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Abstract: We consider the problem of estimating a regression function from

anonymized data in the framework of local differential privacy. We propose a

novel partitioning estimate of the regression function, derive a rate of conver-

gence for the excess prediction risk over Hölder classes, and prove a matching

lower bound. In contrast to the existing literature on the problem, the so-called

strong density assumption on the design distribution is obsolete.
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1. Introduction

Let (X, Y ) ∈ Rd×R be a pair of random variables with explanatory variable

X ∈ Rd and real-valued response Y satisfying E[Y 2] < ∞. We denote by
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µ the distribution of X, that is, µ(A) = P(X ∈ A) for all measurable sets

A ⊆ Rd. Then, the regression function

m(x) = E[Y |X = x]

is well defined for µ-almost all x ∈ Rd. For any measurable function

g : Rd → R, we have

E[(g(X)− Y )2] = E[(m(X)− Y )2] + E[(m(X)− g(X))2],

and therefore, setting

L∗ = E[(m(X)− Y )2],

it follows that

E[(g(X)− Y )2] = L∗ +

∫
(m(x)− g(x))2µ(dx).

Thus, measuring the performance of an estimator m̂ of m using the loss

function

L(m, m̂) :=

∫
(m(x)− m̂(x))2µ(dx)

may be interpreted as the excess prediction risk at a new design point X,

distributed according to the design measure µ.

In this study, we consider piecewise constant estimators of the regression

function m based on cubic partitions. Let Ph = {Ah,1, Ah,2, . . .} be such a

cubic partition of Rd, with cubic cells Ah,j of volume hd. The raw data Dn

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0186



are assumed to be independent and identically distributed (i.i.d.) copies of

the random vector (X, Y ),

Dn := {(X1, Y1), . . . , (Xn, Yn)}. (1.1)

Put

νn(Ah,j) =
1

n

n∑
i=1

Yi1{Xi∈Ah,j}

and

µn(Ah,j) =
1

n

n∑
i=1

1{Xi∈Ah,j}.

Then, a standard regression estimate is defined by

mn(x) =
νn(Ah,j)

µn(Ah,j)
,

for any x ∈ Ah,j, with the usual convention that 0/0 := 0. Theorem 4.3 in

the monograph (Györfi et al., 2002) states an upper bound on the rate of

convergence for this partitioning estimate for Lipschitz continuous regres-

sion functions. Extending it to the more general case of Hölder continuous

functions is straightforward, and yields the following result.

Theorem 1.1. If the function

σ2(x) := Var(Y |X = x)
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is bounded, m is (β, C)-Hölder smooth with index 0 < β ≤ 1, that is,

|m(x)−m(x′)| ≤ C‖x− x′‖β, x, x′ ∈ Rd, (1.2)

and X is bounded, then

E

[∫
(m(x)−mn(x))2µ(dx)

]
.

1

nhd
+ h2β. (1.3)

In particular, the choice h = hn � n−1/(2β+d) realizes the best compro-

mise between the two antagonistic terms on the right-hand side of (1.3),

and the resulting rate is n−2β/(2β+d). Standard arguments for nonparamet-

ric lower bounds, for instance based on Assouad’s lemma, show that this

rate is indeed optimal.

The main purpose of this study is to provide an analogue of Theorem 1.1

for the case when the raw data Dn are not directly accessible but only a

suitably anonymized surrogate. More precisely, the anonymized data must

satisfy a local differential privacy (LDP) condition. Our work is motivated

by the recent work (Berrett et al., 2021), which provides a first step in this

direction. (Berrett et al., 2021) considers a private partitioning estimate,

and derives the upper bound n−1/(d+1) on the rate of convergence for Lips-

chitz continuous functions (β = 1). However, this rate is established under

a quite restrictive assumption on the design distribution µ (called the strong

density assumption (SDA) in (Berrett et al., 2021)). Moreover, it was con-
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jectured that the rate of convergence may be arbitrarily slow when the SDA

is not fulfilled. In this paper, we show that this conjecture does not hold,

and propose an estimator that attains the rate n−β/(β+d) without the SDA.

Note that we do not even need the existence of a Lebesgue density for µ. We

complement our upper bound by proving a minimax lower bound, showing

that the rate n−β/(β+d) is indeed optimal. This agrees with what can be

expected from similar problems, such as nonparametric density estimation,

in which a similar deterioration of the rate of convergence has been found

(Duchi et al., 2018; Butucea et al., 2020). The same phenomenon has also

been observed for classification problems (Berrett and Butucea, 2019).

The rest of the paper is organized as follows. In Section 2, we recap the

notion of LDP and introduce a suitable anonymization of the raw data that

generates locally differentially private data. In Section 3, we introduce a

modification of the classical partitioning estimate of the regression function

that is based only on the availability of the anonymized data, and derive

a convergence rate for this estimator. In Section 4 we prove a matching

lower bound that coincides with the upper one. All proofs are gathered in

Section 5.
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2. Anonymization of the raw data

In this section, we briefly recall the definition of LDP before we describe our

privacy mechanism. In the language of probability theory, non-interactive

privacy mechanisms are given by conditional distributions Qi, for i =

1, . . . , n, that draw privatized data Zi from potentially different measur-

able spaces (Zi,Zi). More precisely, given the raw data (Xi, Yi) = (xi, yi),

one draws Zi according to a probability measure defined as Qi(A|(Xi, Yi) =

(xi, yi)), for any A ∈ Zi. Such a non-interactive mechanism is local, because

any data holder can independently generate privatized data.

For a privacy parameter α ∈ [0,∞], any non-interactive privacy mech-

anism is said to be an α-locally differentially private mechanism if the con-

dition

Qi(A|(Xi, Yi) = (x, y))

Qi(A|(Xi, Yi) = (x′, y′))
≤ exp(α) (2.1)

is satisfied for any A ∈ Zi and all potential values (x, y), (x′, y′) of the raw

data. The set of all α-locally differentially private mechanisms is denoted

by Qα.

We now state the specific privacy mechanism we consider for the anonymiza-

tion of the raw data Dn in (1.1). Our approach follows the Laplace per-

turbation technique already considered in (Duchi et al., 2018; Berrett and
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Butucea, 2019; Butucea et al., 2020; Berrett et al., 2021; Györfi and Kroll,

2023). In order to define the privatized data, we first choose a closed Eu-

clidean ball B = {x ∈ Rd : ‖x‖ ≤ r} of radius r > 0 centred at the origin.

Furthermore, let Ah,1, Ah,2, . . . be a partition of Rd consisting of cubic cells

with volume hd, for some h = hn > 0. Without loss of generalization, we

assume that the cells are numbered such that Ah,j ∩ B 6= ∅ when j ≤ Nn,

for some nonnegative integer Nn, and Ah,j ∩B = ∅ otherwise. For a thresh-

old T > 0 and any x ∈ R, we define [x]T = max{−T,min{x, T}}. In

our privacy setup, the data holder of the ith datum (Xi, Yi) generates and

transmits to the statistician the data

Zij := [Yi]T1{Xi∈Ah,j} + σZεij, j = 1, . . . , Nn, (2.2)

and

Wij := 1{Xi∈Ah,j} + σW ζij, j = 1, . . . , Nn, (2.3)

with noise levels σZ , σW > 0, and εij, ζij (i = 1, . . . , n, j = 1, . . . , Nn) are

independent centered Laplace random variables with unit variance. This

means that the individual with index i generates noisy data for any cell

Ah,j that has a nontrivial intersection with the ball B. The noise levels σZ

and σW should be chosen sufficiently large in dependence on the desired

privacy level α to make the overall mechanism satisfy α-LDP. It is shown
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in (Berrett et al., 2021, p. 2438) that the choices

σ2
W = 32/α2 and σ2

Z = 32T 2/α2 (2.4)

ensure α-LDP.

Remark 2.1. The privacy mechanism defined by (2.2) and (2.3) is not the

only possibility. For instance, one could build on the randomized response

technique discussed in (Duchi et al., 2018), and we conjecture that data

privatized in this way will attain the same rates of convergence as derived

below. However, because our work is motivated by (Berrett et al., 2021),

we use Laplace perturbation.

3. Rate of convergence

For a threshold t > 0, the work (Berrett et al., 2021) considers the estimator

m̃n(x) =
ν̃n(Ah,j)

µ̃n(Ah,j)
1{µ̃n(Ah,j)≥t}1{j≤Nn} when x ∈ Ah,j, (3.1)

where

ν̃n(Ah,j) =
1

n

n∑
i=1

Zij and µ̃n(Ah,j) =
1

n

n∑
i=1

Wij.

In (Berrett et al., 2021), the convergence rate n−1/(d+1) is derived (up to a

logarithmic term) for Lipschitz continuous functions by specializing (3.1)

with h = hn � n−1/(2d+2) and t = tn � hdn/
√

log n. However, their proof is
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essentially based on the validity of the strong density assumption (SDA),

which means that if µ(Ah,j) > 0, then

µ(Ah,j) ≥ chd, j = 1, . . . , Nn, (3.2)

for some constant c > 0. Moreover, instead of taking (3.2) as an assumption,

it was deduced mistakenly from the existence of a density that is lower

bounded from below on its support. Apart from this minor flaw in the proof,

imposing (3.2) is rather artificial, because it is a condition on the design

distribution µ and on the relationship between the distribution and the

sets Ah,j of the chosen partition. Because this condition is rarely justified

in practice, it is desirable to eliminate it from the prerequisites. In general,

without the SDA, the convergence rate n−1/(d+1) is not attainable using the

estimator of (Berrett et al., 2021) (see Remark 3.2 below).

In the following, we introduce a novel estimator and bound the private

rate of convergence without assuming the SDA. This disproves the conjec-

ture of (Berrett et al., 2021) that the rate of convergence of any estimate

can be arbitrarily slow when the SDA does not hold.

The idea for the general estimator is to include a further modification

that, in some sense, enforces condition (3.2) to hold (see Remark 3.3 below

for more details). We again depart from the privatized data (2.2) and (2.3).
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This already guarantees LDP, because no further data that depend on the

raw data are used in what follows.

In order to define our novel estimator, let λn denote the uniform distri-

bution on An :=
⋃Nn
j=1Ah,j, that is, for any Borel set A,

λn(A) =
λ(A ∩ An)

λ(An)
,

where λ denotes the Lebesgue measure. We now define our final estimator

[m̂n]T by

[m̂n]T (x) := (−T ) ∨ (m̂n(x) ∧ T ),

where

m̂n(x) =
ν̃n(Ah,j)

µ̂n(Ah,j)
1{µ̂n(Ah,j)≥t}1{j≤Nn} when x ∈ Ah,j,

and

µ̂n(Ah,j) =
3

4
µ̃n(Ah,j) +

1

4
λn(Ah,j)

=

[
3

4
µ̃n(Ah,j) +

1

4Nn

]
1{j≤Nn}.

The following result states upper risk bounds for the estimators m̂n and

[m̂n]T . Its proof is deferred to Section 5.1.

Theorem 3.1. Assume that m satisfies (1.2) with 0 < β ≤ 1, and that

both X and Y are bounded, such that |X| ≤ r and |Y | ≤ T . Consider the
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estimator m̂n with t = tn = λn(Ah,1)/8 = 1/(8Nn). Then,

E

[∫
(m(x)− m̂n(x))2µ(dx)

]
.

1

nhdn
+ h2β

n +
σ2
Z

nt2n

+
σ2
W

nt2n
+ exp

(
−8nt2n

9

)
. (3.3)

As a consequence, taking hn � max{(1/(nα2))1/(2β+2d), (1/n)1/(2β+d)} and

σW and σZ as in (2.4), yields

E

[∫
(m(x)− [m̂n]T (x))2µ(dx)

]
. (n−

2β
2β+d ∨ (nα2)−

β
β+d ) ∧ 1, (3.4)

where the numerical constant hidden in the . notation depends on r, T , and

d.

Remark 3.2. The estimate m̃n defined by (3.1) cannot achieve the rate

of convergence in (3.4) without assuming the SDA. In order to see this,

consider the case of no privatization and constant, noiseless observations;

that is, Y = C a.s. for a constant C 6= 0. Then, the estimator m̃n satisfies

∫
E[(m(x)− m̃n(x))2]µ(dx)

= C2

Nn∑
j=1

E[1{µn(Ah,j)<tn}]µ(Ah,j)

≥ C2

Nn∑
j=1

P(µn(Ah,j) < tn)1{µ(Ah,j)<2tn}µ(Ah,j)

≥ C2

Nn∑
j=1

P(µn(A)− µ(A) < −tn)1{µ(Ah,j)<2tn}µ(Ah,j).
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Applying of Hoeffding’s inequality or a normal approximation easily shows

that the probability in the last line is bounded from below by 1/2, for

n sufficiently large. Consider now the case d = 1, and assume that the

distribution µ has a density f on [0, 1] satisfying f(x) = x, for 0 ≤ x ≤ δ,

with some δ > 0. Let the regular partition be given by [0, hn), [hn, 2hn), . . .

For n sufficiently large, we have 1{µ(Ah,j)<2tn} = 1 for those cells contained

in [0, δ] where xhn < 2tn.

Consequently, using the choice tn � hn/
√

log n suggested in (Berrett

et al., 2021), we obtain the lower bound∫
E[(m(x)− m̃n(x))2]µ(dx) ≥ C2

2

∫ bδ/hnc·hn
0

1{xhn<2tn}xdx

=
C2

2

∫ bδ/hnc·hn
0

1{x<2/
√

logn}xdx

=
C2

2

∫ 2/
√

logn

0

xdx

≥ C2

log n
,

which is a much slower rate than the one in (3.4).

Remark 3.3. The rationale behind the construction of the estimator m̂n

comes from the auxiliary model obtained by replacing the raw data Dn with

D′n = {(X ′1, Y ′1), . . . , (X ′n, Y
′
n)},

where with probability 3/4, one has (X ′i, Y
′
i ) = (Xi, Yi), and with probabil-
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ity 1/4, one has X ′i ∼ λn and Y ′i = 0 independently for each i = 1, . . . , n.

In this mixture model, condition (3.2) holds by construction. Recently, in

the context of density estimation under LDP the derivation of the optimal

convergence rates has been reduced to such a mixture model (see the proof

of Proposition 7 in (Sart, 2022)). The definition of our estimator m̂n is

motivated by this approach, but our definition does not rely on any addi-

tional randomization, and replacing µ̃ with µ̂ in the definition of m̂n may

be interpreted as some kind of regularization.

4. Lower bound

In order to prove a lower bound, we restrict ourselves to a specific instance

of the general regression model (1). This submodel is chosen to be suffi-

ciently complex to rule out inference with an essentially faster rate than

that obtained in Theorem 3.1. More precisely, we consider the regression

model with a generic observation (X, Y ) ∈ Rd × R obeying the model

Y = m(X) + η, (4.1)

where X is distributed uniformly on [0, 1]d, the noise η is distributed uni-

formly on [−1/2, 1/2], and the regression function m belongs to the Hölder

class F(β, C,M), defined as the set of functions satisfying (1.2), with sup-

port contained in [0, 1]d, and bounded from above by some constant M > 0.
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For the lower bound, we allow the potential privacy mechanism to be-

long to the class Qα of sequentially interactive privacy mechanisms that

generalizes the class of non-interactive mechanisms introduced in Section 2.

More precisely, given any ordering of the raw data Xi, privatized data Zi

are generated according to conditional probability measures Qi(· |(Xi, Yi) =

(xi, yi), Z1 = z1, . . . , Zi−1 = zi−1). That is, the value Zi depends on Xi, and

on privatized data created previously by other data holders. In this more

general case, condition (2.1) is replaced with

Qi(A|(Xi, Yi) = (x, y), Zi−1 = zi−1, . . . , Z1 = z1)

Qi(A|(Xi, Yi) = (x′, y′), Zi−1 = zi−1, . . . , Z1 = z1)
≤ exp(α),

which must be satisfied for any A ∈ Zi, zj ∈ Zj, for j = 1, . . . , i − 1, and

all potential values (x, y), (x′, y′) of the raw data.

For this general setup, we can prove the following lower bound result.

Its proof, based on Assouad’s lemma, is given in Section 5.2.

Theorem 4.1. The following holds:

inf
m̃

Q∈Qα

sup
m∈F(β,C,M)

E

[∫
(m̃(x)−m(x))2dx

]
& (n(eα − 1)2)−β/(β+d) ∧ 1,

where the supremum is taken over all admissible regression functions from

the Hölder class F(β, C,M), and the infimum is taken over all estimators

m̃ based on a private sample of size n of raw data from model (4.1), as well

as all potentially sequentially interactive privacy mechanisms Q ∈ Qα.
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Combining Theorem 4.1 with the fact that the convergence rate under

LDP cannot be faster than the nonprivate rate n−2β/(2β+d), the rate of

convergence derived in Theorem 3.1 is essentially optimal.

Remark 4.2. The lower bound is established for the specific design mea-

sure µ given by the uniform distribution on [0, 1]d. The proof can be

adapted easily to design measures µ with support [0, 1]d and Lebesgue den-

sity bounded away from zero.

Remark 4.3. Similarly, the theorem is established for the special error

distribution given by the uniform distribution on [−1/2, 1/2]. This choice

permits explicit calculations of certain total variation distances needed in

the proof of the lower bound. It is an interesting open question whether the

same lower bound for private estimation holds already when the response

variable in the raw data is noisefree, that is, Yi = m(Xi), for i = 1, . . . , n,

because this would rule out the possibility of error distributions with a

faster convergence rate. Note that our proof of Theorem 4.1 does not apply

in this case.
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5. Proofs

5.1 Proof of Theorem 3.1 (Upper bound)

Loosely speaking, the proof of the upper bound decomposes the overall risk

into three terms that are bounded separately. The first term (estimate (5.1))

captures the privatization of the response variable in (2.2), and its upper

bound contains the noise level σZ . The second term (estimate (5.3)) yields

the classical bound that holds already for the raw data without privatiza-

tion, and the third and last term (estimate (5.4)) is the contribution of the

privatization of the covariate values in (2.3), which contains the noise level

σW .

We start the proof with the decomposition

m̂n = m̂′1 + m̂′2,

where, for x ∈ Ah,j, we set

m̂′1(x) =
σZ
n

∑n
i=1 εij

µ̂n(Ah,j)
1{µ̂n(Ah,j)≥tn}1{j≤Nn}

and

m̂′2(x) =
νn(Ah,j)

µ̂n(Ah,j)
1{µ̂n(Ah,j)≥tn}1{j≤Nn}

(recall that we assume that |Y | ≤ T , which implies that [Yi]T = Yi, for all
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5.1 Proof of Theorem 3.1 (Upper bound)

i = 1, . . . , n). Using this notation, proving (3.3) reduces to showing that∫
E[(m̂′1(x))2]µ(dx) ≤ σ2

Z

nt2n
(5.1)

and ∫
E[(m(x)− m̂′2(x))2]µ(dx) .

1

nhdn
+ h2β

n

+
σ2
W ∨ σ2

Z

nt2n
+ exp

(
−8nt2n

9

)
. (5.2)

Proof of (5.1): We have∫
E[(m̂′1(x))2]µ(dx) =

Nn∑
j=1

E

[
(σZ
n

∑n
i=1 εij)

2

(µ̂n(Ah,j))2
1{µ̂n(Ah,j)≥tn}

]
µ(Ah,j)

≤ σ2
Z

nt2n

Nn∑
j=1

µ(Ah,j)

≤ σ2
Z

nt2n
.

Proof of (5.2): Let m′n be the modification of mn, where µn is replaced with

µ′n = 3
4
µn + 1

4
λn. Then, similarly to the proof of Theorem 4.3 in (Györfi

et al., 2002) we can show that

E

[∫
(m(x)−m′n(x))2µ(dx)

]
≤ C1T

2

nhdn
+ C2h

2β
n , (5.3)

where C1 = C1(d, µ) (more precisely, this constant depends on the measure

µ only through its support) and C2 = C2(d). In order to show (5.2), it is

sufficient to show that

E

[∫
(m̂′2(x)−m′n(x))2µ(dx)

]
. exp

(
−8nt2n

9

)
+
σ2
W

nt2n
. (5.4)
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5.1 Proof of Theorem 3.1 (Upper bound)

In order to prove this bound, note that∫
(m̂′2(x)−m′n(x))2µ(dx) ≤ Jn +

16T 2

9
µ
(
Rd \ An

)
, (5.5)

where

Jn =
Nn∑
j=1

(νn(Ah,j))
2

(
1

µ′n(Ah,j)
− 1

µ̂n(Ah,j)
1{µ̂n(Ah,j)≥tn}

)2

µ(Ah,j).

Because |X| ≤ r, the support of µ is contained in An, and consequently

the second term on the right-hand side of (5.5) vanishes. Therefore, it is

sufficient to find a bound for E[Jn]. Using that 3µn(Ah,j)/4 ≤ µ′n(Ah,j),

Jn ≤ T 2

Nn∑
j=1

(µn(Ah,j))
2

(
1

µ′n(Ah,j)
− 1

µ̂n(Ah,j)
1{µ̂n(Ah,j)≥tn}

)2

µ(Ah,j)

≤ 16T 2

9

Nn∑
j=1

(
1− µ′n(Ah,j)

µ̂n(Ah,j)
1{µ̂n(Ah,j)≥tn}

)2

µ(Ah,j)

=
16T 2

9

Nn∑
j=1

1{µ̂n(Ah,j)<tn}µ(Ah,j)

+
16T 2

9

Nn∑
j=1

(
1− µ′n(Ah,j)

µ̂n(Ah,j)

)2

1{µ̂n(Ah,j)≥tn}µ(Ah,j).

Therefore,

E[Jn] ≤ E[Jn,1] + E[Jn,2], (5.6)

where, setting µ′ = 3
4
µ+ 1

4
λn,

Jn,1 =
64T 2

27

Nn∑
j=1

1{µ̂n(Ah,j)<tn}µ
′(Ah,j), and

Jn,2 =
16T 2

9

Nn∑
j=1

(
1− µ′n(Ah,j)

µ̂n(Ah,j)

)2

1{µ̂n(Ah,j)≥tn}µ(Ah,j).
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5.1 Proof of Theorem 3.1 (Upper bound)

In order to deal with the expectation of Jn,1, note that µ′(Ah,j) ≥ λn(Ah,j)/4 =

1/(4Nn) ≥ 2tn holds for our choice of tn, by definition. Thus,

P(µ̂n(Ah,j) < tn) = P(µ̂n(Ah,j) < tn, µ
′(Ah,j) ≥ 2tn)

≤ P(µ′(Ah,j)− µ̂n(Ah,j) ≥ tn)

≤ P1,j + P2,j,

where

P1,j = P

(
µ(Ah,j)− µn(Ah,j) ≥

2tn
3

)
,

P2,j = P

(
σW
n

n∑
i=1

ζij ≥
2tn
3

)
.

Applying Hoeffding’s inequality in the formulation taken from (Boucheron

et al., 2013), Theorem 2.8, yields

P1,j ≤ exp

(
−8nt2n

9

)
,

whereas Chebyshev’s inequality implies that

P2,j ≤
9σ2

W

4nt2n
.

Hence,

E[Jn,1] ≤ 64T 2

27
exp

(
−8nt2n

9

)
+

16T 2σ2
W

3nt2n
.
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5.2 Proof of Theorem 4.1 (Lower bound)

Furthermore, we have

E[Jn,2] =
16T 2

9

Nn∑
j=1

E

{(
µ̂n(Ah,j)− µ′n(Ah,j)

µ̂n(Ah,j)

)2

1{µ̂n(Ah,j)≥tn}

}
µ(Ah,j)

≤ 16T 2

9t2n

Nn∑
j=1

E[(µ̂n(Ah,j)− µ′n(Ah,j))
2
]µ(Ah,j)

≤ 16T 2σ2
W

9nt2n
.

Putting the bounds obtained for E[Jn,1] and E[Jn,2] into (5.6) yields (5.4),

which proves (3.3). In addition, (3.4) follows from (3.3) by considering that

tn � λn(Ah,1) = hdn/λ(An) � hdn/r
d
n,

and that the term of order exp(−8nt2n/9) in (3.3) is negligible. The trunca-

tion in the definition of [m̂n]T guarantees that the risk is at least bounded

by a constant depending on T , r, and the dimension d.

5.2 Proof of Theorem 4.1 (Lower bound)

The overall strategy to establish the stated private lower bound is similar to

that for the classical lower bound that holds for estimators defined in terms

of the raw data. Indeed, we borrow the reduction to the pairwise comparison

of certain hypotheses parameterized using the corners of a high-dimensional

hypercube, and the construction of these hypotheses, from Chapter 2.6.1

in (Tsybakov, 2009). In order to apply Assouad’s lemma under privacy
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5.2 Proof of Theorem 4.1 (Lower bound)

constraints, one has to use a suitable bound for the Kullback–Leibler diver-

gence of the privatized data under different hypothetical regression func-

tions. Such a bound is derived by combining the information theoretical

inequality (5.7) with a bound for the (squared) total variation distance of

the raw data. Inequality (5.7) is essential for proving lower bounds in the

density estimation problem (Butucea et al., 2020; Györfi and Kroll, 2023).

We start by introducing some notation. Let K0 : R→ [0,∞) be a C∞-

function, such that (1.2) is satisfied with constant equal to 1, ‖K0‖∞ ≤ 1,

and supp(K0) ⊆ [0, 1]. For x = (x1, . . . , xd) ∈ [0, 1]d, define the function

K : [0, 1]d → R as K(x) = mini=1,...,dK0(xi). We restrict the complexity

of the overall problem by restricting ourselves to a finite set of hypotheses

parameterized by θ ∈ Θ := {0, 1}kd , for some positive integer k, that will be

specified below. Set c = C ∧M . For any j = (j1, . . . , jd) ∈ {0, . . . , k − 1}d,

define the function Kj by

Kj(x) = ck−βK(kx1 − j1, . . . , kxd − jd).

It is readily checked that supp(Kj) ⊆ Bj := ×di=1[ji/k, (ji + 1)/k]. For any

θ ∈ Θ, we consider the candidate regression function

mθ =
∑
j

θjKj,
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5.2 Proof of Theorem 4.1 (Lower bound)

where the sum is taken over all multi-indices j ∈ {0, . . . , k − 1}d. By

construction, mθ belongs to F(β, C,M), for any θ ∈ Θ. Let us now assume

that the raw data have been privatized by means of an arbitrary privacy

mechanism Q ∈ Qα, and let m̃ be any estimator defined in terms of the

outcome Z of Q. We denote Pθ as the distribution of the tuple (X1, Y1),

and QPn
θ as the distribution of Z = (Z1, . . . , Zn) when the true regression

function is mθ. We also write Eθ for the expectation operator in this case.

After these preliminaries, we start the proof with the observation that

for any θ ∈ Θ,

Eθ

[∫
[0,1]d

(m̃(x)−mθ(x))2dx

]
=
∑
j

Eθ

[∫
Bj

(m̃(x)−mθ(x))2dx

]

=
∑
j

Eθ[ρ
2
j(m̃, θj)],

where

ρj(m̃, θj) =

(∫
Bj

(m̃(x)− θjKj(x))2dx

)1/2

.

Putting θ̂j = arg mint∈{0,1} ρj(m̃, t), we have

ρj(m̃, θj) ≥
‖Kj‖2

2
· |θ̂j − θj|.

Hence, using that ‖Kj‖2
2 = c2k−2β−d‖K‖2

2, we obtain

Eθ

[∫
[0,1]d

(m̃(x)−mθ(x))2dx

]
≥ c2‖K‖2

2

4
k−2β−dEθ[ρ(θ̂, θ)],
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5.2 Proof of Theorem 4.1 (Lower bound)

where θ̂ = (θ̂j) and ρ(θ, θ′) =
∑

j 1{θj 6=θ′j} denotes the Hamming distance

between θ and θ′. Consequently,

sup
m∈F(β,C,M)

E

[∫
[0,1]d

(m̃(x)−m(x))2dx

]
≥ sup

θ∈Θ
Eθ

[∫
[0,1]d

(m̃(x)−mθ(x))2dx

]
≥ c2‖K‖2

2

4
k−2β−d inf

θ̂
sup
θ∈Θ

Eθ[ρ(θ̂, θ)].

In order to bound the quantity inf θ̂ supθ∈Θ Eθ[ρ(θ̂, θ)], we use Statement (iv)

of Theorem 2.12 in (Tsybakov, 2009), which relies on a finite bound on the

Kullback–Leibler distance K(QPn
θ , QP

n
θ′) for θ, θ′ such that ρ(θ, θ′) = 1. In

order to obtain such a bound, first note that Equation (14) in (Duchi et al.,

2018) yields

K(QPn
θ , QP

n
θ′) ≤ 4n(eα − 1)2V 2(Pθ,Pθ′), (5.7)

where V (P,Q) denotes the total variation distance between two probability

measures. Thus, it remains to find a bound for V (Pθ,Pθ′). In order to

bound this quantity, note that under model (4.1), the vector (X, Y ) has a

Lebesgue density ϕm equal to one on the set

{(x, y) ∈ Rd+1 : x ∈ [0, 1]d, y ∈ [m(x)− 1/2,m(x) + 1/2]},

and equal to zero otherwise. Now, let θ, θ′ be such that ρ(θ, θ′) = 1. Then,
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5.2 Proof of Theorem 4.1 (Lower bound)

a direct calculation using Scheffé’s Theorem yields

V (Pθ,Pθ′) =
1

2

∫
Rd+1

|ϕmθ(x, y)− ϕmθ′ (x, y)|dxdy

≤ k−d‖Kj‖∞

= ck−d−β‖K‖∞.

Combining this bound with (5.7) for k � (n(eα − 1))1/(2β+2d) ∨ 1 yields

K(QPn
θ , QP

n
θ′) . 1.

By applying Theorem 2.12, Statement (iv), of (Tsybakov, 2009), we obtain

sup
m∈F(β,C,M)

E

[∫
[0,1]d

(m̃(x)−m(x))2dx

]
& (n(eα − 1)2)−β/(β+d) ∧ 1,

which implies the claim, because Q ∈ Qα and m̃ are arbitrary.
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