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1. Introduction

High-dimensional data characterized by simultaneous measurements of many variables are

common in social, economic, and environmental studies, especially in spatial econometrics

(Arbia, 2016) and financial econometrics (Fan et al., 2020). The data are usually temporally

dependent, and there is dependence between the high-dimensional components at each

cross-section of time. Examples include high-frequency financial data on asset returns (Fan

et al., 2011; Liu and Chen, 2020), economic panel data (Stock and Watson, 2002) with a

large number of recorded variables, and large-scale spatio-temporal data from atmospheric

environmental and climate change studies (Xu et al., 2020). Thus, we require inferences for

mean vectors with both high dimensionality and temporal dependence in order to evaluate

the treatment effects in such studies (Fan et al., 2015).

This study aims to provide an effective testing procedure for detecting differences in the

means of two groups under various treatments, where the data exhibit temporal dependence

and high dimensionality. The conventional Hotelling’s test, published when the author

became an economic Professor at Columbia University, and designed for independent and

identically distributed (i.i.d.) data with a fixed dimension, cannot be used to evaluate a

high-dimensional treatment effect (Bai and Saranadasa, 1996). Two-sample mean tests for

high-dimensional data have been proposed, largely for i.i.d. data, including the L2-type

tests of Bai and Saranadasa (1996) based on a bias-corrected Euclidean statistic, and Chen

and Qin (2010) formulated with U-statistics. These tests avoid using the sample covariance,

owing to its adverse effects in high-dimensional settings. See also Chen et al. (2011), Feng

et al. (2015), and Wang et al. (2015) for other formulations of L2-type tests. Another test

procedure is the L∞ (maximum)-test, which takes the maximum standardized difference

between all dimensions of the two sample means (Chernozhukov et al., 2013; Cai et al.,
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2014; Chang et al., 2017). A third type is the L2 thresholding test (Zhong et al., 2013;

Qiu et al., 2018; Chen et al., 2023), which improves on the higher criticism tests (Donoho

and Jin, 2015; Hall and Jin, 2010). These tests apply a thresholding procedure in the

marginal differences of two-sample means to exclude non-signal-bearing dimensions, and

thus enhance the signal-to-noise ratio for better power under the sparse and faint signal

setting; see also Huang et al. (2021) for high-dimensional mean tests.

Compared with studies on independent data, few works test for high-dimensional means

in temporally dependent data, which are common in economics, mainly because of the dif-

ficulties in dealing with the temporal dependence, while accounting for the column-wise

dependence between the high-dimensional components. Chernozhukov et al. (2019) ex-

tended the Gaussian approximation results for the maximum statistics to weakly depen-

dent data under the β-mixing conditions. Using this result, they constructed an L∞-test

using a kernel-based multiplier bootstrap procedure; see Chang et al. (2018) and Qiu and

Zhou (2022) for global and multiple testing procedures for high-dimensional precision and

partial correlation matrices. However, the maximum test is less advantageous for detect-

ing weak signals. For L2-type tests, Ayyala et al. (2017) extended the procedure of Bai

and Saranadasa (1996) to m-dependent Gaussian data, under the moderate dimensionality

where p and n are of the same order. Wang and Shao (2020) considered one-sample testing

for a high-dimensional mean using a U-statistic formulation under physical dependence

with a geometric decaying rate. Instead of estimating the variance of the statistic, Wang

and Shao (2020) construct the test using self-normalization.

In this study, we consider testing for two-sample means in high-dimensional weakly de-

pendent time series data, without the Gaussian assumption, while allowing for exponential

growth of the dimension. The L2-type U-statistics originally proposed by Chen and Qin

(2010) for independent data are no longer unbiased for ||µ1 − µ2||2, the squared Euclidean
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distance between two population means µ1 and µ2. Thus, for temporally dependent data,

we construct a band-excluded U-statistic (BEU-statistic) for the two-sample setting that

removes pairs of temporally close observations. We derive the asymptotic normality of the

proposed test statistic under general weak column-wise dependence and temporal depen-

dence, where the dimension can be much larger than the sample size. We also develop a

kernel-smoothing method over the cross-time long-run covariances to estimate the variance

of the test statistic, and propose a testing procedure with data-driven tuning parameter

selection for the exclusion and smoothing bandwidths. We establish the theoretical prop-

erties of the proposed test under the null and alternative hypotheses, showing its proper

asymptotic size control and power for dense and weak signals. The power of the proposed

test is analyzed under both local and fixed alternatives. Then, we extend the test formula-

tion to the one-sample setting, which is shown to be more powerful than the self-normalized

(SN) test of Wang and Shao (2020) in both theoretical results and numerical simulations.

Simulation studies are used to evaluate the performance and confirm the theoretical prop-

erties. Under the capital asset pricing model, we apply the proposed method to compare

the adjusted returns of S&P 500 stocks by market index, and their specific volatility, before

and after the 2008 financial crisis. Our results indicate that the crisis did not lead to a

significant difference in the adjusted returns, but it did increase the volatility.

The remainder of the paper is organized as follows. Section 2 outlines the assumptions

on the data distribution and the temporal dependence. The U-statistic formulation is

introduced in Section 3, with the theoretical result on its asymptotic normality. Section 4

constructs the variance estimator of the proposed statistic and shows its ratio consistency.

Section 5 provides the implementation and data adaptive tuning parameter selection for

the proposed test. Section 6 analyzes the power of the proposed test and compares it with

that of the SN test. Sections 7 and 8 report results from simulation studies and a real-data
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analysis, respectively, on S&P 500 stock returns. All technical proofs are relegated to the

Supplementary Material.

2. Preliminaries

Suppose we observe p-dimensional stationary time series {XXX i,t}ni
t=1 from two populations

for i = 1 and 2, where XXX i,t = (Xi,t,1, Xi,t,2, . . . , Xi,t,p)
T, and n1 and n2 are the respec-

tive sample sizes. We assume mutual independence between the two samples, and al-

low temporal dependence within each sample. Let µµµi = (µi,1, . . . , µi,p)
T and ΣΣΣi,0 be the

mean and covariance matrix, respectively, of XXX i,1. Define the cross-covariance matrices

ΣΣΣi,k = Cov(XXX i,t+k,XXX i,t) = (σi,k,j1j2)p×p, for k = −(ni − 1), . . . , ni − 1, and ΣΣΣi,0 is the

marginal covariance. Let ΣΣΣi,∞ =
∑+∞

k=−∞ΣΣΣi,k = (σi,∞,j1j2)p×p be the long-run covariance

matrix of XXX i,t, provided {σi,k,j1j2} are summable over k for all j1, j2.

Our aim is to test

H0 : µµµ1 = µµµ2 vs. H1 : µµµ1 6= µµµ2. (2.1)

These are global hypotheses for two-sample means, which are studied extensively under

independent data (Donoho and Jin, 2004; Chen and Qin, 2010; Feng et al., 2015; Wang

et al., 2015). However, except for the work of Ayyala et al. (2017) for m-dependent data,

the two-sample mean test for temporally dependent high-dimensional observations has not

been studied sufficiently in the literature.

We make the following assumptions in the analysis.

Assumption 1. (i) n1/(n1 + n2)→ κ0 ∈ (0, 1) as n1, n2 →∞. (ii) For a positive integer

q and a constant ∆ > 0, max1≤i≤2,1≤j≤p E1/q(|Xi,t,j|q) ≤ ∆.

Assumption 2. Each XXX i,t is generated from a linear innovation model such that XXX i,t =

ΓΓΓiZZZi,t + µµµi, for i = 1, 2, where ΓΓΓi is a p × r matrix with r ≥ p such that ΓΓΓiΓΓΓ
T
i = ΣΣΣi,∞,
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and ZZZi,t = (Zi,t,1, Zi,t,2, . . . , Zi,t,r)
T is the innovation random vector with E

(
ZZZi,t

)
= 000. For

each j, {Zi,t,j}ni
t=1 is a second-order stationary time series with unit long-run variance, and

max1≤j≤r E(Z8
i,t,j) ≤ ∆z for a positive constant ∆z and i = 1, 2. Furthermore, Zi,t1,j1 and

Zi,t2,j2 are uncorrelated for any t1 and t2 if j1 6= j2. For any sequences of time points

{t11, . . . , t1a1}, . . . , {tl1, . . . , tlal} with
∑l

k=1 ak ≤ 8 and distinct j1, . . . , jl,

E

{
l∏

k=1

(
Zi,tk1,jk . . . Zi,tkak ,jk

)}
=

l∏
k=1

E
(
Zi,tk1,jk · · ·Zi,tkak ,jk

)
. (2.2)

Assumption 1 (i) is a conventional assumption in two-sample problems, and (ii) is

needed for the Davydov’s inequality (Davydov, 1968) to control the temporal correlation

between XXX i,t1 and XXX i,t2 under mixing conditions. Assumption 2 extends the linear in-

novation models of Bai and Saranadasa (1996) and Cui et al. (2020) for i.i.d. data to

temporally dependent data. Assumption 2 uses a linear process model for data generation,

with {Zi,t}ni
t=1 as the innovation process. The linear process is widely used in time series

analysis (Brockwell and Davis, 1991). Although a linear generation of multivariate data is

considered in Bai and Saranadasa (1996) and other works for the independent setting, in

contrast to these works, the innovation process here is temporarily dependent. For each

time t, the innovation vector ZZZi,t is assumed to be nearly independent to allow wider forms

of innovation distributions. We could just assume ZZZi,t has an independent column vector.

However, the theoretical derivation can be made without the full independence, and as-

suming the weaker equation (2.2) is sufficient. Examples of (2.2) for non-independent cases

can be found for non-Gaussian distributed data.

Let ΣΣΣz
i,k = Cov(ZZZi,t+k,ZZZi,t) be the cross-time covariance for any integer k, and ΣΣΣz

i,∞ =∑∞
k=−∞ΣΣΣz

i,k be the long-run covariance of ZZZi,t. Under Assumption 2, ΣΣΣz
i,k is diagonal,

satisfying ΣΣΣz
i,−k = ΣΣΣz

i,k and ΣΣΣz
i,∞ = IIIr, where IIIr is the r × r identity matrix. Moreover,

ΣΣΣi,k = ΓΓΓiΣΣΣ
z
i,kΓΓΓ

T
i and ΣΣΣi,∞ = ΓΓΓiΣΣΣ

z
i,∞ΓΓΓT

i = ΓΓΓiΓΓΓ
T
i , for i = 1, 2. The condition of a unit long-run
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variance of {Zi,t,j} for each j is not essential, because we can apply rescaling on ΓΓΓi and ΣΣΣz
i,∞

simultaneously to make it so. Note that the so-called column-wise dependence between the

components of XXX i,t is mostly induced by the matrices ΓΓΓi, whereas the temporal dependence

ofXXX i,t results from the temporal dependence of the univariate innovations {Zi,t,j} over time

for all j = 1, . . . , r. If the elements of ΣΣΣi,∞ are bounded and the diagonal values of ΣΣΣz
i,k

decrease to zero uniformly as the time lag k increases, this leads to all elements in ΣΣΣi,k

decaying to zero uniformly.

In spatial and temporal statistics, separability is a common assumption on covari-

ances. The covariance structure of XXX i,t implied from Assumption 2 includes the separable

covariances as a special case. To see this, let Xi = (XXXT
i,1,XXX

T
i,2, . . . ,XXX

T
i,ni

)T be the vector-

ization of the data over all time points. Correspondingly, let Zi = (ZZZT
i,1,ZZZ

T
i,2, . . . ,ZZZ

T
i,ni

)T

and Gi = diag(ΓΓΓi, . . . ,ΓΓΓi) = IIIni
⊗ ΓΓΓi, where ⊗ denotes the Kronecker product. It can

be shown that Var(Xi) = GiVar(Zi)GT
i . Let ΣΣΣz

i,k = diag{σzi,k,1, . . . , σzi,k,r}, with diagonal

elements {σzi,k,l}rl=1. If σzi,k,1 = . . . = σzi,k,r = σzi,k, for all k, we have Var(Z) = CCCi⊗IIIr, where

CCCi = (σzi,k1−k2)ni×ni
. This implies that Var(Xi) = CCCi ⊗ ΓΓΓiΓΓΓ

T
i , where CCCi and ΓΓΓiΓΓΓ

T
i are the

temporal and spatial dependence, respectively, of Xi. Therefore, if the diagonal elements

of ΣΣΣz
i,k are identical for each k, meaning all the univariate innovation time series {Zi,t,j}

have the same cross-time covariances, Xi has a separable covariance matrix.

We assume the temporal dependence in the innovation time series {ZZZi,t} is β-mixing,

with the mixing coefficient

βzi (k) = sup
t

E

{
sup

B∈F∞
i,t+k

∣∣P(B|F ti,−∞)− P(B)
∣∣},

where F ti,−∞ = σ(ZZZi,s, s ≤ t) and F∞i,t+k = σ(ZZZi,s, s ≥ t + k) are the σ-fields generated by

{ZZZi,s}s≤t and {ZZZi,s}s≥t+k, respectively. The β-mixing condition is as follows.

Assumption 3. For a, c > 0, the β-mixing coefficients of the innovation process {ZZZi,t}
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satisfy max{βz1(k), βz2(k)} ≤ c exp{−ak}, for all positive integer k.

Let βxi (k) be the β-mixing coefficient of {XXX i,t}. Because {XXX i,t} are generated linearly

by {ZZZi,t}, βxi (k) ≤ βzi (k). Thus, Assumption 3 implies max{βx1 (k), βx2 (k)} ≤ c exp{−ak}.

This condition is needed by the coupling method to derive the asymptotic distribution

of the test statistic under time-dependent data. Similar conditions are made for high-

dimensional inference in Chang et al. (2018), Chernozhukov et al. (2019), and Wong et al.

(2020). Note that the exponential decay can be relaxed to a polynomial decay, with more

involved technical derivations. We discuss the polynomial decay further after presenting

the main theorems.

Under the fixed-dimension scenario, the β-mixing condition is a mild assumption in the

time series literature. It is known that causal ARMA processes with continuous innovation

distributions, stationary Markov chains with certain conditions, and stationary GARCH

models with finite second moments and continuous innovation distributions all satisfy the

β-mixing condition; see Doukhan (1994) and Bradley (2005). Under the high-dimensional

scenario, where the dimension increases with the sample size, the β-mixing condition is

more restrictive. Theorem 3.2 in Han and Wu (2023) provides a lower bound β̃(k) ≥

1 − 2 exp(−c̃1pτ̃
2k) on the β-mixing coefficient for a high-dimensional stationary vector

AR model Z̃t,j = τ̃ Z̃t,j + ε̃t,j, for j = 1, . . . , p, with a common coefficient τ̃ and i.i.d.

innovation noise {ε̃t,j}, where c̃1 is a positive constant. It implies that inf limn β̃(n) > 0 if

limn log pτ̃ 2n ≥ log 2/c̃1. However, under the condition of b ≥ c1(log n + log p), for some

c1, as assumed in Proposition 1, this lower bound becomes trivial if c1 ≥ −(2 log κ)−1,

which can be achieved by choosing a sufficiently large c1. Hence, the β-mixing condition in

Assumption 3 is not violated. At the same time, the asymptotic results of the proposed tests

should still be valid, under certain conditions on the τ -measure of dependence (Dedecker
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and Prieur, 2005), following a similar investigation in Qiu and Zhou (2022), although the

theoretical proof is more involved.

Assumption 4. For any i, i1, i2 ∈ {1, 2} and µµµi1 , µµµi2 such that µµµT
i1

ΣΣΣi,∞µµµi2 6= 000, there exists

a C0 > 0 such that

max

{
lim sup
p→+∞

∞∑
k1,k2=−∞

|tr(ΣΣΣi,k1ΣΣΣi,k2)|
tr(ΣΣΣ2

i,∞)
, lim sup
p→+∞

+∞∑
k=−∞

|µµµT
i1

ΣΣΣi,kµµµi2|
|µµµT
i1

ΣΣΣi,∞µµµi2|

}
≤ C0.

Assumption 5. For two positive constants η and C1, min(λ1,min, λ2,min) ≥ C1p
−η, where

λi,min is the minimum eigenvalue of ΣΣΣi,∞, for i = 1, 2.

Assumptions 4 and 5 are mild technical conditions for deriving the asymptotic distribu-

tion of the proposed test statistic. Note that tr(ΣΣΣ2
i,∞) =

∑
k1,k2

tr(ΣΣΣi,k1ΣΣΣi,k2). Assumption

4 requires {tr(ΣΣΣi,k1ΣΣΣi,k2)/tr(ΣΣΣ
2
i,∞)} to be summable, which is analogous to the absolute

summable condition on cross-time covariances of univariate time series. Similar conditions

are made in Wang and Shao (2020) for one-sample testing. Assumption 5 puts a lower

bound on the minimum eigenvalue of ΣΣΣi,∞, which is allowed to diminish to zero.

3. BEU-statistic

We consider the L2-type statistics estimating ‖µµµ1−µµµ2‖2
2 = (µµµ1−µµµ2)T(µµµ1−µµµ2), the overall

difference between the two population means. Let X̄XX i =
∑ni

t=1XXX i,t/ni = (X̄i,1, . . . , X̄i,p)
T

be the sample means for i = 1, 2. Under Assumptions 2 and 3, it can be shown that

X̄i,j is asymptotic normal with mean µi,j and variance σi,∞,jj/ni, for all j = 1, . . . , p. The

leading-order term of E(X̄2
i,j) is µ2

i,j + σi,∞,jj/ni, where the bias σi,∞,jj/ni accumulates in

the mean of the L2-statistic
∑p

j=1 X̄
2
i,j, and diverges when the dimension p is much larger

than the sample size.
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To reduce the bias induced by the temporal dependence, we construct

Ui,j(b) =
1

ni(b)

∑
|t1−t2|≥b

Xi,t1,jXi,t2,j (3.1)

as an estimator for µ2
i,j, for i = 1, 2 and j = 1, . . . , p. Here, b is a positive tuning parameter

that defines a temporal exclusion band of width b to exclude products XT
i,t1
Xi,t2 in t1 and

t2 that are less than b apart in the above statistic, and ni(b) = (ni − b)(ni − b + 1) is the

number of terms in the summation of (3.1). We take b→∞ as ni →∞.

Let Vj(b) = U1,j(b)+U2,j(b)−2X̄1,jX̄2,j be the estimator of (µ1,j−µ2,j)
2, for j = 1, . . . , p.

Summing Vj(b) over j, we propose the BEU-statistic

T (b) =
1

n1(b)

∑
|t1−t2|≥b

XXXT

1,t1
XXX1,t2 +

1

n2(b)

∑
|t1−t2|≥b

XXXT

2,t1
XXX2,t2 −

2

n1n2

n1∑
t1=1

n2∑
t2=1

XXXT

1,t1
XXX2,t2 (3.2)

as an estimator for ‖µµµ1 − µµµ2‖2
2.

Note that T (0) = (X̄XX1−X̄XX2)T(X̄XX1−X̄XX2) is the L2-statistic used in Bai and Saranadasa

(1996), and T (1) is the U-statistic proposed by Chen and Qin (2010) for independent

observations. The exclusion band of |t1 − t2| ≥ b removes pairs of observations XXX i,t1 and

XXX i,t2 in (3.2) that are more strongly correlated. This effectively mitigates the bias of

T (b) induced by the temporal dependence. Bias reduction is the key to constructing L2-

type statistics for high-dimensional data, because the accumulation of the bias from each

component decreases the asymptotic performance of the L2-statistics if p is much larger

than n (Feng et al., 2015).

Let T1(b) = n1(b)−1
∑
|t1−t2|≥bXXX

T
1,t1
XXX1,t2 be the first term on the right-hand side of (3.2).

Then, T1(b) can be used to test the one-sample hypothesis H0 : µµµ1 = 000 vs. H1 : µµµ1 6= 000,

and a location shift enables us to test H0 : µµµ1 = µµµ10 vs. H1 : µµµ1 6= µµµ10, for a known µµµ10.

Note that T1(b) is the statistic considered in Wang and Shao (2020) for testing H0 : µµµ1 = 000

under geometric regularized physical dependence. Instead of estimating the variance of

T1(b), they use a self-normalized technique to formulate the testing procedure. We present
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a power comparison between the proposed test and the SN test in Section 6 for the one-

sample case.

Our plan is to derive and estimate the variance of T (b), and to construct a test for the

hypotheses (2.1) based on a standardized version of T (b). For a positive integer k, let

MMMk = κ−1
0 ΣΣΣ1,k + (1− κ0)−1ΣΣΣ2,k and MMM∞ =

+∞∑
k=−∞

MMMk (3.3)

be the weighted lag-k cross-covariance and the weighted long-run covariance, respectively,

of the two-sample time series. The following proposition provides the mean and variance of

the BEU-statistic T (b), which shows that T (b) is asymptotically unbiased for ‖µµµ1 − µµµ2‖2
2.

Proposition 1. Under Assumption 1 with q > 4 and Assumptions 2–5, if log p = o(n) and

the exclusion bandwidth satisfies b = o(n) and b ≥ c1(log n+ log p), for a positive constant

c1, we have as n, p→∞,

E{T (b)} = ‖µµµ1 − µµµ2‖2
2 +

2∑
i=1

2

ni(b)

ni−1∑
k=b

(ni − k)tr(ΣΣΣi,k) and

Var{T (b)} =
{

2n−2tr(MMM2
∞) + 4n−1(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2)

}
{1 + o(1)}.

In Proposition 1, we allow an exponential growth rate of p relative to n. The proposition

shows that the bias of T (b) is asymptotically equal to 2n−1
∑

k≥b tr(MMMk) by noting that

ni(b) = (ni−b)(ni−b+1), which is determined by the auto-covariance of {XXX1,t} and {XXX2,t}

with time-lag larger than b. This bias term diminishes to zero at a polynomial rate of p

and n if b ≥ c1(log n+ log p), for sufficiently large c1, under Assumption 3.

Corollary 1. Under the conditions of Proposition 1 and the null hypothesis of (2.1),

Var{T (b)} =

{
2

n2
1

tr(ΣΣΣ2
1,∞) +

2

n2
2

tr(ΣΣΣ2
2,∞) +

4

n1n2

tr(ΣΣΣ1,∞ΣΣΣ2,∞)

}
{1 + o(1)}. (3.4)

Corollary 1 provides the variance of the BEU-statistic under the null hypothesis. An

estimator of this variance is constructed in Section 4, and is used to formulate the proposed
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testing procedure for hypotheses (2.1). For the one-sample problem, from the proof of

Proposition 1, it can be shown that the leading variance of T1(b) is 2n−2
1 tr(ΣΣΣ2

1,∞).

To derive the asymptotic normality of the BEU-statistic T (b), we use the coupling

method for time series and the martingale central limit theorem (Hall and Heyde, 1980)

for the U-statistics. For both samples, we partition the time points {1, . . . , ni} into a

sequence of large segments of length a1, followed by small segments of length a2, where

a2 = o(a1). Let di = bni/(a1 + a2)c be the total number of large and small segments,

for i = 1, 2, where b·c denotes the floor function. Let X̄XX i,m be the average of XXX i,t over

the mth-largest segment, for m = 1, . . . , di and i = 1, 2. By the coupling method, X̄XX i,m1

and X̄XX i,m2 can be regarded as independent, because they are separated by at least one

small block. Therefore, the averages {X̄XX i,m}dim=1 over the large blocks can be regarded as

independent, and the martingale central limit theorem for independent observations can

be applied to show the asymptotic normality of T (b) under temporally dependent data.

Detailed technical derivations are provided in the proof of Theorem 1 in the Supplementary

Material.

To obtain the limiting distribution, we impose a condition on the trace of the long-

run covariance ΣΣΣi,∞, which is used to bound the higher moments of the data. A similar

condition is made on ΣΣΣi,0 for independent data in Feng et al. (2015) and Wang et al. (2015).

Assumption 6. tr
(
ΣΣΣi1,∞ΣΣΣi2,∞ΣΣΣi3,∞ΣΣΣi4,∞

)
= o

[
tr2 {(ΣΣΣ1,∞ + ΣΣΣ2,∞)2}

]
, for i1, i2, i3, i4 =

1, 2.

Let λi,min and λi,max be the minimum and maximum eigenvalues, respectively, of ΣΣΣi,∞.

Assumption 6 is valid if all the eigenvalues of ΣΣΣi,∞ are bounded from zero and infinity. If

λi,max are bounded away from infinity and λi,min = O(pη), one needs η > −1/4 to ensure

Assumption 6. On the other hand, if λi,min are bounded from zero and λi,max = O(pξ),
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Assumption 6 is valid if ξ < 1/4. More generally, if the eigenvalues are diverging such that

λi,min = γi,1p
η and λi,max = γi,2p

ξ for some positive constants γi,1 and γi,2, then

tr
(
ΣΣΣi1,∞ΣΣΣi2,∞ΣΣΣi3,∞ΣΣΣi4,∞

)
tr2 {(ΣΣΣ1,∞ + ΣΣΣ2,∞)2}

≤ γi1,2γi2,2γi3,2γi4,2p
4(ξ−η)−1

(γ1,1 + γ2,1)4
→ 0 as p→∞

for i1, i2, i3, i4 ∈ {1, 2} and if ξ − η < 1/4.

The following theorem states the asymptotic normality of the BEU-statistic T (b).

Theorem 1. Under the conditions of Proposition 1 and Assumption 6, we have

T (b)− ‖µµµ1 − µµµ2‖2
2√

Var{T (b)}
d→ N(0, 1) as n, p→∞.

Under Assumption 3, our proposed BEU-statistic can be used for ultrahigh-dimensional

series. A weaker condition on the mixing coefficients, say a polynomial decay, will put

restrictions on the dimension p of the series, leading to more involved technical deriva-

tions. The challenge is mainly due to the slower convergence rate of the cross-covariance

induced by the Davydov’s inequality under the polynomial decay condition, compared

with that under Assumption 3 for the exponential decay. This makes terms such as∑
|k1|,|k2|>K |tr(ΣΣΣi,k1ΣΣΣi,k2)| in Lemma 2 in the Supplementary Material converge at a slower

rate. In the polynomial decay case, it can be shown that
∑
|k1|,|k2|>K |tr(ΣΣΣi,k1ΣΣΣi,k2)| =

o{tr(ΣΣΣ2
i,∞)}, for K being of a polynomial order with respect to n under p ≤ ānb̄, for some

constants ā, b̄ > 0. Hence, for series with stronger dependence, which corresponds to the

polynomial decay, our proposed BEU-statistic is still applicable, with more restrictions on

the polynomial increase of p with respect to n.

The current L2 proposal is for temporally dependent data. Another important choice

of the test statistic is based on the thresholding procedure (Chen et al., 2019). L2-type

statistics such as the proposed BEU-statistic and the thresholding-type statistics target

different signal regimes. The former are powerful for dense but weak signals, where the

signal strength from each component can be much smaller than the order n−1/2, whereas
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the latter are powerful for sparse signals with strength of order at least {(log p)/n}1/2.

To establish a thresholding test similar to that of Chen et al. (2019) for dependent data

requires first establishing moderate deviation results, which are not yet available, after

which, a similar thresholding test can be developed for dependent time series data.

Based on the asymptotic normality, we can construct a test for the null hypothesis in

(2.1) by obtaining a ratio-consistent estimator for the null variance of T (b). The latter task

is the focus of the next section.

4. Variance Estimation

Under H0 of (2.1), from (3.4), the leading-order null variance of T (b) is determined by

tr(ΣΣΣ2
i,∞), tr(ΣΣΣ2

2,∞), and tr(ΣΣΣ1,∞ΣΣΣ2,∞). In order to formulate a test, those trace quantities

need to be estimated, which amounts to estimating tr(ΣΣΣi,k1ΣΣΣi,k2) and tr(ΣΣΣ1,k1ΣΣΣ2,k2) in the

expansions

tr(ΣΣΣ2
i,∞) =

∞∑
k1,k2=−∞

tr(ΣΣΣi,k1ΣΣΣi,k2) and tr(ΣΣΣ1,∞ΣΣΣ2,∞) =
∞∑

k1,k2=−∞

tr(ΣΣΣ1,k1ΣΣΣ2,k2). (4.5)

To estimate tr(ΣΣΣi,k1ΣΣΣi,k2), we apply a similar band-exclusion technique to that used to

construct T (b) in (3.2). Let |N | denote the cardinality of a set N . For i = 1, 2 and another

positive exclusion bandwidth parameter b̃, let

Gi,1(k1, k2; b̃) =
∣∣Ni,1(k1, k2; b̃)

∣∣−1
∑

(t1,t2)∈Ni,1(k1,k2;b̃)

XXXT

i,t2
XXX i,t1XXX

T

i,t1−k1XXX i,t2+k2 ,

Gi,2(k; b̃) =
∣∣Ni,2(k; b̃)

∣∣−1
∑

(t1,t2,t3)∈Ni,2(k;b̃)

XXXT

i,t2
XXX i,t1XXX

T

i,t1−kXXX i,t3 , (4.6)

Gi,3(b̃) =
∣∣Ni,3(b̃)

∣∣−1
∑

(t1,t2,t3,t4)∈Ni,3(b̃)

XXXT

i,t1
XXX i,t2XXX

T

i,t3
XXX i,t4

be the estimators for tr{E(XXX i,k1+1XXX
T
i,1)E(XXX i,k2+1XXX

T
i,1)}, µµµT

i E(XXX i,k+1XXX
T
i,1)µµµi, and (µµµT

i µµµi)
2,
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respectively, where |k1|, |k2|, |k| < min(ni, n2)/2, and

Ni,1(k1, k2; b̃) =
{

(t1, t2) : |t1 − t2| ≥ b̃+ |k1|+ |k2|, 1 ≤ t1, t1 − k1, t2, t2 + k2 ≤ ni
}
,

Ni,2(k; b̃) =
{

(t1, t2, t3) : min
1≤j1<j2≤3

|tj1 − tj2| ≥ b̃+ |k|, 1 ≤ t1, t1 − k, t2, t3 ≤ ni
}

and

Ni,3(b̃) =
{

(t1, t2, t3, t4) : min
1≤j1<j2≤4

|tj1 − tj2| ≥ b̃, 1 ≤ t1, t2, t3, t4 ≤ ni
}

are the index sets with certain time separation. These index sets are designed to ensure

sufficient temporal distance to reduce the temporal dependence. For example, the set

Ni,1(k1, k2; b̃) makes XXX i,t1XXX
T
i,t1−k1 and XXX i,t2+k2XXX

T
i,t2

in Gi,1(k1, k2; b̃) at least b̃ apart. Let

t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) = Gi,1(k1, k2; b̃)−Gi,2(k1; b̃)−Gi,2(k2; b̃) +Gi,3(b̃) (4.7)

be estimators of tr(ΣΣΣi,k1ΣΣΣi,k2), for i = 1, 2. Similar to the diminishing bias attained by

T (b), as shown in Proposition 1, the bias of t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) diminishes to zero as b̃ → ∞.

Specifically, under Assumption 3, it suffices to choose b̃ at the order of log p.

Similar estimators can be constructed for tr(ΣΣΣ1,k1ΣΣΣ2,k2). Because observations from

different groups are independent, band exclusion is not needed between two samples.

Thus, we construct estimators for tr{E(XXX1,k1+1XXX
T
1,1)E(XXX2,k2+1XXX

T
2,1)}, µµµT

1 E(XXX2,k+1XXX
T
2,1)µµµ1,

µµµT
2 E(XXX1,k+1XXX

T
1,1)µµµ2, and ‖µµµ1‖2

2‖µµµ2‖2
2 as

Ga(k1, k2) = |Na(k1, k2)|−1
∑

(t1,t2)∈Na(k1,k2)

XXXT

2,t2
XXX1,t1XXX

T

1,t1−k1XXX2,t2+k2 ,

Gc,1(k; b̃) = n1(b̃)−1|Nc,2(k)|−1
∑

t1∈Nc,2(k)

∑
|t2−t3|≥b̃

XXXT

1,t2
XXX2,t1XXX

T

2,t1−kXXX1,t3 ,

Gc,2(k; b̃) = n2(b̃)−1|Nc,1(k)|−1
∑

t1∈Nc,1(k)

∑
|t2−t3|≥b̃

XXXT

2,t2
XXX1,t1XXX

T

1,t1−kXXX2,t3 and

Gd(b̃) = n1(b̃)−1n2(b̃)−1
∑

|t1−t3|≥b̃

∑
|t2−t4|≥b̃

XXXT

1,t1
XXX2,t2XXX

T

1,t3
XXX2,t4 ,

respectively, where ni(b̃) = (ni − b̃)(ni − b̃ + 1), Na(k1, k2) =
{

(t1, t2) : 1 ≤ t1, t1 − k1 ≤

n1, 1 ≤ t2, t2 + k2 ≤ n2

}
, and Nc,i(k) =

{
t : 1 ≤ t, t− k ≤ ni

}
, for i = 1, 2. Then, based on
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these statistics, we construct the estimator for tr(ΣΣΣ1,k1ΣΣΣ2,k2) as

t̂r(ΣΣΣ1,k1ΣΣΣ2,k2 ; b̃) = Ga(k1, k2)−Gc,1(k2; b̃)−Gc,2(k1; b̃) +Gd(b̃). (4.8)

Because the elements in ΣΣΣi,k decay to zero as |k| increases under Assumption 3, and

according to (4.5), we consider a weighted sum of t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) and t̂r(ΣΣΣ1,k1ΣΣΣ2,k2 ; b̃) to

estimate tr(ΣΣΣ2
i,∞) and tr(ΣΣΣ1,∞ΣΣΣ2,∞). The weights are determined by a kernel function such

that a larger (smaller) weight is allocated for terms with smaller (larger) |k1| and |k2|. This

idea is connected to the kernel-type estimator for fixed-dimensional long-run covariances

of Andrews (1991), and the smoothing of periodograms method for estimating the spectral

density at a zero frequency for fixed-dimensional time series (Priestley, 1981).

Let K(·) be a symmetric function on R that is continuous at zero and satisfies K(0) = 1,

supu∈R |K(u)| ≤ 1, and
∫∞
−∞ |K(u)|du < ∞. We propose the following kernel-smoothing

estimators:

t̂r(ΣΣΣ2
i,∞; b̃, s0) =

ni−1∑
k1=−ni+1

ni−1∑
k2=−ni+1

K(k1/s0)K(k2/s0)t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) and

t̂r(ΣΣΣ1,∞ΣΣΣ2,∞; b̃, s0) =

n1−1∑
k1=−n1+1

n2−1∑
k2=−n2+1

K(k1/s0)K(k2/s0)t̂r(ΣΣΣ1,k1ΣΣΣ2,k2 ; b̃)

(4.9)

for tr(ΣΣΣ2
i,∞) and tr(ΣΣΣ1,∞ΣΣΣ2,∞), respectively, where s0 is a smoothing bandwidth diverging

to ∞ as n, p → ∞. According to the expression of the null variance in (3.4), we propose

the smoothed band-exclusion statistic (SBE-statistic)

Vn(b̃, s0) =
2

n2
1

t̂r(ΣΣΣ2
1,∞; b̃, s0) +

2

n2
2

t̂r(ΣΣΣ2
2,∞; b̃, s0) +

4

n1n2

t̂r(ΣΣΣ1,∞ΣΣΣ2,∞; b̃, s0) (4.10)

for estimating Var{T (b)} under H0.

Andrews (1991) studied the kernel weighted estimator
∑

kK(k/s0)Σ̂ΣΣi,k of the long-run

covariance ΣΣΣi,∞ for various kernels under the fixed-dimension case, where Σ̂ΣΣi,k is the sample

cross-time covariances, and showed that the quadratic spectral (QS) kernel

KQS(u) =
25

12π2u2

{
sin(6πu/5)

6πu/5
− cos(6πu/5)

}
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is optimal for the long-run covariance estimation, in the sense of minimizing the asymptotic

truncated mean squared error. We use the QS kernel in the numerical implementation, and

a data-driven procedure to select the smoothing bandwidth s0 in the next section. Simula-

tion results reported in Section 7 show that the BEU-statistic T (b) with the smoothed band-

exclusion variance estimator Vn(b̃, s0) and the QS kernel performs well in high-dimensional

scenarios. Note that there are other estimation methods for long-run covariances under

fixed-dimensional settings, including the moving block bootstraps (Lahiri, 2003; Nordman

and Lahiri, 2005). Using these other methods to estimate the variances of the L2-type

statistics for high-dimensional time series is worth further investigation.

To show the ratio consistence of the SBE variance estimator, we impose the following

mild technical condition on the eigenvalue of the innovation loading matrix ΓΓΓi in Assump-

tion 2.

Assumption 7. Let BBBi = ΓΓΓT
i ΓΓΓi = (bi,j1j2)r×r, B̃BBi = (|bi,j1j2|)r×r, and λmax(B̃BBi) be the

maximum eigenvalue of B̃BBi, for i = 1, 2. There exist two positive constants, ψ and C2, such

that max{λmax(B̃BB1), λmax(B̃BB2)} ≤ C2p
ψ.

Note that λmax(BBB) = λmax(ΣΣΣi,∞). This assumption describes the maximum eigenvalue

of the absolute matrix of BBB, which is allowed to diverge to infinity at a polynomial rate

of p. The following theorem shows the ratio consistency of the proposed SBE variance

estimator.

Theorem 2. Assume the exclusion bandwidth b̃ and the smoothing bandwidth s0 satisfy

b̃ = o(n1/5) and b̃ ≥ c2(log n + log p + s0), for a positive constant c2. Under Assumption 1

with q > 8, Assumptions 2–7, and the null hypothesis of (2.1),

Vn(b̃, s0)

Var{T (b)}
→ 1 in probability as n, p→∞.

17

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0147



From Theorems 1 and 2, the proposed BEU test rejects the null hypothesis in (2.1) if

T (b) > zαV
1/2
n (b̃, s0), (4.11)

where zα is the upper α quantile of N(0, 1). Note that the requirements on the moment q

and the exclusion bandwidth b̃ in Theorem 2 are more restrictive than those in Theorem

1. This is because establishing the consistency of the variance estimator needs to control

higher order moments than those needed to derive the properties of the BEU-statistic T (b).

As discussed in the second paragraph after (3.2), the statistic

T1(b) = n1(b)−1
∑

|t1−t2|≥b

XXXT

1,t1
XXX1,t2

can be used to test the one-sample hypotheses H0 : µµµ1 = 000 vs. Ha : µµµ1 6= 000. Following the

same derivation as Proposition 1, it can be shown that Var{T1(b)} = 2n−2
1 tr(ΣΣΣ2

1,∞), which

can be estimated by 2n−2
1 t̂r(ΣΣΣ2

1,∞; b̃, s0) from (4.9). Therefore, similarly to the two-sample

test in (4.11), the one-sample BEU test rejects the null hypothesis µµµ1 = 000 if

T1(b) > zαn
−1
1 {2t̂r(ΣΣΣ2

1,∞; b̃, s0)}1/2. (4.12)

For this one-sample hypothesis, we compare the power of the BEU test with that of the

self-normalized test of Wang and Shao (2020) in Sections 6 and 7.

5. Computation and Tuning Parameter Selection

In this section, we discuss computation and implementation aspects of the proposed BEU

test, and propose a data-driven procedure to select the tuning parameters b, b̃, and s0.

When calculating the test statistic, matrix operations should be used wherever possible to

improve the computation efficiency. Recall that XXX i = (XXX i,1, . . . ,XXX i,ni
)T is the ni × p data

matrix for the ith sample. LetWWW i(b) = (wi,t1t2)ni×ni
be an indicator matrix, with wi,t1t2 = 1

if |t1 − t2| ≥ b, and zero otherwise. Let ◦ denote the Hadamard product of two matrices

with the same dimensions. Then, the summation
∑
|t1−t2|≥bXXX

T
i,t1
XXX i,t2 in the BEU-statistic
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T (b) in (3.2) can be computed by summing over all elements in (XXX iXXX
T
i ) ◦WWW i(b).

To estimate tr(ΣΣΣi,k1ΣΣΣi,k2), the estimators in (4.6) can be computed on the centered data

{XXX i,t − X̄XX i}, so that Gi,2(k; b̃) and Gi,3(b̃) become smaller order terms that are negligible

in the construction of the variance estimator. If the computing resource is a constraint,

we can only compute Gi,1(k1, k2; b̃) on the centered data in the estimator t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃)

in (4.7). Note that Gi,2(k; b̃) and Gi,3(b̃) require computation complexity of order n3 and

n4, respectively. Centering the data can greatly reduce the computational burden. Similar

arguments apply when estimating tr(ΣΣΣ1,k1ΣΣΣ2,k2) in (4.8).

Note that Gi,1(k1, k2; b̃) in (4.6) can be computed using matrix operations as well.

Let AAA[c1 : c2, ] denote the sub-matrix of AAA with the c1th row to the c2th row. For any

integer −ni < k < ni, let ZZZi(k) be a row-shifted matrix of XXX i in the following way. If

k = 0, there is no shift and ZZZi(0) = XXX i; if k < 0, the first |k| rows of ZZZi(k) are zero and

ZZZi(k)[|k| + 1 : ni, ] = XXX i[1 : ni − |k|, ]; if k > 0, the last k rows of ZZZi(k) are zero and

ZZZi(k)[1 : ni − k, ] = XXX i[k + 1 : ni, ]. Then, the summation of XXXT
i,t2
XXX i,t1XXX

T
i,t1−k1XXX i,t2+k2 over

(t1, t2) ∈ Ni,1(k1, k2; b̃) in (4.6) can be computed by simply summing over all the elements

in (XXX iXXX
T
i ) ◦ (ZZZi(−k1)ZZZi(k2)T) ◦WWW i(b̃+ |k1|+ |k2|). A similar algorithm can be applied for

the statistic Ga(k1, k2) in (4.8).

The tuning parameters b, b̃, and s0 required in the proposed BEU test are chose adap-

tively based on the time course data. In particular, the exclusion bandwidths b and b̃

used in the BEU-statistic T (b) and its variance estimator may be determined by using

the sample autocorrelation function (ACF). Specifically, for each dimension j, we calcu-

late the sample ACF of the univariate time series {Xi,t,j}ni
t=1, denoted as ACi,j(k). Let

ACi(k) = max1≤j≤p |ACi,j(k)| be the maximal absolute sample ACF at time lag k, and let
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Z+ be the set of all positive integers. Let

bi = min{k ∈ Z+ : ACi(k) < mACi}

be the first time lag such that ACi(k) is smaller than a data-driven threshold mACi. Here,

mACi = Median{ACi(k) : n/10 ≤ k ≤ n/4} is the median of the maximal absolute sample

ACF with large time lags, such that the time dependence between observations is fairly

weak. We choose b = max{b1, b2} and set b̃ = b. The optimal bandwidth using the QS

kernel to estimate the long-run covariances is derived in Andrews (1991). We choose the

estimated optimal bandwidth based on the data-driven procedure introduced in (6.2) and

(6.4) of Andrews (1991) as the smoothing bandwidth s0 in Vn(b̃, s0). The results of our

simulation in Section 6 show that the proposed BEU test with adaptively chosen exclusion

and smoothing bandwiths works well, with accurate size and good power.

6. Power Analysis

Theorem 1 allows us to discuss the power properties of the proposed test. We consider two

forms of alternative hypotheses for µµµ1 6= µµµ2. The first one is

(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2) = o
{
n−1tr(MMM2

∞)
}

as n, p→∞, (6.1)

which describes the so-called local alternative. The second is

n−1tr(MMM2
∞) = o

{
(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2)

}
as n, p→∞, (6.2)

which may be viewed as the fixed alternative, because it allows stronger signals. Note

that (µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2) is a weighted distance between µµµ1 and µµµ2, and measures the

strength of signals in terms of identifying µµµ1 and µµµ2. The local alternative (6.1) represents

a weak signal case, so that this weighted distance is at a smaller order of n−1tr(MMM2
∞). The

fixed alternative (6.2) implies that the weighted distance between µµµ1 and µµµ2 is at a larger

order than n−1tr(MMM2
∞), which is a reverse of the local alternative condition in (6.1).
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Let β(µµµ1,µµµ2) = P{T (b) > zαV
1/2
n (b̃, s0)|µµµ1 6= µµµ2} be the power of the proposed test.

From Theorem 1, we have Var
{
T (b)

}
= 2n−2tr(MMM2

∞){1 + o(1)} under the local alternative

(6.1), and Var{T (b)} = 4n−1(µµµ1 −µµµ2)TMMM∞(µµµ1 −µµµ2){1 + o(1)} under the fixed alternative

(6.2). Let Φ(·) be the standard normal distribution function and λmax be the largest

eigenvalue of MMM∞. The following two theorems describe the power of the test under the

two forms of alternatives.

Theorem 3. Under the conditions of Theorems 1 and 2 and the local alternative (6.1), the

power function of the proposed test is

β(µµµ1,µµµ2) = Φ

{
− zα +

‖µµµ1 − µµµ2‖2
2√

2n−2tr(MMM2
∞)

}
{1 + o(1)}, (6.3)

and β(µµµ1,µµµ2)→ Φ(−zα + d2/
√

2) if n‖µµµ1 − µµµ2‖2
2tr−1/2(MMM2

∞)→ d2 ∈ [0,+∞).

Theorem 4. Under the conditions of Theorems 1 and 2 and the fixed alternative (6.2), the

power function of the proposed test is

β(µµµ1,µµµ2) = Φ

{
‖µµµ1 − µµµ2‖2

2√
4n−1(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2)

}
{1 + o(1)}. (6.4)

In Theorems 3 and 4, note that n‖µµµ1 − µµµ2‖2
2tr−1/2(MMM2

∞) and
√
n‖µµµ1 − µµµ2‖2

2{(µµµ1 −

µµµ2)TMMM∞(µµµ1−µµµ2)}−1/2 are the signal-to-noise ratios of the proposed test for the two-sample

hypotheses (2.1) under the local and fixed alternatives, respectively, for weak and strong

signals. From Theorems 3 and 4, the power of the proposed test is bounded from below by

β(µµµ1,µµµ2) ≥ Φ

(
− zα +

n‖µµµ1 − µµµ2‖2
2√

2pλmax

)
and β(µµµ1,µµµ2) ≥ Φ

(√
n‖µµµ1 − µµµ2‖2

2
√
λmax

)
under the local and fixed alternatives, respectively. Let p̃ be the number of nonzero µ1,j −

µ2,j, for j = 1, . . . , p. If |µ1,j − µ2,j| = δ for all nonzero µ1,j − µ2,j, then ‖µµµ1 −µµµ2‖2 =
√
p̃δ.

In this case, the lower bounds of the power function are

β(µµµ1,µµµ2) ≥ Φ

(
− zα +

np̃δ2

√
2pλmax

)
and β(µµµ1,µµµ2) ≥ Φ

(
δ

2

√
np̃

λmax

)
under the local and fixed alternatives, respectively. If the nonzero components of µµµ1 − µµµ2
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are dense, so that p̃ is of the same order as p and λmax is bounded, the proposed test can

detect the difference δ as weak at the order n−1/2p−1/4 under the local alternative.

Let βprop(d) = Φ(−zα + d2/
√

2). Theorem 3 shows that βprop(d) is the limiting power

of the proposed test under the local alternative of the two-sample hypotheses specified in

(6.1), where d2 = n‖µµµ1 − µµµ2‖2
2tr−1/2(MMM2

∞).

Figure 1: Theoretical power curves of the proposed test βprop(d1) = Φ(−zα + d2
1/
√

2) (red

curve) and the self-normalized test βSN(d1) of Wang and Shao (2020) (blue curve, labeled

as SN) for the one-sample hypothesis H0 : µµµ1 = 0 vs. µµµ1 6= 0 under the local alternative.

When testing the one-sample hypotheses H0 : µµµ1 = 0, the proposed test based on

(4.12) has the same power function as βprop(d1) under the local alternative, where d2
1 =

n1‖µµµ1‖2
2tr−1/2(ΣΣΣ2

1,∞) is the signal-to-noise ratio of testing µµµ1 = 000. Theorem 3.11 in Wang

and Shao (2020) shows that

βSN(d1) = P
[

{B(1) + d2
1/
√

2}2∫ 1

0
{B(u2)− u2B(1)}2du

≥ z1,α

]
is the asymptotic power function of the SN test under the local alternative, where B(u)

denotes the standard Brownian motion for u ∈ [0, 1], and z1,α is the upper α-quantile of
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B(1)2[
∫ 1

0
{B(u2) − u2B(1)}2du]−1. As shown in Figure 1, given the same signal-to-noise

ratio d1, the power of the one-sample BEU test given in (4.12) is higher than that of the

SN test, such that βprop(d1) ≥ βSN(d1). Specifically, Figure 1 plots the two power functions

against the signal-to-noise ratio under α = 0.01 and 0.05, which shows the superiority of

the proposed test.

7. Numerical Studies

This section reports results from simulation experiments designed to evaluate the empirical

size and power of the proposed test for the two-sample hypotheses (2.1). For comparison

purposes, the test of Chen and Qin (2010) (CQ) for independent data and the test of

Ayyala et al. (2017) (APR) for m-dependent data considered in the two-sample case. We

also compare our proposed test with the SN test of Wang and Shao (2020) under the

one-sample scenario.

First, we consider the two-sample case, where we use the moving average (MA) model

and the auto-regressive (AR) model to generate temporally dependent data:

• MA model: XXX1,t = εεε1,t + ρtimeεεε1,t−1 and XXX2,t = µµµ2 + εεε2,t + ρtimeεεε2,t−1;

• AR model: XXX1,t = ρtimeXXX1,t−1 + (1 − ρ2
time)

1/2εεε1,t and XXX2,t = µµµ2 + ρtimeXXX2,t−1 + (1 −

ρ2
time)

1/2εεε2,t;

where {εεεi,t}ni
t=1 are i.i.d. p-dimensional random vectors from N(0,ΣΣΣε), and ρtime is the tem-

poral dependence parameter that characterizes the strength of the temporal dependence.

We set ρtime as 0.1, 0.3, and 0.5 in the simulation. The spatial dependence is given by

ΣΣΣε = (σε,j1j2), where σε,j1j2 = 0.7|j1−j2|. By default, µµµ1 = 0. Under the alternative hypothe-

ses, we consider different combinations of signal strength and sparsity for µµµ2, where the

first δ0 proportion of the components in µµµ2 are set as r0, and the rest are set to zero. We
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Table 1: Empirical sizes of the proposed test, the APR test (Ayyala et al., 2017), and

the CQ test (Chen and Qin, 2010) for the two-sample hypotheses under the temporal

dependence parameter ρtime = 0.1, 0.3, 0.5, n0 = 100, 150, p = 100, 400, and the MA and

AR models.

Method (n0, p)
ρtime under MA ρtime under AR

0.1 0.3 0.5 0.1 0.3 0.5

Proposed

(100,100) 0.069 0.045 0.065 0.061 0.074 0.076

(150,100) 0.064 0.062 0.073 0.081 0.078 0.077

(100,400) 0.079 0.056 0.070 0.075 0.053 0.059

(150,400) 0.067 0.055 0.071 0.073 0.075 0.050

APR

(100,100) 0.057 0.051 0.066 0.068 0.077 0.266

(150,100) 0.068 0.055 0.069 0.078 0.102 0.221

(100,400) 0.053 0.046 0.050 0.055 0.066 0.453

(150,400) 0.047 0.043 0.061 0.062 0.113 0.449

CQ

(100,100) 0.191 0.603 0.802 0.245 0.844 1.000

(150,100) 0.204 0.662 0.847 0.285 0.858 0.999

(100,400) 0.473 0.978 1.000 0.513 1.000 1.000

(150,400) 0.486 0.971 0.997 0.546 1.000 1.000

choose δ0 = 0.2 and 0.3, and r0 takes values from a sequence ranging from 0.05 to 0.3, with

increments of 0.05. Here, δ0 and r0 denote the signal sparsity and strength, respectively.

We set n1 = n2 = n0 = 100 and 150, p = 100 and 400, and the significance level to 0.05.

All simulations are repeated 1000 times under each setting. The MA model satisfies the

m-dependence assumption required by the APR method, whereas the AR model is not

m-dependent. The time dependence lag parameter m in the APR test is chosen as two, as

suggested by Ayyala et al. (2017), based on their simulation studies.

Table 1 reports the empirical sizes of the proposed, APR, and CQ tests under MA

and AR models with different time dependence parameters ρtime. The CQ test is designed

for independent data. We include it to gain empirical information about the consequences

of ignoring temporal dependence in two-sample tests. Table 1 shows that the proposed

test controls the size for testing the hypotheses (2.1) around the nominal level for all cases
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considered. It is not unexpected that the CQ test, designed for independent samples,

cannot control the size with severe size distortion as ρtime increases. Thus, the consequence

of ignoring the time dependence is severe. The APR test controls the size under the MA

model, because the MA model describes an m-dependent series with m = 1, which meets

the assumptions of the APR test (Ayyala et al., 2017). However, for the AR model, the

APR test does not control the size around 0.05, especially when the temporal dependence

parameter ρtime increases to 0.5, with the size reaching over 0.4 for p = 400.

Figures 2 and 3 report the power of the proposed and APR tests, respectively. We

empirically adjusted the critical values for the proposed and APR tests based on their

simulated distributions under the null hypothesis so that they have the same empirical

size of 0.05, for fairer power evaluation. Figures 2 and 3 suggest that the proposed and

APR methods have comparable power under all combinations of signal proportion and

strength. This is because both tests are constructed from sum-of-square statistics, which

have a similar power profile in terms of signal detection. Note that the power of the APR

method is slightly higher than that of the proposed test under a couple of settings. This

may be because it uses more observations than the BEU-statistic T (b) does, with a larger

b, as selected by the proposed algorithm. Similar results are observed in the simulation

studies of Ayyala et al. (2017), where the power of the APR test decreases with an increase

of its time lag tuning parameter. The main problem with the APR test is that it cannot

control the size for general temporal dependence, which limits its general applicability.

In contrast, the proposed test can be used with proper control on the size, and exhibits

reasonable power.

To investigate the performance of the proposed test for other distributions, we consider
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Figure 2: Empirical powers of the proposed test (red) and the APR test (blue) with

respect to the signal strength r0 (horizontal axis) for the two-sample hypotheses under

the AR model, the sample size n0 = 100, 150, the dimension p = 100, 400, three levels of

temporal dependence ρtime, and two values of signal proportions.
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Figure 3: Empirical powers of the proposed test (red) and the APR test (blue) with

respect to the signal strength r0 (horizontal axis) for the two-sample hypotheses under

the MA model, the sample size n0 = 100, 150, the dimension p = 100, 400, three levels of

temporal dependence ρtime, and two values of signal proportions.
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the AR model

XXX1,t = ρtimeXXX1,t−1 + (1− ρ2
time)

1/2εεε1,t and XXX2,t = µµµ2 + ρtimeXXX2,t−1 + (1− ρ2
time)

1/2εεε2,t,

where the following two distributions are assigned to the i.i.d. errors {εεεi,t}ni
t=1:

• Multivariate t-distribution: εεεi,t = eeei,t/
√
χ2
i,t(6)/6, where {eeei,t}ni

t=1 are i.i.d. p-dimensional

random vectors from N(000,ΣΣΣe), with ΣΣΣe = (0.5|j1−j2|), {χ2
i,t(6)}ni

t=1 are i.i.d. random

variables from a chi-squared distribution with six degrees of freedom, and {eeei,t}ni
t=1

and {χ2
i,t(6)}ni

t=1 are mutually independent;

• Gamma distribution: εi,t,j = ei,t,j + γiei,t,j−1, where the i.i.d. {ei,t,j}pj=0 follow a

centralized Gamma(1, 1) distribution and γ1 = γ2 = 0.5.

Here, we choose ρtime = 0.1, 0.3, 0.5 and (n0, p) = (100, 400). The settings of µµµ1 and µµµ2 are

the same as those in the AR model with the normally distributed error.

Table 2 and Figure 4 show the empirical size and power of the proposed test, the

APR test, and the CQ test, with the error terms following a multivariate t-distribution

and a gamma distribution, respectively. Compared with the case of normally distributed

errors, here, the sizes of the APR test are nearly zero in all cases, whereas our proposed

test exhibits reasonable sizes around the nominal level of 5%, in contrast to the APR test

and the CQ test. The critical values used to compute powers are adjusted according to

the distribution of the test statistic under the null hypothesis. Figure 4 shows that the

power of the APR test is quite sensitive to the error distribution. When the errors follow

a multivariate t-distribution or a gamma distribution, the power of the APR test remains

small and flat as the signal strength increases and the sparsity level decreases. Under

all settings of temporal dependence, the proposed test exhibits better performance, with

higher power than that of the APR test, a result that becomes more pronounced when the
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sparsity level decreases. Here, the superiority of the proposed test is more evident than in

the case with normally distributed errors.

Table 2: Empirical sizes of the proposed test, the APR test (Ayyala et al., 2017), and

the CQ test (Chen and Qin, 2010) for the two-sample hypotheses under the temporal

dependence parameter ρtime = 0.1, 0.3, 0.5, (n0, p) = (100, 400), and the error term following

a multivariate t-distribution and a gamma distribution.

Method
ρtime under t distribution ρtime under Gamma distribution

0.1 0.3 0.5 0.1 0.3 0.5

Proposed 0.052 0.046 0.030 0.072 0.054 0.036

APR 0.000 0.000 0.000 0.000 0.000 0.000

CQ 0.732 1.000 1.000 0.804 1.000 1.000

Next, we compare the proposed test with the SN test of Wang and Shao (2020) in the

one-sample testing problem. We use one time series generated from the MA model and the

AR model in the two-sample setting as the observed data. Table 3 reports the empirical

sizes of the proposed and the SN tests under the MA and AR models. The results show

that both tests control their sizes under the model settings for the experiment sample sizes

and dimensions. Figures 5 and 6 report the empirical power of each of the two tests. To

make the power comparison fair, we perform the same adjustment on the critical values of

the tests as in the two-sample simulation to make the two tests have the same empirical

size of 0.05.

The results show that our proposed test has considerably higher power than that of the

SN test in all cases. Although the SN test is able to control its size around the nominal level,

it suffers some power loss by avoiding estimating the long-run covariance matrix of the test

statistic. This is consistent with the results of the theoretical power comparison of the two

tests in Section 6. Our testing procedure is based on a novel kernel-smoothing estimator

for the variance of the L2-type BEU-statistic under high-dimensional time series data.

Compared with the SN approach, the advantage in terms of power is a main contribution
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Figure 4: Empirical powers of the proposed test (red) and the APR test (blue) with

respect to the signal strength r0 (horizontal axis) for the two-sample hypotheses under the

AR model with multivariate-t-distributed errors and gamma-distributed errors, sample size

n0 = 100, dimension p = 400, three levels of temporal dependence ρtime, and two values of

signal proportions.

of our proposed test.

8. Real-Data Analysis

In this section, we apply the proposed test to detect changes in stock returns and volatility

before and after the financial crisis of 2008. We analyze the daily returns of S&P 500

stocks from January 2, 2007 to December 31, 2010, and use the capital asset pricing model

to compare the performance of individual stocks against the market index. As a result

of acquisitions and companies growing or shrinking in value, the list of companies on the

S&P 500 changes over time. After excluding new and drop-out stocks in the S&P 500 from
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Figure 5: Empirical powers of the proposed test (red) and the self-normalized test (blue,

denoted by SN) with respect to the signal strength r0 (horizontal axis) for the one-sample

hypotheses under the AR model, sample size n0 = 100, 150, dimension p = 100, 400, three

levels of temporal dependence ρtime, and two values of signal proportions.
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Figure 6: Empirical powers of the proposed test (red) and the self-normalized test (blue,

denoted by SN) with respect to the signal strength r0 (horizontal axis) for the one-sample

hypotheses under the MA model, sample size n0 = 100, 150, dimension p = 100, 400, three

levels of temporal dependence ρtime, and two values of signal proportions.
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Table 3: Empirical sizes of the proposed test and the SN test (Wang and Shao, 2020) for

the one-sample hypotheses under the temporal dependence parameter ρtime = 0.1, 0.3, 0.5,

n0 = 100, 150, p = 100, 400, and the MA and AR models.

Method (n0, p)
ρtime under MA ρtime under AR

0.1 0.3 0.5 0.1 0.3 0.5

Proposed

(100,100) 0.065 0.077 0.068 0.062 0.073 0.076

(150,100) 0.066 0.062 0.071 0.082 0.079 0.077

(100,400) 0.066 0.063 0.036 0.075 0.054 0.046

(150,400) 0.081 0.054 0.044 0.071 0.077 0.050

SN

(100,100) 0.045 0.038 0.047 0.052 0.058 0.051

(150,100) 0.052 0.055 0.066 0.045 0.052 0.065

(100,400) 0.061 0.057 0.058 0.072 0.046 0.088

(150,400) 0.044 0.051 0.050 0.072 0.045 0.058

January 2, 2007 to December 31, 2010, our sample includes data on 429 stocks. These stocks

are divided into 11 sectors: Consumer Discretionary (64 stocks), Consumer Staples (31),

Energy (17), Financials (60), Health Care (55), Industrials (58), Information Technology

(66), Materials (22), Real Estate (25), Telecommunications Services (4), and Utilities (27).

We apply the proposed high-dimensional test to all stocks in the sample, and to 10 sectors,

excluding the Telecommunications Services sector, owing to its rather small dimension.

To evaluate the short-, medium- and long-term effects of the financial crisis on stock

returns and volatility, we consider three designs for the time periods: (i) Design 1: March

to August 2008 as period 1, and November 2008 to April 2009 as period 2; (ii) Design 2:

January to August 2008 as period 1, and the complete 2009 as period 2; and (iii) Design 3:

the complete 2007 and 2010 as periods 1 and 2, respectively. In Designs 1 and 2, September

and October 2008 are excluded to avoid the extremely high volatility in the midst of the

financial crisis. Design 3 offers a baseline setting, with the study periods far away from

the midst of the crisis. The sample sizes of the two periods under the three designs are

n1 = 126, 164, 242 and n2 = 121, 244, 242, respectively.
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For each of Designs 1–3, let YYY i,t = (Yi,t,1, . . . , Yi,t,p)
T be the closing prices of the stocks

on the tth day of the ith period, for i = 1, 2, t = 1, . . . , ni, and the dimension p equal

to 429. Let X̃i,t,j = log Yi,t,j − log Yi,t−1,j be the return of the jth stock, and Xi,t,j be the

excess return of X̃i,t,j, which is equal to X̃i,t,j minus the risk-free cash interest rate at the

time. Similarly, let {Zi,t}ni
t=1 be the excess return of the S&P 500 index in the ith period.

We consider the single-index model (Sharpe, 1963)

Xi,t,j = αi,j + βi,jZi,t + εi,t,j and Var(εi,t,j) = σi,j (8.1)

to adjust the portfolio return by the S&P 500 market index, for j = 1, . . . , p. Under this

model, the stock excess return is influenced by the market index through the beta coefficient

of this stock, the alpha coefficient αi,j indicates how the stock performs after accounting

for the market risk, and the error variance σi,j refers to the stock-specific risk. Let S0 and

Sk for k = 1, . . . , 10 denote the index set of all stocks and the stocks in the kth sector,

respectively.

Let αααi,(k) = (αi,j : j ∈ Sk) and σσσi,(k) = (σi,j : j ∈ Sk) be vectors of the alpha coefficients

and error variances, respectively, of the kth sector. During the financial crisis in 2007–2008,

many financial markets suffered their worst stock crash in history, reflected by the sudden

dramatic decline in stock prices and extreme increase in volatility across almost all sections

of the stock markets (Bates, 2012; Bardgett et al., 2019). We are interested in testing the

change of the stock-adjusted return and specific volatility before and after the start of the

financial crisis for each sector. That is, we wish to test the hypotheses

H0,α,k : ααα1,(k) = ααα2,(k) vs. Ha,α,k : ααα1,(k) 6= ααα2,(k) and (8.2)

H0,σ,k : σσσ1,(k) = σσσ2,(k) vs. Ha,σ,k : σσσ1,(k) 6= σσσ2,(k), (8.3)

for k = 0, . . . , 10.

Using the estimated beta coefficient β̂i,j from fitting (8.1), let Ri,t,j = Xi,t,j − β̂i,jZi,t
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be the adjusted return of the jth stock, and R̃i,t,j = Ri,t,j − R̄i,j be the centered adjusted

return, where R̄i,j =
∑ni

t=1 Ri,t,j/ni. We apply the proposed method on {Ri,t,j} and {R̃2
i,t,j}

to test hypotheses (8.2) and (8.3), respectively. Here, we treat the estimation of the beta

coefficient βi,j as sufficiently accurate that the estimation error can be ignored when testing

αi,j and σi,j. The proposed work may be extended to testing for regression coefficients under

high-dimensional time series data, which is left to future research.
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Figure 7: Time series plots of the average adjusted returns {R̄sec
i,t,k}

ni
t=1 for three selected

sectors in Design 1 (top panel) over two periods, box plots of the estimated alpha coefficients

α̂i,j (bottom left panel), and a density contour plot of the estimated stock specific variance

σ̂i,j (bottom right panel) with the 45◦ line. The two lower panels are based on all selected

429 stocks.

Figure 7 displays a time series plot of the average adjusted return R̄sec
i,t,k = |Sk|−1

∑
j∈Sk Ri,t,j
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for three selected sectors, a box plot of the estimated alpha coefficients α̂i,j, and a contour

plot of the estimated variance σ̂i,j for all 429 selected stocks. Figure 7 shows that the

overall means of the adjusted returns are centered around zero, both before and after the

start of the economic crisis. The top panel also indicates an obvious increase in volatility

in the first six months after the crisis, especially in the real estate sector. The box plot and

the contour plot also show that the economic crisis led to an extremely volatile market in

the short term, as reflected by Design 1. However, the volatility then gradually decreased

to slightly lower than the pre-crisis level, as shown in Designs 2 and 3.

Table 4: Average differences of the estimates α̂i,j and σ̂i,j between the two periods in

Designs 1–3 within each sector, and the significance level of testing the hypotheses (8.2) for

equality of the alpha coefficients and hypotheses (8.3) for equality of stock-specific volatility

for the 10 sectors. The number of ∗ (one to three) represents the p-value of the proposed

test within [0.025, 0.05), [0.01, 0.025) and [0, 0.01), respectively.

Sector
Diff. of average alpha coefficient Diff. of average volatility

Design 1 Design 2 Design 3 Design 1 Design 2 Design 3

Consumer Discretionary 16.434 2.319 15.753*** 9.851*** 1.342*** -2.742**

Consumer Staples -0.188 1.621 0.81 -2.131 -3.069 -0.626

Energy 1.346 -3.816 -6.152 2.071* -2.346*** -4.056

Financials -3.755 -9.998 1.977** 22.504*** 13.591* 9.695

Health Care -3.589 2.77 -2.744 2.546 -0.43 -1.709

Industrials -2.652 -7.334 3.432 3.173*** -1.235*** -2.285

Information Technology 9.31 8.366 1.221 3.949*** -0.858 -2.302***

Materials 12.093 -0.736 -2.759*** 5.292*** 0.017*** -1.339

Real Estate -9.889 -18.526 10.887 17.137*** 4.593*** -0.676

Utilities -6.282 3.39 -2.109 2.941*** -0.683 -2.366

Overall 2.324 -1.402 3.204** 7.381*** 1.67*** -0.424

Table 4 reports the average differences of the estimates α̂i,j and σ̂i,j between the two

periods for each sector, including the level of significance of the test. It shows that in

Designs 1 and 2, the changes of the expected adjusted returns (alpha coefficient) over the

two periods were all not significant. This is expected, because the expected value of the

alpha coefficient should be zero in an efficient market (Jensen, 1969). However, the financial
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crisis greatly affected stock volatility, as shown in Design 1, in which eight of ten sectors

exhibited a significant increase in volatility, and in Design 2, in which six sectors showed a

significant increase in volatility. There were also significant increases in volatility after the

financial crisis for the overall stocks under Designs 1 and 2. In contrast, under the baseline

Design 3, only two sectors showed significant differences between the two periods, with a

decrease rather than an increase in volatility.

Supplementary Material

The online Supplementary Material contains proofs of all theorems and lemmas, and addi-

tional results not reported in the main paper to conserve space.

Acknowledgments

The authors thank the anonymous referees, associate editor, and editor for their helpful

and constructive comments and suggestions. Chen, Qiu and Zhang were partially sup-

ported by National Natural Science Foundation of China Grant 92358303. Chen was par-

tially supported by National Natural Science Foundation of China Grants 12292980 and

12292983. Zhang was partially supported by National Key R&D Program of China Grants

2021YFA1000100 and 2021YFA1000101, National Natural Science Foundation of China

Grants 71931004, 71931005 and 72201101, and the Science and Technology Commission of

Shanghai Municipality Grant 21JS1400501.

References

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econo-

metrica 59, 817–858.

37

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0147



REFERENCES

Arbia, G. (2016). Spatial econometrics: A broad view. Foundations and Trends in Econometrics 8, 145-265.

Ayyala, D. N., Park, J. and Roy, A. (2017). Mean vector testing for high-dimensional dependent observations.

Journal of Multivariate Analysis 153, 136-155.

Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: By an example of a two sample problem. Statistica

Sinica 6, 311-32

Bardgett, C., Gourier, E. and Leippold, M. (2019). Inferring volatility dynamics and risk premia from the S&P 500

and VIX markets. Journal of Financial Economics 131, 593-618.

Bates, D. S. (2012). US stock market crash risk, 1926–2010. Journal of Financial Economics 105, 229-259.

Bradley, R. (2005). Basic properties of strong mixing conditions: A survey and some open questions. Probability

Surveys 2, 107-144.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer, New York.

Cai, T., Liu, W. and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 76, 349-372.

Chang, J., Zheng, C., Zhou, W. -X. and Zhou, W. (2017). Simulation-based hypothesis testing of high dimensional

means under covariance heterogeneity. Biometrics 73, 1300-1310.

Chang, J., Qiu, Y., Yao, Q. and Zou, T. (2018). Statistical inference for large precision matrices with dependent

data and their applications. Journal of Econometrics 206, 57–82.

Chen, L., Paul, D., Prentice, R. and Wang, P. (2011). A regularized Hotelling’s T2 test for pathway analysis in

proteomic studies. Journal of the American Statistical Association 106, 1345-1360.

Chen, S. X., Li, J. and Zhong, P.-S. (2019). Two-sample and ANOVA tests for high dimensional means. The Annals

of Statistics 47, 1443-1474.

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set

testing. The Annals of Statistics 38, 808-835.

Chen, S. X., Qiu, Y. and Zhang, S. (2023). Sharp optimality for high-dimensional covariance testing under sparse

38

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0147



REFERENCES

signals. The Annals of Statistics 51, 1921-1945.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for

maxima of sums of high-dimensional random vectors. The Annals of Statistics 41, 2786–2819.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2019). Inference on causal and structural parameters using many

moment inequalities. The Review of Economic Studies 86, 1867–1900.

Cui, X., Li, R., Yang, G. and Zhou, W. (2020). Empirical likelihood test for a large-dimensional mean vector.

Biometrika 107, 591-607.

Davydov, Y. A. (1968). Convergence of distributions generated by stationary stochastic processes. Theory of Prob-

ability & Its Applications 13, 691-696.

Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples and applications to statistics. Probability

Theory and Related Fields 132, 203–236.

Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. The Annals of Statistics

32, 962 - 994.

Donoho, D. and Jin, J. (2015). Higher criticism for large-scale inference, especially for rare and weak effects.

Statistical Science 30, 1–25.

Doukhan, P. (1994). Mixing: Properties and Examples. Springer, New York.

Fan, J., Ke, Y., and Wang, K. (2020). Factor-adjusted regularized model selection. Journal of Econometrics 216,

71–85.

Fan, J., Liao, Y. and Yao, J. (2015). Power enhancement in high dimensional cross-sectional tests. Econometrica

83, 1497–1541.

Fan, J., Lv, J. and Qi, L. (2011). Sparse high-dimensional models in economics. Annual Review of Economics 3,

291-317.

Feng, L., Zou, C., Wang, Z. and Zhu, L. (2015). Two-sample Behrens-Fisher problem for high-dimensional data.

Statistica Sinica 25, 1297-1312.

39

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0147



REFERENCES

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.

Hall, P. and Jin, J. (2010). Innovated higher criticism for detecting sparse signals in correlated noise. The Annals

of Statistics 38, 1686-1732.

Han, F. and Wu, W. B. (2023). Probability Inequalities for High Dimensional Time Series Under a Triangular

Array Framework. Springer, London.

Huang, Y., Li, C., Li, R. and Yang, S. (2021). An overview of tests on high-dimensional means. Journal of Multi-

variate Analysis 188, 104813.

Jensen, M. C. (1969). Risk, the pricing of capital assets, and the evaluation of investment portfolios. The Journal

of Business 42: 167-247.

Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer, Berlin.

Liu, X. and Chen, R. (2020). Threshold factor models for high-dimensional time series. Journal of Econometrics

216, 53–70.

Nordman, D. J. and Lahiri, S. N. (2005). Validity of sampling window method for linear long-range dependent

processes. Econometric Theory 21, 1087–1111.

Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press, New York.

Qiu, Y., Chen, S. X. and Nettleton, D. (2018). Detecting rare and faint signals via thresholding maximum likelihood

estimators. The Annals of Statistics 46, 895-923.

Qiu, Y. and Zhou, X. H. (2022). Inference on multi-level partial correlations based on multi-subject time series

data. Journal of the American Statistical Association 117, 2268–2282.

Sharpe, W. F. (1963). A simplified model for portfolio analysis. Management Science 9, 277-293.

Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components from a large number of predictors.

Journal of the American Statistical Association 97, 1167-1179.

Wang, L., Peng, B. and Li, R. (2015). A high-dimensional nonparametric multivariate test for mean vector. Journal

of the American Statistical Association 110, 1658–1669.

40

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0147



REFERENCES

Wang, R. and Shao, X. (2020). Hypothesis testing for high-dimensional time series via self-normalization. The

Annals of Statistics 48, 2728-2758.

Wong, K. C., Li, Z. and Tewari, A. (2020). Lasso guarantees for β-mixing heavy-tailed time series. The Annals of

Statistics 48, 1124–1142.

Xu, Z., Chen, S. X. and Wu, X. (2020). Meteorological change and impacts on air pollution: Results from North

China. Journal of Geophysical Research: Atmospheres 125, e2020JD032423.

Zhong, P. S., Chen, S. X. and Xu, M. Y. (2013). Tests alternative to higher criticism for high dimensional means

under sparsity and column-wise dependence. The Annals of Statistics 41, 2820-2851.

Shuyi Zhang

KLATASDS-MoE, School of Statistics, Academy of Statistics and Interdisciplinary Sciences, East China Normal

University, Shanghai 200062, China

E-mail: syzhang@fem.ecnu.edu.cn

Song Xi Chen

Guanghua School of Management and Center for Statistical Science, Peking University, Beijing 100871, China

E-mail: csx@gsm.pku.edu.cn

Yumou Qiu

School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China

E-mail: qiuyumou@math.pku.edu.cn

41

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0147


	Introduction
	Preliminaries
	BEU-statistic
	Variance Estimation
	Computation and Tuning Parameter Selection
	Power Analysis
	Numerical Studies
	Real-Data Analysis



