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Abstract: In longitudinal studies, it is common that the response and the co-

variate are not measured at the same time, which complicates the subsequent

analysis. In this study, we consider the estimation of a generalized varying co-

efficient model with such asynchronous observations. We construct a penalized

kernel-weighted estimating equation using the kernel technique in a functional

data analysis framework. Moreover, we consider local sparsity in the estimating

equation to improve the interpretability of the estimate. We extend the itera-

tively reweighted least squares algorithm in our computation, and establish the

theoretical properties of the proposed method, including the consistency, spar-

sistency, and asymptotic distribution. Lastly, we use simulation studies to verify

the performance of our method, and demonstrate the method by applying it to

data from a study on women’s health.
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1. Introduction

A generalized varying coefficient model (Hastie and Tibshirani, 1993; Cai

et al., 2000) allows the coefficients to vary over time, significantly widen-

ing the application of regression models. Specifically, the model can be

expressed as

E{Y (t)|X(t)} = g{β0(t) + β1(t)X(t)}, t ∈ T , (1.1)

where Y (t) is the response, X(t) is the covariate, g(·) is a known strict-

ly increasing and continuously twice-differentiable link function, β0(t) is

the intercept function, β1(t) is the varying coefficient function, and T is a

bounded and closed interval. Here, we propose a new estimating method

for a generalized varying coefficient model with longitudinal measurements,

from the perspective of functional data.

In practice, it often happens that the covariate and the response are

not measured at the same time for each subject in longitudinal observa-

tions. Such asynchronous observations make the subsequent analysis more

complicated. Two main types of approaches have been proposed to solve

this problem. The first comprises two steps, and is based on synchronizing

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0196



the measurements of the covariate and the response. For example, Xiong

and Dubin (2010) propose a binning method to align the measurement

times in order to use traditional longitudinal modeling, and Şentürk et al.

(2013) use a functional principal component analysis (FPCA) method to

synchronize the data. However, because the data used for modeling is ob-

tained from estimations, errors from each step accumulate. The second

approach imposes a kernel weight based on the time difference between the

observations of the covariate and the response. These methods are more

appealing, because they use all available data. Cao et al. (2015) construct

a kernel-weighted estimating equation for a generalized linear model and a

generalized varying coefficient model. Cao et al. (2016) develop a weighted

last observation carried forward (LOCF) method, and Chen and Cao (2017)

apply the kernel weighting technique to partially linear models. Li et al.

(2020) consider models with longitudinal functional covariates, and Sun

et al. (2021) examine cases in which the observation times are informative.

Most of the above kernel methods work only with models with time invari-

ant coefficients, and only Cao et al. (2015) consider a generalized varying

coefficient model. However, their varying coefficients are estimated point

by point, which can be time consuming and lacks integrity. Therefore, a

new estimating method is required.
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Interpreting the varying coefficient function β1(t) is a vital part of a

regression analysis. These interpretability can be improved by introducing

local sparsity, which means the curve can be strictly equal to zero in some

subintervals. Some prior works have achieved local sparsity by imposing a

sparseness penalty for various models. For example, James et al. (2009),

Zhou et al. (2013), and Lin et al. (2017) develop locally sparse estimators

for a scalar-on-function regression model, and Tu et al. (2020) use a group

bridge approach to obtain locally sparse estimates for a varying coefficient

model. Fang et al. (2020) generalize the method of Lin et al. (2017) to cases

in which the response is multivariate, and a function-on-function regression

model and a function-on-scalar regression model are considered by Cento-

fanti et al. (2020) and Wang et al. (2020), respectively. However, to the

best of our knowledge, local sparsity has not been considered for generalized

varying coefficient models.

We use a functional data analysis (FDA) approach, because longitudi-

nal data can be viewed as functional data in a sparse design, and an FDA

is more effective than using pointwise methods. Our goal is to propose a

novel method that can be applied to asynchronous data, and that can pro-

duce estimates that are more interpretable. Specifically, we construct a new

kernel-weighted estimating equation with penalties on both the roughness
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and the sparseness. To solve the estimating equation, we extend the iter-

atively reweighted least squares (IRLS) method, and design an innovative

algorithm for the computation. We also consider the selection of the tun-

ing parameters. We generalize the extended Bayesian information criterion

(EBIC) in Chen and Chen (2008, 2012), to adapt it to asynchronous data,

such that the roughness parameter and the sparseness parameter can be

chosen accordingly. Moreover, we select the number of basis functions us-

ing cross-validation (CV). The proposed method for a generalized varying

coefficient model is called LocKer, because we can use it to obtain a locally

sparse estimator of β1(t), and we use the kernel technique in the procedure.

We also explore the theoretical properties of the proposed approach.

Our work contributes to the literature in three ways. First, we study

generalized varying coefficient models in an FDA framework, considering

both asynchronous data and local sparsity. Solving this problem will im-

prove the accuracy, utility, and interpretability of the results. Second, the

proposed algorithm can be implemented using the R package LocKer, avail-

able at https://CRAN.R-project.org/package=LocKer. Third, we ex-

plore the consistency, sparsistency, and asymptotic distribution of our pro-

posed method.

The remainder of the paper proceeds as follows. In Section 2, we con-
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struct the penalized kernel-weighted estimating equation, and develop a

computation algorithm for the proposed LocKer method. We discuss the

theoretical properties of the proposed method in Section 3. In Section 4,

we use simulation studies to explore the accuracy of the proposed method

and its ability to identify zero-valued subintervals. We apply our method to

data from a study on women’s health in Section 5, and conclude the paper

in Section 6.

2. Methodology

2.1 Estimating equation

Suppose there are n independent subjects in the study. For the ith subjec-

t, let Yi(t) and Xi(t) be realizations of the response process Y (t) and the

covariate process X(t), respectively. However, only longitudinal measure-

ments are obtained. Specifically, for i = 1, . . . , n, we observe

Yi(Tij), j = 1, . . . , Li, Xi(Sik), k = 1, . . . ,Mi,

where Tij is the jth observation time of the response, Sik is the kth ob-

servation time of the covariate, Li is the observation size of the response,

and Mi is the observation size of the covariate. Following Cao et al. (2015),

the observation times can be viewed as being generated from a bivariate
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2.1 Estimating equation

counting process

Ni(t, s) =

Li∑
j=1

Mi∑
k=1

I(Tij ≤ t, Sik ≤ s),

where I(·) is the indicator function.

To estimate β0(t) and β1(t) in (1.1), we employ the following basis

approximation:

β0(t) ≈
L∑
l=1

Bl(t)γ
(0)
l = B(t)>γ(0), β1(t) ≈

L∑
l=1

Bl(t)γ
(1)
l = B(t)>γ(1),

where {Bl(t), l = 1, . . . , L} are B-spline basis functions with degree d and

M interior knots, γ
(0)
l and γ

(1)
l are the corresponding coefficients of β0(t)

and β1(t), B(t) = (B1(t), . . . , BL(t))>, γ(0) = (γ
(0)
1 , . . . , γ

(0)
L )>, γ(1) =

(γ
(1)
1 , . . . , γ

(1)
L )>, and L = M + d+ 1 is the number of basis functions. Here,

we apply B-spline basis functions; Zhong et al. (2021) explain the reasons

for the wide use of B-spline basis functions in local sparse estimation. Let

γ = (γ(0)>,γ(1)>)>, X̃l(t) = X(t)Bl(t), and X̃(t) = (X̃1(t), . . . , X̃L(t))>.

Then, the generalized varying coefficient model (1.1) can be approximated

by

E{Y (t)|X(t)} = g
{ L∑

l=1

Bl(t)γ
(0)
l +

L∑
l=1

X̃l(t)γ
(1)
l

}
= g
{

X̃
?
(t)>γ

}
,

where X̃
?
(t) = (B(t)>, X̃(t)>)>. Following previous works, such as Lin

et al. (2017) and Li et al. (2020), we use an equal sign above to denote

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0196



2.1 Estimating equation

the approximation. We can obtain estimates of β0(t) and β1(t) using the

estimation of γ. To this end, we construct the following penalized kernel-

weighted estimating equation:

Un(γ) =
1

N0

n∑
i=1

Li∑
j=1

Mi∑
k=1

Kh(Tij − Sik)X̃
?

i (Sik)
[
Yi(Tij)− g

{
X̃
?

i (Sik)
>γ
}]

−Vρ0,ρ1γ −
∂PENλ(γ)

∂γ
= 0, (2.1)

whereN0 =
∑n

i=1 LiMi, Vρ0,ρ1 = diag(ρ0V, ρ1V), V =
∫
T B(2)(t)B(t)(2)>dt,

B(2)(t) is the second derivative of B(t), ρ0 and ρ1 are the roughness parame-

ters for β0(t) and β1(t), respectively, Kh(t) = K(t/h)/h, K(t) is a symmet-

ric kernel function, h is the bandwidth, PENλ(γ) is the sparseness penalty

for β1(t), λ is the sparseness parameter, and 0 is a zero-valued vector with

length 2L. Here, we use h = max(τ0.95, 0.01) as the bandwidth, where τ0.95

is the 0.95-quantile of minj,k |Tij − Sik|. For the first term in (2.1), define

the kernel-weighted log-likelihood function as

n∑
i=1

Li∑
j=1

Mi∑
k=1

{
Yi(Tij)θik − b(θik)

a(φ)
+ c(Yi(Tij), φ)

}
Kh(Tij − Sik),

where θik = X̃
?

i (Sik)
>γ, b′(·) = g(·), a(φ) and c(Yi(Tij), φ) are both con-

stants. Then, the first term can be viewed as the derivative of the kernel-

weighted log-likelihood function by neglecting a constant multiplier. Here,

we consider all possible pairs of response and covariate measurements, using
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2.2 Sparseness penalty

the kernel weights to control the effects of various pairs, such that measure-

ments with close observation times are emphasized. The second term is the

derivative of the roughness penalty, which is defined as

ρ0
2

∫
T
{β(2)

0 (t)}2dt+
ρ1
2

∫
T
{β(2)

1 (t)}2dt

=
ρ0
2
γ(0)>Vγ(0) +

ρ1
2
γ(1)>Vγ(1) =

1

2
γ>Vρ0,ρ1γ,

where β
(2)
0 (t) and β

(2)
1 (t) are the second derivatives of β0(t) and β1(t), respec-

tively. The third term is the derivative of the sparseness penalty PENλ(γ),

the expression of which is provided in Section 2.2. Note that the roughness

penalty and the sparseness penalty are imposed on the estimating equation

by their derivatives. Using (2.1), we can obtain a locally sparse estima-

tor for model (1.1) with asynchronous observations. Though we consider a

generalized varying coefficient model with one covariate here, this can be

extended easily to cases with more covariates.

2.2 Sparseness penalty

In this section, we introduce the sparseness penalty used in (2.1). We

generalize the functional SCAD penalty in (Lin et al., 2017) to achieve

local sparsity of β1(t). Specifically, the sparseness penalty imposed on β1(t)
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2.2 Sparseness penalty

is defined as

L(β1) =
M + 1

2T

∫
T
pλ(|β1(t)|)dt ≈

1

2

M+1∑
m=1

pλ

(√
M + 1

T

∫ τm

τm−1

β2
1(t)dt

)
,

(2.2)

where T is the length of T , τm is the knot of the used B-spline basis,

and pλ(·) is the SCAD function suggested in (Fan and Li, 2001). We

then transform (2.2) to the penalty of γ for the sake of computation. Let

‖β1[m]‖22 =
∫ τm
τm−1

β2
1(t)dt. By the local quadratic approximation pλ(|v|) ≈

pλ(|v0|) + 1
2
{p′λ(|v0|)/|v0|}(v2 − v20) in (Fan and Li, 2001), we have

M+1∑
m=1

pλ

(√
M + 1

T
‖β1[m]‖2

)

≈
M+1∑
m=1

{
pλ

(√
M + 1

T
‖β(0)

1[m]‖2

)
+

1

2

p′λ

(√
M+1
T
‖β(0)

1[m]‖2
)

√
M+1
T
‖β(0)

1[m]‖2

(
M + 1

T
‖β1[m]‖22 −

M + 1

T
‖β(0)

1[m]‖
2
2

)}

=
1

2

M+1∑
m=1

√
M + 1

T
p′λ

(√
M + 1

T
‖β(0)

1[m]‖2

)
‖β1[m]‖2

‖β(0)
1[m]‖2

+ C =
M+1∑
m=1

γ(0)>Umγ
(0) + C

=γ>Uγ + C,

where

Um =

√
M + 1

T

p′λ

(√
M+1
T
‖β(0)

1[m]‖2
)

2‖β(0)
1[m]‖2

Tm,

Tm =

∫ τm

τm−1

B(t)B(t)>dt, U = diag
(
O,

M+1∑
m=1

Um

)
, (2.3)

C =
M+1∑
m=1

pλ

(√
M + 1

T
‖β(0)

1[m]‖2

)
− 1

2

M+1∑
m=1

√
M + 1

T
p′λ

(√
M + 1

T
‖β(0)

1[m]‖2

)
‖β(0)

1[m]‖2,
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2.3 Algorithm

and O is an L × L matrix with all elements being zero. Here, ‖β(0)
1[m]‖2 is

obtained from the initial value or the estimate in the previous iteration.

Then, the sparseness penalty in (2.1) can be expressed as

PENλ(γ) =
1

2
γ>Uγ.

Here, the value of U depends on the value of ‖β(0)
1[m]‖2, so it varies in the

iteration process introduced in Section 2.3.

2.3 Algorithm

We generalize the IRLS algorithm to solve our estimating equation proposed

in Section 2.1. To this end, we first rewrite (2.1) in matrix form, and

introduce some additional notation. Let X̃
?

i = (X̃
?

i (Si1), . . . , X̃
?

i (SiMi
))>,

X̃
?

= (1>L1
⊗ X̃

?>
1 , . . . ,1>Ln

⊗ X̃
?>
n )>, Yi = (Yi(Ti1), . . . , Yi(TiLi

))>, Y =

(Y>1 ⊗ 1>M1
, . . . ,Y>n ⊗ 1>Mn

)>, η = X̃
?
γ, Z = η + {Y − g(η)} · f ′{g(η)},

W = diag{Kh(T11−S11), . . . , Kh(T11−S1M1), Kh(T12−S11), . . . , Kh(TnLn−

SnMn)}, and H = diag[1/f ′{g(η)}], where ⊗ is the Kronecker product, 1Li

and 1Mi
are vectors of length Li and Mi, respectively, with all elements

being one, and f ′(·) is the first derivative of f(·), which is the inverse

function of g(·). Then, the penalized kernel-weighted estimating equation
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2.3 Algorithm

(2.1) becomes

Un(γ) =
1

N0

X̃
?>

WH(Z− η)−Vρ0,ρ1γ −Uγ = 0, (2.4)

where H, Z, η, and U are computed using the initial value of γ or its

estimate in the previous iteration. From (2.4), we obtain the new estimate

as

γ̂ = (X̃
?>

WHX̃
?

+N0Vρ1,ρ2 +N0U)−1X̃
?>

WHZ. (2.5)

Moreover, following (Lin et al., 2017) and (Zhong et al., 2021), the small

elements of γ̂ are shrunk to zero in the iteration such that X̃
?>

WHX̃
?

+

N0Vρ1,ρ2 +N0U is not singular. Then, the estimates of β0(t) and β1(t) are

given by

β̂0(t) = B(t)>γ̂(0) and β̂1(t) = B(t)>γ̂(1), (2.6)

respectively, where γ̂(0) and γ̂(1) are obtained from the final estimate of γ

using the definition γ = (γ(0)>,γ(1)>)>.

The whole algorithm is summarized as follows:

Step 1: Give the initial value of γ, which we denote as γ [0]. Here, we use a

least squares estimate with a kernel weight, and consider the rough-

ness penalty in the initial estimate, that is, γ [0] = (X̃
?>

WX̃
?

+

N0Vρ1,ρ2)
−1X̃

?>
WY.
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2.4 Selection of tuning parameters

Step 2: Start with q = 1. For the qth iteration,

(1) η[q] = X̃
?
γ [q−1].

(2) Z[q] = η[q]+{Y−g(η[q])}·f ′{g(η[q])} and H[q] = diag[1/f ′{g(η[q])}].

(3) Compute U[q] from (2.3).

(4) γ [q] = (X̃
?>

WH[q]X̃
?
+N0Vρ1,ρ2+N0U

[q])−1X̃
?>

WH[q]Z[q] from

(2.5).

(5) Repeat Step 2(1)–(4) until convergence.

Step 3: Let γ̂ = γ [q]. Then, compute β̂0(t) and β̂1(t) using (2.6).

2.4 Selection of tuning parameters

Recall that the bandwidth is chosen as h = max(τ0.95, 0.01), where τ0.95 is

the 0.95-quantile of minj,k |Tij − Sik|. In this section, we discuss selecting

the other tuning parameters in the computation, including the roughness

parameters, sparseness parameter, and number of B-spline basis functions,

with the bandwidth determined already. For clarity, let ρ0 = ρ1 , ρ̃, which

means β0(t) and β1(t) share the same roughness parameter. However, our

selection criterion can be extended easily to the case ρ0 6= ρ1.

The roughness parameter ρ̃ and the sparseness parameter λ are consid-

ered jointly. We generalize the EBIC in (Chen and Chen, 2008, 2012) to
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2.4 Selection of tuning parameters

adapt it to the asynchronous observations. More specifically, define

EBIC(ρ̃, λ) = log(Dev) + df · log(n0)/n0 + ν · df · log(2L)/n0, (2.7)

where Dev represents the deviance of the estimate, df is the degrees of free-

dom, n0 = #{Kh(Tij − Sik) 6= 0, i = 1, . . . , n; j = 1, . . . Li; k = 1, . . . ,Mi},

and 0 ≤ ν ≤ 1. We use ν = 0.5, as suggested by Huang et al. (2010).

Moreover, Dev is given by

Dev = −2
n∑
i=1

Li∑
j=1

Mi∑
k=1

{Yi(Tij)θ̂ik − b(θ̂ik)}Kh(Tij − Sik),

where θ̂ik = g(Ŷi(Sik)). Then by ignoring some constant, we have

Dev =
n∑
i=1

Li∑
j=1

Mi∑
k=1

{Yi(Tij)− Ŷi(Sik)}2Kh(Tij − Sik)

for a Gaussian response,

Dev = 2
n∑
i=1

Li∑
j=1

Mi∑
k=1

[
Yi(Tij) log

Yi(Tij)

Ŷi(Sik)
+ {1− Yi(Tij)} log

1− Yi(Tij)
1− Ŷi(Sik)

]
Kh(Tij − Sik)

for a Bernoulli response, and,

Dev = 2
n∑
i=1

Li∑
j=1

Mi∑
k=1

[Ŷi(Sik)− Yi(Tij) log{Ŷi(Sik)}]Kh(Tij − Sik)

for a Poisson response. Furthermore, df is computed by

df = tr{X̃
?

A(X̃
?>
A WAX̃

?

A +N0Vρ1,ρ2A)−1X̃
?>
A WA},
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where A is a set indexing the nonzero elements in γ̂. For the third term in

(2.7), 2L is the length of γ, and if more covariates are considered, it should

be varied accordingly.

We choose the number of B-spline basis functions using CV. For a given

L, we first select the best ρ̃ and λ using the EBIC, and then calculate the

CV score using the same method as Dev when facing responses with various

distributions. The effect of L is discussed in our simulation study in Section

4.2.

3. Theoretical results

We study the asymptotic properties of our method in this section. Let

η(t,β) = β0(t) + X(t)β1(t), where β(t) = (β0(t), β1(t))
>. Let β0(t) be

the true value of β(t). Define X?(t) = (1, X(t))>. Let var{Y (t)|X(t)} =

σ{t,X(t)}2 and cov{Y (s), Y (t)|X(s), X(t)} = r{s, t,X(s), X(t)}. More-

over, denote NULL(f) = {t ∈ T : f(t) = 0} and SUPP(f) = {t ∈ T :

f(t) 6= 0}, for any function f(t). Denote ρ = max(ρ0, ρ1). The needed

assumptions are listed as follows:

Assumption 1. There exists some constant c > 0 such that |β(p′)
0 (t1) −

β
(p′)
0 (t2)| ≤ c|t1 − t2|ν and |β(p′)

1 (t1) − β(p′)
1 (t2)| ≤ c|t1 − t2|ν , for ν ∈ [0, 1].

Let r = p′ + ν, and assume that 3/2 < r ≤ d, where d is the degree of the
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B-spline basis.

Assumption 2. The counting process Ni(t, s) is independent of (Yi, Xi)

and E{dNi(t, s)} = λ(t, s)dtds, where λ(t, s) is a bounded twice-continuous

differentiable function for any t, s ∈ T . The Borel measure for G =

{λ(t, t) > 0, t ∈ T } is strictly positive. Moreover, P{dN(t1, t2) = 1|N(s1, s2)−

N(s1−, s2−) = 1} = f(t1, t2, s1, s2)dt1dt2, for t1 6= s1 and t2 6= s2, where

f(t1, t2, s1, s2) is continuous and f(t1±, t2±, s1±, s2±) exists.

Assumption 3. The tuning parameter λ → 0 as n → ∞. Assume that√∫
SUPP(β1)

p′λ(|β1(t)|)2dt = O(n−1/2M−3/2),
√∫

SUPP(β1)
p′′λ(|β1(t)|)2dt =

o(M−3/2).

Assumption 4. For any β in a neighborhood of β0, we assume that

E[X?(s)g{η(t,β)}] and E[X?(s)g′{η(t,β)}Xb(t)] are twice-continuous d-

ifferentiable for any (t, s) ∈ T 2, where b = 0, 1. Moreover, we assume that

E[X?(s1)X
?(s2)

>g{η(t1,β)}g{η(t2,β)}] andE[X?(s1)X
?(s2)

>r{t1, t2, X(t1), X(t2)}]

are twice-continuous differentiable for any (t1, t2, s1, s2) ∈ T 4.

Assumption 5. For any β in a neighborhood of β0, we assume that

E[X?
2(s)X

?
2(s)

>g′{η(s,β)}2] and E[X?(s)σ{s,X(s)}2] are uniformly bound-

ed in s, where X?
2(s) = (1, X2(t))>.
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Assumption 6. If ψ0 and ψ1 satisfy ψ0(s) + ψ1(s)X(s) = 0, for ∀s ∈ G,

with probability one, then ψ0 = 0 and ψ1 = 0.

Assumption 7. The kernel function K(·) is a symmetric density function.

Assume that
∫
z2K(z)dz <∞ and

∫
K(z)2dz <∞.

Assumption 1 is similar to (C2) in (Lin et al., 2017), and is used to jus-

tify the B-spline approximation. The requirement for the counting process

is presented in Assumption 2, and is the same as Condition 1 in (Cao et al.,

2015) and Assumption 3 in (Li et al., 2020). Assumption 3 is analogous to

(C3) in (Lin et al., 2017), and Assumptions 4–6 are parallel to assumptions

in (Li et al., 2020). Furthermore, Assumption 7 is a common assumption

for a kernel function.

Theorem 1. Under Assumptions 1 – 7, if M1/2h2 → 0, n−1/2M3/2h−1/2 →

0, ρ→ 0, and M−r → 0, then we have

sup
t∈T
|β̂0(t)− β0(t)| = Op(M

1/2h2 + n−1/2M1/2h−1/2 + ρM−1/2 +M−r),

sup
t∈T
|β̂1(t)− β1(t)| = Op(M

1/2h2 + n−1/2M1/2h−1/2 + ρM−1/2 +M−r).

The above theorem states the consistency of both β0(t) and β1(t), and

the convergence rates are also given. To achieve the best convergence rate in

Theorem 1, we can set h = O(n−1/5), M = O(n
4

5(1+2r) ), and ρ = O(n
−4r+2
5(1+2r) ).
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Then, we have supt∈T |β̂0(t) − β0(t)| = Op(n
−4r

5(1+2r) ) and supt∈T |β̂1(t) −

β1(t)| = Op(n
−4r

5(1+2r) ). We discuss the sparsistency of β1(t) in the following

theorem.

Theorem 2. Suppose that the conditions of Theorem 1 are satisfied. If

nh5 = O(1), nhM−2r = o(1), ρ = o(n−1/2), and λn1/2M−1/2h1/2 → ∞,

then we have NULL(β̂1)→ NULL(β1) and SUPP(β̂1)→ SUPP(β1) in prob-

ability, as n→∞.

According to Theorem 2, the zero-valued subintervals of our estimate

β̂1(t) are consistent with the true zero-valued subintervals. That means we

have β̂1(t) = 0 for any t ∈ NULL(β1), and β̂1(t) 6= 0 for any t ∈ SUPP(β1)

in probability. Next, we discuss the asymptotic distribution of γ̂. Let

γ0 = (γ
(0)>
0 ,γ

(1)>
0 )> be the coefficient vector that satisfies ‖γ(0)>

0 B−β0‖∞ =

O(M−r) and ‖γ(1)>
0 B−β1‖∞ = O(M−r) (de Boor, 2001; Zhong et al., 2021).

Theorem 3. Suppose that the conditions of Theorem 1 are satisfied. If

nh5M = o(1), nhM−2r = O(1), n−1M2 = o(1), and ρ = o(n−1/2), then

nh(γ̂ − γ0)
>Ω2

n(γ̂ − γ0)− tr(Σ0)√
2tr(Σ2

0)

d−→ N(0, 1),
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where

Ωn = n−1
n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)g
′{ηi(s,β0)}X̃

?

i (s)
>dNi(t, s),

Σ0 = var

(
h1/2

∫ ∫
Kh(t− s)X̃

?
(s)[Y (t)− g{η(s,β0)}]dN(t, s)

)
.

The asymptotic distribution of γ̂ is examined further using simulated

data in the Supplementary Material, where we also explore the pointwise

asymptotic distributions of β̂0(t) and β̂1(t), and provide proofs of all theo-

rems.

4. Simulation studies

4.1 Numerical performance

In this section, we discuss the performance of the proposed method by

simulation studies. The simulated data sets are generated from model (1.1),

and Gaussian response, Bernoulli response and Poisson response are all in

consideration. Moreover, for each distribution, both nonsparse coefficient

function and coefficient function with local sparsity are taken into account.

The detailed settings are as follows:

• Gaussian cases: The intercept function is set as β0(t) = cos(2πt), for

t ∈ [0, 1]. For the nonsparse setting, the coefficient function β1(t) =

sin(2πt), and for the sparse setting, β1(t) = 2 · {B6(t) +B7(t)}, where
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4.1 Numerical performance

Bl(t) is the lth B-spline basis on [0, 1], with degree three and nine

equally spaced interior knots. We generate the covariate functions in

the same way as in Lin et al. (2017), that is, Xi(t) =
∑

l=1 ailB
X
l (t),

where aij is obtained from the standard normal distribution, and

BX
l (t) is the lth B-spline basis on [0, 1], with degree four and 69 equal-

ly spaced interior knots. The sample size is set as n = 200. Then, Yi(t)

is generated from Gaussian distribution with mean β0(t) + β1(t)Xi(t)

and standard error one. To obtain asynchronous data, we generate

the observation sizes of the response and the covariate independently

from a Poisson distribution, with one additional observation to avoid

cases with no measurement. Here, the response and the covariate

share the same intensity rate m, and m is set as 15 and 20. Then, the

observation times are uniformly selected on [0, 1].

• Bernoulli cases: The settings are the same as those in the Gaussian

cases, except that Yi(t) is generated from a Bernoulli distribution with

mean β0(t) + β1(t)Xi(t).

• Poisson cases: The settings are the same as those in the Gaussian

cases, except that Yi(t) is generated from a Poisson distribution with

mean β0(t) + β1(t)Xi(t).
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4.1 Numerical performance

The proposed LocKer method is compared with other four approaches

in the simulation. The first is a reconstruction method that synchronizes

the response and the covariate using PACE (Yao et al., 2005), as in Şentürk

et al. (2013), and then employs the traditional IRLS algorithm. We also

consider the moment method of (Şentürk et al., 2013), the approach in Cao

et al. (2015), and the penalized least squares estimating (PLSE) method

investigated by Tu et al. (2020). Note that Tu et al. (2020) investigated

a local sparse estimator for a varying coefficient model with synchronous

observations. Therefore, to implement their method for asynchronous cases,

we first synchronize the data using smoothing, and then apply the PLSE to

the synchronized data. These four methods are denoted as Recon, Moment,

Cao, and PLSE, respectively. Note that the Cao method is available for

regression models with Bernoulli and Poisson responses, but is quite slow

for these non-Gaussian cases, because it is a pointwise method. Hence, we

use an identity link for the Cao method in all considered cases. Moreover,

the PLSE is only applicable to a regression model with a Gaussian response;

thus, we view the responses as Gaussian for the PLSE in all cases.
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4.1 Numerical performance

We evaluate the integrated square error (ISE) of the estimated intercept

function and coefficient function for each method. Specifically,

ISE0 =

∫
T
{β̂0(t)− β0(t)}2dt,

ISE1 =

∫
T
{β̂1(t)− β1(t)}2dt.

In the simulation, 100 runs are conducted for each case. The average ISE

and the standard deviation are compared between the methods.

Table 1 reports the average ISE0 and ISE1 of the Gaussian cases. With

various settings for the coefficient function β1(t) and the observation rate

m, the simulation results show similar trends. For the estimation of the

intercept function β0(t), all five methods give promising results, with mi-

nor differences in ISE0. On the other hand, it is evident that our LocKer

method exhibits significant advantages for the estimation of β1(t), regard-

less of whether or not the true β1(t) is sparse. These results demonstrate

that synchronizing and pointwise approaches are not adequate, further in-

dicating the importance of using the observed data directly and taking

sufficient account of the smoothness in the estimation. Moreover, the es-

timating results become more precise for each method as the observation

rate increases.
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4.2 The effect of L

Simulation results for the Bernoulli cases are presented in Table 2. The

ISE0 and ISE1 are higher than the errors in the Gaussian cases, which

implies that a Bernoulli response is more difficult to handle. However,

the proposed LocKer method still outperforms the other four methods in

terms of estimating β1(t) for both nonsparse and sparse settings, though

the Recon and Moment methods are slightly better in terms of estimating

β0(t). The reason for the invalid behavior of the Cao and PLSE methods is

that they simply treat the Bernoulli response as a Gaussian response here.

Table 3 displays the simulation results for the Poisson cases. We find that

the proposed LocKer method achieves the most accurate estimates for both

β0(t) and β1(t) in each considered setting.

In summary, our LocKer method yields encouraging estimation results

for each case compared with those of the other methods. We conjecture

that the superiority of our method is because we use an FDA approach and

a kernel technique, as well as considering local sparsity.

4.2 The effect of L

In Section 4.1, we focused on the accuracy of the estimation. In this section,

we explore how the number of B-spline basis functions influences the estima-

tion, especially the ability of the model to identify zero-valued subintervals
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4.2 The effect of L

Table 1: The average ISE0 and ISE1 across 100 runs for five methods in

Gaussian cases, with the standard deviation in parentheses.

n = 200,m = 15 n = 200,m = 20

ISE0 ISE1 ISE0 ISE1

Nonsparse

Recon 0.0050 (0.0022) 0.2768 (0.0505) 0.0044 (0.0019) 0.1889 (0.0455)

Moment 0.0045 (0.0022) 0.4154 (0.1826) 0.0033 (0.0017) 0.4001 (0.0581)

Cao 0.0072 (0.0031) 0.3000 (0.0326) 0.0059 (0.0028) 0.2841 (0.0344)

PLSE 0.0244 (0.0106) 0.3994 (0.0839) 0.0145 (0.0066) 0.2966 (0.0998)

LocKer 0.0170 (0.0081) 0.0385 (0.0255) 0.0094 (0.0062) 0.0217 (0.0148)

Sparse

Recon 0.0049 (0.0025) 0.2329 (0.0713) 0.0045 (0.0023) 0.1578 (0.0516)

Moment 0.0052 (0.0059) 0.5350 (0.2588) 0.0033 (0.0016) 0.4972 (0.0648)

Cao 0.0071 (0.0035) 0.3176 (0.0627) 0.0057 (0.0033) 0.3124 (0.0514)

PLSE 0.0216 (0.0081) 0.3025 (0.0992) 0.0153 (0.0057) 0.2147 (0.0780)

LocKer 0.0131 (0.0075) 0.0515 (0.0303) 0.0087 (0.0043) 0.0302 (0.0173)
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4.2 The effect of L

Table 2: The average ISE0 and ISE1 across 100 runs for five methods in

Bernoulli cases, with the standard deviation in parentheses.

n = 200,m = 15 n = 200,m = 20

ISE0 ISE1 ISE0 ISE1

Nonsparse

Recon 0.0128 (0.0061) 0.3123 (0.0824) 0.0106 (0.0057) 0.2264 (0.0791)

Moment 0.0171 (0.0085) 0.6108 (0.3848) 0.0131 (0.0064) 0.4744 (0.2760)

Cao 0.5600 (0.0139) 0.4530 (0.0133) 0.5590 (0.0135) 0.4480 (0.0142)

PLSE 0.5132 (0.0170) 0.4856 (0.0195) 0.5163 (0.0150) 0.4721 (0.0255)

LocKer 0.0531 (0.0267) 0.1777 (0.0973) 0.0332 (0.0155) 0.1074 (0.0578)

Sparse

Recon 0.0182 (0.0075) 0.2898 (0.0966) 0.0172 (0.0067) 0.2444 (0.0892)

Moment 0.0230 (0.0113) 0.6906 (0.3372) 0.0193 (0.0074) 0.5646 (0.1204)

Cao 0.5751 (0.0150) 0.5259 (0.0148) 0.5753 (0.0113) 0.5239 (0.0140)

PLSE 0.5272 (0.0175) 0.5490 (0.0301) 0.5311 (0.0119) 0.5381 (0.0331)

LocKer 0.0426 (0.0235) 0.2600 (0.1094) 0.0291 (0.0147) 0.1773 (0.0805)
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4.2 The effect of L

Table 3: The average ISE0 and ISE1 across 100 runs for five methods in

Poisson cases, with the standard deviation in parentheses.

n = 200,m = 15 n = 200,m = 20

ISE0 ISE1 ISE0 ISE1

Nonsparse

Recon 0.0257 (0.0078) 0.2789 (0.0573) 0.0234 (0.0064) 0.1929 (0.0437)

Moment 0.0285 (0.0083) 0.3335 (0.1157) 0.0253 (0.0067) 0.3597 (0.0489)

Cao 1.9949 (0.1056) 0.2645 (0.0378) 1.9772 (0.0794) 0.2496 (0.0371)

PLSE 1.6426 (0.1044) 0.3555 (0.0909) 1.7170 (0.0942) 0.2408 (0.0773)

LocKer 0.0163 (0.0103) 0.0345 (0.0186) 0.0096 (0.0069) 0.0192 (0.0128)

Sparse

Recon 0.0660 (0.0166) 0.2462 (0.0940) 0.0660 (0.0146) 0.1670 (0.0903)

Moment 0.0730 (0.0234) 0.4579 (0.0962) 0.0745 (0.0175) 0.4791 (0.0647)

Cao 1.8242 (0.0954) 0.4116 (0.0511) 1.8220 (0.0752) 0.3991 (0.0496)

PLSE 1.4866 (0.0916) 0.4303 (0.1172) 1.5611 (0.0819) 0.3346 (0.1184)

LocKer 0.0268 (0.0128) 0.0912 (0.0604) 0.0185 (0.0097) 0.0465 (0.0225)
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4.2 The effect of L

of β1(t). Because local sparsity is also considered for the PLSE method, we

include the PLSE in the comparison in this section. The settings are the

same as those in Section 4.1, except that the response and the covariate are

set to be observed at the same time to make the comparison with the PLSE

more meaningful. To quantify the identifying ability, we compute the values

of β1(t) and β̂1(t) at a sequence of dense grids on [0, 1], and calculate the

rates of the grids that correctly identified being zero and falsely estimated

being zero, which are denoted by TP and FN, respectively. Moreover, the

closer TP is to one and the closer FN is to zero, the better the identifying

ability is.

Tables 4–5 list the simulation results with different values of L in the

Gaussian cases. For the nonsparse settings, ISE0 and ISE1 of the proposed

LocKer method decrease with an increase in L, and are better than those of

the PLSE. Moreover, TP does not exist for nonsparse settings, so only FN is

reported. Here, both methods achieve zero-valued FN, which means no grid

is falsely identified, indicating that subintervals can be identified effectively

for a coefficient function without local sparsity by both methods.

For the sparse settings, the estimation of β0(t) becomes better as L

increases. However, both methods give the best estimation of β1(t) when

L = 13. The reason is related to the setting of β1(t). Recall that to ensure
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local sparsity of β1(t), we use the B-spline basis with degree three and

nine equally spaced interior knots in the setup. Therefore, the B-spline

basis used in the setup is coincided with the B-spline basis applied in the

estimation, yielding good performance of our method for L = 13. Except

when L = 13, a larger value of L can yield a better estimation in terms

of both accuracy and identifying ability. Compared with the PLSE, our

method produces estimates that are more precise for β0(t), but ISE1 is

slightly higher than that of PLSE. However, for the identifying ability, the

proposed LocKer method is much better than the PLSE in terms of both

TP and FN, showing the advantage of our method in identifying zero-valued

subintervals.

To sum up, although a larger value of L is beneficial for the identi-

fication in some general cases, more B-spline basis functions mean more

parameters in the estimation, thus increasing the difficulty of the estima-

tion. We discuss the results for the Bernoulli and Poisson cases in the

Supplementary Material.

5. Real data analysis

Menopause in women is often accompanied by several physical changes.

For example, follicle stimulating hormone (FSH) begins to increase in the
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Table 4: The average ISE0, ISE1, TP, and FN across 100 runs for PLSE and

LocKer using various values of L when n = 200 and m = 15 in Gaussian

cases, with standard deviations in parentheses.

ISE0 ISE1 TP FN

L = 10

Nonsparse
PLSE 0.0120 (0.0054) 0.0196 (0.0064) – 0 (0)

LocKer 0.0115 (0.0039) 0.0139 (0.0048) – 0 (0)

Sparse
PLSE 0.0209 (0.0079) 0.0159 (0.0062) 0.1740 (0.2254) 0 (0)

LocKer 0.0099 (0.0036) 0.0169 (0.0060) 0.5564 (0.1486) 0 (0)

L = 13

Nonsparse
PLSE 0.0123 (0.0049) 0.0189 (0.0060) – 0 (0)

LocKer 0.0077 (0.0029) 0.0115 (0.0054) – 0 (0)

Sparse
PLSE 0.0209 (0.0075) 0.0070 (0.0049) 0.6109 (0.3012) 0 (0)

LocKer 0.0065 (0.0031) 0.0056 (0.0041) 0.9777 (0.0625) 0 (0)

L = 15

Nonsparse
PLSE 0.0093 (0.0038) 0.0186 (0.0064) – 0 (0)

LocKer 0.0063 (0.0025) 0.0095 (0.0054) – 0 (0)

Sparse
PLSE 0.0152 (0.0059) 0.0081 (0.0039) 0.3925 (0.2461) 0.0230 (0.0365)

LocKer 0.0053 (0.0022) 0.0161 (0.0072) 0.8619 (0.0461) 0.0195 (0.0359)

L = 20

Nonsparse
PLSE 0.0093 (0.0039) 0.0204 (0.0062) – 0 (0)

LocKer 0.0047 (0.0021) 0.0076 (0.0055) – 0 (0)

Sparse
PLSE 0.0179 (0.0065) 0.0098 (0.0049) 0.5022 (0.2323) 0.0786 (0.0619)

LocKer 0.0043 (0.0018) 0.0135 (0.0092) 0.9086 (0.0631) 0.0042 (0.0167)
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Table 5: The average ISE0, ISE1, TP, and FN across 100 runs for PLSE and

LocKer using various values of L when n = 200 and m = 20 in Gaussian

cases, with standard deviations in parentheses.

ISE0 ISE1 TP FN

L = 10

Nonsparse
PLSE 0.0065 (0.0031) 0.0128 (0.0049) – 0 (0)

LocKer 0.0071 (0.0027) 0.0089 (0.0044) – 0 (0)

Sparse
PLSE 0.0128 (0.0057) 0.0136 (0.0051) 0.1621 (0.2108) 0 (0)

LocKer 0.0061 (0.0027) 0.0159 (0.0045) 0.5587 (0.1517) 0 (0)

L = 13

Nonsparse
PLSE 0.0066 (0.0029) 0.0131 (0.0045) – 0 (0)

LocKer 0.0045 (0.0020) 0.0075 (0.0046) – 0 (0)

Sparse
PLSE 0.0143 (0.0046) 0.0050 (0.0033) 0.6009 (0.2522) 0 (0)

LocKer 0.0038 (0.0016) 0.0049 (0.0034) 0.9838 (0.0542) 0 (0)

L = 15

Nonsparse
PLSE 0.0056 (0.0023) 0.0134 (0.0044) – 0 (0)

LocKer 0.0041 (0.0018) 0.0075 (0.0043) – 0 (0)

Sparse
PLSE 0.0092 (0.0035) 0.0064 (0.0035) 0.3104 (0.2266) 0.0126 (0.0261)

LocKer 0.0033 (0.0014) 0.0096 (0.0038) 0.8654 (0.0613) 0.0241 (0.0345)

L = 20

Nonsparse
PLSE 0.0065 (0.0024) 0.0150 (0.0047) – 0 (0)

LocKer 0.0035 (0.0018) 0.0057 (0.0039) – 0 (0)

Sparse
PLSE 0.0128 (0.0049) 0.0078 (0.0033) 0.5393 (0.1997) 0.0748 (0.0582)

LocKer 0.0028 (0.0015) 0.0073 (0.0033) 0.9484 (0.0242) 0.0116 (0.0268)
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perimenopausal stage (Wang et al., 2020). Some studies showed that FSH

has an influence on cardiovascular disease (CVD) risk (El Khoudary et al.,

2016; Wang et al., 2017). Serviente et al. (2019) propose that the association

between FSH and CVD risk may be related to the effect of FSH on lipid

levels. In this section, we aim to explore the relationship between FSH and

triglycerides (TG), one of the lipid variables, using the proposed LocKer

method.

The Study of Womens Health Across the Nation (SWAN) focuses on

the health of women during their middle years. Between 1996 and 1997,

3302 women enrolled in this study, and 10 visits were conducted from 1997

to 2008. Moreover, both FSH and TG were recorded in this study and the

data can be download from https://www.swanstudy.org/. Since TG was

not measured in the last two visits, only the baseline and the first eight

visits are taken into account in our analysis. Furthermore, we exclusively

consider women who were early perimenopause or pre-menopausal at the

baseline. Then, after removing individuals with no FSH or TG data, we

have n = 3224 women in the study. Figure 1 displays the observation

times of FSH and TG for 100 randomly selected women; note that the

observation times are transformed to take values in [0, 1]. The figure shows

that although some of the observation times for FSH and TG are the same,
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Figure 1: Observation times of FSH and TG for 100 randomly selected

women.

the asynchronous problem remains, particularly on [0.2, 0.3] and [0.8, 1],

owing to the absence of TG records in the second and eighth visits.

We apply the LocKer method by treating FSH as the covariate and

treating TG as the response. Both FSH and TG are centralized after be-

ing log-transformed. The roughness parameter and sparseness parameter

are selected as introduced in Section 2.4. Figure 2 shows the estimated

coefficient function using LocKer. Our results show a negative association
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between FSH and TG, which is consistent with the findings of Wang et al.

(2020). Furthermore, additional findings can be achieved by local sparsity

of our estimate. The estimate is zero-valued in the early stage, indicat-

ing that FSH has a minor effect on TG at the start of the menopausal

transition. This effect begins to increase at about t = 0.5, and reaches a

maximum at around t = 0.8, which implies a stronger relationship between

FSH and TG in the later stage.

6. Conclusion

In this paper, we employ FDA method in the estimation of generalized

varying coefficient model. Moreover, we use the kernel technique to solve

the asynchronous problem, and impose a sparseness penalty to improve the

accuracy and interpretability of the estimates. Our theoretical study verifies

both the consistency and the sparsistency of the proposed LocKer method,

and provides an asymptotic distribution of the estimator. The results of

extensive simulation experiments and a practical application suggest that

the LocKer method performs well.

However, we focus on the generalized varying coefficient model, which

means only response and covariate values recorded at the same time are
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Figure 2: Estimate of the coefficient function obtained using the proposed

LocKer method for the relationship between FSH and TG in women enrolled

in the SWAN study.
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relevant. A more general model can be expressed as

E{Y (t)|X(s), s ∈ T } = g
{
β0(t) +

∫
T
X(s)β1(s, t)ds

}
, t ∈ T .

In the above model, the response is related to the value of the covariate on

the whole interval T , rather than at one exact time point, which is more

practical in real-world data sets. In future research, we will consider the

asynchronous problem and local sparsity in this model in greater detail.

Supplementary Material

The online Supplementary Material contains proofs of Theorems 1–3, and

some additional theoretical and simulation results.
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