moreover, we obtain the detailed form of C ′2 when (i) holds. Let Λ be the binary

0-1 matrix denoting a full 2p factorial, sorted by columns from right to left, omitting

the first row of all zeroes. Thus, the row number of λi = [λi1, . . . , λin], the ith row of

Λ, is given by [1, 2, 4, . . . , 2p−1]λTi , (i = 1, . . . , 2p − 1). If the row spaces of A1 and A2

are equal, then the rows of A1 are a subset of the rows of ΛA2. Let I = [i1, . . . , ip]

such that A1 = [λi1 ; . . . ;λip ]A2 = A′2. Now, we determine the C matrix, say C ′2, under

A′2 for design D2. According to the definition of (A,C) of an f -PFD, the p rows of A

correspond to p independent words, and the p rows of C indicate the values of these

words in f flats. Let Γ(C2) be a (2p − 1) × f matrix with the ith row defined as∏p
j=1(1 − 2λij)c2j, for C2 = (cT21, . . . , a

T
2p)

T , and let the product of two row vectors

Statistica Sinica: Preprint 
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α = (α1, . . . , αf ) and β = (β1, . . . , βf ) be defined as α × β = (α1β1, . . . , αfβf ). Then,

the jth row of Γ(C2) indicates the values of the word λjA2 in the f flats, for j =

1, . . . , 2p− 1. Thus, C ′2 can be obtained by concatenating the p rows of Γ(C2) by index

I, where I = [i1, . . . , ip], such that A1 = [λi1 ; . . . ;λip ]A2 = A′2.

Based on Lemma 1 and Theorem 1, a new necessary and sufficient condition for

identifying isomorphism can be obtained, as shown in the following theorem.

Theorem 2. Let D1, D2 be two f -PFDs with N runs and n factors, where Di is

determined by (Ai, Ci), both of minimal form, with N = f × 2n−p, for i = 1, 2. Then,

they are isomorphic if and only if there exists a permutation τ of integers {1, . . . , n}

such that (i) the row spaces of A1 and A
{c.τ}
2 are equal, and (ii) when (A2, C2) is

re-expressed as (A′2, C
′
2), so that A′2 = A1, the corresponding C ′2 belongs to the same

group as C1. Therein, A
{c.τ}
2 reorders the n columns of A2 with index τ . We call τ the

isomorphic map from D2 to D1.

The proof of Theorem 2 is provided in Appendix B. By a similar proof to that for

Theorem 1, we can obtain the form of C ′2 when (i) holds. That is, C ′2 can be obtained

by concatenating the p rows of Γ(C2) by index I∗, where I∗ = [i∗1, . . . , i
∗
p], such that

A1 = [λi∗1 ; . . . ;λi∗p ]A
{c.τ}
2 = A′2 and A

{c.τ}
2 reorders the n columns of A2 with index τ .

A full search of the n! possible permutations of τ is very time consuming, and can

be avoided by using the parallel flats structure. First, we have the following results.

Proposition 2. Row spaces of A1 and A
{c·τ}
2 are equal for some permutation τ if and

only if D01 and D
{c·τ}
02 are equivalent for permutation τ . That is, τ is an isomorphic

Statistica Sinica: Preprint 
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map from single flat D02 to D01.

Both D01 and D02 are 2n−p designs. From Theorem 2 and Proposition 2, an

isomorphic map from D2 to D1 must be an isomorphic map from D02 to D01. This

reduces the number of permutations we need to search from n! to n!/p!, because all n

columns in the regular designs can be generated by any n − p independent columns.

The number can be reduced further by using the row coincidence distributions of

the delete-one-factor projections. See Appendix A for details about row coincidence

distributions.

For any permutation τ of integers {1, . . . , n}, if τ is an isomorphic map from

D02 to D01, D01(−i) and D02(−τ(i)) must be isomorphic, and thus must have the

same row coincidence distribution, where D(−i) is obtained from D by deleting the

ith factor for any design D. Thus, τ cannot be an isomorphic map if D01(−i) and

D02(−τ(i)) do not have the same row coincidence distribution, for some i. For

convenience, we call a permutation τ feasible if D01(−i) and D02(−τ(i)) have the same

row coincidence distribution for every i. The key idea of this insight is to entertain

only feasible maps by matching the factors using the row coincidence distributions of

the delete-one-factor projections (delete-one row coincidence distributions, for short).

An analogous technique was previously used by Xu (2009), demonstrating significant

computational advantages.

Thus, all we need to do is search from all feasible maps. Note that such an

isomorphic map may not be unique; however, we care only about the existence of

such a map, not its uniqueness. An algorithm for identifying isomorphism in two-level

Statistica Sinica: Preprint 
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fractional factorial designs is proposed in the next section.

4. An algorithm for isomorphism check

In this section, we propose a new algorithm for testing for isomorphism in two-level

fractional factorial designs, based on Theorem 2. Consider two 2-level designs, with

N runs and n factors being compared. The isomorphism check method is given in the

following algorithm.

Step 0. Multiply the N rows of each design by its first row, and denote the resulting

designs as D1 and D2, respectively. Thus, the first rows of D1 and D2 have entries

of +1.

Step 1. Compute the row coincidence distributions for D1 and D2. If the row

coincidence distributions do not coincide, then the designs are not isomorphic.

Otherwise, go to Step 2.

Step 2. For i = 1 and 2, obtain (Ai, Ci) from Di using the algorithm of Edwards and

Mee (2023), in which N = fi × 2n−pi , Ai and Ci are matrices of size pi × n and

fi × pi, respectively, and Ci has di distinct columns, for i = 1, 2. If f1 6= f2

or d1 6= d2, D1 and D2 are non-isomorphic. If f1 = f2 = N , go to Step 4?.

Otherwise, let f = f1 = f2 and p = p1 = p2, obtain the single flats of D1 and

D2, denoted as D01 and D02, respectively, containing the row (1, . . ., 1), and go

to Step 3.

Step 3. Compute the row coincidence distributions for D01 and D02. If these differ,

then D1 and D2 are not isomorphic. Otherwise, compute the n delete-one row

Statistica Sinica: Preprint 
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coincidence distributions forD01 andD02. If the sets of delete-one row coincidence

distributions do not coincide, then D1 and D2 are not isomorphic. Otherwise, go

to Step 4.

Step 4. For each column of D01, count the frequency for each distinct delete-one row

coincidence distribution that appears. Let ki be the frequency for the ith column.

Relabel the columns of D01 by selecting q = n − p new independent columns so

that their frequency numbers ki are as small as possible sequentially, and denote

the resulting design as D′01. Select q independent columns from D02 that have

the same delete-one row coincidence distributions as those of the q independent

columns from D′01, and relabel the columns. If D01 and D02 do not match after

relabeling the independent columns, consider another choice of relabeling and/or

another choice of independent columns from the feasible maps. If D01 and D02

match after relabeling the independent columns under the choice of independent

columns, obtain the permutation τ and check whether C1 and Γ(C2){r.I
∗} belong

to the same group, where Γ(C2){r.I
∗} consists of the p rows of Γ(C2) with index

I∗. I∗ = [i∗1, . . . , i
∗
p], such that A1 = [λi∗1 ; . . . ;λi∗p ]A

{c.τ}
2 . If so, the algorithm stops,

D1 and D2 are isomorphic, and it outputs the isomorphic map τ . If not, consider

another choice of relabeling and/or another choice of independent columns. If no

such isomorphic map τ can be found after an exhaustive search, the two designs

are non-isomorphic.

Step 4?. With f = N , both A1 and A2 can be identity matrices of order n; then,

C1 = D′1 and C2 = D′2. For each permutation τ of integers {1, . . . , n}, check

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0200



A MORE EFFICIENT ISOMORPHISM CHECK FOR TWO-LEVEL NONREGULAR DESIGNS 13

whether C1 and C
{r.τ}
2 belong to the same group, where C

{r.τ}
2 reorders the n

rows of C2 with index τ . If so, the algorithm stops, D1 and D2 are isomorphic,

and it outputs the isomorphic map τ . If not, consider another choice. If no such

isomorphic map τ can be found after an exhaustive search, the two designs are

non-isomorphic.

In theory, our Step 4 requires O(nf 3
(
n
q

)
q!) operations for the worst case, because

there are at most
(
n
q

)
q! feasible maps for relabeling the n columns, and each permutation

requires nf 3 operations. In most instances, far fewer feasible maps need to be

considered, owing to mismatched delete-one row coincidence distributions.

Remark 1. Note that, theoretically, in Step 3, we can only detect non-isomorphism

between D01 and D02. In most instances, however, we can also verify whether two

designs are isomorphic, because the row coincidence distribution (or, equivalently, the

word length pattern) uniquely determines a regular design for the vast majority of

cases; see the catalog of all regular designs for n ≤ 11 of size 4 and 8 in Wang and Mee

(2021, Supplement) and H. Xu’s website http://www.stat.ucla.edu/∼hqxu/pub/ffd2r/

for all resolution III designs of size 16 and 32.

An efficient Matlab implementation of the proposed algorithm is given in the

Supplementary Material.

We can easily see that the new algorithm presents a considerable time saving over

the isomorphism checking procedures of Clark and Dean (2001), Ye (2003), and Pang

and Liu (2011), as summarized in Table 1. In particular, rather than considering

all 2n sign switches, in Step 4?, we consider only N possible sign switches, because we

Statistica Sinica: Preprint 
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Table 1: Computational efficiency of the proposed algorithm and related algorithms.

Source of the algorithm The number of operations

Clark and Dean (2001) O(N !n(n!)2)

Ye (2003) O(n(n!)22n)

Pang and Liu (2011) O(N2n!2n)

The new algorithm - Step 4 O(nf 3
(
n
q

)
q!)

The new algorithm - Step 4? O(N3n!)

N = f × 2n−p holds for any (f, p) pair in the new algorithm.

always have the treatment combination (1, . . . , 1). Thus, even when there is an f -PFD

structure with f = N , our algorithm is more efficient. However, the greatest gains in

efficiency occur when there is an f -PFD structure with f < N , because then much of

the computation depends on the isomorphism of a regular design of size N/f ≥ 2.

Remark 2. Our proposed isomorphism checking method generalizes the method of Xu

(2009), which corresponds to the special case of f = 1, and thus allows isomorphism

checking for general two-level designs.

We now consider two examples: 1) confirming isomorphism for all strength-two

designs with 10 factors and 16 runs; 2) determining the number of non-isomorphic

designs among a set of 80-run, 10-factor 5-PFDs.

Example 1. Sun (1993) obtained all 78 non-isomorphic strength-two designs with 16

runs and 10 factors by checking the corresponding projections of all non-isomorphic

Hadamard matrices of order 16. The 78 non-isomorphic designs are listed in Appendix

B of Sun (1993), and we denote them in order as D1, . . . , D78. This can also be

achieved using our algorithm, with greatly reduced computational effort spent on

testing isomorphism, because many design pairs correspond to different row coincidence

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0200
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Table 2: Ten row coincidence distributions for the 78 designs of 16 runs and 10 factors.

Row coincidence moments
M = (M3,M4) Frequency f Corresponding design
M1=(48, 712) 7 1 {4}

4 {13, 16, 20}
8 {48, 54, 57}

M2=(51, 688) 6 4 {15}
8 {40, 45, 49, 77}
16 {65}

M3 =(54, 664) 24 1 {3}
4 {8, 9, 12, 18, 21}
8 {24, 26, 29, 32, 39, 41, 42

46, 50, 51, 53, 68, 72, 76, 78}
16 {60, 63, 64}

M4 =(54, 676) 3 8 {31, 71}
16 {62}

M5 =(54, 688) 3 4 {7}
8 {25, 27}

M6 =(55.5, 658) 8 4 {6}
8 {23, 36, 56, 69, 75}
16 {61, 66}

M7 =(57, 664) 9 4 {14}
8 {30, 34, 38, 47, 70, 74}
16 {58, 67}

M8 =(58.5, 658) 5 4 {19}
8 {35, 52, 73}
16 {59}

M9 =(60, 640) 4 1 {2}
4 {11}
8 {37, 44}

M10 =(60, 664) 9 1 {1}
4 {5, 10, 17}
8 {22, 28, 33, 43, 55}

The rth row coincidence moment Mr is defined as Mr =
N∑
i=1

N∑
j=1

trij/N
2, where tij is the (i, j)th element of

T = DD′. See Appendix A for more details.
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Table 3: The parallel flats structure of the 78 designs of 16 runs and 10 factors.

D is an f -PFD with row coincidence momentM, where D0 has row coincidence momentM0

D M f M0 D M f M0

D4 M1 1 (0, 10, 48, 712) D62 M4 16 (10, 100, 1000, 10000)
D20 4 (0, 36, 192, 2832) D7 M5 4 (3, 26, 252, 2504)
D16 (1, 34, 196, 2824) D27 8 (5, 50, 500, 5000)
D13 (2, 28, 248, 2512) D25 (6, 52, 504, 5008)
D57 8 (2, 68, 392, 5648) D6 M6 4 (3, 28, 252, 2512)
D54 (3, 58, 468, 5128) D56 8 (3, 58, 468, 5128)
D48 (4, 52, 496, 5008) D36 (4, 52, 496, 5008)
D15 M2 4 (2, 26, 248, 2504) D75
D40 8 (4, 52, 496, 5008) D23 (6, 52, 504, 5008)
D49 D69
D77 D61 16 (10, 100, 1000, 10000)
D45 (5, 50, 500, 5000) D66
D65 16 (10, 100, 1000, 10000) D14 M7 4 (2, 26, 248, 2504)
D3 M3 1 (0, 10, 54, 664) D34 8 (4, 52, 496, 5008)
D21 4 (0, 34, 216, 2632) D38
D18 (1, 30, 232, 2568) D74
D12 (2, 28, 248, 2512) D30 (5, 50, 500, 5000)
D9 (2, 30, 236, 2568) D47
D8 (3, 26, 252, 2504) D70

D41 8 (3, 58, 468, 5128) D58 16 (10, 100, 1000, 10000)
D78 D67
D39 (4, 52, 496, 5008) D19 M8 4 (1, 28, 244, 2512)
D50 D35 8 (4, 52, 496, 5008)
D51 D52
D53 D73
D76 D59 16 (10, 100, 1000, 10000)
D46 (5, 50, 500, 5000) D2 M9 1 (0, 10, 60, 640)
D29 D11 4 (2, 28, 248, 2512)
D32 D37 8 (4, 52, 496, 5008)
D72 D44 (6, 52, 504, 5008)
D24 (6, 52, 504, 5008) D1 M10 1 (0, 10, 60, 664)
D26 D17 4 (1, 30, 232, 2568)
D42 D10 (2, 28, 248, 2512)
D68 D5 (3, 30, 264, 2568)
D60 16 (10, 100, 1000, 10000) D55 8 (3, 58, 468, 5128)
D63 D33 (4, 52, 496, 5008)
D64 D28 (5, 50, 500, 5000)
D31 M4 8 (5, 50, 500, 5000) D43 (6, 52, 504, 5008)
D71 D22 (7, 58, 532, 5128)

M denotes the row coincidence moments (M3,M4) for D listed in Table 2.; M0 denotes the row coincidence

moments (M1,M2,M3,M4) of the single flat D0; the design in boldface means that the single flat of the

corresponding design is not unique among those of all non-isomorphic 78 designs.
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distributions, different numbers of flats, or non-isomorphic single flats. Accordingly, in

general, our algorithm terminates before steps 4 or 4?.

Details on all non-isomorphic 78 nonregular designs with 16 runs and 10 factors

are summarized in Tables 2 and 3. In step 1, we found 10 different row coincidence

distributions. In step 2, these designs were found to be regular designs or 4-PFDs,

8-PFDs, or 16-PFDs. In step 3, we discovered 22 non-isomorphic D0, four of resolution

II and 18 of resolution I. With 78 designs, there are 3003 pairs of designs. For 98.57%

(2960) of these pairs, non-isomorphism is determined before steps 4 or 4?. Of the

remaining 43 pairs, 38 are distinguished in step 4, and five pairs are examined in Step

4?, where f = 16.

Example 2. The variable neighborhood search algorithm in Edwards and Mee (2023)

can be employed to generate D-efficient PFDs for estimating the two-factor interaction

model. Nearly 1200 5-PFDs with 80 runs were constructed. Thirty-four of these

5-PFDs had D-efficiency of 88.8%, and the remainder all had lower D-efficiency. We

are interested in how many non-isomorphic designs appear in this set of 34 designs. All

have the same A-efficiency (74%) and maximum variance inflation factor (2.1875) for

the two-factor interaction model. However, they are not all isomorphic. In step 1, we

found three different row coincidence distributions. In step 2, all designs were found

to be 5-PFDs, with no repeated flats. In step 3, we discovered two non-isomorphic D0,

one of resolution II and one of resolution I. In step 4, it was confirmed that there are

exactly eight non-isomorphic designs, which occurred with frequencies between 1 and

13 times each. In Table 4, we list the characteristics of these eight designs in terms of
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their generalized resolution, GWLP, frequency among the 34 designs, and trace(A′A),

where A is the 56 × 120 alias matrix with columns corresponding to the 120 possible

three-factor interactions. For more details, see Appendix A.

Table 4: Eight non-isomorphic 5-PFDs with 80 runs and 10 factors, with D-efficiency

= 88.8%.

D0 = (t@1n0 , D
′
0)‡

Design Frequency R ] GWLP=(B1, B2, B3, B4, B5) tr(A′A)† t D′0
D1 1 2.8 (0.00, 0.04, 0.32, 1.16, 5.84) 101.20 0 10-6.7
D2 5 2.8 (0.00, 0.04, 0.32, 1.16, 5.84) 105.74 0 10-6.7
D3 3 2.8 (0.00, 0.04, 0.32, 1.16, 5.84) 110.28 0 10-6.7
D4 13 2.8 (0.00, 0.04, 0.64, 0.84, 4.56) 107.52 0 10-6.7
D5 3 2.8 (0.00, 0.04, 0.64, 0.84, 4.56) 112.21 0 10-6.7
D6 2 2.8 (0.00, 0.04, 0.64, 0.84, 4.56) 116.71 0 10-6.7
D7 6 1.8 (0.04, 0.00, 0.56, 0.92, 4.56) 105.45 1 9-5.2
D8 1 1.8 (0.04, 0.00, 0.56, 0.92, 4.56) 109.64 1 9-5.2

] R represents generalized resolution; †A represents the alias matrix (X′1X1)−1X′1X2, where X1 consists of the

intercept, main effects, and two-factor interaction effects, and X2 consists of three-factor interaction effects; ‡

Designs D1–D8 are 5-PFDs based on single flat D0 = (t@1n0 , D
′
0); Design 10-6.7 is a resolution-II design that

consists of columns of indices {1, 2, 4, 8, 1, 3, 5, 10, 12, 15} of H16, and design 9-5.2 is a resolution-III design that

consists of columns of indices {1, 2, 4, 8, 3, 5, 10, 12, 15} of H16, where H16 is the Sylvester Hadamard matrix of

order 16 (with columns labeled from 0 to 15).

5. Conclusion

Checking for isomorphism is vital for design construction, because, in general, we

can ignore designs from the same isomorphism class. Clark and Dean (2001) provided

the initial necessary conditions for checking isomorphism of nonregular two-level

designs. Ye (2003) and Pang and Liu (2011) made subsequent improvements. In this

paper, we propose new necessary and sufficient conditions, as well as a new algorithm

for identifying isomorphism in two-level fractional factorial designs, using a parallel flats
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structure. The proposed algorithm is simple and general. In addition, by checking for

and exploiting any parallel flats structure, the proposed algorithm is much faster than

competing methods in the literature.
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Supplementary Material

In the online Supplementary Material, we provide an efficient Matlab

implementation of the proposed algorithm for checking the isomorphism of two-level

designs, called “isocheck”. All 78 non-isomorphic strength-two designs with 16 runs and

10 factors in Example 1 are provided in the MATLAB .mat file “N16p10designs.mat”.

The eight non-isomorphic D-efficient 5-PFDs with 80 runs and 10 factors in Example

2 for a two-factor interaction model are provided in the MATLAB .mat file

“N80p10f5PFDs.mat”.

Appendix

Appendix A: Details for generalized word length pattern and

row coincidence distributions

For a regular two-level design with levels ±1, the word length pattern is the vector

WLP = (A3, A4, . . . , An), where Ar is the number of r-factor interaction columns that
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sum to ±N . For nonregular designs, Tang and Deng (1999) defined the generalized

word length pattern GWLP = (B3, B4, . . . , Bn), where Br is the sum of the squares

of all r-factor interaction columns, divided by N . Note that for a regular design, Ar =

Br. The G2-aberration criterion ranks designs based on GWLP. The G2-aberration

criterion is very cheap to compute, due to its connection to the moments of the row

coincidence distribution, or equivalently, the moments of Hamming distances. For a

two-level design D, T = DD′ gives the row coincidence distribution. The rth moment

of the row coincidence distribution, also called as the rth row coincidence moment, is

defined as Mr =
∑N

i=1

∑N
j=1 t

r
ij/N

2; therein tij is the (i, j)-th element of T . Butler

(2003) proved that ranking designs in terms of G2-aberration is equivalent to sorting

on the moments of their row coincidence distributions. Furthermore, Butler (2003)

gave explicit formulae for the Br’s in terms of Mr’s (see Mee, 2009, App. J).

Appendix B: Proof of Theorem 2

Proof. The sufficiency of the conditions is obvious. Next we prove the necessity by

showing that two f -PFDs of minimal form, say D1 and D2, based on non-isomorphic

single flats D01 and D02, respectively, must be non-isomorphic.

As D01 and D02 are non-isomorphic 2n−p designs, they must have at least 2p−1

different words for any permutation τ of D02’s columns. Let W1 be the defining words

for D01 and W τ
2 be the set of defining words for D02 after the permutation τ . Given τ ,

the words in W1 but not in W τ
2 form the set W1 \W τ

2 , while the words in W τ
2 but not

in W1 form the set W τ
2 \W1. The cardinality of each of these sets is at least 2p−1 for

any permutation τ .
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Suppose D1 and D2 are isomorphic. Then there must exist a permutation τ under

which the words in W1 \W τ
2 can be removed in D1 and the words in W τ

2 \W1 can be

removed in D2. Consider the words in W1 \W τ
2 . There exist 2p−1 words in W1 \W τ

2

corresponding to p independent words of W1 and all the odd-order interactions of these

p words. Let W̃1 be this set of 2p−1 words. We have W̃1 ⊂ W1 \W τ
2 . As all words in

W1 \W τ
2 should be removed in D1, then for each of the 2p−1 words in W̃1, the sum of

the values of the word in all f flats of D1 should be 0. This indicates that each row of

L(C1) sums to zero, where L(C1) is the 2p−1× f matrix generated by the p rows of C1

and all its odd-order interaction rows. Design CT
1 must be a foldover design, and thus

D1 can be reduced to a (f/2)-PFD. Similarly, we can obtain that D2 can be reduced

to a (f/2)-PFD by considering the words of W τ
2 \W1. Thus, if two f -PFDs based on

non-isomorphic single flat are isomorphic, then both can be reduced. This contradicts

our assumption that both (A1, C1) and (A2, C2) are of minimal form.

In summary, two f -PFDs based on non-isomorphic single flat must be

non-isomorphic. The proof is complete.
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