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Abstract: This paper introduces a new method that embeds any Bayesian model used to

generate synthetic data and converts it into a differentially private (DP) mechanism. We

propose an alteration of the model synthesizer to utilize a censored likelihood that induces

upper and lower bounds of [exp(−ϵ/2), exp(ϵ/2)], where ϵ denotes the level of the DP guaran-

tee. This censoring mechanism equipped with an ϵ−DP guarantee will induce distortion into

the joint parameter posterior distribution by flattening or shifting the distribution towards

a weakly informative prior. To minimize the distortion in the posterior distribution induced

by likelihood censoring, we embed a vector-weighted pseudo posterior mechanism within the

censoring mechanism. The pseudo posterior is formulated by selectively downweighting each

likelihood contribution proportionally to its disclosure risk. On its own, the pseudo posterior

mechanism produces a weaker asymptotic differential privacy (aDP) guarantee. After em-

bedding in the censoring mechanism, the DP guarantee becomes strict such that it does not

rely on asymptotics. We demonstrate that the pseudo posterior mechanism creates synthetic

data with the highest utility at the price of a weaker, aDP guarantee, while embedding the

pseudo posterior mechanism in the proposed censoring mechanism produces synthetic data

with a stronger, non-asymptotic DP guarantee at the cost of slightly reduced utility. The
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perturbed histogram mechanism is included for comparison.

Key words and phrases: asymptotic differential privacy, Bayesian data synthesis, censoring,

differential privacy, pseudo posterior mechanism, synthetic data

1. Introduction

This paper focuses on constructing a synthetic data mechanism equipped with a

formal privacy guarantee that allows the use of any Bayesian probability model as

the data synthesizer. A formal privacy guarantee is quantifiable and attaches to

a data generating mechanism independent of the behaviors of putative intruders

seeking to re-identify data records; in particular, we focus on the differential privacy

(DP) framework (Dwork et al., 2006) to provide a formal privacy guarantee.

Definition 1 (Differential Privacy). Let D ∈ Rn×k be a database in input space

D. Let M be a randomized mechanism such that M : Rn×k → O. Then M is

ϵ-differentially private if

Pr[M(D) ∈ O]

Pr[M(D′) ∈ O]
≤ exp(ϵ),

for all possible outputs O = Range(M) under all possible pairs of datasetsD,D
′ ∈ D

of the same size which differ by only a single row (i.e., Hamming-1 distance).

DP assigns a disclosure risk for a statistic to be released to the public, f(D)

(e.g., total employment for a state-industry) of any D ∈ D based on the global
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sensitivity, ∆G = supD,D′∈D: δ(D,D′ )=1|f(D)− f(D
′
)|, over the space of databases, D,

where δ(D,D
′
) = 1 denotes the Hamming-1 distance such that D differs from D

′
by

a single record. If the value of the statistic, f , expresses a high magnitude change

after changes or the removal of a data record in D
′
(i.e., large ∆G value), then the

mechanism will be required to induce a relatively higher level of distortion to f .

A commonly-used data privacy approach generates synthetic microdata from

statistical models estimated on confidential data for proposed release by data dis-

seminators (Rubin, 1993; Little, 1993). We denote such a release mechanism used

to generate synthetic data, ξ(θ | x), where x are the confidential data and θ denotes

the parameters used to generate the synthetic data. In particular, we consider the

case where ξ(θ | x) is a posterior distribution of a Bayesian hierarchical probability

model.

The Exponential Mechanism by McSherry and Talwar (2007) is a popular ap-

proach to generating draws of parameters, θ, and associated synthetic data which is

differentially private.

Definition 2 (Exponential Mechanism). The Exponential Mechanism releases values

of θ from a distribution proportional to

exp

(
ϵu(x, θ)

2∆u

)
ξ(θ), (1.1)
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where u(x, θ) is a utility function and ξ(θ) is a base or prior distribution. Let

∆u = sup
x∈Xn

sup
x,y:δ(x,y)=1

sup
θ∈Θ

|u(x, θ)− u(y, θ)| (1.2)

denote the sensitivity of the utility function, u(x, θ), defined globally over x =

(x1, . . . , xn) ∈ X n, the σ−algebra of datasets, x, governed by product measure, Pθ0 ;

δ(x,y) = #{i : xi ̸= yi} is the Hamming distance between x,y ∈ X n. Then each

draw of θ from the Exponential Mechanism provides an ϵ−DP privacy guarantee,

where ϵ ≤ 2∆u.

For a Bayesian model utilizing the data log-likelihood as the utility function

of the exponential mechanism, Savitsky et al. (2022) demonstrate the exponential

mechanism specializes to the model posterior distribution, which provides a straight-

forward mechanism from which to draw samples. Dimitrakakis et al. (2017) define

a model-based sensitivity, supx,y∈Xn:δ(x,y)=1 supθ∈Θ|fθ(x)− fθ(y)| ≤ ∆, which is con-

structed as a Lipschitz bound. They demonstrate a connection between the Lipschitz

bound, ∆ and ϵ ≤ 2∆ for each draw of parameters, θ, where fθ(x) is the model log-

likelihood. The guarantee applies to all databases x, in the space of databases of size

n, X n, and denoted as the posterior mechanism.

Computing a finite ∆ < ∞ in practice, however, as acknowledged by Dimi-

trakakis et al. (2017), is difficult-to-impossible for an unbounded parameter space

(e.g., a normal distribution) under simple models. A truncation of the parameter
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space is required to achieve a finite ∆ and the truncation only works for some models

to achieve a finite ∆. Even more, parameter truncation becomes intractable analyti-

cally or computationally or both for practical models that utilize a multidimensional

parameter space. For example, a non-linear mixed effects model could have the num-

ber of model parameters on the order of the number of data records, which can be

millions, in practice.

The pseudo posterior mechanism of Savitsky et al. (2022) reviewed in Section

2.1 allows achievement of a target Lipschitz value that, in turn, determines a formal

privacy guarantee by using likelihood weights, αi ∈ [0, 1], to selectively downweight

high-risk records. This mechanism achieves a DP guarantee asymptotically as the

parameter space contracts onto a point. In other words, while the mechanism is

flexible, the privacy guarantee is not strict.

This paper introduces a new mechanism that embeds the pseudo posterior mech-

anism by censoring the pseudo likelihood values above or below a threshold to tar-

geted Lipschitz (and hence privacy) guarantee, which allows achievement of a target

ϵ−DP guarantee without reliance on asymptotics. Any Bayesian data synthesizing

model may be utilized under the censoring mechanism.

The remainder of the paper is organized as the following. Section 2 reviews the

pseudo posterior mechanism, followed by a review of the perturbed histogram mech-

anism that will be used for comparison. The new censoring mechanism is introduced
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in Section 3. Section 4 focuses on a series of simulation studies where the mechanisms

are applied and their data utilities are compared at equivalent privacy guarantees.

Section 5 presents an application to a sample of the Survey of Doctoral Recipients.

We end the paper with a few concluding remarks in Section 6.

2. Synthetic Microdata Generating Privacy Mechanisms

In this section, we review the pseudo posterior mechanism proposed by Savitsky

et al. (2022) in Section 2.1 and discuss a variant of it in Section 2.2. The perturbed

histogram mechanism (Dwork et al., 2006; Wasserman and Zhou, 2010), is briefly

reviewed in Section 2.3.

2.1 Pseudo Posterior Mechanism

To guarantee the achievement of a finite ∆ < ∞ for any synthesizing model over an

unbounded parameter space, Savitsky et al. (2022) propose a pseudo posterior mech-

anism that uses a log-pseudo likelihood with a vector of observation-indexed weights

α = (α1, · · · , αn) ∈ [0, 1]n where each αi exponentiates the likelihood contribution,

p(xi | θ), for each record i ∈ (1, . . . , n). Each weight, αi ∈ [0, 1] is set to be inversely

proportional to a measure of disclosure risk for record, i, such that the model used

to generate synthetic data will be less influenced by relatively high-risk records.
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2.1 Pseudo Posterior Mechanism

The pseudo posterior mechanism of Savitsky et al. (2022) is formulated as

ξα(x)(θ | x) ∝
n∏

i=1

p(xi | θ)αi × ξ(θ), (2.3)

where each αi ∈ [0, 1] serves to downweight the likelihood contribution of record i

with αi ∝ 1/ supθ∈Θ|fθ(xi)|, and |fθ(xi)| = |log p(xi | θ)| is the absolute log-likelihood

of record i. The differential downweighting of individual records intends to bet-

ter preserve utility by focusing the downweighting on high-risk records. High-risk

records tend to be those located in the tails of the distribution where the absolute

log-likelihood, |fθ(xi)|, is highest. The differential downweighting allows the preser-

vation of the high mass portions of the data distribution in the generated synthetic

data. The pseudo posterior mechanism sets αi = 0 for any record with a non-finite

log-likelihood, which ensures a finite ∆α = supx,y∈Xn:δ(x,y)=1 supθ∈Θ|α(x) × fθ(x) −

α(y) × fθ(y)| < ∞, where α(x) = [α1(x), . . . , αn(x)], fθ(x) = [fθ(x1), . . . , fθ(xn)]

and α(x)× fθ(x) =
∑n

i=1 αi(x)fθ(xi) that downweights the associated log-likelihood

contributions, fθ(xi) with multiplication by αi(x) ≤ 1. We see that ∆α ≤ ∆ since

αi(x) = αi ≤ 1. The α−weighted pseudo synthesizer, ξα(x)(θ | x) satisfies ϵ−DP if

the following inequality holds.

Definition 3 (Differential Privacy under the Pseudo Posterior Mechanism).

sup
x,y∈Xn:δ(x,y)=1

sup
B∈βΘ

ξα(x)(B | x)
ξα(y)(B | y)

≤ eϵ, (2.4)

where ξα(x)(B | x) =
∫
θ∈B ξα(x)(θ | x)dθ.
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2.1 Pseudo Posterior Mechanism

Definition 3 limits the change in the pseudo posterior distribution over all sets,

B ∈ βΘ (i.e., βΘ is the σ−algebra of measurable sets on Θ), from the inclusion

of a single record. Although the pseudo posterior distribution mass assigned to B

depends on x, the ϵ guarantee is defined as the supremum over all x ∈ X n and for

all y ∈ X n which differ by one record (i.e., δ(x,y) = 1).

Let ∆α,x = supδ(x,y)=1 supθ∈Θ|α(x) × fθ(x) − α(y) × fθ(y)| be the Lipschitz

bound computed, locally, on database x, over all databases, y, at a Hamming-1

distance from x. (We note that the term local in the DP literature can refer to

the trust model as in central versus local or the sensitivity calculation as in global

versus local. Our use here, however, differs from these two and focus on being local

to the database x.) The pseudo posterior mechanism indirectly sets the local DP

guarantee, ϵx = 2∆α,x, through the computation of the likelihood weights, α. The

α may be further scaled and shifted; for example, tuning settings (c1, c2) can be used

to construct α̃i = c1 × αi + c2 and decrease or increase the α̃ weights to achieve a

target ∆α̃,x, which in turn delivers a target ϵx = 2∆α̃,x (Savitsky et al., 2022; Hu

et al., 2022).

Savitsky et al. (2022) show that the local ∆α,x estimated on a confidential

database, x, contracts onto the global ∆α over the space of databases of size n

asymptotically in sample size, n; in particular, ∆α,x becomes arbitrarily close to the

global ∆α such that the pseudo posterior mechanism is asymptotically differentially
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2.1 Pseudo Posterior Mechanism

private (aDP).

The process of creating synthetic data under the α−weighted pseudo posterior

mechanism works as follows:

1. For a confidential database x of n records, one fits a Bayesian model parame-

terized by θ.

2. Based on the estimated model and the log-likelihood of each record, one calcu-

lates a vector of observation-indexed weights α = (α1, · · · , αn) ∈ [0, 1]n where

αi ∝ 1/|fθ(xi)|.

3. Re-estimate the model under the pseudo posterior in Equation (2.3). The

local Lipschitz bound, ∆α,x, is computed based on the estimated θ∗ under the

pseudo posterior. These data satisfy a local (ϵx = 2 × ∆α,x)−DP guarantee

that contracts on an ϵ = ϵx global aDP guarantee for n sufficiently large.

4. As a post-processing step, a synthetic dataset x∗ is generated from the pseudo

posterior predictive distribution under estimated parameters θ∗.

We label the α−weighted pseudo posterior mechanism as “Weighted” in the

simulations and application in Sections 4 and 5, as contrasted with an “Unweighted”

method that sets all of the αi = 1 to produce a posterior mechanism.
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2.2 Weighted-e Pseudo Posterior Mechanism

2.2 Weighted-e Pseudo Posterior Mechanism

In addition to the pseudo posterior mechanism with observation-indexed weight αi,

Savitsky et al. (2022) introduce a truncation of each weight, αi: if its log-likelihood

contribution, αi × fθ(xi) > ϵ/2, we set final weight, α∗
i = 0.

Setting a likelihood threshold, ϵ/2, reduces the constant of proportionality in the

O(n−1/2) contraction of the local Lipschitz bounds to speed convergence onto ∆α =

ϵ/2. This adjustment to the pseudo posterior mechanism induces a rapid contraction

of the ϵx computed on the observed (local) database to the global ϵ providing the

aDP guarantee. We include this tweak to the pseudo posterior mechanism because

it provides an alternative to the censoring mechanism introduced in the next section

for achieving a stronger privacy guarantee.

The synthetic data generation process works in the same way with theα−weighted

pseudo posterior mechanism in Section 2.1, excepts for their slight differences in how

the weights are calculated. We label this slightly revised version of the pseudo pos-

terior mechanism as “Weighted-e” in the sequel.

2.3 Perturbed Histogram Mechanism

We next present the commonly-used perturbed histogram mechanism for simulating

synthetic microdata that achieves ϵ−DP guarantee (Dwork et al., 2006; Wasserman

and Zhou, 2010) as a comparison. For brevity, we include a detailed review in the
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Supplementary Materials.

Under the required strong assumption of a bounded and continuous variable,

one first discretizes it into a histogram with a selected number of bins. One next

induces a formal ϵ−DP privacy guarantee into the histogram by adding Laplace noise.

Finally, one simulates microdata from the private histogram under ϵ−DP, which is

a post-processing step in a similar fashion as generating synthetic data under the

pseudo posterior mechanism (given the privacy protected parameter draws) reviewed

in Section 2.1. We label the perturbed histogram synthesizer as “PH” in the sequel.

3. Censored (Likelihood) Mechanism

The pseudo posterior mechanism discussed in Section 2.1 solves the important prob-

lem of how to turn any Bayesian probability model into a data synthesizing mecha-

nism equipped with a formal privacy guarantee. A substantial limitation, however,

is that the formal privacy guarantee is asymptotic, not strict. While an asymptotic

guarantee may be favorably viewed as “relaxed” in the sense that better utility may

be achieved than under a strict guarantee, one may never know with certainty when

their database size, n, is sufficiently large such that the asymptotic privacy guarantee

de facto becomes strict (or global over the space of databases).

Our new mechanism censors the log-likelihood contribution in a manner that

carries over the property of the pseudo posterior mechanism of Savitsky et al. (2022)
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that allows any Bayesian probability model to be purposed as a formally private

mechanism for generating synthetic data, but is now equipped with a strict ϵ−DP

guarantee. It is common practice to construct a Bayesian hierarchical probability

model to closely fit the data for the purpose of removing measurement error as is done

in small area estimation models estimated on area-indexed survey statistics. Our

newly proposed censoring mechanism makes it straightforward to embed this type of

closely-fitting model and yet output synthetic data with a strict ϵ−DP guarantee.

The idea of censoring contributions to log-likelihoods has also appeared in Pena

and Barrientos (2021) and Cannone et al. (2019) in the DP literature. Both papers

are focused on the narrower task of conducting differentially private simple hypoth-

esis testing. Pena and Barrientos (2021) censors a Bayes Factor used to conduct

differentially private hypothesis testing between two model alternatives. While they

use fully Bayesian model specifications, simple conjugate frameworks are used such

that the parameters may be analytically marginalized to compute the Bayes fac-

tor. Their example is a nested linear regression under a mixture of g-priors for the

regression coefficient. Cannone et al. (2019) performs differentially private hypoth-

esis testing to differentiate distributions P and Q by censoring or “clamping” the

log-likelihood ratio.

Our new censoring mechanism, by contrast, outputs differentially private model

parameters that facilitate synthetic data generation. Such data may, in turn, be
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used for many purposes, including hypothesis testing between any number of model

parameterization alternatives. Even more, our mechanism may be used to privatize

complex hierarchical models where parameter posterior distributions are not ana-

lytically marginalized. We note that the DP methods from Pena and Barrientos

(2021) and Cannone et al. (2019) are tailored for the specific task of conducting

differentially private simple hypothesis testing. Compared to our goal of generating

differentially private synthetic data with more flexibility in reusing the outputs for

multiple tasks, these specific task oriented DP mechanisms may have the advantage

of offering improved utility of the targeted analyses at the expense of less flexibility.

We demonstrate in the sequel that our new censoring mechanism may even embed

the pseudo posterior mechanism with the result that one gets the best properties of

both mechanisms. The distribution properties of the confidential data are well-

preserved in the resulting synthetic data due to the surgical targeting of only high-

risk record for likelihood downweighting. Yet, now the resulting synthetic data are

equipped with a strict ϵ−DP privacy guarantee.

We begin by laying out the details of how to construct the new censoring mecha-

nism achieving a strict ϵ−DP guarantee as an alternative to relying on the asymptotic

contraction of θ ∈ Θ (at θ∗) to achieve an aDP global privacy guarantee for a suffi-

ciently large sample size, n. Our new mechanism censors the log-likelihood at a target

threshold, ϵ/2, representing the targeted DP guarantee. The use of censoring intends
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to “lock in” any chosen ϵ under an ϵ−DP formal privacy guarantee without relying

on asymptotics. The ϵ guarantee is strict. The censored threshold will determine

the Lipschitz bound, ∆ = ϵ/2, which will indirectly set the ϵ = 2∆ guarantee.

The definition of DP anchors its guarantee to all databases of fixed size n. By

contrast, the privacy guarantee offered by the new censoring mechanism is stronger

in that the same ϵ guarantee applies to databases of any size, including those > n.

We introduce the censoring mechanism by embedding the α−weighted pseudo

likelihood to construct the following new pseudo likelihood with,

pαc (xi | θ) =


exp(ϵ/2), p(xi | θ)αi > exp(ϵ/2),

exp(−ϵ/2), p(xi | θ)αi < exp(−ϵ/2),

p(xi | θ)α, otherwise,

(3.5)

for use in

ξαc (θ | x) ∝
n∏

i=1

pαc (xi | θ)ξ(θ), (3.6)

where the subscript c in pαc (xi | θ) and ξαc (θ | x) stands for the censoring mechanism.

Censoring offers a practical, low-dimensional alternative to truncating the param-

eter space (as proposed by Dimitrakakis et al. (2017)) to achieve an ϵ−DP guarantee,

as truncating the parameter space Θ quickly becomes impractical as the number of

parameters grows.

One may imagine a small likelihood value assigned to an extreme observation in

the tails. The identity of such an observation is at a relatively high risk of discovery
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since its value is isolated from those of other records. As a result, the absolute value

of its log-likelihood, |fθ(xi)| = |log p(xi | θ)| that determines the ∆ and ϵ = 2∆, will

be relatively large. Under the censoring mechanism, the large absolute log-likelihood

value will be truncated (in the way shown in Equation (3.5)), which serves to cap

the Lipschitz bound. As compared to a non-censored data distribution over the

parameter space, the censored distribution for each xi will be relatively flatter or

tempered, removing local features that make detection relatively easier.

The two panels in Figure 1 illustrate the effect of censoring on the resulting

parameter posterior distributions. In this illustration, a right-skewed confidential

dataset with a long tail of 2000 observations is generated from a Beta(0.5, 2) distri-

bution. Our proposed censored mechanism is implemented at ϵ = 1.6. The right

panel of Figure 1 centers each density to compare the relative spread of the prior,

posterior and censored posterior distributions. Compared to the posterior distribu-

tion of a parameter for a given record, the censored distribution is relatively flatter or

tempered. This stems from assigning relatively higher (non-absolute) log-likelihood

values to parameter values in the tails of the distribution. The left panel of Fig-

ure 1 shows that censoring distorts the parameter estimation as compared to the

non-censored posterior. These two panels together shed some light on the utility-

risk trade-off offered by the censoring mechanism: To achieve strict ϵ−DP guarantee

censoring induces the distortion into the censored parameter posterior distribution,
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Figure 1: Density plots of parameter value under the prior, the posterior, and the

censoring method in the raw scale (left) and in the centered scale (right).

which in turn reduces the utility of the resulting synthetic data generated from sam-

pled parameters.

In practice, we do not propose to use a particular dataset for choosing a target ϵ.

Instead, one should rely on experience with the class of data (such as data collected

on a temporal basis from the same survey instrument). The synthetic data generation

process of censored likelihood works in a similar fashion with the α−weighted pseudo

posterior mechanism in Section 2.1 where one uses estimated θ∗∗ under the censored

likelihood of Equation (3.5).

In our simulation studies and application in the sequel, we explore both censoring

16

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0162



the data likelihood without any downweighting of the records and also formulate an

embedding of the α−weighted pseudo likelihood inside the censoring mechanism. We

label the former mechanism as “Censor uw”, which stands for censor unweighted, and

the latter as “Censor w”, which stands for censor weighted. The Censor w construc-

tion is a mechanism that would be expected to produce better utility preservation

of the real data distribution than the former because censoring is a blunt instru-

ment. The downweighting of likelihood contributions for high-risk records would be

expected to invoke censoring less often than under censoring of the likelihood.

We next conduct a Monte Carlo simulation study that generates a collection

of size n datasets. We develop a distribution over the Lipschitz distributions (over

the Monte Carlo iterations) to illustrate and compare the contraction of these local

Lipschitz bounds. We also evaluate and compare the utility performances of these

mechanisms for an equivalent privacy guarantee with PH as a comparison.

4. Simulation Studies

We describe our simulation design in Section 4.1. Section 4.2 presents privacy com-

parison results by investigating the distributions of local Lipschitz bounds and Sec-

tion 4.3 presents utility comparison results (both global and analysis-specific) with

PH as a comparison. We introduce additional techniques to fine tune with downscal-

ing in Section 4.4 and implementation guidance for practitioners using our proposed
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4.1 Simulation design

methods are discussed in Section 4.5. As will be seen, the Weighted and the Censor w

synthesizers are the recommended alternatives given their more refined balance of

utility-risk trade-off of the resulting synthetic data.

4.1 Simulation design

Our simulation studies focus on creating differentially private synthetic data from a

confidential dataset generated from a univariate, continuous, and bounded outcome

variable. For r = 1, · · · , R = 100, we simulate a local database xr of size n =

2000 from Beta(0.5, 3) that produces a right-skewed confidential data distribution

with many high-risk records in the long tail. For each local database xr, we fit the

Unweighted (i.e., αi = 1 for every record) and obtain its Lipschitz bound, ∆uw
α,xr

, and

create a synthetic dataset for each of the synthesizers. We next generate a synthetic

dataset for each of the following privacy targets, ϵ ∈ {5, 4, 3}, under each synthesizer.

As discussed in Sections 2 and 3, the privacy guarantee of each of our four

Bayesian data synthesizers is indirectly determined by its calculated Lipschitz bound,

after re-estimation of the pseudo posterior. From the implementation point of view,

the Weighted-e inputs a target ϵ and updates or changes some of the weights, αi,

from the Weighted method to produce a different pseudo posterior estimator. By

contrast, Censor w also inputs an ϵ target but does not change the weights αi; rather,

it may censor the pseudo likelihood contribution for a subset of units. Censor uw
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4.2 Privacy comparison results

works in the same way as Censor w, but inputs the unweighted likelihood.

4.2 Privacy comparison results

Given that the Weighted and the Weighted-e synthesizers achieve a relaxed aDP

privacy guarantee while the Censor uw and the Censor w synthesizers achieve a scrict

ϵ−DP guarantee, we expect to see that the distribution of Lipschitz bounds of the

Weighted-e is more concentrated at the target ϵ compared to the Weighted due to its

faster contraction rate, whereas the Censor w and the Censor uw have distributions

of Lipschitz bounds strictly at or below the target ϵ/2. In what follows, we include

the type of privacy guarantee (aDP or DP) in a parenthesis for each synthesizer.

Figure 2 shows violin plots of the Lipschitz bound distributions over R = 100

replicated datasets under our simulation settings. Each panel represents the Lipschitz

bound distributions of each synthesizer under one of the three target ϵ ∈ {5, 4, 3}.

Note that since the Weighted (aDP) is constructed without taking into account a

target ϵ, it is identical across the three panels. The same applies to the Unweighted

in a comparison figure included in the Supplementary Materials. Also note that

given the ϵ = 2∆ relationship, the scale of the y-axis in Figure 2, which shows the

Lipscthiz bounds, is half of the target ϵ value shown at the top of each panel.

As expected, the Weighted-e (aDP) shows a more concentrated distribution of

Lipschitz bounds compared to the Weighted (aDP) at every target ϵ. When the
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4.2 Privacy comparison results

distribution of Lipschitz bounds of the Weighted (aDP) is around the target ϵ/2

(i.e., ϵ = 5 under our simulation settings), the faster concentration gained by the

Weighted-e (aDP) is minor. As the target ϵ decreases, the distribution of Lipschitz

bounds gets more concentrated at the target ϵ/2, particularly obvious when ϵ = 3. In

every panel, the Weighted-e (aDP) cannot enforce a strict upper bound of ϵ/2 of the

Lipscthiz bounds over the datasets. In certain cases, as for ϵ = 3 in our simulation,

some replicates might have Lipschitz bounds much larger than the target ϵ/2, as can

be seen in the longer upper tail of the Weighted-e (aDP) for ϵ = 3, indicating a lack

of control of the privacy guarantee for smaller ϵ when using the Weighted-e (aDP).

The Censor w (DP) and the Censor uw (DP), by contrast, achieve the strict up-

per bound of ϵ/2 for the Lipschitz bounds at every target ϵ, as expected. Among the

three pairs of the Censor w (DP) and the Censor uw (DP), the Censor w (DP) shows

a clear mass of replicates whose Lipschitz bounds are below ϵ/2 when ϵ = 5. Recall

that the censored likelihood approach directly truncates the pseudo likelihood of each

record into [exp(−ϵ/2), exp(ϵ/2)]. The difference here is that the Censor w (DP) in-

vokes pseudo likelihood censoring of the Weighted (aDP), while the Censor uw (DP)

does so of the Unweighted. Therefore, the Weighted (aDP) downweights high-risk

records which subsequently brings down the Lipshitz bound compared to the Un-

weighted (excluded in Figure 2 for ease of reading, the Unweighted shows Lipschitz

bounds ranging from around 7.5 to 15, whereas the Weighted (aDP) Lipschitz bounds
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4.2 Privacy comparison results

Figure 2: Violin plots of Lipschitz bounds overR = 100 replicates under theWeighted

(aDP), the Weighted-e (aDP), the Censor w (DP), and the Censor uw (DP), with ϵ

values of {5, 4, 3}. A dashed horizontal line at ϵ/2 is included in each panel.

range from around 2 to 3.5; see the comparison figure in the Supplementary Materi-

als), and the same is happening for the Censor w (DP) compared to the Censor uw

(DP). When ϵ = 5, there may be databases that produce ϵxr < 5 under the Weighted

(aDP) method such that few if any records have their likelihood values censored in

those databases under Censor w (DP). By contrast, since Censor uw (DP) embeds

the Unweighted posterior synthesizer, every database will require many records to

be censored to enforce the ϵ/2 = 2.5 target Lipschitz bound.

To further illustrate the comparison, Table 1 presents the summaries of the
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4.2 Privacy comparison results

Min Q1 Median Mean Q3 Max sd

ϵ = 5 Weighted-e (aDP) 0 0 0 29 55 166 48.80

Censor w (DP) 0 0 0 110 260 341 129.59

Censor uw (DP) 196 236 244 247 255 296 17.44

ϵ = 4 Weighted-e (aDP) 0 130 219 195 272 364 103.48

Censor w (DP) 0 404 425 408 440 549 92.56

Censor uw (DP) 340 398 419 419 435 481 26.73

ϵ = 3 Weighted-e (aDP) 400 536 574 573 618 684 60.62

Censor w (DP) 655 715 741 741 763 831 35.66

Censor uw (DP) 737 787 806 809 829 888 32.85

Table 1: Summaries of the number of records (out of n = 2000) receiving truncated

weight at αi = 0 in Weighted-e (aDP) and censored likelihood at ϵ/2 in Censor w

(DP) and Censor uw (DP). The number of Monte Carlo simulations is R = 100.

numbers of invocations of truncation in Weighted-e (aDP) and the numbers of in-

vocations of censoring in Censor w (DP) and Censor uw (DP) for each of the target

ϵ = {5, 4, 3} over the R = 100 Monte Carlo datasets. The summaries include the min-

imum, Q1, median, mean, Q3, and the maximum of the distribution for invocations

of censoring over the R = 100 replicates. We also include the standard deviation.

Focusing on the three pairs of the Censor w (DP) and the Censor uw (DP), we can
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4.3 Utility comparison results

clearly see that for every target ϵ, there are more invocations of censoring in the

Censor uw (DP) than in the Censor w (DP) in terms of the means, resulted from

the aforementioned downweighting effects of the Weighted (aDP) in the Censor w

(DP). Moreover, as ϵ decreases, the numbers of invocations of censoring increase for

both the Censor w (DP) and the Censor uw (DP). This is expected since a smaller

range of [exp(−ϵ/2), exp(ϵ/2)] is used in censoring pseudo likelihood as ϵ decreases,

resulting in larger numbers of invocations of censoring.

Focusing on the number of invocations of truncating αi = 0 for Weighted-e (aDP)

in Table 1, we observe that same with the censoring, as ϵ decreases, the number of

invocations of truncation increases. The number of invocations of truncation of the

Weighted-e (aDP) is overall smaller than the number of invocations of censoring for

the Censor w (DP). Yet, despite the reduced number of invocations of censoring over

the collection of Monte Carlo datasets, Censor w (DP) produces the same censored

ϵ privacy guarantee as does Censor uw (DP).

4.3 Utility comparison results

We consider both global utility that describes preservation of the confidential data

distribution and analysis-specific utility of the generated synthetic data. We choose

the empirical CDF (ECDF) global utility measure, which evaluates whether the

distributions for the confidential dataset and the synthetic dataset can be discrim-
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4.3 Utility comparison results

inated from each other (Woo et al., 2009). There are two specific measures based

on ECDF: 1) the maximum record-level absolute difference (max-ECDF); and 2) the

average record-level squared difference (avg-ECDF). Both are calculated as distances

between the two ECDFs of the confidential data and the synthetic data. Each mea-

sure is non-negative, and a smaller value indicates higher similarity between the two

ECDFs, suggesting higher global utility. Violin plots showing the distributions of

the max-ECDF for all proposed methods are displayed in Figure 3, and those of the

avg-ECDF are in Figure 4, across R = 100 Monte Carlo simulations. As before, each

panel represents a target ϵ = {5, 4, 3}.

As evident in Figures 3 and 4, the Weighted (aDP) achieves the lowest max-

ECDF and avg-ECDF across all synthesizers. These are expected since the Weighted

(aDP) is not influenced by a target ϵ and has the overall highest Lipschitz bounds

(i.e., highest risks), as illustrated in Figure 2.

Among synthesizers focused on achieving a global privacy target, the Censor w

(DP) has the highest utility: It expresses the lowest max-ECDF distribution for every

target ϵ in Figure 3 and also the lowest avg-ECDF distribution for target ϵ = {4, 3}

in Figure 4. Censor w (DP) embeds the Weighted (aDP) method inside the censoring

mechanism, which downweights high-risk likelihood contributions, resulting in less

invocations of the censored likelihood. Although censoring is invoked relatively less

often (fixing an ϵ) under embedding of the Weighted (aDP) method, it nevertheless
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4.3 Utility comparison results

Figure 3: Violin plots of max-ECDF utility over R = 100 replicates, for the Weighted

(aDP), the Weighted-e (aDP), the Censor w (DP), the Censor uw (DP), and the PH

(DP), with ϵ values of {5, 4, 3}.

comes equipped with an ϵ−DP guarantee because the censoring procedure is applied

to all datasets. The Weighted-e (aDP) method, by contrast, seems to have an even

more concentrated and lower distribution when target ϵ = 5. However, as ϵ decreases,

the Weighted-e (aDP)’s performance starts to deteriorate rapidly, which indicates

that it lacks not only the control of the privacy guarantee (shown in Figure 2) but

also the control of utility preservation. The Censor uw (DP) performs consistently

worse than the Censor w (DP) at every target ϵ value, an expected result since the

Censor uw (DP) invokes censoring for a larger number of records than the Censor w
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4.3 Utility comparison results

Figure 4: Violin plots of avg-ECDF utility over R = 100 replicates, for the Weighted

(aDP), the Weighted-e (aDP), the Censor w (DP), the Censor uw (DP), and the PH

(DP), with ϵ values of {5, 4, 3}.

(DP) (shown in Table 1) which should result in lower utility. The PH (DP), a non-

Bayesian data synthesizer included for comparison, clearly performs worse than the

almost all proposed Bayesian synthesizers. Overall, all synthesizers (except for the

Weighted (aDP) which is not affected by the target ϵ value) have lower utility as ϵ

decreases.

Figures 5 displays violin plots of the distributions of the median statistic across

R = 100 Monte Carlo simulations for ϵ = 5. (Results of the 15th and the 90th

quantile statistics and all three statistics for ϵ = {4, 3} tell a similar story and are
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4.3 Utility comparison results

Figure 5: Violin plots of median over R = 100 replicates for the Weighted (aDP),

the Weighted-e (aDP), the Censor w (DP), the Censor uw (DP), and the PH (DP),

at ϵ = 5. A dashed horizontal line at the analytical median from Beta(0.5, 3) is

included.

in the Supplementary Materials.) The distributions from the confidential data are

included and labeled as “Data” for comparison. A dashed horizontal line marking

the analytical value from Beta(0.5, 3), the generating distribution, is included in

each plot. The closer the resulting violin plot from a data synthesizer is to the one

for Data and the dashed horizontal line, the higher the utility is for that statistic.

As with the global utility evaluation, the Weighted (aDP) has overall the highest

utility, at the price of achieving an aDP guarantee. Among the remaining synthe-

sizers, the Censor w (DP) once again shows the highest utility performance for the

median statistic. The Weighted-e (aDP) overall has better utility performance on
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4.4 Fine tuning with downscaling

these analysis-specific utility measures as compared to the global utility measures

discussed earlier. The Censor uw (DP) performs worse than the Censor w (DP) in

all statistics because censoring is invoked on more data records in every dataset.

4.4 Fine tuning with downscaling

As Figures 3 and 4 of global utility have shown, as ϵ decreases from 5 to 4 or 3,

the utility performances of Censor w (DP) deteriorates because more invocations of

censoring across records occur as ϵ decreases. Further scaling and shifting of the

weights α in the Weighted (aDP) method may be used in order to achieve a target

privacy guarantee for any confidential dataset; for example, by setting (c1, c2) to

α̃ ∈ [0, 1] (as in α̃i = c1 × αi + c2). Instead of using c1 = 1 as we have done in

Sections 4.2 and 4.3, we use a scaling factor c1 < 1 that downscales the privacy

weights α. The weight scaling allows us to roughly target a specific ϵ and censoring

is then used to make that target global. This procedure reduces the number of

invocations of censoring while preserving a strict ϵ−DP guarantee.

We focus on ϵ = 4 for illustration. We set c1 = 0.8 for the results that follow.

Since only the Weighted-e (aDP) and the Censor w (DP) depend on the Weighted

(aDP) method whereas Censor uw (DP) embeds the Unweighted method, we expect

to see effects of downscaling on the Weighted (aDP), the Weighted-e (aDP), and

the Censor w (DP) synthesizers. Therefore, we focus our comparison on these three
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4.4 Fine tuning with downscaling

Figure 6: Violin plots of Lipschitz bounds overR = 100 replicates under theWeighted

(aDP), the Weighted-e (aDP), and the Censor w (DP), at ϵ = 4, without downscaling

(top) and with downscaling (bottom). A dashed horizontal line at ϵ/2 is included.

synthesizers.

To evaluate the privacy guarantee and utility performances without and with

downscaling, we generate R = 100 replicate datasets in a Monte Carlo simulation

study. Figure 6 shows with downscaling, the Lipschitz bounds are lower and more

concentrated than those without downscaling, indicating a better control of the pri-

vacy guarantee for these three synthesizers. Figure 7 illustrates the effects of down-

scaling on the avg-ECDF based global utility measure (results of the max-ECDF

are included in the Supplementary Materials). As can be seen, the violin plots of
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4.5 Implementation guidance

Figure 7: Violin plots of avg-ECDF utility over R = 100 replicates, for the Weighted

(aDP), the Weighted-e (aDP), and the Censor w (DP) at ϵ = 4, without downscaling

(top) and with downscaling (bottom).

the Weighted (aDP), the Weighted-e (aDP), and the Censor w (DP) are all shifted

to lower values under downscaling, indicating higher utility. Moreover, as shown in

Figure 8 for the 15th quantile statistic utility, downscaling also improves this and

other analysis-specific utility measures (available in the Supplementary Materials).

4.5 Implementation guidance

We next describe a recommended procedure to achieve some target ϵ for a collection

of time-indexed datasets (such as the monthly release of total employment for each
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4.5 Implementation guidance

Figure 8: Violin plots of the 15th quantile over R = 100 replicates for the Weighted

(aDP), the Weighted-e (aDP), and the Censor w (DP) at ϵ = 4, without downscaling

(top) and with downscaling (bottom). A dashed horizontal line at the analytical 15th

quantile from Beta(0.5, 3) is included.

state) that uses censoring to acheive a strict ϵ−DP guarantee. We note that our

implementation suggestions apply when using any reference dataset with relaxed

aDP guarantees, not necessarily those that rely on regularly scheduled releases and

temporal autocorrelation.

Using the current period database to set the privacy ϵ for any mechanism can

risk leaking a small amount of information about the overall sensitivity, ∆, of the

database under a strict ϵ−DP guarantee. Under the pseudo posterior mechanism
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4.5 Implementation guidance

equipped with a relaxed, asymptotic DP guarantee, however, the risk of disclosure

about the sensitivity of the database is very low. The reason for the low risk is

because the record-indexed weights under the pseudo posterior are set to be inversely

proportional to their by-record sensitivities such that the resulting mechanism overall

sensitivity (and thus local ϵ) after weighting is nearly unrelated to the underlying

sensitivity of the local database. We see this by the increased concentration of the

distribution of by-record sensitivities after weighting from before weighting for the

pseudo posterior mechanism (Savitsky et al., 2022). (We remind the reader that the

resulting weights are not published).

We recommend utilizing the censoring mechanism with the pseudo posterior to

achieve a strict ϵ−DP guarantee, though we propose to use the sensitivity and utility

measures of a historical (rather than the current) database to set the global ϵ under

the censoring mechanism in an abundance of caution. In practice, the owner of the

confidential data (such as a government statistical agency) publishes a database of

size n on a regular, periodic basis (e.g., the publication of monthly employment and

unemployment by the U.S. Bureau of Labor Statistics).

In the first period of the year, we recommend that the owner set the privacy

guarantee ϵ by first constructing α = (α1, . . . , αn) as outlined in Section 2.1, and

re-estimating the model under the pseudo posterior mechanism to compute the as-

sociated ∆α. This gives an asymptotic aDP guarantee of 2∆α.
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Next, we recommend to shift and scale the weights to an α̃ that produces a target

ϵ on the first period dataset under an aDP guarantee. This may take repeated model

re-estimations to evaluate the utility for each shifting and scaling of the weights to

assess the risk-utility trade-off needed to pick the target α̃.

In future months, the same ϵ would be used to censor the pseudo likelihood con-

tributions with the weights scaled and shifted by the same (c1, c2) as used in the first

month. In this way, the many computations used to set (c1, c2, ϵ) are performed only

once. These settings will likely result in fewer invocations of censoring to produce

synthetic data in future months under an ϵ−DP guarantee such that the resulting

utility of the synthetic data would be expected to be similar to the first month.

5. Application to Survey of Doctoral Recipients

In this application section, we apply the Weighted (aDP), the Weighted-e (aDP),

the Censor w (DP), the Censor uw (DP), and the PH (DP) synthesizers to a sample

of the Survey of Doctoral Recipients. Our sample comes from the public use file

published for 2017. It contains information on salary, gender, age (grouped in 5-year

intervals), and the number of working weeks for n = 1601 survey respondents who

have positions at a 4-year college or university in the field of mathematics and statis-

tics. Our Unweighted model is a beta regression, where the outcome variable salary

is scaled into [0, 1] and gender (categorical with 2 levels), age (categorical with 9
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Figure 9: Density plots of the confidential data sample (Data) and the synthetic data

samples from the Weighted (aDP), the Weighted-e (aDP), the Censor w (DP), the

Censor uw (DP), and the PH (DP) synthesizers at ϵ = 5.

levels), and weeks (numerical ranging from 2 weeks to 52 weeks) as publicly available

predictors. The target privacy budget is ϵ = 5, which is used in our implementation

of the perturbed histogram synthesizer for comparison. For every synthesizer, one

synthetic dataset is simulated.

Figure 9 displays density plots of the confidential data sample and those from

the synthetic datasets simulated from the five synthesizers. The PH (DP) evidently

has the worst utility performance in this visual check. Among the four Bayesian

synthesizers, the Censor w (DP) seems to capture the main feature of the confidential
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data the best, with the Weighted (aDP) coming in second, while the Weighted-e

(aDP) and the Censor uw (DP) come in third and fourth, respectively.

Table 2 presents detailed privacy and utility results of our synthesizers. In terms

of privacy, we include the calculated Lipschitz bound of the Weighted (aDP), the

Weighted-e (aDP), the Censor w (DP), and the Censor uw (DP) and their corre-

sponding ϵ values. Note that Data and the PH (DP) have no Lipschitz bounds and

therefore coded as NA, and Data has no privacy guarantee which is coded as NA as

well. As we know from Sections 2 and 3 and the simulation study results in Section

4.2, the Censor w (DP) and the Censor uw (DP) have strict Lipschitz bound at ϵ/2,

whereas the Weighted (aDP) and the Weighted-e (aDP) only contract to ϵ/2 but can-

not guarantee ϵ/2 (with the Weighted-e (aDP) contracting faster than the Weighted

(aDP)). As expected, in our application, the Censor w (DP) and the Censor uw (DP)

achieve the target ϵ = 5 whereas the Weighted (aDP) and the Weighted-e (aDP) have

privacy guarantee 5.24 and 5.22 respectively, both exceed the target privacy budget.

Table 2 also includes global utility and analysis-specific utility results for all

synthesizers. For the two global utility measures, max-ECDF and avg-ECDF, the

smaller the value, the higher the utility. (Data has no such measures and therefore

coded as NA.) For the four analysis-specific utility measures, the mean, the median,

the 15th quantile, and the 90th quantile statistics, the closer they are to the value

from the Data, the higher the utility. For ease of reading, the value of the best
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Data Weighted Weighted-e Censor w Censor uw PH

(aDP) (aDP) (DP) (DP) (DP)

Lipschitz NA 2.62 2.61 2.50 2.50 NA

Privacy ϵ NA 5.24 5.22 5.00 5.00 5.00

max-ECDF NA 0.0656 0.1020 0.0968 0.1350 0.1310

avg-ECDF NA 0.0011 0.0025 0.0026 0.0039 0.0057

Mean 91019 92994 89525 88581 88840 93654

Median 80000 80135 76451 75642 75211 91180

15th Q 51000 44303 40574 41142 38107 30108

90th Q 150000 162351 158037 158426 162686 163872

Table 2: Privacy and utility results of the Weighted (aDP), the Weighted-e (aDP),

the Censor w (DP), the Censor uw (DP), and the PH (DP) at ϵ = 5. In the utility

rows, the best performing synthesizer is in bold and the second best is underlined.

performing synthesizer among the five for each statistic is in bold, and the second

best is underlined.

Undoubtedly, the Weighted (aDP) has the highest utility performance, and the

Weighted-e (aDP) comes second while the Censor w (DP) comes third. The inferior

results of the Censor uw (DP) and the PH (DP) are expected: The Censor uw (DP)

embeds the Unweighted synthesizer into censoring, which results in the invocation
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of censoring for more records than Censor w (DP). The PH (DP) does not take

advantage of the benefits from modeling and the useful predictor variables available

as public information. Although the Weighted-e (aDP) performs slightly better than

the Censor w (DP) in terms of utility in our application, such improvement cannot

offset the fact that it provides an asymptotic privacy guarantee.

6. Concluding Remarks

In this paper, we review the pseudo posterior mechanism from (Savitsky et al.,

2022) which achieves an asymptotic DP guarantee. To provide a stronger, non-

asymptotic DP guarantee, we propose the censoring mechanism that censors the

pseudo likelihood of every record within [exp(−ϵ/2), exp(ϵ/2)]. This new mechanism

truncates large absolute log-likelihood values, which serves to cap the Lipschitz bound

and therefore achieving an ϵ−DP guarantee. It offers a practical, low-dimensional

alternative to truncating the parameter space.

Our simulation studies on [0, 1] bounded univariate data under repeated sampling

demonstrate the superior utility preservation performance of the pseudo posterior

mechanism at the cost of an asymptotic DP guarantee, on the one hand. The cen-

soring mechanism that embeds the pseudo posterior mechanism provides a stronger,

non-asymptotic DP guarantee at the price of slightly reduced utility performance, on

the other hand. We recommend these two alternatives for data disseminators who
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depending on their priority, can choose the preferred strategy between these two.

One interesting line of future work is embedding other weighted synthesizers in

censoring to provide a non-asymptotic DP guarantee. Another is to investigate, in

an applied setting, how similar do the data distributions at two points in time need

to be for their utilities to be similar under the same scaling, shifting, and privacy

loss parameters.

Supplementary Materials

Supplementary Materials include a detailed review of the perturbed histogram syn-

thesizer, the Stan script for the censoring method, and additional privacy and utility

comparison results from Section 4.
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