
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2022-0181 

Title A Comparison of Estimators of Mean and Its Functions in 

Finite Populations 

Manuscript ID SS-2022-0181 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202022.0181 

Complete List of Authors Anurag Dey and  

Probal Chaudhuri 

Corresponding Authors Anurag Dey 

E-mails deyanuragsaltlake64@gmail.com 



A COMPARISON OF ESTIMATORS OF MEAN AND

ITS FUNCTIONS IN FINITE POPULATIONS

Anurag Dey and Probal Chaudhuri

Indian Statistical Institute, Kolkata

Abstract: We investigate several well-known estimators of finite population means and

the functions of these means under standard sampling designs. Such functions in-

clude the variance, correlation coefficient, and regression coefficient in the population

as special cases. We compare the performance of these estimators under different

sampling designs, based on their asymptotic distributions. We construct equivalence

classes of estimators under different sampling designs so that estimators in the same

class have equivalent performance in terms of the asymptotic mean squared error

(MSE). We then compare estimators from different equivalence classes under super-

populations that satisfy linear models. We show that the pseudo empirical likelihood

(PEML) estimator of the population mean under simple random sampling without

replacement (SRSWOR) has the lowest asymptotic MSE of the estimators considered

here. In addition, for the variance, correlation coefficient, and regression coefficient of

the population, the plug-in estimators based on the PEML estimator have the low-

est asymptotic MSEs under SRSWOR. However, for any high entropy πPS sampling

design, which uses auxiliary information, the plug-in estimators based on the Hájek

estimator have the lowest asymptotic MSEs.
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1. Introduction

Suppose that P={1, 2, . . . , N} is a finite population of size N , s is a sample

of size n (< N) from P , and S is the collection of all possible samples of size

n. Then, a sampling design P (s) is a probability distribution on S such that

0 ≤ P (s) ≤ 1 for all s ∈ S and
∑

s∈S P (s)=1. In this study, we consider the

following designs: simple random sampling without replacement (SRSWOR),

the Lahiri–Midzuno–Sen (LMS) sampling design (see Lahiri (1951), Midzuno

(1952), and Sen (1953)), the Rao–Hartley–Cochran (RHC) sampling design

(see Rao et al. (1962)), and high entropy πPS (HEπPS) sampling designs (see

Section 2). Note that all of the above sampling designs other than SRSWOR

use some auxiliary variable.

Let (Yi, Xi) be the value of (y, x) for the ith population unit, for i=1, . . . , N ,

where y is a univariate or multivariate study variable, and x is a positive real-

valued size/auxiliary variable. Suppose that Y=
∑N

i=1 Yi/N is the finite pop-

ulation mean of y. The Horvitz–Thompson (HT) estimator (see Horvitz and

Thompson (1952))) and the RHC (see Rao et al. (1962)) estimator are pop-
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ular design unbiased estimators of Y . Other well-known estimators of Y are

the Hájek estimator (see Hájek (1971), Särndal et al. (2003), and the refer-

ences therein), ratio estimator (see Cochran (1977)), product estimator (see

Cochran (1977)), generalized regression (GREG) estimator (see Chen and Sit-

ter (1999)), and pseudo empirical likelihood (PEML) estimator (see Chen and

Sitter (1999)). However, these estimators are not always design unbiased. See

the Appendix for expressions of these estimators. Now, suppose that y is a

Rd-valued (d ≥ 1) study variable, and g(
∑N

i=1 h(Yi)/N) is a population pa-

rameter. Here, h: Rd → Rp is a function with p ≥ 1, and g: Rp → R is a

continuously differentiable function. All vectors in Euclidean spaces are taken

as row vectors, and a superscript T denotes their transpose. Examples of such

parameters are the variance, correlation coefficient, and regression coefficient

associated with a finite population. For simplicity, we often write h(Yi) as hi.

Then, g(h)=g(
∑N

i=1 hi/N) is estimated by plugging in the estimator ĥ of h.

Our objective is to find an asymptotically efficient (in terms of the mean

squared error (MSE)) estimator of g(h). In Section 2, using the asymptotic

distribution of the estimator of g(h) under the above sampling designs, we con-

struct equivalence classes of estimators such that any two estimators in the same

class have the same asymptotic MSE. In Section 3, we consider the special case

of g(h)=Y , and compare the equivalence classes of estimators under superpop-
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ulations that satisfy linear models. For the estimators considered here under

different sampling designs, the PEML estimator of the population mean under

SRSWOR has the lowest asymptotic MSE. Furthermore, the PEML estimator

has the same asymptotic MSE under SRSWOR and the LMS sampling design.

Interestingly, the performance of the PEML estimator under the RHC and any

HEπPS sampling designs, which use auxiliary information, is worse than that

under SRSWOR. The GREG estimator has been shown to be asymptotically

at least as efficient as the HT, ratio, and product estimators under SRSWOR

(see Cochran (1977)). It follows from our analysis that the PEML estimator is

asymptotically equivalent to the GREG estimator under all sampling designs

considered here.

In Section 3, we consider the cases when g(h) is the variance, the correla-

tion coefficient, and the regression coefficient in the population. Note that if

the estimator of the population variance is constructed by plugging in the HT,

ratio, product, or GREG estimator of the population mean, then the estimators

of the variance may become negative. The same applies to the correlation coef-

ficient and regression coefficient, because these estimators require an estimator

of the population variance. On the other hand, if the estimators of the above-

mentioned parameters are constructed using the Hájek or PEML estimators

of the population mean, such a problem does not occur. Therefore, for these
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parameters, we compare only those equivalence classes that contain plug-in es-

timators based on the Hájek and PEML estimators. Under superpopulations

that satisfy linear models, we again conclude that the plug-in estimator for these

parameters based on the PEML estimator has the lowest asymptotic MSE un-

der SRSWOR and the LMS sampling design. Moreover, under any HEπPS

sampling design, which uses the auxiliary information, the plug-in estimator

based on the Hájek estimator has the lowest asymptotic MSE.

Scott and Wu (1981) prove that the ratio estimator has the same asymp-

totic distribution under SRSWOR and the LMS sampling design. Chen and

Sitter (1999) show that the PEML estimator is asymptotically equivalent to

the GREG estimator under conditions on the sampling design that are satisfied

by SRSWOR and the RHC sampling design. However, this is the first study to

produce asymptotic equivalence classes, such as those in Table 2 in Section 2,

that consist of several estimators of a function of the population mean under

several sampling designs.

When the study and size variables are exactly linearly related, Raj (1954)

compared the sample mean under simple random sampling with replacement

and the usual unbiased estimator of the population mean under the probabil-

ity proportional to size sampling with replacement. Avadhani and Sukhatme

(1970) compared the ratio estimator of the population mean under SRSWOR

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0181



6

with the RHC estimator under the RHC sampling design when an approxi-

mate linear relationship holds between the study variable and the size variable.

Avadhani and Srivastava (1972) compared the ratio estimator of the population

mean under the LMS sampling design and the RHC estimator under the RHC

sampling design when the study and size variables are approximately linearly

related. It has also been shown that the GREG estimator of the population

mean is asymptotically at least as efficient as the HT, ratio, and product esti-

mators under SRSWOR (see Cochran (1977)). However, the above comparisons

included neither the PEML estimator nor HEπPS sampling designs.

In our empirical studies, presented in Section 4, using synthetic and real

data, our numerical results support our theoretical results. Section 5 concludes

the paper. All proofs are given in the Appendix.

2. Comparison of different estimators of g(h)

In this section, we compare the estimators of g(h) obtained by plugging in the

estimators of h given in Table 1. First, we find equivalence classes of estima-

tors of g(h) such that any two estimators in the same class are asymptotically

normal, with the same mean g(h) and the same variance.

We define our asymptotic framework as follows. Let {Pν} be a sequence of

nested populations with Nν , nν → ∞ as ν → ∞ (see Isaki and Fuller (1982),
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Table 1: Estimators of h

Sampling
Estimators

designs

SRSWOR
HT (which coincides with Hájek estimator), ratio,

product, GREG and PEML estimators

LMS
HT, Hájek, ratio, product, GREG and

PEML estimators

HEπPS
HT (which coincides with ratio and product

estimators), Hájek, GREG and PEML estimators

RHC RHC, GREG and PEML estimators

Wang and Opsomer (2011), Conti and Marella (2015), Boistard et al. (2017),

Han and Wellner (2021), and the references therein), where Nν and nν are,

respectively, the population size and the sample size corresponding to the νth

population. Henceforth, we suppress the subscript ν that tends to ∞, for the

sake of simplicity. Throughout this paper, we consider the following condition

(cf. Assumption 1 in Cardot & Josserand (2011), A4 in Conti (2014), A1 in

Cardot et al. (2014), A4 in Conti and Marella (2015), and (HT3) in Boistard

et al. (2017)).

C 0. n/N → λ as ν → ∞, where 0 ≤ λ < 1.

Before we state the main results, let us discuss the HEπPS sampling design

and some conditions on {(Xi, hi) : 1 ≤ i ≤ N} (recall that hi=h(Yi)). A sam-
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pling design P (s) satisfying the conditionD(P ||R)=
∑

s∈S P (s) log (P (s)/R(s)) →

0 as ν → ∞, for some rejective sampling design (see Hájek (1964)) R(s), is

known as a high entropy sampling design (see Berger (1998), Conti (2014), Car-

dot et al. (2014), Boistard et al. (2017), and the references therein). A sampling

design P (s) is called an HEπPS sampling design if it is a high entropy sampling

design and its inclusion probabilities satisfy the condition πi=nXi/
∑N

i=1Xi, for

i=1, . . . , N . An example of an HEπPS sampling design is the Rao–Sampford

(RS) sampling design (see Sampford (1967) and Berger (1998)). We now state

several conditions.

C 1. {Pν} is such that
∑N

i=1 ||hi||4/N=O(1) and
∑N

i=1X
4
i /N =O(1) as ν → ∞.

Further, limν→∞ h exists, and X=
∑N

i=1Xi/N and S2
x=

∑N
i=1(Xi −X)2/N are

bounded away from zero as ν → ∞. Moreover, ∇g(µ0) ̸= 0, where µ0=limν→∞ h

and ∇g is the gradient of g.

C 2. max1≤i≤N Xi/min1≤i≤N Xi=O(1) as ν → ∞.

Let Vi be one of hi, hi−h, hi−hXi/X, hi+hXi/X, and hi−h−Sxh(Xi−

X)/S2
x, for i=1, . . . , N , h=

∑N
i=1 hi/N , and Sxh=

∑N
i=1 Xihi/N − h X. Define

T=
∑N

i=1Vi(1−πi)/
∑N

i=1 πi(1−πi), where πi is the inclusion probability of the

ith population unit. Furthermore, in the case of the RHC sampling design, de-

fine V=
∑N

i=1 Vi/N , X=
∑N

i=1Xi/N , and γ=
∑n

i=1Ni(Ni− 1)/N(N − 1), where

Ni is the size of the ith group formed randomly in the RHC sampling design
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(see Rao et al. (1962)), for i=1, . . . , n. Now, we state the conditions on the

population values and the sampling designs.

C 3. P (s) is such that nN−2
∑N

i=1(Vi −Tπi)
T (Vi −Tπi)(π

−1
i − 1) converges

to some positive-definite (p.d.) matrix as ν → ∞.

C 4. nγXN−1
∑N

i=1(Vi −XiV/X)T (Vi −XiV/X)/Xi converges to some p.d.

matrix as ν → ∞.

Conditions similar to C1, C3, and C4 are often used in the sample survey

literature (see Assumption 3 in Cardot & Josserand (2011), A3 and A6 in both

Conti (2014) and Conti and Marella (2015), (HT2) in Boistard et al. (2017),

and F2 and F3 in Han and Wellner (2021)). Conditions C1 and C4 hold (almost

surely) whenever {(Xi, hi) : 1 ≤ i ≤ N} are generated from a superpopula-

tion model that satisfies appropriate moment conditions (see Lemma S2 in the

Supplementary Material). The condition
∑N

i=1 ||hi||4/N=O(1) holds when h is

a bounded function (e.g., h(y)=y and y is a binary study variable). Condition

C2 implies that the variation in the population values X1, . . . , XN cannot be

too large. Under any πPS sampling design, C2 is equivalent to the condition

that L ≤ Nπi/n ≤ L′, for some constants L,L′ > 0, any i=1, . . . , N , and all

sufficiently large ν ≥ 1; see (C1) in Boistard et al. (2017) and Assumption

2-(i) in Wang and Opsomer (2011). Condition C2 holds (almost surely) when

{Xi}Ni=1 are generated from a superpopulation distribution, and the support of
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the distribution of Xi is bounded away from zero and ∞. Condition C3 holds

(almost surely) for SRSWOR, the LMS sampling design, and any πPS sam-

pling design under appropriate superpopulation models (see Lemma S2 in the

Supplementary Material). For the RHC sampling design, we also assume that

{Ni}ni=1 is given by

Ni =



N/n, for i = 1, · · · , n, when N/n is an integer,

⌊N/n⌋, for i = 1, · · · , k, and

⌊N/n⌋+ 1, for i = k + 1, · · · , n, when N/n is not an integer,

(2.1)

where k is such that
∑n

i=1 Ni=N . Here, ⌊N/n⌋ is the integer part of N/n. Rao

et al. (1962) showed that this choice of {Ni}ni=1 minimizes the variance of the

RHC estimator. Now, we state the following theorem.

Theorem 1. Suppose that C0 through C3 hold. Then, classes 1, 2, 3, and 4 in

Table 2 describe equivalence classes of estimators for g(h) under SRSWOR and

the LMS sampling design.

For the next two theorems, we assume that nmax1≤i≤N Xi/
∑N

i=1Xi < 1.

Note that this condition is required to hold for any without-replacement πPS

sampling design.
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Theorem 2. (i) If C0 through C3 hold, then classes 5, 6, and 7 in Table 2

describe equivalence classes of estimators for g(h) under any HEπPS sampling

design.

(ii) Under the RHC sampling design, if C0 through C2 and C4 hold, then classes

8 and 9 in Table 2 describe equivalence classes of estimators for g(h).

Table 2: Disjoint equivalence classes of estimators for g(h)

Estimators of h

Sampling GREG and
HT RHC Hájek Ratio Product

design PEML

SRSWOR class 1 1class 2 1class 2 class 3 class 4

LMS class 1 class 2 class 2 class 3 class 4

HEπPS class 5 2class 6 class 7 2class 6 2class 6

RHC class 8 class 9

1 The HT and Hájek estimators coincide under SRSWOR.

2 The HT, ratio, and product estimators coincide under HEπPS sampling

designs.

Remark 1. If C1 through C3 hold, and C0 holds with λ=0, then in Table 2,

class 8 merges with class 5, and class 9 merges with class 6. For details, see

Section S3 in the Supplementary Material.

Next, suppose that Wi=∇g(h)hT
i , for i=1, . . . , N , W=

∑N
i=1Wi/N , Sxw=

Statistica Sinica: Preprint 
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12∑N
i=1WiXi/N − W X, S2

w=
∑N

i=1W
2
i /N −W

2
, S2

x=
∑N

i=1 X
2
i /N − X

2
, and

ϕ=X − (n/N)
∑N

i=1 X
2
i /NX. Now, we state the following theorem.

Theorem 3. Suppose that the assumptions of Theorems 1 and 2 hold. Then,

Table 3 gives expressions for the asymptotic MSEs, ∆2
1, . . . ,∆

2
9, of the estima-

tors in equivalence classes 1, . . . , 9, respectively, in Table 2.

Remark 2. It can be shown in a straightforward way from Table 3 that ∆2
1 ≤

∆2
i , for i=2, 3, and 4. Thus, the plug-in estimators of g(h) based on the GREG

and the PEML estimators are asymptotically as good as, if not better than,

those based on the HT (which coincides with the Hájek estimator), ratio, and

product estimators under SRSWOR, and those based on the HT, Hájek, ratio,

and product estimators under the LMS sampling design.

Let us now consider some examples of g(h) in Table 4. The conclusions of

Theorems 1 through 3 and Remarks 1 and 2 hold for all parameters in Table

4. Here, recall that for the variance, correlation coefficient, and regression

coefficient, we consider only the plug-in estimators based on the Hájek and

PEML estimators.

3. Comparison of estimators under superpopulation models

In this section, we derive asymptotically efficient estimators for the mean, vari-

ance, correlation coefficient, and regression coefficient under superpopulations
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Table 3: Asymptotic MSEs of estimators for g(h) (note that to simplify the

notation, we omit the subscript ν from expressions on which limits are taken.)

∆2
1=(1− λ) lim

ν→∞

(
S2
w − (Sxw/Sx)

2
)

∆2
2=(1− λ) lim

ν→∞
S2
w

∆2
3=(1− λ) lim

ν→∞

(
S2
w − 2WSxw/X +

(
W/X

)2
S2
x

)
∆2

4=(1− λ) lim
ν→∞

(
S2
w + 2WSxw/X +

(
W/X

)2
S2
x

)
∆2

5= lim
ν→∞

(1/N)
∑N

i=1

(
Wi −W − (Sxw/S

2
x)(Xi −X)

)2×(
(X/Xi)− (n/N)

)
∆2

6= lim
ν→∞

(1/N)
∑N

i=1

{
Wi + ϕ−1X

−1
Xi

(
(n/N)

∑N
i=1WiXi/N −W X

)}2×{
(X/Xi)− (n/N)

}
∆2

7= lim
ν→∞

(1/N)
∑N

i=1

(
Wi −W + (n/NϕX)XiSxw

)2×(
(X/Xi)− (n/N)

)
∆2

8= lim
ν→∞

nγ(X/N)
∑N

i=1

(
Wi −W − (Sxw/S

2
x)(Xi −X)

)2
/Xi

∆2
9= lim

ν→∞
nγ

(
(X/N)

∑N
i=1 W

2
i /Xi −W

2)

that satisfy linear regression models. Raj (1954), Murthy (1967), Avadhani and

Sukhatme (1970), Avadhani and Srivastava (1972), and Cochran (1977) used

the linear relationship between Yi and Xi to compare different estimators of

the mean. However, they did not use a probability distribution for (Yi, Xi).

Subsequently, Rao (2003), Fuller (2011), and Chaudhuri (2014) (see chap. 5),

among others, considered the linear relationship between Yi and Xi and a prob-

ability distribution for (Yi, Xi) to construct different estimators and study their
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Table 4: Examples of g(h)

Parameter d p h g

Mean 1 1 h(y)=y g(s)=s

Variance 1 2 h(y)=(y2, y) g(s1, s2)=s1 − s22

Correlation
2 5

h(z1, z2)=(z1, z2, g(s1, s2, s3, s4, s5)=(s5 − s1s2)/

coefficient z21 , z
2
2 , z1z2) ((s3 − s21)(s4 − s22))

1/2

Regression
2 4

h(z1, z2)=(z1, z2, g(s1, s2, s3, s4, s5)=

coefficient z22 , z1z2) (s4 − s1s2)/(s3 − s22)

behavior. However, to the best of our knowledge, no prior studies have shown

how to find asymptotically the most efficient estimator for the mean among a

large class of estimators, as we do here. In addition, our study is the first to

compare plug-in estimators of the variance, correlation coefficient, and regres-

sion coefficient for large samples. Suppose that {(Yi, Xi) : 1 ≤ i ≤ N} are

independently and identically distributed (i.i.d.) random vectors defined on a

probability space (Ω,F,P). Without any loss of generality, for convenience, we

take σ2
x=EP(Xi − EP(Xi))

2 =1. This might require rescaling the variable x.

Here, EP denotes the expectation with respect to the probability measure P.

Recall that the population values X1, . . . , XN are used to implement some of

the sampling designs. In such a case, we consider a function P (s, ω) on S × Ω

such that P (s, ·) is a random variable on Ω for each s ∈ S, and P (·, ω) is a

probability distribution on S for each ω ∈ Ω (see Boistard et al. (2017)). Note
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that P (s, ω) is the sampling design for any fixed ω in this case. Then, the ∆2
j in

Table 3 can be expressed in terms of superpopulation moments of (h(Yi), Xi),

from the strong law of large numbers (SLLN), and we can easily compare dif-

ferent classes of estimators in Table 2 under linear models. Let us first state

several conditions on the superpopulation distribution P.

C 5. Xi ≤ b a.s. [P] for some 0 < b < ∞, EP(Xi)
−2 < ∞, and max1≤i≤N Xi/

min1≤i≤N Xi=O(1) as ν → ∞ a.s. [P]. In addition, the support of the distribu-

tion of (h(Yi), Xi) is not a subset of a hyper-plane in Rp+1.

The condition Xi ≤ b a.s. [P] for some 0 < b < ∞ in C5 and C0, along with

0 ≤ λ < EP(Xi)/b, ensure that nmax1≤i≤N Xi/
∑N

i=1 Xi < 1 for all sufficiently

large ν a.s. [P], which is required to hold for any without-replacement πPS

sampling design. On the other hand, the condition, max1≤i≤N Xi/min1≤i≤N Xi

=O(1) as ν → ∞ a.s. [P] in C5 implies that C2 holds a.s. [P]. Further, C5

ensures that C4 holds a.s. [P] (see Lemma S2 in the Supplementary Material).

C5 also ensures that C3 holds under the LMS and any πPS sampling designs

a.s. [P] (see Lemma S2 in the Supplementary Material).

Let us first consider the case when g(h) is the mean of y (see the second row

in Table 4). Further, suppose that Yi=α+βXi+ϵi, for α, β ∈ R and i=1, . . . , N ,

where {ϵi}Ni=1 are i.i.d. random variables and are independent of {Xi}Ni=1, with

EP(ϵi)=0 and EP(ϵi)
4 < ∞. Then, we have the following theorem.
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Theorem 4. Suppose that C0 holds, with 0 ≤ λ < EP(Xi)/b, and C5 holds.

Then, a.s. [P], the PEML estimator under SRSWOR and the LMS sampling

design has the lowest asymptotic MSE among all estimators of the population

mean under different sampling designs considered here.

Remark 3. Note that for SRSWOR, the PEML estimator of the population

mean has the lowest asymptotic MSE among all estimators considered here a.s.

[P] when C0 holds with 0 ≤ λ < 1 and C5 holds (see the proof of Theorem 4).

Theorem 5. Suppose that C0 holds with 0 ≤ λ < EP(Xi)/b, and C5 holds.

Then, a.s. [P], the performance of the PEML estimator of the population mean

under the RHC and any HEπPS sampling designs, which use auxiliary infor-

mation, is worse than its performance under SRSWOR.

Recall from the introduction that for the variance, correlation coefficient,

and regression coefficient, we compare only those equivalence classes that con-

tain plug-in estimators based on the Hájek and PEML estimators. We first

state the following condition.

C 6. ξ > 2max{µ1, µ−1/(µ1µ−1 − 1)}, where ξ=µ3 − µ2µ1 is the covariance

between X2
i and Xi, and µj=EP(Xi)

j, for j=−1, 1, 2, 3.

The above condition is used to prove part (ii) in each of Theorems 6 and

7. This condition holds when Xi follows a well-known distribution, such as the
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gamma (with shape parameter value larger than one and any scale parameter

value), beta (with the second shape parameter value greater than the first shape

parameter value, and the first shape parameter value larger than one), Pareto

(with shape parameter value lying in the interval (3, (5+
√
17)/2) and any scale

parameter value), log-normal (with both the parameters taking any value), and

Weibull (with shape parameter value lying in the interval (1, 3.6) and any scale

parameter value). Now, consider the case when g(h) is the variance of y (see

the third row in Table 4). Recall the linear model Yi=α+ βXi + ϵi from above,

and assume that EP(ϵi)
8 < ∞. Then, we have the following theorem.

Theorem 6. (i) Let us first consider SRSWOR and the LMS sampling design,

and suppose that C0 and C5 hold. Then, a.s. [P], the plug-in estimator of the

population variance based on the PEML estimator has the lowest asymptotic

MSE among all estimators considered here.

(ii) Next, consider any HEπPS sampling design, and suppose that C0 holds with

0 ≤ λ < EP(Xi)/b, and C5 and C6 hold. Then, a.s. [P], the plug-in estimator of

the population variance based on the Hájek estimator has the lowest asymptotic

MSE among all estimators considered here.

Now, suppose that y=(z1, z2) ∈ R2, and consider the case when g(h) is

the correlation coefficient between z1 and z2 (see the fourth row in Table 4).

We also consider the case when g(h) is the regression coefficient of z1 on z2
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(see the fifth row in Table 4). Further, suppose that Yi=α + βXi + ϵi for

Yi=(Z1i, Z2i), α, β ∈ R2 and i=1, . . . , N , where {ϵi}Ni=1 are i.i.d. random vectors

in R2 independent of {Xi}Ni=1 with EP(ϵi)=0 and EP||ϵi||8 < ∞. Then, we have

the following theorem.

Theorem 7. (i) Let us first consider SRSWOR and the LMS sampling design,

and suppose that C0 and C5 hold. Then, a.s. [P], the plug-in estimator of

each of the correlation and the regression coefficients in the population based

on the PEML estimator has the lowest asymptotic MSE among all estimators

considered here.

(ii) Next, consider any HEπPS sampling design, and suppose that C0 holds with

0 ≤ λ < EP(Xi)/b, and C5 and C6 hold. Then, a.s. [P], the plug-in estimator

of each of the above parameters based on the Hájek estimator has the lowest

asymptotic MSE among all estimators considered here.

4. Data analysis

In this section, we empirically compare the estimators of the mean, variance,

correlation coefficient, and regression coefficient using real and synthetic data.

Note that for the empirical comparison, we exclude some of the estimators

considered in the theoretical comparison, for the following reasons:

(i) Because the GREG estimator is well-known to be asymptotically better
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than the HT, ratio, and product estimators under SRSWOR (see Cochran

(1977)), we exclude these estimators under SRSWOR.

(ii) Because the MSEs of the estimators under the LMS sampling design be-

come very close to the MSEs of the same estimators under SRSWOR, as

expected from Theorem 1, we do not report these results under the LMS

sampling design. Moreover, SRSWOR is a simpler and more commonly

used sampling design than is the LMS sampling design.

Thus, we consider the estimators in Table 5 for the empirical comparison. Recall

from Table 1 that the HT, ratio, and product estimators of the mean coincide

under any HEπPS sampling design. We draw I=1000 samples, each of sizes

n=75, 100, and 125, using the sampling designs in Table 5. We use the software

R to draw the samples and compute the various estimators. For the RS sampling

design, we use the “pps” package in R, and for the PEML estimator, we use the

R code in Wu (2005). We compare the two estimators g(ĥ1) and g(ĥ2) of g(h)

empirically under the sampling designs P1(s) and P2(s), respectively, in terms

of their relative efficiency, defined as

RE(g(ĥ1), P1|g(ĥ2), P2) = MSEP2(g(ĥ2))/MSEP1(g(ĥ1)),

where MSEPj
(g(ĥj))=I−1

∑I
l=1(g(ĥjl)− g(h0))

2 is the empirical mean squared

error of g(ĥj) under Pj(s), for j=1, 2. Here, ĥjl is the estimate of h based on the
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Table 5: Estimators considered for the empirical comparison

Parameters Estimators

Mean

GREG and PEML estimators under SRS-

WOR; HT, Hájek, GREG and PEML

estimators under 3RS sampling design;

and RHC, GREG and PEML estimators

under RHC sampling design

Variance, correlation Obtained by plugging in Hájek and PEML

coefficient and regression estimators under SRSWOR and1RS

coefficient sampling design, and PEML estimator

under RHC sampling design

3 We consider the RS sampling design, because it is a HEπPS sampling

design, and it is easier to implement than other HEπPS sampling

designs.

jth estimator and the lth sample, and g(h0) is the true value of the parameter

g(h), for j=1, 2, l=1, . . . , I. Here, g(ĥ1) under P1(s) is more efficient than g(ĥ2)

under P2(s) if RE(g(ĥ1), P1|g(ĥ2), P2) > 1.

Next, for each of the parameters considered in this section, we compare the

average lengths of the asymptotically 95% confidence intervals (CIs) constructed

using the various estimators. In order to construct asymptotically 95% CIs, we

need an estimator of the asymptotic MSE of
√
n(g(ĥ)−g(h)). If we consider SR-
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SWOR or the RS sampling design, it follows from the proofs of Theorems 1 and 2

that the asymptotic MSE of
√
n(g(ĥ)−g(h)) is ∆̃2

1=limν→∞ nN−2∇g(h)
∑N

i=1(Vi−

Tπi)
T (Vi −Tπi)(π

−1
i − 1)∇g(h)T , where T=

∑N
i=1 Vi(1− πi)/

∑N
i=1 πi(1− πi).

Moreover, Vi is hi or hi − h or hi − h − Sxh(Xi − X)/S2
x if ĥ is ĥHT or ĥH

or ĥPEML (as well as ĥGREG), respectively, with d(i, s)=(Nπi)
−1. Recall that

Sxh=
∑N

i=1 Xihi/N −X h. Following Cardot et al. (2014), we estimate ∆̃2
1 by

∆̂2
1 = nN−2∇g(ĥ)

∑
i∈s

(V̂i − T̂πi)
T (V̂i − T̂πi)(π

−1
i − 1)π−1

i ∇g(ĥ)T , (4.1)

where T̂=
∑

i∈s V̂i(π
−1
i − 1)/

∑
i∈s(1 − πi), ĥ=ĥHT in the case of the mean,

variance, and regression coefficient, and ĥ=ĥH in the case of the correlation

coefficient. Here, V̂i is hi or hi − ĥHT or hi − ĥHT − Ŝxh,1(Xi − X̂HT )/Ŝ
2
x,1 if ĥ

is ĥHT or ĥH or ĥPEML (as well as ĥGREG), respectively, with d(i, s)=(Nπi)
−1.

Further, Ŝxh,1=
∑

i∈s(Nπi)
−1Xihi−X̂HT ĥHT and Ŝ2

x,1=
∑

i∈s(Nπi)
−1X2

i −X̂
2

HT .

We estimate h in ∇g(h) using ĥHT in the case of the mean, variance, and

regression coefficient, because ĥHT is an unbiased estimator, and it is easier to

compute than the other estimators of h considered here. On the other hand,

some estimators of the correlation coefficient may be undefined if we estimate

h using any estimator other than ĥH or ĥPEML (see the introduction). In this

case, we choose ĥH , because it is easier to compute than ĥPEML.

Next, if we consider the RHC sampling design, it follows from the proof of

Theorem 2 that the asymptotic MSE of
√
n(g(h)−g(ĥ)) is ∆̃2

2=limν→∞ nγXN−1×
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∇g(h)
∑N

i=1(Vi −XiV/X)T (Vi −XiV/X)X−1
i ∇g(h)T , where γ and V are as

in the paragraph following C2. Moreover, Vi is hi or hi − h− Sxh(Xi −X)/S2
x

if ĥ is ĥRHC or ĥPEML (as well as ĥGREG), respectively, with d(i, s)=Gi/NXi.

We estimate ∆̃2
2 by

∆̂2
2 = nγXN−1∇g(ĥ)

∑
i∈s

(V̂i −XiV̂RHC/X)×

(V̂i −XiV̂RHC/X)(GiX
−2
i )∇g(ĥ)T ,

(4.2)

where V̂RHC=
∑

i∈s V̂iGi/NXi, ĥ=ĥRHC in the case of the mean, variance, and

regression coefficient, and ĥ=ĥPEML in the case of the correlation coefficient.

Here, V̂i is hi or hi−ĥRHC−Ŝxh,2(Xi−X)/Ŝ2
x,2 if ĥ is ĥRHC or ĥPEML (as well as

ĥGREG), respectively, with d(i, s)=Gi/NXi. Further, Ŝxh,2=
∑

i∈s hiGi/N − X

ĥRHC and Ŝ2
x,1=

∑
i∈s XiGi/N − X

2
. In the case of the mean, variance, and

regression coefficient, we estimate h in ∇g(h) using ĥRHC for the same reason

that we estimate h using ĥHT under SRSWOR and the RS sampling design.

On the other hand, in the case of the correlation coefficient, we estimate h in

∇g(h) using ĥPEML under the RHC sampling design so that the estimator of

the correlation coefficient in the expression of ∇g(h) in this case is well defined.

We draw I=1000 samples, each of sizes n=75, 100, and 125, using the

sampling designs in Table 5. Then, for each of the parameters, sampling designs,

and estimators, we construct I asymptotically 95% CIs based on these samples,

and compute the average and the standard deviation of their lengths.
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4.1 Analysis based on synthetic data

In this section, we consider the population values {(Yi, Xi) : 1 ≤ i ≤ N} on

(y, x) generated from a linear model, as follows. We choose N=5000 and gener-

ate the Xi from a gamma distribution with mean 1000 and standard deviation

(s.d.) 200. Then, Yi is generated from the linear model Yi=500 + Xi + ϵi, for

i=1, . . . , N , where ϵi is generated independently of {Xi}Ni=1 from a normal dis-

tribution with mean zero and s.d. 100. We also generate the population values

{(Yi, Xi) : 1 ≤ i ≤ N} from a linear model in which y=(z1, z2) is a bivariate

study variable. The population values {Xi}Ni=1 are generated in the same way

as in the earlier case. Then, Yi=(Z1i, Z2i) is generated from the linear model

Zji=αj + Xi + ϵji, for i=1, . . . , N , where α1=500 and α2=1000. The ϵ1i are

generated independently of the Xi from a normal distribution with mean zero

and s.d. 100, and the ϵ2i are generated independently of the Xi and the ϵ1i from

a normal distribution with mean zero and s.d. 200. We consider the estimation

of the mean and the variance of y for the first data set and the correlation and

the regression coefficients between z1 and z2 for the second data set.

The results of the empirical comparison based on synthetic data are sum-

marized as follows. For each of the mean, variance, correlation coefficient, and

regression coefficient, the plug-in estimator based on the PEML estimator under

SRSWOR is more efficient than any other estimator under any other sampling
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design (see Tables 2 through 6 in the Supplementary Material) considered in

Table 5. In addition, for each of the above parameters, the asymptotically 95%

CI based on the PEML estimator under SRSWOR has the least average length

(see Tables 7 through 11 in the Supplementary Material). Thus, the empiri-

cal results stated here corroborate the theoretical results stated in Theorems 4

through 7.

4.2 Analysis based on real data

In this section, we consider a data set on village amenities in the state of West

Bengal in India obtained from the Office of the Registrar General & Census

Commissioner, India (https://censusindia.gov.in). The relevant study variables

for this data set are described in Table 6. We consider the following estimation

problems for a population of 37478 villages. For these estimation problems, we

use the number of people living in village x as the size variable.

Table 6: Description of study variables

y1 Number of primary schools in village

y2 Scheduled castes population size in village

y3 Number of secondary schools in village

y4 Scheduled tribes population size in village

(i) First, we estimate the mean and variance of each of y1 and y2. The scatter
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plot and the least square regression line in Figure 1 in the Supplementary

Material show that y1 and x have an approximately linear relationship. In

addition, the correlation coefficient between y1 and x is 0.72. On the other

hand, y2 and x do not seem to have a linear relationship (see the scatter

plot and the least square regression line in Figure 2 in the Supplementary

Material).

(ii) Next, we estimate the correlation and regression coefficients of y1 and y3,

and of y2 and y4. The scatter plot and least square regression line in

Figure 3 in the Supplementary Material show that y3 does not seem to be

dependent on x. Further, we see from the scatter plot and the least square

regression line of y4 and x (see Figure 4 in the Supplementary Material)

that y4 and x do not seem to have a linear relationship.

The results of the empirical comparison based on real data are summarized in

Table 7. For further details, see Tables 12 through 31 in the Supplementary

Material. The approximate linear relationship between y1 and x (see the scatter

plot and the least square regression line in Figure 1 in the Supplementary

Material) could be a possible reason why the plug-in estimator based on the

PEML estimator under SRSWOR is the most efficient for the mean and variance

of y1. Furthermore, possibly for the same reason, the plug-in estimators of the

correlation and regression coefficients between y1 and y3 based on the PEML
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Table 7: Most efficient estimators, in terms of relative efficiency (it follows from

Tables 22 through 31 in the Supplementary Material that the asymptotically

95% CIs based on the most efficient estimators have the least average lengths).

Parameters Most efficient estimators

Mean and variance of y1
The plug-in estimator based on the the

PEML estimator under SRSWOR

Mean of y2 The HT estimator under RS sampling design

Variance of y2
The plug-in estimator based on the Hájek

estimator under RS sampling design

Correlation and regression The plug-in estimator based on the PEML

coefficients of y1 and y3 estimator under SRSWOR

Correlation and regression The plug-in estimator based on the Hájek

coefficients of y2 and y4 estimator under RS sampling design

estimator under SRSWOR are the most efficient.

On the other hand, y2 and y4 do not seem to have a linear relationship

with x (see the scatter plots and the least square regression lines in Figures

2 and 4 in the Supplementary Material). Possibly for this reason, the plug-in

estimators of the parameters related to y2 and y4 based on the PEML estima-

tor are not able to outperform the plug-in estimators of the same parameters

based on the HT and Hájek estimators. Next, we observe that there is substan-
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tial correlation between y2 and x (correlation coefficient=0.67), and y4 and x

(correlation coefficient=0.25). Possibly because of this, under the RS sampling

design, which uses auxiliary information, the plug-in estimators of the param-

eters related to y2 and y4 based on the HT and Hájek estimators are the most

efficient.

5. Conclusion

It follows from Theorem 4 that the PEML estimator of the mean under SR-

SWOR becomes asymptotically either more efficient than, or equivalent to any

other estimator under any other sampling design considered here. It also follows

from Theorems 1 and 2 that the GREG estimator of the mean is asymptotically

equivalent to the PEML estimator under the sampling designs considered here.

However, our numerical studies based on finite samples indicate that the PEML

estimator of the mean performs slightly better than the GREG estimator under

all the sampling designs considered in Section 4 (see Tables 2, 12, and 14 in the

Supplementary Material). Moreover, if the estimators of the variance, corre-

lation coefficient, and regression coefficient are constructed by plugging in the

GREG estimator of the mean, then the estimators of the population variances

in these parameters may become negative. On the other hand, if the estima-

tors of these parameters are constructed by plugging in the PEML estimator of
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the mean, then such a problem does not occur. Further, for these parameters,

the plug-in estimators based on either the PEML or the Hájek estimator are

asymptotically best, depending on the sampling design (see Theorems 6 and 7).

We see from Theorem 4 that for the population mean, the PEML estimator,

which is not design unbiased, outperforms design unbiased estimators such as

the HT and RHC estimators. Further, the plug-in estimators of the population

variance based on the HT and RHC estimators may become negative. This

affects the plug-in estimators of the correlation and regression coefficients based

on the HT and RHC estimators.

It follows from Table 2 that under the LMS sampling design, the large-

sample performance of the estimators of the functions of means considered here

is the same as that under SRSWOR. The LMS sampling design was introduced

to make the ratio estimator of the mean unbiased. It follows from Remark 2

in Section 2 that the performance of the ratio estimator of the mean is worse

than that of several other estimators, even under the LMS sampling design.

The coefficient of variation is another well-known finite population param-

eter, and can be expressed as a function of the population mean g(h). We have

d=1, p=2, h(y)=(y2, y), and g(s1, s2)=
√
s1 − s22/s2 in this case. Of the estima-

tors considered here, the plug-in estimators of g(h) based on the PEML and

Hájek estimators of the mean can be used to estimate this parameter, because
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it involves the finite population variance. We have omitted a comparison of

the estimators of the coefficient of variation, owing to the complexity of the

mathematical expressions. However, the asymptotic results stated in Theorems

6 and 7 hold for this parameter as well.

An empirical comparison of the biased estimators considered here and their

bias-corrected versions is performed using jackknifing in Section S4 in the Sup-

plementary Material. It follows from this comparison that for all the parameters

considered here, the bias-corrected estimators become worse than the original

biased estimators for both the synthetic and the real data. This is because,

although bias-correction reduces the bias in the original estimators, it causes

the variances of these estimators to increase substantially.

Supplementary Material

In the online Supplementary Material, we discuss some conditions from the

main paper, and describe situations in which these conditions hold. Then, we

state and prove some additional mathematical results. We also give proofs

for Remark 1 and Theorems 2, 3, 6, and 7. Furthermore, we compare the

biased estimators considered in this paper empirically, with their bias-corrected

versions based on jackknifing in terms of the MSE. Finally, we provide numerical

results related to the analyses of the synthetic and real data in Section 4.
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Appendix

Let us begin by providing the expressions (see Table 8 below) of those esti-

Table 8: Estimators of Y

Estimator Expression

HT Ŷ HT=
∑

i∈s(Nπi)
−1Yi

RHC Ŷ RHC=
∑

i∈s GiYi/NXi

Hájek Ŷ H=
∑

i∈s π
−1
i Yi/

∑
i∈s π

−1
i

Ratio Ŷ RA=(
∑

i∈s π
−1
i Yi/

∑
i∈s π

−1
i Xi)X

Product Ŷ PR=
∑

i∈s(Nπi)
−1Yi

∑
i∈s(Nπi)

−1Xi/ X

GREG Ŷ GREG=Ŷ ∗ + β̂(X − X̂∗)

PEML Ŷ PEML=
∑

i∈s ciYi

mators of Y , which are considered in this paper. In Table 8, {πi}Ni=1 denote

inclusion probabilities, and Gi is the total of the x values of that randomly

formed group from which the ith population unit is selected in the sample by

RHC sampling design (cf. Chaudhuri et al. (2006)). In the case of the GREG es-

timator, Ŷ ∗=
∑

i∈s d(i, s)Yi/
∑

i∈s d(i, s), X̂∗=
∑

i∈s d(i, s) ×Xi/
∑

i∈s d(i, s) and
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β̂=
∑

i∈s d(i, s)(Yi−Ŷ ∗)(Xi−X̂∗)/
∑

i∈s d(i, s)(Xi−X̂∗)
2, where {d(i, s) : i ∈ s}

are sampling design weights. Finally, the ci’s (> 0) in the PEML estima-

tor are obtained by maximizing
∑

i∈s d(i, s) log(ci) subject to
∑

i∈s ci=1 and∑
i∈s ci(Xi − X)=0. Following Chen and Sitter (1999), we consider both the

GREG and the PEML estimators with d(i, s)=(Nπi)
−1 under SRSWOR, LMS

sampling design and any HEπPS sampling design, and with d(i, s)=Gi/NXi

under RHC sampling design.

Let us denote the HT, the RHC, the Hájek, the ratio, the product, the

GREG and the PEML estimators of population means of h(y) by ĥHT , ĥRHC ,

ĥH , ĥRA, ĥPR, ĥGREG and ĥPEML, respectively. Now, we give the proofs of

Theorems 1, 4 and 5. The proofs of Remark 1 and Theorems 2, 3, 6 and 7 are

given in Section S3 of the supplement.

Proof of Theorem 1. Let us consider SRSWOR and LMS sampling design.

It follows from (i) in Lemma S6 in the supplement that
√
n(ĥ−h)

L−→ N(0,Γ) as

ν → ∞ for some p.d. matrix Γ, when ĥ is one of ĥHT , ĥH , ĥRA, ĥPR, and ĥGREG

with d(i, s)=(Nπi)
−1 under any of these sampling designs. Now, note that

maxi∈s |Xi−X|=op(
√
n), and

∑
i∈s π

−1
i (Xi−X)/

∑
i∈s π

−1
i (Xi−X)2=Op(1/

√
n)

as ν → ∞ under the above sampling designs (see Lemma S8 in the supplement).

Then, by applying Theorem 1 of Chen and Sitter (1999) to each real-valued

coordinate of ĥPEML and ĥGREG, we get
√
n(ĥPEML− ĥGREG)=op(1) as ν → ∞
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for d(i, s)=(Nπi)
−1 under these sampling designs. This implies that ĥPEML and

ĥGREG with d(i, s)=(Nπi)
−1 have the same asymptotic distribution. Therefore,

if ĥ is one of ĥHT , ĥH , ĥRA, ĥPR, and ĥGREG and ĥPEML with d(i, s)=(Nπi)
−1,

we have

√
n(g(ĥ)− g(h))

L−→ N(0,∆2) as ν → ∞ (5.1)

under any of the above-mentioned sampling designs for some ∆2 > 0 by the

delta method and the condition ∇g(µ0) ̸= 0 at µ0=limν→∞ h. It can be shown

from the proof of (i) in Lemma S6 in the supplement that ∆2=∇g(µ0)Γ1

(∇g(µ0))
T , where Γ1=limν→∞ nN−2

∑N
i=1(Vi − Tπi)

T (Vi − Tπi)(π
−1
i − 1). It

can also be shown from Table 1 in the supplement that under each of the above

sampling designs, Vi in Γ1 is hi or hi − h or hi − hXi/X or hi + hXi/X or

hi − h − Sxh(Xi − X)/S2
x if ĥ is ĥHT or ĥH or ĥRA or ĥPR, or ĥGREG with

d(i, s)=(Nπi)
−1, respectively.

Now, by (i) in Lemma S7 in the supplement, we have

σ2
1 = σ2

2 = (1− λ) lim
ν→∞

N∑
i=1

(Ai − Ā)2/N. (5.2)

where σ2
1 and σ2

2 are as defined in the statement of Lemma S7, andAi=∇g(µ0)V
T
i

for different choices of Vi mentioned in the preceding paragraph. Note that

g(ĥGREG) and g(ĥPEML) have the same asymptotic distribution under each

of SRSWOR and LMS sampling design since
√
n(ĥPEML − ĥGREG)=op(1) for
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ν → ∞ under these sampling designs as pointed out earlier in this proof. Fur-

ther, (5.2) implies that g(ĥGREG) with d(i, s)=(Nπi)
−1 has the same asymptotic

MSE under SRSWOR and LMS sampling design. Thus g(ĥGREG) and g(ĥPEML)

with d(i, s)=(Nπi)
−1 under SRSWOR and LMS sampling design form class 1

in Table 2.

Next, (5.2) yields that g(ĥHT ) has the same asymptotic MSE under SR-

SWOR and LMS sampling design. It also follows from (5.2) that g(ĥH) has

the same asymptotic MSE under SRSWOR and LMS sampling design. Now,

note that g(ĥHT ) and g(ĥH) coincide under SRSWOR. Thus g(ĥHT ) under SR-

SWOR, and g(ĥHT ) and g(ĥH) under LMS sampling design form class 2 in

Table 2.

Next, (5.2) implies that g(ĥRA) has the same asymptotic MSE under SR-

SWOR and LMS sampling design. Further, (5.2) implies that g(ĥPR) has the

same asymptotic MSE under SRSWOR and LMS sampling design. Thus g(ĥRA)

under SRSWOR and LMS sampling design forms class 3 in Table 2, and g(ĥPR)

under those sampling designs forms class 4 in Table 2. This completes the proof

of Theorem 1.

Proof of Theorem 4. Note that C1 and C2 hold a.s. [P] since C5 holds

and EP(ϵi)
4 < ∞. Also, note that C3 holds a.s. [P] under SRSWOR and

LMS sampling design (see Lemma S2 in the supplement). Then, under the
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above sampling designs, conclusions of Theorems 1 and 3 hold a.s. [P] for

d=p=1, h(y)=y and g(s)=s. Note that Wi=∇g(h)hT
i =Yi. Also, note that

the ∆2
i ’s in Table 3 can be expressed in terms of superpopulation moments

of (Yi, Xi) a.s. [P] by SLLN since EP(ϵi)
4 < ∞. Recall from the beginning

of Section 3 that we have taken σ2
x=1. Then, we have ∆2

2 − ∆2
1=(1 − λ)σ2

xy,

∆2
3 − ∆2

1=(1 − λ)(σxy − EP(Yi)/µ1)
2 and ∆2

4 − ∆2
1=(1 − λ)(σxy + EP(Yi)/µ1)

2

a.s. [P], where µ1=EP(Xi) and σxy=covP(Xi, Yi). Hence, ∆2
1 < ∆2

i a.s. [P] for

i=2, 3, 4.

Next consider the case of 0 ≤ λ < EP(Xi)/b. Note that nγ → c as

ν → ∞ for some c ≥ 1 − λ by Lemma S1 in the supplement. Also, note

that a.s. [P], C4 holds in the case of RHC sampling design and C3 holds

in the case of any HEπPS sampling design (see Lemma S2 in the supple-

ment). Then, under RHC and any HEπPS sampling designs, conclusions of

Theorems 2 and 3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s. Further,

we have ∆2
5 −∆2

1=
{
EP

(
Yi −EP(Yi))

2
(
µ1/Xi − λ

)
− µ2

1σxy

(
σxycovP(Xi, 1/Xi)−

2covP(Yi, 1/Xi)
)
+λσ2

xy

}
− (1−λ)

{
σ2
y −σ2

xy

}
, ∆2

6−∆2
5= EP

(
Y 2
i

(
µ1/Xi−λ

))
−{

λEP(YiXi)−EP(Yi)µ1

}2
/χµ1−

{
EP

(
Yi−EP(Yi)−σxy(Xi−µ1)

)2(
µ1/Xi−λ

)}
,

∆2
7−∆2

5=
{
µ2
1σxy

(
σxycovP(Xi, 1/Xi)−2covP(Yi, 1/Xi)

)
−λσ2

xy−λ2σ2
xy/µ1χ

}
, ∆2

8−

∆2
1=c

{
µ1EP(Yi −EP(Yi))

2/Xi − µ2
1σxy(σxycovP(Xi, 1/Xi)− 2covP(Yi, 1/Xi))

}
−

(1−λ)
{
σ2
y −σ2

xy

}
and ∆2

9−∆2
1=c

{
µ1EP(Y

2
i /Xi)−E2

P(Yi)
}
− (1−λ)

{
σ2
y −σ2

xy

}
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a.s. [P], where σ2
y=varP(Yi), χ=µ1 − λ(µ2/µ1) and µ2=EP(Xi)

2. Here, we

note that χ=EP
(
X2

i (µ1/Xi − λ)
)
/µ1 > 0 because C5 holds and C0 holds with

0 ≤ λ < EP(Xi)/b. Moreover, from the linear model set up, we can show that

∆2
5 − ∆2

1=σ2(µ1µ−1 − 1) > 0, ∆2
6 − ∆2

5=EP
{
(α + βXi) − χ−1Xi(α + βµ1 −

λα − λβµ2/µ1)
}2{

µ1/Xi − λ
}
≥ 0, ∆2

7 −∆2
5=β2EP

{
(Xi − µ1)− λχ−1Xi(µ1 −

µ2/µ1)
}2{

µ1/Xi−λ
}
≥ 0, ∆2

8−∆2
1=σ2

(
cµ1µ−1−(1−λ)

)
≥ cσ2(µ1µ−1−1) > 0

and ∆2
9 − ∆2

1=σ2
(
cµ1µ−1 − (1 − λ)

)
+ cα2(µ1µ−1 − 1) > 0 a.s. [P], where

σ2=EP(ϵi)
2. Note that ∆2

6 − ∆2
5 ≥ 0 and ∆2

7 − ∆2
5 ≥ 0 because C5 holds and

C0 holds with 0 ≤ λ < EP(Xi)/b. Therefore, ∆2
1 < ∆2

i a.s. [P] for i=2, . . . , 9.

This completes the proof of Theorem 4.

Proof of Theorem 5. The proof follows in a straightforward way from The-

orem 4.
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