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Abstract: In this study we recast the semiparametric mean dimension reduction

approaches under a least squares framework. This changes the problem of recov-

ering the central mean subspace into a series of problems of estimating slopes

in linear regressions, and enables us to incorporate penalties to produce sparse

solutions. We further adapt the semiparametric mean dimension reduction ap-

proaches to distributed settings in which massive data are scattered at various

locations, and cannot be aggregated or processed by a single machine. We pro-

pose three communication efficient distributed algorithms. The first yields a

dense solution, the second produces a sparse estimation, and the third provides

an orthonormal basis. The distributed algorithms are less complex computation-

ally than a pooled algorithm, and attain oracle rates after a finite number of

iterations. Using extensive numerical studies, we demonstrate the finite sample

performance of the distributed estimates, and compare it with that of a pooled

algorithm.

Key words and phrases: central subspace, distributed estimation, sufficient di-

mension reduction.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0157



1. Introduction

Recent advances in science and technology allow us to collect and process

massive data in a cost-efficient manner. However, while such data present

significant opportunities, they also present challenges to statisticians and

data scientists.

Massive data usually have a high dimension and a large volume. To

cope with the high dimensionality, sufficient dimension reduction (Li, 1991;

Cook, 2009) is an effective paradigm that combines the idea of a linear

reduction with the notion of sufficiency. Cook and Li (2002) introduced the

concept of mean dimension reduction, which concerns E(Y | x), where Y

is a univariate response and x = (X1, . . . , Xp)
T is a p-vector of covariates.

The central mean subspace model assumes that there exists a p× d matrix

β ∈ Rp×d such that

E(Y | x) = E(Y | xTβ). (1.1)

The column space of β, denoted by S(β), is referred to as the mean dimen-

sion reduction subspace. If the intersection of all such subspaces satisfies

(1.1), we call it the central mean subspace, which is unique and denoted as

SE(Y |x). The column dimension of β, denoted by d, is an integer between

zero and p. In the trivial case of d = 0, Y is mean independent of x; that is,
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E(Y | x) = E(Y ). In the special case of d = p, we can simply set β to be

the p × p identity matrix Ip×p, and model (1.1) is always true. In general,

d must be decided using a data-driven mechanism.

Many approaches have been proposed to identify and recover SE(Y |x).

These approaches can be roughly classified into three categories. The first

consists mainly of inverse regression methods, and requires stringent dis-

tributional assumptions on the covariates, such as the linearity mean (Li,

1991) and constant variance conditions (Cook and Weisberg, 1991). Ex-

amples include the ordinary least squares (Li and Duan, 1989), principal

Hessian directions (Li, 1992), and their variations (Cook and Li, 2004).

The second category consists mainly of forward regression methods, which

extract the information of SE(Y |x) from the derivatives of E(Y | x). Ex-

amples include the average derivative estimation (Härdle and Stoker, 1989)

and minimum average variance estimation (Xia et al., 2002). The third

category comprises the semiparametric estimating equations approaches,

which require minimal distributional assumptions on the covariates. Here,

examples include the works of Ma and Zhu (2014), Luo et al. (2014), and

Zhu and Zhong (2015). In particular, Luo et al. (2014) thoroughly exam-

ine the asymptotic properties of the semiparametric approaches of Ma and

Zhu (2014) when the variance function var(Y | x) is estimated consistently
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using kernel smoothers. Zhu and Zhong (2015) extend the work of Ma and

Zhu (2014) by allowing for multiple responses, and assume implicitly that

the variance functions are all constants.

We advocate using the semiparametric approaches of Ma and Zhu (2014),

for at least two reasons. First, they avoid having to use the linearity mean

and constant variance conditions, thus generalizing the usefulness of suffi-

cient dimension reduction. Indeed, even when these distributional assump-

tions are satisfied, sufficient dimension reduction methods with the linearity

mean and constant variance estimated using nonparametric treatments are

more efficient than those that use these conditions directly (Ma and Zhu,

2013). Second, the semiparametric approaches are locally efficient. Specifi-

cally, the resultant solutions attain the semiparametric efficiency bound as

long as the variance function var(Y | x) is specified correctly (Ma and Zhu,

2014) or estimated consistently (Luo et al., 2014), and remain consistent

even when var(Y | x) is misspecified or estimated inconsistently.

The problem with the semiparametric approaches is that they have

computational complexity of O(N2), where N is the total sample size, and

thus are usually computationally prohibitive for massive data. Massive data

are often scattered across various locations, possibly because of memory

or storage limitations, or privacy concerns. Therefore, to cope with large
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volumes of massive data, distributed methodologies are highly desirable.

Although distributed statistical inference has received considerable at-

tention, most existing approaches require only one round of communication:

the node machines conduct the inference in parallel and send the results to

the central machine, which aggregates all information to produce a final

solution; see, for example, Zhang et al. (2013), Battey et al. (2018), and

Fan et al. (2019). While these one-shot methods are communication effi-

cient, they only work with a small number of node machines, and require

large sample size on each of them. Violating these requirements results in

suboptimal performance. Balcan et al. (2016) designed a distributed algo-

rithm for a kernel principal component analysis. They obtain approximate

solutions with a relatively low communication cost. Jordan et al. (2019)

and Fan et al. (2021) developed iterative methods with multiple rounds of

aggregations, which substantially relaxes the requirement on the number of

machines. Cai et al. (2020) proposed implementing a sliced inverse regres-

sion in an online manner, if the observations arrive in data streams. Chen

et al. (2022) and Zhu and Zhu (2022) adapt sufficient dimension reduction

with convex loss functions to distributed settings. The resultant estimates

possess nearly oracle rates after a finite number of iterations. However, both

require stringent distributional assumptions, such as the linearity mean con-
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dition. In addition, few works have examined how to conduct distributed

statistical inference in the context of semiparametric estimating equations.

In this study, we reformulate the Newton–Raphson iterations of the

semiparametric estimating equations under a least squares framework. This

changes the problem of estimating the central mean subspace into a series

of problems of estimating slopes in linear regressions, enabling us to in-

corporate penalties to yield sparse solutions. We propose three distributed

algorithms, under various identifiability conditions. The first algorithm

yields a dense solution, the second produces a sparse estimation, and the

third provides an orthonormal basis.

Our proposed distributed algorithms possess at least three desirable

properties. First, these algorithms are communication efficient. The esti-

mating equations themselves and their gradients correspond to the gradi-

ents and Hessians, respectively, of the least squares losses. We estimate the

gradients separately using the observations recorded in each node machine.

The gradients are then transmitted to the central node to form an aggre-

gated estimation of the overall gradient. The communication cost is O(mp),

where m is the number of node machines. This is the minimal price we have

to pay in distributed settings. Instead of using all N observations scattered

across m node machines, we estimate the Hessians simply using the obser-
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vations from the central node machine only, which incurs no transmission

cost. In this sense, our proposed distributed algorithms are communication

efficient. Second, the resultant distributed estimates possess desirable the-

oretical properties. For example, they achieve the oracle rate after a finite

number of iterations. We derive the contraction rate for the distributed

estimates. After a small number of iterations, the optimization errors are

asymptotically negligible compared with the statistical errors. Therefore, in

an asymptotic sense, the distributed estimates behave as well as the classic

pooled estimate, which requires pooling all observations on in a single ma-

chine. Lastly, the distributed algorithms are computationally much more

efficient than the corresponding pooled algorithm.

The remainder of the paper is organized as follows. In Section 2, we

review the semiparametric approaches of Ma and Zhu (2014), and recast

them into a least squares framework. Note that, although SE(Y |x) is unique,

its basis matrix β is not. Two sets of conditions ensure that β is identifiable.

One requires that the upper d × d block of β is the identity matrix Id×d,

and thus the lower (p−d)×d block comprises free parameters. The second

requires β to be orthonormal, that is, βTβ = Id×d. This condition is widely

used, although it is not sufficient to ensure the identifiability of β unless

some additional assumptions are imposed. In Sections 3 and 4, we adapt
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the semiparametric approaches to distributed settings under the first set of

identifiability conditions. In Section 5, we suggest a distributed algorithm

under the orthogonality constraint. We discuss our simulation studies in

Section 6, and conclude our paper in Section 7.

2. A brief review of semiparametric approaches and equivalent

reformulations

2.1 Notations

Let C, C0, C1, . . ., c, c0, c1, . . . be generic constants that may vary

at each appearance. For a vector α = (α1, . . . , αp)
T, we define |α|1

def
=∑p

i=1 |αi| and |α|2
def
= (

∑p
i=1 α

2
i )

1/2. For a matrix A = (aij) ∈ Rp×d,

|A|∞
def
= max1≤i≤p,1≤j≤d |aij| and ∥A∥∞

def
= max1≤i≤p

∑
1≤j≤d |aij|. Further-

more, vec(A) is an operator that stacks all columns of A vertically in or-

der, and vecl(A) is an operator that vectorizes the lower (p− d)× d block

of A, that is, vecl(A) = vec(A2), for A = (AT
1 ,A

T
2 )

T, A1 ∈ Rd×d, and

A2 ∈ R(p−d)×d. In addition, vec−1(·) is an inverse operator of vec(·), that

rearranges a (pd)-vector as a p × d matrix in column order. In particular,

vec−1{vec(A)} = A. The largest and smallest singular values of A are de-

noted by λmax(A) and λmin(A), respectively. Let P(A)
def
= A(ATA)−1AT be

the projection matrix of A. Define A⊗2 = AAT, and let A⊗B be the Kro-
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2.2 Recasting semiparametric approaches under a least squares
framework

necker product of A and B, where B ∈ Rp1×d1 . For two sequences of real

numbers, {an}∞n=1 and {bn}∞n=1, we write an = O(bn) if there exists a positive

constant C such that |an/bn| ≤ C, for sufficiently large n. For two sequences

of random variables, {Xn}∞n=1 and {Yn}∞n=1, we write Xn = Op(Yn), if, for

any ε > 0, there exists C > 0 such that pr(|Xn/Yn| ≤ C) ≥ 1 − ε, for

sufficiently large n.

2.2 Recasting semiparametric approaches under a least squares

framework

Here, we briefly review the semiparametric approaches of Ma and Zhu

(2014). With a slight abuse of notation, we denote as β the basis matrix

of SE(Y |x), with its upper d× d block being Id×d, and all other elements of

β, vecl(β), being free parameters. Let m(xTβ)
def
= E(Y | xTβ), m1(x

Tβ)
def
=

vec{∂m(xTβ)/∂(xTβ)}, ε def
= Y −m(xTβ), and w(x)

def
= {E(ε2 | x)}−1. Let

α ∈ Rp×d be an intermediate estimate, with its upper d × d block being

Id×d. Let vecl(α) ∈ R(p−d)d×1 be a vector of free parameters. Define

x̃(α)
def
= vecl

{[
x− E{xw(x) | xTα}

E{w(x) | xTα}

]
mT

1 (x
Tα)

}
∈ R(p−d)d×1. (2.1)

We further write S{x, Y,α, w(x)} def
= {Y −m(xTα)}w(x)x̃(α). Ma and Zhu

(2014) showed that E
[
S{x, Y,β, w(x)}

]
= 0. In other words, solving the

estimating equations yields a consistent estimate for the basis β of SE(Y |x).
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2.2 Recasting semiparametric approaches under a least squares
framework

We seek β by using Newton–Raphson iterations. This requires calcu-

lating the gradient of E
[
S{x, Y,α, w(x)}

]
with respect to vecl(α), which

yields {−H(α)}, where H(α)
def
= E

[
w(x) {x̃(α)} {x̃(α)}T

]
. Start from an

initial value β(0). The Newton–Raphson iteration proceeds as

vecl(β(t+1))
def
= vecl(β(t)) +

{
H(β(t))

}−1

E
[
S{x, Y,β(t), w(x)}

]
.(2.2)

Throughout, we fix the upper d×d block of β(t) to be Id×d. We update β(t)

with β(t+1), and iterate (2.2) until convergence.

Next, we present our first contribution to the literature, where we re-

cast the above Newton–Raphson iteration under a least squares framework.

Define

Ỹ (α)
def
= {x̃(α)}T vecl(α) + {Y −m(xTα)}. (2.3)

Here, (2.2) can be written equivalently as

vecl(β(t+1)) =
{
H(β(t))

}−1

E
{
w(x)x̃(β(t))Ỹ (β(t))

}
,

which exactly minimizes the following weighted least squares loss function:

vecl(β(t+1)) = argmin
α

E
[
{Ỹ (β(t))− x̃(β(t))Tvecl(α)}2w(x)

]
, (2.4)

for t ≥ 0. We update β(t) with β(t+1), iterate (2.4) to obtain β(t+2), and

so on. This iteration proceeds until convergence.
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In the following, we show that this reformulation enables us to incor-

porate penalties on the right-hand side of (2.4), which are introduced to

produce sparse solutions. This equivalent reformulation is thus very ap-

pealing in high dimensions. In what follows, we introduce three distributed

algorithms. The first yields a dense solution, the second produces a sparse

solution, and the third provides an orthonormal estimate. These distributed

algorithms are communication efficient, and the resultant solutions possess

desirable theoretical properties. To save space, we relegate the description

of the pooled algorithm to the online Supplementary Material.

3. The first distributed algorithm with dense solutions

3.1 The first communication efficient distributed algorithm

First, we explore how to adapt the above Newton–Raphson iterations to

distributed settings when the observations are scattered across various loca-

tions. With a slight abuse of notation, we denote the observations {(xi, Yi), i =

1, . . . , N} as {(xi,j, Yi,j), i = 1, . . . , n, j = 1, . . . ,m}, assuming they are scat-

tered across m machines. We further assume that the total sample size

N = nm is so large that a single machine cannot process all observations

simultaneously, owing to memory or storage limitations. In this case, we

require a communication efficient distributed algorithm.
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3.1 The first communication efficient distributed algorithm

Instead of using all N observations to estimate m(xTα), m1(x
Tα),

E{w(x) | xTα}, and E{xw(x) | xTα}, we suggest estimating them using

the observations in the jth machine only, which yields m distinct estimates.

In particular, we define (̂bk,j, b̂k,j)
def
=

arg min
bk,j ,bk,j

n∑
i=1,i ̸=k

{
Yi,j − bk,j − (xT

i,jα− xT
k,jα)bk,j

}2
Kh1(x

T
i,jα− xT

k,jα).

Let m̂j(x
T
k,jα) = b̂k,j and m̂1,j(x

T
k,jα) = b̂k,j. In addition, we define

Êj{w(xk,j) | xT
k,jα} def

=

∑n
i=1,i ̸=k Kh2(x

T
i,jα− xT

k,jα)w(xi,j)∑n
i=1,i ̸=k Kh2(x

T
i,jα− xT

k,jα)
,

and

Êj{xk,jw(xk,j) | xT
k,jα} def

=

∑n
i=1,i ̸=k Kh3(x

T
i,jα− xT

k,jα){xi,jw(xi,j)}∑n
i=1,i ̸=k Kh3(x

T
i,jα− xT

k,jα)
.

Accordingly, we define

x̂k,j(α)
def
= vecl

{[
xk,j −

Êj{xk,jw(xk,j) | xT
k,jα}

Êj{w(xk,j) | xT
k,jα}

]
m̂T

1 (x
T
k,jα)

}
.(3.1)

Define Ŝj{xk,j, Yk,j ,α, w(xk,j)}
def
= {Yk,j − m̂j(x

T
k,jα)}w(xk,j)x̂k,j(α), and

Êj

[
S{xj, Yj,α, w(xj)}

]
def
= n−1

n∑
k=1

Ŝj{xk,j, Yk,j,α, w(xk,j)},

for j = 1, . . . ,m. All are consistent estimates of E
[
S{x, Y,α, w(x)}

]
.

Each has computational complexity of O(n2). More importantly, computing

these quantities can be parallelized to further improve the computational
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3.1 The first communication efficient distributed algorithm

efficiency. Therefore, as long as n is small relative to N , the computational

complexity is reduced to O(n2) from O(N2), which is substantial. The

above estimate, Êj

[
S{xj, Yj,α, w(xj)}

]
, uses only the observations from

the jth machine, and thus can be computed in parallel. We transmit these

estimates to the first central machine to form

Êdist,1

[
S{x, Y,α, w(x)}

]
def
= m−1

m∑
j=1

Êj

[
S{xj, Yj,α, w(xj)}

]
,

which serves as an estimate of E
[
S{x, Y,α, w(x)}

]
. The communication

cost of transmitting these quantities is O(mp), which is the minimal price

we have to pay in a distributed setting.

To implement (2.2), it remains to estimate H(α). We use {(xi,1, Yi,1), i =

1, . . . , n}, that is the observations from the first machine only. Specifically,

Ĥj(α)
def
= n−1

n∑
k=1

w(xk,j)x̂k,j(α)x̂T
k,j(α), for j = 1, . . . ,m.

We implement the Newton–Raphson algorithm on the first machine. As

such, there is no communication cost when estimating H(α).

We propose the first communication efficient algorithm, which yields

a dense solution. This is our second contribution to the literature. We

start from an initial value β
(0)
dist,1, and then iterate the Newton–Raphson

algorithm in a distributed fashion, as follows: vecl(β(t+1)
dist,1)

def
=

vecl(β(t)
dist,1) +

{
Ĥ1(β

(t)
dist,1)

}−1

Êdist,1

[
S{x, Y,β(t)

dist,1, w(x)}
]
. (3.2)
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3.1 The first communication efficient distributed algorithm

Once we have β
(t+1)
dist,1 from the first machine, we update Ĥ1(β

(t)
dist,1) with

Ĥ1(β
(t+1)
dist,1). Next, we broadcast β(t+1)

dist,1 from the first machine to the remain-

ing (m−1) machines to update Êj

[
S{xj, Yj,β

(t)
dist,1, w(xj)}

]
with Êj

[
S{xj, Yj,β

(t+1)
dist,1, w(xj)}

]
.

The latter is transmitted to the first machine to form Êdist,1

[
S{x, Y,β(t+1)

dist,1, w(x)}
]
.

We iterate (3.2) until convergence, and denote the final solution as β̂dist,1.

In the above distributed algorithm, we assume w(xj) is known, which

is unrealistic in practice. However, this is not problematic, because we can

specify w(xj) as w∗(xj), or assume it has a parametric form wj(xj, θj). We

can also estimate w(xj) using a kernel smoother at each local machine.

Specifically, at the jth local node, we estimate w(xj) as

ŵj(xk,j)
def
=

n∑
i=1

Kh4(xi,j − xk,j)
/ n∑

i=1

Kh4(xi,j − xk,j){Yi,j − m̂j(x
T
i,jα)}2.

The consistency of β̂dist,1 does not depend on how we specify or estimate

w(x). In the following, we show that as long as w(x) is specified correctly

or estimated consistently, the distributed estimate β̂dist,1 is semiparamet-

rically efficient, despite the convergence rate of ŵj(x) being slow in high

dimensions. Even if w(x) is incorrectly specified or inconsistently estimated,

β̂dist,1 still possesses an oracle rate. To distinguish these distributed esti-

mates, we write β̂dist,1 as β̂dist,1(w
∗) if w∗(x) is used, and as β̂dist,1(ŵ) if

ŵj(x) is used on each local machine. When w∗(x) is equal to w(x), we

denote the resulting distributed estimate β̂dist,1 as β̂dist,1(w). When this
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3.2 Theoretical properties of the first distributed algorithm

does not cause any ambiguity, we simply use β̂dist,1.

3.2 Theoretical properties of the first distributed algorithm

In the above distributed algorithm, we estimate E
[
S{x, Y,α, w(x)}

]
using

a divide-and-conquer strategy, and estimate H(α) using the observations

from the first machine only. This distributed is computationally much more

efficient than the pooled algorithm. It is thus natural to ask whether the

distributed estimate, β̂dist,1, is as “good” as the pooled estimate, β̂pool,1,

which amounts to studying the theoretical properties of β̂dist,1. Ma and

Zhu (2014), Luo et al. (2014), and Luo and Cai (2016) study the theoretical

properties of β̂pool,1 thoroughly. We first present regularity conditions to

establish the theoretical properties of β̂dist,1. Throughout, we suppose that

the covariates x and the response Y are centered, that is E(x) = 0 and

E(Y ) = 0. Suppose d is a fixed number. We introduce the following

regularity conditions to establish the theoretical result for β̂dist,1:

(C1) (The Kernels) The multivariate kernel is a multiplication of univariate

and symmetric kernels. The qth-order univariate kernel K(·) satisfies

∫
K(u)du = 1,

∫
uiK(u)du = 0, 1 ≤ i ≤ q − 1, 0 ̸=

∫
uqK(u)du < ∞.

It has a compact support over which it is Lipschitz continuous.
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3.2 Theoretical properties of the first distributed algorithm

(C2) (The Density) The density function of (xTβ), denoted by f(xTβ), and

w(x)
def
= {E(ε2 | x)}−1 are bounded away from zero and infinity.

(C3) (The Smoothness) Let r(xTα)
def
= E{a(x, Y )f(xTα) | xTα}, for a(x, Y )

being Y , w(x), or xw(x). The (q−1)th derivatives of r(xTα), f(xTα),

and m(xTα) are Lipschitz continuous in the neighborhood of (xTβ).

(C4) (The Covariate) The covariate x is sub-Gaussian. Let Σ def
= cov(x,xT).

There exists c > 1 such that c−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c. H(α) is

invertible at β. There exists λ > 0 such that H(β) ≥ λI(p−d)d×(p−d)d.

(C5) (The Moments) E(∥x∥42) < ∞, E(Y 4) < ∞, and E{∥m1(x
Tβ)∥42} <

∞. There exist G and H such that E
{
|Êj [S{x, Y,α, w(x)}] |42

}
≤ G4

and E
{
∥Ĥ(α)−H(α)∥42

}
≤ H4. There exists L(x, Y ) such that

∥Ĥ(α1;x)− Ĥ(α2;x)∥2 ≤ L(x, Y )∥α1 −α2∥2, for E{L(x, Y )} ≤ L4.

(C6) (The Bandwidths) The bandwidths satisfy Nh2q
k h2q

l → 0, Nh
2(q−1)
1 h2q

l →

0, and Nhd
kh

d
l → ∞, for 1 ≤ k ≤ l ≤ 4.

(C7) (The Sample Size) There exist c1 > 0 and 0 < c2 < 1 such that

n ≥ max(c1p,N
c2).

(C8) (The Initial Value) The initial value satisfies |vecl(β(0) − β)|2 =

Op(n
−1/2).
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3.2 Theoretical properties of the first distributed algorithm

We assume these conditions for technical reasons, though they are widely

assumed in literature. In particular, condition (C1) allows for the second-

order kernels, and condition (C6) allows for optimal bandwidths. The dis-

tributed algorithm requires the sample size n to be large enough to satisfy

condition (C7), which is required to ensure condition (C8) holds when we

calculate the initial value β(0) using the observations from the first ma-

chine only. Condition (C7) is also used by Zhang et al. (2013), Battey

et al. (2015), and Jordan et al. (2019), and is typically regarded as mild

in distributed settings. Condition (C8) requires that the initial value be

consistent.

We provide a high probability error bound for β
(t)
dist,1 in the following

theorem.

Theorem 1. Under conditions (C1)–(C8), we have for t ≥ 1,

∣∣∣vecl(β(t)
dist,1 − β)

∣∣∣
2
= Op

{
n−(t+1)/2 +N−1/2

}
.

An important implication of Theorem 1 is that β̂dist,1 can behave as

well as β̂pool,1 only after a finite number of iterations. In order to ensure∣∣∣vecl(β(t+1)
dist,1 − β̂pool,1)

∣∣∣
2
= op

(
N−1/2

)
, we are merely required to conduct

at most ⌈logN/ log n⌉ iterations, where ⌈x⌉ denotes the smallest integer

larger than or equal to x. In other words, for a sufficiently large t, the
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optimization error of the distributed estimate,
∣∣∣vecl(β̂dist,1 − β̂pool,1)

∣∣∣
2
, is

almost negligible in comparison with the statistical error of the pooled esti-

mate,
∣∣∣vecl(β̂pool,1 − β)

∣∣∣
2
. That is, β̂dist,1 behaves as well as β̂pool,1. If N is

a polynomial order of n, ⌈logN/ log n⌉ is a finite number. In other words,

we are required to conduct at most a finite number of iterations to ensure

that β̂dist,1 is almost as good as β̂pool,1. As a consequence, β̂dist,1 shares

almost the same theoretical properties as β̂pool,1.

4. The second distributed algorithm with sparse solutions

4.1 The second communication efficient algorithm

Next, we introduce a distributed algorithm that yields a sparse solution.

Under the least squares framework (2.4), we can incorporate penalties into

the loss function to produce sparse solutions. In particular, we define

Ŷ (α)
def
= {x̂(α)}T vecl(α) + {Y − m̂(xTα)}. (4.1)

We incorporate the least absolute shrinkage and selection operator (Tibshi-

rani, 1996) into the least squares framework. With the observations denoted

as {(xi,k, Yi,k), i = 1, . . . , n, k = 1, . . . ,m}, we ignore the penalty for now,

and rewrite the least squares loss function as follows:

LN(α)
def
= (2N)−1

n∑
i=1

m∑
k=1

{Ŷi,k(β
(t)
dist,2)− x̂i,k(β

(t)
dist,2)

Tvecl(α)}2w(xi,k),
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4.1 The second communication efficient algorithm

where β
(t)
dist,2 is an intermediate distributed estimate. We define

zk
(
β

(t)
dist,2

) def
=

1

n

n∑
i=1

w(xi,k)x̂i,k

(
β

(t)
dist,2

)
Ŷi,k

(
β

(t)
dist,2

)
and

zN
(
β

(t)
dist,2

) def
=

1

m

m∑
k=1

zk
(
β

(t)
dist,2

)
.

Using straightforward algebraic calculations, we can show that, given α,

LN(α) = LN(β
(t)
dist,2) +

1

2
vecl(α− β

(t)
dist,2)

TĤ
(
β

(t)
dist,2

)
vecl(α− β

(t)
dist,2)

+vecl(α− β
(t)
dist,2)

T
{
Ĥ
(
β

(t)
dist,2

)
vecl(β(t)

dist,2)− zN
(
β

(t)
dist,2

)}
.

There are three quantities on the right-hand side of the above. The first is

irrelevant to α, and thus can be ignored in the optimization. The second

involves Ĥ
(
β

(t)
dist,2

)
, which is a {(p− d)d× (p− d)d} matrix. Transmitting

Ĥk

(
β

(t)
dist,2

)
from the local machines to the central one to form Ĥ

(
β

(t)
dist,2

)
is

communication inefficient, particularly when the covariates are high dimen-

sional. In parallel to the first distributed algorithm, we suggest replacing

Ĥ
(
β

(t)
dist,2

)
with Ĥ1

(
β

(t)
dist,2

)
, to obtain

L̃N(α)
def
= LN(β

(t)
dist,2) +

1

2
vecl(α− β

(t)
dist,2)

TĤ1

(
β

(t)
dist,2

)
vecl(α− β

(t)
dist,2)

+vecl(α− β
(t)
dist,2)

T
{
Ĥ
(
β

(t)
dist,2

)
vecl(β(t)

dist,2)− zN
(
β

(t)
dist,2

)}
.

We perform optimization on the first machine. Using Ĥ1

(
β

(t)
dist,2

)
in place

of Ĥ
(
β

(t)
dist,2

)
does not incur a communication cost. If α is sufficiently close
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4.1 The second communication efficient algorithm

to β
(t)
dist,2, it is reasonable to expect the approximation error

vecl(α− β
(t)
dist,2)

T
{
Ĥ
(
β

(t)
dist,2

)
− Ĥ1

(
β

(t)
dist,2

)}
vecl(α− β

(t)
dist,2)

to be negligible. Next, we study the third quantity. Here,
{
Ĥ
(
β

(t)
dist,2

)
vecl(β(t)

dist,2)
}

can be formed on each local machine using the relation

Ĥ
(
β

(t)
dist,2

)
vecl(β(t)

dist,2) = m−1

m∑
k=1

{
Ĥk

(
β

(t)
dist,2

)
vecl(β(t)

dist,2)
}
.

In particular, we form
{
Ĥk

(
β

(t)
dist,2

)
vecl(β(t)

dist,2)
}

and zk
(
β

(t)
dist,2

)
on each lo-

cal machine, and transmit these random vectors to the central machine,

incurring a communication cost of O{(p− d)d}, which is the minimal price

that we have to pay for distributed algorithms. We ignore all quantities

that are irrelevant to α in L̃N(α). An equivalent form of L̃N(α) can be

defined as

L⋆
N(α)

def
=

1

2
vecl(α)TĤ1

(
β

(t)
dist,2

)
vecl(α) (4.2)

+ vecl(α)T
[{

Ĥ
(
β

(t)
dist,2

)
− Ĥ1

(
β

(t)
dist,2

)}
vecl(β(t)

dist,2)− zN(β
(t)
dist,2)

]
.

We seek β by minimizing L⋆
N(α) in distributed settings.

The second distributed algorithm proceeds as follows. We start from

β
(0)
dist,2. Once we have β

(t+1)
dist,2 on the first machine, we update Ĥ1(β

(t)
dist,2)

with Ĥ1(β
(t+1)
dist,2). We broadcast β

(t+1)
dist,2 from the first machine to the re-

maining machines to update Ĥk

(
β

(t+1)
dist,2

)
vecl(β(t+1)

dist,2)− zk
(
β

(t+1)
dist,2

)
, which are
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4.2 Theoretical properties of the second distributed algorithm

then transmitted to the first machine to update the quantity in the square

brackets in (4.3). Define

β
(t+2)
dist,2

def
= argmin

α

(
1

2
vecl(α)TĤ1

(
β

(t+1)
dist,2

)
vecl(α)

+
[{

Ĥ
(
β

(t+1)
dist,2

)
− Ĥ1

(
β

(t+1)
dist,2

)}
vecl(β(t+1)

dist,2)− zN(β
(t+1)
dist,2)

]
+ λ∥α∥1

)
.

We iterate until convergence, and denote the final solution by β̂dist,2.

4.2 Theoretical properties of the second distributed algorithm

Let S be the support of vecl(β), and the cardinality of S be s
def
= |S|.

We introduce conditions (C5′)–(C8′) to replace (C5)–(C8) to study the

theoretical properties of β̂dist,2.

(C5′) The response Y is bounded, or the error ε has sub-Gaussian tails. The

mean function satisfies sup |m(xTβ)| < ∞ and E{∥m1(x
Tβ)∥42} <

∞. The loss L(α) is restricted strongly convex over S : for all δ ∈

C(S) def
= {ν : |νS |1 ≤ 3|νSc |}1, L1(β + δ)− L1(β)− δ∇L1(β) ≥ µ|δ|22.

The Hessian is restricted Lipschitz: for all δ ∈ C(S), |{Ĥ1(β + δ) −

Ĥ1(β)}δ|∞ ≤ M |δ|22 and |{Ĥ(β + δ)− Ĥ(β)}δ|∞ ≤ M |δ|22.

(C6′) The bandwidths satisfy Nh2q
k h2q

l → 0, Nh
2(q−1)
1 h2q

l → 0, Nhd
kh

d
l / log

2 N →

∞ and Nhd+2
1 / logN → ∞. In addition, s log p = o{N1/4+h

(−q+1)/2
k h

(−q+1)/2
l +

(Nhd+2
1 / logN)1/2} for 1 ≤ k ≤ l ≤ 4.
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4.2 Theoretical properties of the second distributed algorithm

(C7′) The covariate dimension p satisfies p = O(N c3) log p = O(N c4), for

c3 > 0, 0 < c4 < 1. The sample size n satisfies n = O(N c5), for 0 <

c5 < 1, and the sparsity level s satisfies s = O(nc6), for 0 ≤ c6 < 1/2.

(C8′) The initial value β(0)
dist,2 satisfies |vecl(β(0)

dist,2−β)|1 = Op{s(log p/n)1/2}

and |vecl(β(0)
dist,2 − β)|2 = Op(s log p/n)

1/2.

Theorem 2 provides an error bound for our distributed estimate β
(t)
dist,2.

Theorem 2. Take

λ
(t)
N = C

{
(log p/N)1/2 + (log p/n)1/2|vecl(β(t−1)

dist,2 − β)|1 + |vecl(β(t−1)
dist,2 − β)|22

}
,

for a sufficiently large constant C. Under conditions (C1)–(C4) and (C5′)–

(C8′), we have, for t ≥ 1,

∣∣∣vecl(β(t)
dist,2 − β)

∣∣∣
2
= Op

{
(s log p/N)1/2 + s(2t+1)/2(log p/n)(t+1)/2

}
.

Theorem 2 indicates that, as the iteration proceeds, β
(t)
dist,2 improves

accordingly. Indeed,
∣∣∣vecl(β(t)

dist,2 − β)
∣∣∣
2

is upper bounded by two orders:

O
{
(s log p/N)1/2

}
and O

{
s(2t+1)/2(log p/n)(t+1)/2

}
. As long as the iteration

step t is sufficiently large that t ≥ log(p/n)/ log{cn/(s2 log p)}, for some

c > 0, the second order is dominated by the first, and the convergence rate

of β(t)
dist,2 becomes O

{
(s log p/N)1/2

}
, which is the oracle rate of β̂pool,2. By

condition (C7′), log(p/n)/ log{cn/(s2 log p)} is upper bounded, indicating
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that the difference between β
(t)
dist,2 and β̂pool,2 is asymptotically negligible

after a finite number of iterations. In other words, the distributed algorithm

behaves asymptotically as well as the pooled algorithm.

Theorem 3. In addition to conditions (C1)–(C4) and (C5′)–(C8′), we

further assume that
∥∥ΣSc×SΣ

−1
S×S
∥∥
∞ ≤ 1− α, for some 0 < α < 1.

1. The distributed estimate satisfies S(β(t)
dist,2) ⊆ S, with probability ap-

proaching one.

2. Suppose for a sufficiently large constant C that

min
j∈S

∣∣βj

∣∣ ≥ C
∥∥Σ−1

S×S
∥∥
∞

{
(log p/N)1/2 + st(log p/n)(t+1)/2

}
.

Then, we have S(β(t)
dist,2) = S, with probability approaching one.

The irrepresentable condition and the “beta-min” condition are widely

used in prior studies to establish the support recovery property; see, for ex-

ample, Wainwright (2009). For t ≥ log(p/n)/ log{cn/(s2 log p)}, the “beta-

min” condition reduces to minj∈S
∣∣βj

∣∣ ≥ C
∥∥Σ−1

S×S
∥∥
∞ (log p/N)1/2, which is

a classic and widely used condition.

5. The third distributed algorithm under orthogonality constraints

Let β be a basis of SE(Y |x). In Sections 2–4, we required the upper d × d

block of β to be Id×d, which ensures that β is identifiable and that vecl(β)
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are all free parameters. However, this implicitly requires that the first d

covariates of x be truly predictive, which is not always realistic. In this

section, we merely assume β is orthonormal, such that βTβ = Id×d. This

orthogonality constraint does not ensure β is identifiable. In addition, op-

timization over the manifold {β : βTβ = Id×d} is, in general, difficult.

However, this orthogonality constraint appears more realistic, and suffices

to recover SE(Y |x). We propose a third distributed algorithm under this

orthogonality constraint, following Wen and Yin (2013).

This section requires a few changes in notation. In particular, we rede-

fine

x̂i,k(β
(t)
dist,3)

def
= vec

{[
xi,k −

Ê{xi,kw(xi,k) | xT
i,kβ

(t)
dist,3}

Ê{w(xi,k) | xT
i,kβ

(t)
dist,3}

]
m̂T

1 (x
T
i,kβ

(t)
dist,3)

}
,

where we use “vec” in place of “vecl” in (3.1). Accordingly,

Ŷi,k(β
(t)
dist,3)

def
=

{
x̂T
i,k(β

(t)
dist,3)

}
vec(β(t)

dist,3) + {Yi,k − m̂(xT
i,kβ

(t)
dist,3)},

where β
(t)
dist,3 is an intermediate estimate of β at the tth step. Redefine

zk
(
β

(t)
dist,3

) def
=

1

n

n∑
i=1

w(xi,k)x̂i,k

(
β

(t)
dist,3

)
Ŷi,k

(
β

(t)
dist,3

)
and

zN
(
β

(t)
dist,3

) def
=

1

m

m∑
k=1

zk
(
β

(t)
dist,3

)
.
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In addition,

Ĥk(β
(t)
dist,3)

def
=

1

n

n∑
i=1

w(xi,k)x̂i,k(β
(t)
dist,3)x̂

T
i,k(β

(t)
dist,3) and

Ĥ(β
(t)
dist,3)

def
=

1

m

m∑
k=1

Ĥk(β
(t)
dist,3).

In parallel to (4.3), we redefine the loss function using this notation as

L⋆
N(α)

def
=

1

2
vec(α)TĤ1

(
β

(t)
dist,3

)
vec(α) (5.1)

+vec(α)T
[{

Ĥ
(
β

(t)
dist,3

)
− Ĥ1

(
β

(t)
dist,3

)}
vec(β(t)

dist,3)− zN(β
(t)
dist,3)

]
.

In this section, we propose an orthogonality-constrained optimization ap-

proach within the Stiefel manifold (Edelman et al., 1998). In other words,

we minimize L⋆
N(α) subject to the orthogonality constraint αTα = Id×d.

Wen and Yin (2013) propose a first order descent algorithm, that yields

a feasible solution, in that it preserves the updates within the manifold.

Specifically, we define the gradient of L⋆
N(α) with respect to α as

G(α)
def
= vec−1

[
Ĥ1

(
β

(t)
dist,3

)
vec(α)

+
{
Ĥ
(
β

(t)
dist,3

)
− Ĥ1

(
β

(t)
dist,3

)}
vec(β(t)

dist,3)− zN(β
(t)
dist,3)

]
.

Define W
(
β

(t)
dist,3

) def
= G

(
β

(t)
dist,3

)(
β

(t)
dist,3

)T −
(
β

(t)
dist,3

){
G
(
β

(t)
dist,3

)}T, which is

a skew-symmetric matrix. Let τ (t) be the step size. In practice, τ (t) can

be chosen using a non-monotone line search with the Barzilai–Borwein step
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size (Barzilai and Borwein, 1988). By the Cayley transformation, we have

β
(t+1)
dist,3

def
=

{
Ip×p + τ (t)W

(
β

(t)
dist,3

)
/2
}−1{

Ip×p − τ (t)W
(
β

(t)
dist,3

)
/2
}{

β
(t)
dist,3

}
. (5.2)

It can be verified that
{
β

(t+1)
dist,3

}T{
β

(t+1)
dist,3

}
= Id×d, if

{
β

(t)
dist,3

}T{
β

(t)
dist,3

}
=

Id×d. Thus, this algorithm preserves the constraint exactly. Starting from

β(0), we iterate (5.2) until convergence. Denote the final solution by β̂dist,3.

The inversion
{
Ip×p + τ (t)W

(
β

(t)
dist,3

)
/2
}−1 dominates the computation

for β
(t+1)
dist,3 in (5.2). However, we do not have to invert a p × p matrix.

In particular, calculating this inversion is very cheap, because W
(
β

(t)
dist,3

)
is

formed as the outer product of two low-rank matrices. Rewrite W
(
β

(t)
dist,3

)
={

U
(
β

(t)
dist,3

)}{
V
(
β

(t)
dist,3

)}T, for U
(
β

(t)
dist,3

) def
=
[
G
(
β

(t)
dist,3

)
,β

(t)
dist,3

]
∈ Rp×2d

and V
(
β

(t)
dist,3

) def
=
[
β

(t)
dist,3,−G

(
β

(t)
dist,3

)]
∈ Rp×2d. As long as

{
I2d×2d +

τ (t)V
(
β

(t)
dist,3

)T
U
(
β

(t)
dist,3

)
/2
}

is invertible, which is often the case, by Lemma

4 of Wen and Yin (2013), an equivalent form of (5.2) is β
(t+1)
dist,3 = β

(t)
dist,3−

τ (t)U
(
β

(t)
dist,3

){
I2d×2d + τ (t)V

(
β

(t)
dist,3

)T
U
(
β

(t)
dist,3

)
/2
}−1{

V
(
β

(t)
dist,3

)}T{
β

(t)
dist,3

}
.

By the very purpose of mean dimension reduction, d is far less than p. It is

thus natural to expect that inverting
{
I2d×2d+τ (t)V

(
β

(t)
dist,3

)T
U
(
β

(t)
dist,3

)
/2
}
∈

R2d×2d is much easier than inverting
{
Ip×p + τ (t)W

(
β

(t)
dist,3

)
/2
}
∈ Rp×p. In

this sense, our distributed algorithm with an orthogonality constraint is
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computationally efficient.

6. Simulation Studies

We conduct simulation studies to demonstrate the finite sample perfor-

mance of our proposed distributed algorithms. We generate the observa-

tions from the following examples.

Example 1. We generate x from a multivariate normal distribution with

mean zero and covariance Σ =
(
0.5|i−j|)

p×p
. We generate Y from a normal

distribution with mean m(xTβ) = sin(2xTβ)+2 exp(2+xTβ) and variance

σ2(x) = log{2 + (xTβ)}. The first four components of β are (1, 1,−1, 1)T,

and all other entries are identically zero. In this example, p = 16 and

d = 1.

Example 2. We generate x independently from a uniform distribution

defined on [−2, 2]. We generate Y from a normal distribution with mean

m(xTβ) = (xTβ1)/{0.5 + (1.5 + xTβ2)
2} and variance σ2(x) = exp(X1),

where X1 is the first coordinate of x. The first four components of β1 and

β2 are β1 = (1, 0, 1, 1)T and β2 = (0, 1,−1, 1)T, respectively. All other

entries of β1 and β2 are identically zero. In this example, p = 16 and

d = 2.

We run 500 replicates to compare the performance of the following
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estimates:

1. β̂pool,1(w): The pooled estimate that pools all observations together

and uses the true weight w(x) = {σ2(x)}−1. This serves as a bench-

mark for algorithm 1.

2. β̂dist,1(w): The distributed estimate that uses w(x) = {σ2(x)}−1.

3. β̂dist,1(w
∗): The distributed estimate that uses w∗(x) = 1.

4. β̂pool,2(w): The regularized pooled estimate that aggregates all obser-

vations together and uses the true weight w(x) = {σ2(x)}−1. This

serves as a benchmark for algorithm 2.

5. β̂dist,2(w): The regularized distributed estimate that uses w(x) =

{σ2(x)}−1.

6. β̂dist,2(w
∗): The regularized distributed estimate that misspecifies

w(x) as w∗(x) = 1.

7. β̂pool,3(w): The pooled estimate that aggregates all observations to-

gether and uses the true weight w(x) = {σ2(x)}−1. This serves as a

benchmark for algorithm 3.

8. β̂dist,3(w): The distributed estimate that uses w(x) = {σ2(x)}−1.
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9. β̂dist,3(w
∗): The distributed estimate that misspecifies w(x) as w∗(x) =

1.

Let β be a basis matrix of the central mean subspace, and β̂ be its

estimate. To assess the estimation accuracy of β̂, we use the Euclidean

distance between β and β̂, defined as the Frobenius norm of the matrix

β̂(β̂
T
β̂)−1β̂

T
−β(βTβ)−1βT. A smaller distance indicates a better estimate.

Throughout, we fix the total sample size N = 2500. We consider three

combinations, (n,m) = (500, 5), (250, 10), and (100, 25), where m is the

number of machines. We choose the initial value β(0) for algorithms 1 and 3

by using a minimum average variance estimation (Xia et al., 2002). For the

initial value of algorithm 2, we implement the sparse sliced inverse regres-

sion (Lin et al., 2019). We choose the bandwidths using a “rule-of-thumb”

approach because the semiparametric estimating equations approach is not

sensitive to the bandwidth selections (Ma and Zhu, 2014). In particular,

we set h1 = h2 = h3 = cn−1/(4+d).

Tables 1 summarizes the average distances and CPU running times

(in seconds) of various estimates. For j ∈ {1, 2, 3}, the pooled estimate

β̂pool,j(w) performs best, in that it has the smallest biases across all sce-

narios. Furthermore, the biases of the distributed estimates, β̂dist,j(w)

and β̂dist,j(w
∗), increase with the number of machines. Not surprisingly,
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β̂dist,j(w
∗) is relatively less accurate among the distributed estimates be-

cause the weight function is misspecified. The distributed algorithms reduce

the computational complexity substantially. Algorithm 1 is slightly faster,

but less accurate than algorithm 3. Algorithm 2 has the smallest distance

of the distributed algorithms, because it benefits from a sparse structure.

However, it requires the most computational resources.

7. Conclusion

In this paper, we have introduced distributed algorithms for estimating the

central mean subspace under two sets of identifiability conditions. The first

set requires that the upper block of the basis of the central mean subspace

is an identity matrix. Under this condition, we design two distributed algo-

rithms. The first produces a dense solution, which suffices if the covariate

dimension is moderate. The second generates a sparse solution, which al-

lows the covariates to be high or even ultrahigh dimensional. For the second

distributed algorithm, an important contribution is that we recast the prob-

lems of estimating equations under a least squares framework. This enables

us to incorporate an appropriate penalty to produce a solution, and more

importantly, allows us to solve the penalized algorithms under a linear re-

gression framework. This idea is interesting and can be adapted to solve
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Table 1: The average distance and CPU running time (in seconds) of

various estimates.
(n,m) (500,5) (250, 10) (100, 25)

distance time distance time distance time

Example 1

β̂pool,1(w) 0.224 (26.564)

β̂dist,1(w) 0.236 (10.391) 0.245 (7.613) 0.261 (3.158)

β̂dist,1(w
∗) 0.249 (8.484) 0.252 (5.322) 0.273 (2.613)

β̂pool,2(w) 0.144 (33.216)

β̂dist,2(w) 0.157 (15.729) 0.169 (10.048) 0.178 (6.165)

β̂dist,2(w
∗) 0.163 (13.963) 0.184 (8.371) 0.197 (4.687)

β̂pool,3(w) 0.219 (31.854)

β̂dist,3(w) 0.226 (13.432) 0.238 (9.583) 0.255 (5.227)

β̂dist,3(w
∗) 0.234 (10.038) 0.243 (7.255) 0.264 (3.641)

Example 2

β̂pool,1(w) 0.304 (31.859)

β̂dist,1(w) 0.315 (14.337) 0.322 (10.741) 0.341 (4.845)

β̂dist,1(w
∗) 0.323 (12.148) 0.334 (8.066) 0.358 (3.275)

β̂pool,2(w) 0.169 (34.738)

β̂dist,2(w) 0.177 (18.344) 0.182 (13.765) 0.189 (7.148)

β̂dist,2(w
∗) 0.188 (16.731) 0.194 (11.142) 0.205 (5.671)

β̂pool,3(w) 0.291 (32.530)

β̂dist,3(w) 0.299 (15.138) 0.316 (11.435) 0.322 (5.836)

β̂dist,3(w
∗) 0.314 (13.256) 0.327 (8.997) 0.349 (4.158)
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other problems that use estimating equations.

The second set of identifiability conditions assumes that the basis of

the central mean subspace is orthonormal. Here, determining a feasible

solution is challenging. We address this problem using the first order descent

algorithm. However, finding a sparse feasible solution remains challenging

owing to the discontinuity of the sparse solution path, and thus warrants

further research.

Numerous works have proposed solutions to the problem of high di-

mensionality. Here, we focus on massive data of high dimensions and large

volumes. We propose several distributed algorithms, which have nearly

minimal communication cost and almost the lowest computational complex-

ity. In addition, our solutions possess many desirable theoretical properties.

However, adapting these distributed algorithms to identify and recover the

central subspaces, particularly when the response variables are multivari-

ate or even high dimensional, remains an open problem, and thus is left to

future research.

Supplementary Material

The online Supplementary Material contains descriptions of the pooled al-

gorithms, additional simulations, and technical proofs of all theorems.
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