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Abstract:

Two recent streams of two-sample tests for high-dimensional data are the sum-of-

squares-based and supremum-based tests. The former is powerful against dense

differences in two population means, and the latter is powerful against sparse

differences. However, the level of sparsity and signal strength are often unknown,

in practice, making it unclear which type of test to use. Here, we propose an

adaptive weighted component test that provides good power against a variety of

alternative hypotheses with unknown sparsity levels and varying signal strengths.

The basic idea is to first allocate different weights to components with varying

magnitudes in a sum-of-squares-based test, and then to combine multiple weighted

component tests to make the underlying test adaptive to different sparsity levels

of the mean differences. We examine the asymptotic properties of the proposed

test, and use numerical comparisons to demonstrate the superior performance of

the proposed test across a spectrum of situations.

Key words and phrases: High-dimensional test; Huber’s weight function; Testing

equality of mean vectors; Weighted components.
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1 . Introduction

In real applications, it is often desirable to test whether the mean vectors

of two populations are the same. This can be formulated as a hypothesis

testing problem as follows:

H0 : µ1 = µ2 versus HA : µ1 ̸= µ2,

where µ1 and µ2 denote the two population mean vectors. To fix the nota-

tion, let {X1i}n1

i=1 and {X2j}n2

j=1 be independent and identically distributed

(i.i.d.) samples from two populations with mean vectors µ1 and µ2, respec-

tively, and p× p covariance matrices Σ1 and Σ2, respectively. Here, n1 and

n2 represent the size of the first and second samples, respectively. Denote

n as the sum of sample sizes, that is, n = n1 + n2.

In low-dimensional cases, that is, p ≪ n, several methods have been

developed to test the difference in the mean vectors between two popula-

tions. For example, the classical T 2 test of Hotelling (1931) has desirable

properties and satisfactory power in conventional low-dimensional cases.

However, with rapid advances in sensing technology and data acquisition

systems, high-dimensional data are becoming more common, where the di-

mension of the data can exceed the number of sampled observations, that

is, p > n, leading to the so-called “large-p-small-n” problem. For exam-
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ple, genetic data may contain thousands of DNA segments from only a few

hundred patients (Chen and Qin (2010)). In a 200mm fabrication line in-

vestigated by Kumar et al. (2011), which produces 250 chips per wafer in

lots of 25 wafers, the manufactured product with 22 layers can involve 524

processing steps, with more than 21,710 process variables.

In high-dimensional cases, traditional multivariate two-sample tests,

such as the T 2 test, either cannot be applied directly or their power is too

low. For example, the T 2 test statistic is undefined when p is larger than n,

because it involves inverting the p × p sample covariance matrix, which is

singular. Even when the T 2 test is defined, its detection power decreases as

the dimension p increases. As shown theoretically in Fan (1996), the stan-

dard Wald, score, and likelihood ratio tests may have power that decrease in

terms of the type-I error rate as p increases, even for the simple one-sample

test on the mean of a normal distribution with a known covariance matrix.

Various two-sample tests for high-dimensional data have been proposed,

and can be grouped into two categories: sum-of-squares-based tests, and

supremum-based tests. The first category is motivated by the L2-type dis-

tance between two mean vectors, where all entries are considered. Several

researchers have attempted to extend the T 2 statistic to the case of p > n

by replacing the sample covariance matrix with a nonsingular matrix. For
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example, Bai and Saranadasa (1996) propose a straightforward procedure

(referred to here as the BS test), in which they replace the sample covari-

ance matrix with an identity matrix. In order to simplify the theoretical

derivation, Chen and Qin (2010) suggest a test (the CQ test) that removes

the cross-product terms from the BS test. To account for possibly varying

variances of the components of the data, one can replace the sample co-

variance matrix with a diagonal version; see, for example, Srivastava and

Du (2008), Srivastava (2009), and Srivastava and Kubokawa (2013). In

order to avoid a full estimation of the covariance matrix, Gregory et al.

(2015) propose a generalized component test (GCT) that assumes that the

p components admit a logical ordering such that the dependence between

components is related to their displacement. Moreover, to accommodate

strongly spiked eigenvalues (SSE) in high-dimensional data, Aoshima and

Yata (2018) and Ishii et al. (2019) propose distance-based tests that use the

estimated eigen-structures, and obtain their limiting distributions. Zhang

et al. (2020) propose a Welch–Satterthwaite χ2-type test to further relax the

restrictive assumptions on the covariance structure. Other approaches use

the random projection method Srivastava et al. (2016)), interpoint distance

(Biswas and Ghosh (2014)), and spatial sign ranks (Wang et al. (2015),

Chakraborty et al. (2017)). The second category is motivated by the L∞-
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type distance between two mean vectors, where only the largest deviation

is used. A sample of research in this category includes Chang et al. (2017)

and the CLX test proposed by Cai et al. (2014).

However, these two streams of tests are designed for extreme situations.

The first category is particularly efficient in the dense case, in which almost

all of the components in the two mean vectors exhibit some differences.

In contrast, the second category is efficient in the sparse case in which a

few leading components in the two mean vectors suffer from substantial

changes. As a result, no single test performs relatively well in both cases.

In reality, the sparsity level of the mean differences, that is, the number

of zero elements in µ1 − µ2, is often unknown. Furthermore, the sparsity

level may lie somewhere between the two extreme cases, neither dense nor

sparse. Therefore, it is unclear how to choose a powerful test from the

above two categories when the sparsity level of the mean differences is

unknown. Moreover, most of the above tests assume that the signal strength

(or magnitude) is equal for each component of µ1−µ2. In order to remove

the assumptions of a known sparsity level of µ1 − µ2 and an equal shift

magnitude in each component, we require a flexible two-sample test for

comparing high-dimensional mean vectors. Motivated by this, we develop

a robust two-sample test for high-dimensional mean vectors with unknown
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sparsity levels and varying magnitudes of the mean differences.

The proposed test compresses two steps. The first introduces a robust

weighting function capable of allocating different weights to components of

varying magnitudes in a sum-of-squares-based test. This naturally gener-

alizes the GCT, with equal weights on each component as a special case.

Intuitively, this improves the test power when the mean differences have

different magnitudes by putting relatively large weights onto leading com-

ponents, and relatively small weights onto small components. The second

step combines the multiple weighted component tests (WCTs) from the first

step to select the most powerful test from the candidate tests. This second

step makes the proposed test adaptive to different sparsity levels of mean

differences, and is similar to the idea of the adaptive sum-of-powers test

(ASPU test) of Xu et al. (2016). For simplicity, we denote the proposed

adaptive WCT as AWCT throughout the remainder of the paper.

Note that our approach differs from the ASPU test in two important

aspects. First, the proposed approach dynamically allocates weights to

components based on their magnitudes. In contrast, the ASPU test always

puts the same weight on each component in each individual sum-of-powers-

type test. In this sense, the proposed approach is more flexible, because it

is more reasonable to assume that the components have different shifts in
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magnitudes in practice. Second, although both the ASPU and the AWCT

tests combine multiple individual tests to improve the test power when the

sparsity level of the signal is unknown, the individual tests work differently.

The individual sum-of-powers test in the ASPU test adjusts the power for

detecting sparse or dense signals by tuning the power index of the distances.

In contrast, the individual WCT test does so by tuning the weighting pa-

rameter of a robust weight function, such as Huber’s function. Therefore,

the proposed approach is expected to provide overall good test power when

the components have varying magnitudes of mean shifts, in addition to its

robustness to the sparsity level of the signals.

The remainder of the paper is organized as follows. Section 2 describes

the AWCT statistic in detail. Section 3 derives its asymptotic properties.

Section 4 presents an extensive simulation study of the AWCT, comparing

its performance with that of the BS, CQ, GCT, CLX, and ASPU tests in

terms of power and maintenance of the nominal size. Section 5 presents

two real examples. Concluding remarks are presented in Section 6. Proofs

of our asymptotic theories are provided in the Supplementary Material.
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2 . Test Statistics

For samples {Xki}nk

i=1, where k = 1, 2, denote Xj
ki as the jth component

(j = 1, . . . , p) of the ith observation in sample k. Denote s2k,jj =
∑nk

i=1(X
j
ki−

X̄j
k)

2/nk as the sample variance of the jth component for the kth sample,

where X̄j
k =

∑nk

i=1 X
j
ki/nk. Define t2j as

t2j = (X̄j
1 − X̄j

2)
2/
(
s21,jj/n1 + s22,jj/n2

)
,

which then converges to a χ2
1 distribution as n1, n2 → ∞ under the null

hypothesis.

The statistic t2j tests the mean difference in the jth component. To

consider all signal information, one can compute the sum of t2j over all

components, as in the GCT statistic, for j = 1, . . . , p. However, the compo-

nents often have varying magnitudes. Thus, it is reasonable to assign larger

weights to large components to improve the power of the test statistic. For

this purpose, we establish the WCT statistics, as follows:

TWCT =

p∑
j=1

ωjt
2
j/p, (2 .1)

where ωj is the weight allocated to tj. Clearly, the WCT statistic is a natural

generalization of the GCT statistic, because it allows us to assign different

weights to each of the components tj. When ωj is fixed as a constant, an
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equal weight is assigned to all components. In this case, the WCT performs

in essentially the same way as the GCT.

Different weighting functions can be used. Here, we consider weights

motivated by robust procedures such as Huber’s function (Dutter and Huber

(1981)) and Welsch’s function (Holland and Welsch 1977). For the sake of

simplicity, we restrict our discussion to Huber’s weight function:

ωj =


1− (1− κ)R/t2j tj < −

√
R

κ −
√
R ≤ tj ≤

√
R

1− (1− κ)R/t2j tj >
√
R,

where κ ∈ (0, 1], and R is a positive threshold that determines whether the

component t2j is too large.

Note that when R → ∞, ωj = κ; that is, the same weight is allocated

to t2j along each component. Therefore, the value of R should not be too

high in practice in order to adaptively allocate weights to the components.

In robust weight functions, the value of R is often chosen based on the rule

of thumb R ∈ [2.5, 3.5] (Capizzi and Masarotto (2003)). By doing so, the

random variable t2j has a small probability of exceeding R. Note that t2j

converges to a χ2
1 distribution as n1, n2 → ∞ under the null hypothesis.

For a χ2
1 random variable, there is only a 11.38% probability of it exceeding

R = 2.5, and a 6.13% probability of exceeding R = 3.5. In this study, we
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choose R ∈ [2.5, 3.5], focusing on R = 3 for simplicity.

The parameter κ controls the relative weight allocated to the component

t2j . To illustrate the effect of κ, Figure 1 plots the weight ωj as a function

of tj for different values of κ when R = 3, showing that a smaller κ value

allocates relatively small weights to smaller components t2j , but relatively

large weights to larger components t2j . When κ increases, the differences in

the weights for all the components tends to decrease. Consider two extreme

cases. When κ → 0, ωj → 0 for t2j ≤ R and ωj = 1 − R/t2j for t2j > R.

This implies that we consider only the extremely large components t2j in

the WCT statistic, and ignore the other components. In this case, one can

expect the WCT to perform like the CLX test, which has good test power

in the case of sparse signals. On the other hand, when κ = 1, ωj = 1, for

j = 1, 2, . . . , p. In this case, the same weight is used for all the components.

Therefore, one can expect the WCT to perform essentially like the GCT,

which has good test power in the case of dense signals.

Therefore, the parameter κ has an important effect on the power of the

WCT. The WCT statistic in Equation (2 .1) can be rewritten as

TWCT (κ) =

p∑
j=1

ωj(κ)t
2
j/p.

Whether TWCT (κ) is powerful depends on the unknown sparsity level, that

is, the pattern of nonzero signals. To provide overall good power, one can
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Figure 1: Plot of ωj under different values of κ when R = 3.

incorporate multiple testing in the procedure so that at least one yields a

high power for a particular application with unknown truth. This can be

achieved by combining multiple WCTs, as follows:

TAWCT = TWCT (argmin0≤κ≤1P (κ)),

where P (κ) is the p-value of the TWCT (κ) test. The idea of taking the

minimum p-value to approximate the maximum power is widely used; see,

for example, Xu et al. (2016) and Yu et al. (2009).

In practice, we need to choose candidate values for κ for the proposed

test in order to improve the test performance when the sparsity level of the

signal is unknown. In principle, there are many candidate values for κ. How-

ever, this greatly complicates the underlying test for only a marginally im-

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0143



provement in the test power. To achieve a trade-off between simplicity and

test power, we choose three candidate values of κ ∈ Γ = {0.05, 0.5, 0.95},

aimed at detecting very sparse, not-that-sparse, and dense shifts in the

mean differences, respectively. However, other choices of candidate values

for κ can be analyzed similarly. As shown later, κ ∈ Γ = {0.05, 0.5, 0.95}

provides an overall good power under a wide variety of alternative hypothe-

ses when the sparsity level is unknown.

3 . Main Results

3 .1 Asymptotic theory

For a set of multivariate random vectors Z and integers a < b, let F b
a be

the σ field generated by {Zj : j ∈ [a, b]}, that is, F b
a = σ

{
Za, Za+1, . . . , Zb

}
,

where Zj denotes the jth element of Z. For all positive integers s < p, the

strong mixing coefficients are defined as

αZ(s) = sup
1≤k≤p−s

{
|P (A ∩B)− P (A)P (B)| : A ∈ Fk

1 , B ∈ Fp
k+s

}
.

Similar to the assumptions made in Xu et al. (2016), the following conditions

are assumed to derive the asymptotic distribution of TWCT :

C.1 There exists some constant B such that

B−1 ≤ λmin (Σ1) , λmin (Σ2) , λmax (Σ1) , λmax (Σ2) ≤ B,
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3 .1 Asymptotic theory

where λmin(A) and λmax(A) denote the minimum and maximum eigen-

values, respectively, of a matrix A. In addition, the correlations are

bounded away from -1 and 1, that is,

max
k=1,2;1≤i̸=j≤p

|σk,ij| / (σk,iiσk,jj)
1/2 < 1− η,

for some η > 0.

C.2
{(

Xj
ki, i = 1, . . . , nk

)
: j ≥ 1

}
is α-mixing, for k = 1, 2, and αX(s) ≤

Mδs, for δ ∈ (0, 1) and some constant M .

C.3 n1/n2 → c ∈ (0,∞) and p = o(n2); max
1⩽j⩽p

E
[
exp

{
h
(
Xj

k1 − µj
k

)2}]
<

∞ for h ∈ [−M,M ] and k = 1, 2, where µj
k denotes the jth element

of µk.

C.1 and C.3 are assumptions on the eigenvalues and covariance, respec-

tively, needed to establish the weak convergence of the WCT statistic and

its joint asymptotic normality. C.2 is a commonly used mixing condition

that assumes weak dependence for data sets with components that admit

an ordering in time, space, or some other index, such that their depen-

dence diminishes as the components become further apart. For example,

measurements for methylation values are taken along a chromosome. The

location of each measurement is recorded, providing an index over which

dependence can be modeled. Under C.1–C.3, the asymptotic normality of
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3 .1 Asymptotic theory

the test statistic TWCT and its asymptotic joint distribution are derived in

Theorems 1 and 2, respectively.

Theorem 1. Assume that conditions C.1–C.3 hold. Under H0, we have

√
p(TWCT − ν)/ζ →d N(0, 1)

as p → ∞, where ν = E(TWCT ) and ζ2 = p · V ar(TWCT ) are stated in

Propositions 1 and 2.

Proof. See the Appendix.

Theorem 2. Assume that conditions C.1–C.3 hold. Under H0, for Γ =

{κ1, κ2, . . . , κd} ∈ [0, 1]d (d < ∞), we have

√
p(TWCT (Γ)− ν(Γ))T →d N(0,Σ),

where Σ = (rst) with rss = ζ2s = pV ar(TWCT (κs)) for 1 ≤ s ≤ d, and

rst = γ2
st = pCov(TWCT (κs), TWCT (κt)) for s ̸= t ∈ {1, 2, . . . , d}.

Proof. See the Appendix.

Denote Ij = I(t2j ≤ R), and rewrite the mean of the TWCT statistic as

ν =
∑p

j=1 νj/p, where νj = E(ωjt
2
j). The following approximation holds for

ν, ζ2, and γ2
st under H0 : µ1 = µ2.
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3 .1 Asymptotic theory

Proposition 1. Under H0 : µ1 = µ2, we have

νj = E
{
Ijκt

2
j + (1− Ij)(1− (1− κ)Rt−2

j )t2j
}

= (1− κ)

{∫ R

0

F (x)dx−R

}
+

∫ ∞

0

xf(x)dx+O(1/n),

where F (x) and f(x) denote the cumulative distribution function and prob-

ability density function, respectively, of the χ2
1 distribution. Thus, the term∫∞

0
xf(x)dx is equal to one and is replaced by one in the following.

According to Proposition 1, we estimate ν by ν̂ = (1−κ){
∫ R

0
F (x)dx−

R}+1. The consistency of ν̂ is shown in the Supplementary Material. Then,

denotingKi = (κ−1)Iit
2
i+t2i+(1−κ)RIi, we have, ζ

2 = p−1V ar(
∑p

j=1 ωjt
2
j) =

p−1
∑p

j=1 V ar {Kj}+ p−1
∑

i̸=j Cov {Ki, Kj}.

Proposition 2. Assume that conditions C.1–C.3 hold. Under H0, we have

ς2 =V ar {Kj}

=

∫ R

0

(1− κ)(R− x) [(1− κ)(R− x) + 2x] f(x)dx+

∫ ∞

0

x2f(x)dx

− (κ− 1)2
{∫ R

0

F (x)dx

}2

− 2(κ− 1)

∫ R

0

F (x)dx− 1 +O(1/n).

Note that Cov {Ki, Kj} = ρijς
2, where ρij = Corr(Ki, Kj), which can

be estimated by

ρ̂ij =

p−|i−j|∑
l=1

(Kl − K̄)(Kl+|i−j| − K̄)/

p∑
l=1

(Kl − K̄)2, i, j = 1, 2, . . . , p,
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3 .1 Asymptotic theory

where K̄ =
∑p

l=1Kl/p.

We estimate ζ2 by

ζ̂2 = ς2 +
∑
i̸=j

p(|i− j|/L)ρ̂ijς2/p,

where p(x) is a piecewise function of x such that p(0) = 1, |p(x)| ≤ 1 for all

x, and p(x) = 0 for |x| > 1, and L is a user-selected lag window size. Here,

we use the Parzen window (Brockwell and Davis (2013)), that is,

p(x) =


1− 6|x|2 + 6|x|3, |x| < 1/2,

2(1− |x|)3. 1/2 ≤ x ≤ 1,

0, |x| > 1.

The consistency of ζ̂2 is shown in the Supplementary Material.

To derive the asymptotic joint distribution of the test statistics TWCT (κ),

we need the following result to approximate the covariance γ2
st = Cov(TWCT (κs), TWCT (κt)).

Proposition 3. Assume that conditions C.1–C.3 hold. Under H0, for 0 ≤

κs, κt ≤ 1, we have

γ2
st =

p∑
i=1

p∑
j=1

Cov(Ki(κs), Kj(κt))/p,

where Ki(κ) = (κ− 1)Iit
2
i + t2i + (1− κ)RIi. For i = j,

ς ′2 =Cov(Ki(κs), Ki(κt))
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3 .2 Asymptotic type-I error and power analysis

=

∫ R

0

[
(1− κs)(1− κt)(R− x)2 + (2− κs − κt)(R− x)x

]
f(x)dx

+

∫ ∞

0

x2f(x)dx− (1− κs)(1− κt)

{∫ R

0

F (x)dx

}2

− (2− κs − κt)

∫ R

0

F (x)dx− 1 +O(1/n).

For i ̸= j, Cov {Ki(κs), Kj(κt)} = ϱijς
′2, where ϱij = Corr(Ki(κs), Kj(κt))

is estimated by

ϱ̂ij =

p−|i−j|∑
l=1

[(Kl(κs)− K̄(κs))(Kl+|i−j|(κt)− K̄(κt))

+ (Kl(κt)− K̄(κt))(Kl+|i−j|(κs)− K̄(κs))]

[2

p∑
l=1

(Kl(κs)− K̄(κs))(Kl(κt)− K̄(κt))]
−1,

for i, j = 1, 2, . . . , p, where K̄(κ) =
∑p

l=1Kl(κ)/p.

Finally, we estimate γ2
st by

γ̂2
st = ς ′2 +

∑
i̸=j

p(|i− j|/L)ϱ̂ijς ′2/p.

3 .2 Asymptotic type-I error and power analysis

Denote T =
√
p(TWCT − ν)/ζ. Assuming that conditions C.1–C.3 hold, the

asymptotic type-I error of the AWCT test based on Γ = {κ1, κ2, . . . , κd} ∈

[0, 1]d (d < ∞) can be calculated as

p =pr(TAWCT > C|H0 true)
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3 .2 Asymptotic type-I error and power analysis

=1− pr(TAWCT ≤ C|H0 true)

=1− pr(max
0≤i≤d

Ti ≤ C|H0 true)

=1− pr(T1 ≤ C, T2 ≤ C, . . . , Td ≤ C|H0 true)

=1−
∫
(−∞,C)d

ϕd(0,Ω)dT1 . . . dTd,

where ϕd(0,Ω) denotes the probability distribution function of a d-dimensional

multivariate normal distribution with mean vector 0 and covariance Ω.

Here, Ω is equal to the correlation matrix corresponding to the covariance

matrix estimated using Proposition 3. For a given critical value C, the

value of p can be calculated using the R package mvtnorm.

The test power of TAWCT under HA satisfies pr(min0≤κ≤1 P (κ) < α) ≥

pr(P (κ) < α), for any 0 ≤ κ ≤ 1, where α is the significance level.

Therefore, the asymptotic power of the proposed test is one if there exists

0 ≤ κ ≤ 1 such that pr(P (κ) < α) → 1; that is, TWCT (κ) has asymptotic

power equal to one. Hence, to study the asymptotic power of the adaptive

test, we need only focus on the power of TWCT (κ), for 0 ≤ κ ≤ 1. In

the following, we write TWCT (κ) as TWCT for conciseness. Denote Φ(x) as

the cumulative distribution function of the standard normal, and zα as the

corresponding (1− α)th quantile.

Denote ιj = µj
1 −µj

2, for j = 1, 2, . . . , p. Then, the alternative hypoth-
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3 .2 Asymptotic type-I error and power analysis

esis HA : µ1 ̸= µ2 means that an unknown proportion q (0 < q ≤ 1) of ιj
′s

is not equal to zero. Denote νA = E(TWCT |HA true). Then, the power of

the WCT, that is, P
(√

p (TWCT − νA) /ζ̂ > zα|HA true
)
, is equal to

1− P (
√
p (TWCT − νA) /ζ̂ < zα −√

p(νA − ν)/ζ̂|HA true).

The asymptotic normality of
√
p (TWCT − νA) /ζ̂ and the consistency of

ζ̂ for ζ can be invoked under conditions C.1–C.3. We then approximate the

power of the WCT using

1− Φ (zα −√
p(νA − ν)/ζ) ,

which is a function of
√
p(νA − ν)/ζ. Define Gj,ιj(x) and gj,ιj(x) as the

cumulative distribution function and probability density function, respec-

tively, of t2j under ιj. Under the alternative hypothesis, when ιj ̸= 0, as

n1, n2 → ∞, the distribution of t2j converges to a noncentral chi-squared

distribution, with degree of freedom one and noncentrality parameter ι2j ,

denoted as χ2
1(ι

2
j). From Proposition 1,

νA − ν =E(TWCT |HA true)− E(TWCT |H0 true)

=p−1(1− κ)

{
p∑

j=1

[∫ R

0

Gj,ιj(x)dx−
∫ R

0

Gj,0(x)dx

]}

+ p−1

p∑
j=1

{∫ ∞

0

xgj,ιj(x)dx−
∫ ∞

0

xgj,0(x)dx

}

=p−1(1− κ)

p∑
j=1

{HR,j(ιj)−HR,j(0)}+ p−1

p∑
j=1

{
ι2j +O(n−1)

}
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≈p−1

p∑
j=1

{
(1− κ)

[
hR,j(0)ιj + h′

R,j(τj)ι
2
j/2
]
+
[
ι2j +O(n−1)

]}
=p−1

p∑
j=1

{
aκ,R(τj)ι

2
j +O(n−1)

}
,

whereHr,j(x) =
∫ r

0
Gj,x(y)dy, hr,j(x) = ∂Hr,j(x)/∂x, h

′
r,j(x) = ∂2Hr,j(x)/∂x

2,

and aκ,R(τj) = 1 + (1− κ)h′
R,j(τj)/2, with τj ∈ (0, ιj). Now, the power can

be expressed as

1− Φ

(
zα − p−1/2

p∑
j=1

{
aκ,R(τj)ι

2
j +O(n−1)

}
/ζ

)
.

4 . Simulation Studies

In this section, we illustrate the performance of the proposed test, the

AWCT, by comparing it with that of existing methods in simulations. The

other tests included in the comparison are the BS, CQ, GCT, and ASPU

tests, all of which are sum-of-squares-based tests. We also include the CLX

test for testing sparse alternatives. The test performance is compared in

terms of size control and power under various settings.

Without loss of generality, with µ1 = 0, let µ2 = 0 under the null

hypothesis, and set the first [p1−β] elements of µ2 unequal to zero un-

der the alternative hypothesis, where β ∈ [0, 1] controls the signal spar-

sity. Three values of β = 0.3, 0.5, 0.7 are considered, corresponding to

the cases with dense, medium, and sparse differences in the two popula-
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tion means, respectively. The magnitudes of µ2 − µ1 measure the signal

strength. Two settings of magnitudes are considered: (i) the case with equal

magnitude of µi
2 = {2r (1/n1 + 1/n2) log p}1/2, for i = 1, 2, . . . ,m, where r

is a constant controlling the signal strength, and (ii) µi
2 increases linearly

over the range [{1.5r (1/n1 + 1/n2) log p}1/2, {2.5r (1/n1 + 1/n2) log p}1/2 ],

for i = 1, 2, . . . ,m.

We choose three specific models for the covariance structure from the

work of Cai et al. (2014), given as follows:

(a) Σ = (σi,j), where σi,j = 0.6|i−j|, for 1 ≤ i, j ≤ p.

(b) Σ = (σi,j), where σi,i = 1, σi,j = 0.8, for 2(k − 1) + 1 ≤ i ̸= j ≤ 2k,

where k = 1, 2, . . . , [p/2], and σi,j = 0 otherwise.

(c) Σ = (σi,j) , where σi,i = 1 and σi,j = |i− j|−5/2, for i ̸= j.

In Model (a), the covariance matrix has a bandable structure, but has a

sparse structure in Model (b). The entries of the covariance structure in

Model (c) decay as a function of the lag |i−j|, which arises naturally in time

series analysis. In this case, neither the covariance matrix nor its inverse is

sparse.

Under each model, two independent random samples {X1i}n1

i=1 and

{X2j}n2

j=1 are generated from a multivariate distribution with means µ1
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and µ2, respectively, and a common covariance matrix Σ. The dimension

p takes p = 400 and the sample sizes take n1 = n2 = 200. To illustrate

the effects of the distributions, we examine three types of distributions: (i)

the multivariate normal, (ii) the multivariate t-distribution with degrees of

freedom v = 3, and (iii) a multivariate gamma distribution. The functions

rmvnorm and rmvt from the R package mvtnorm and the function rmvgamma

from the package lcmix, respectively, are used to generate the three types

of distributions. Note that the parameter sigma in rmvt denotes the scale

matrix, which is equal to (v − 2)Σ/v. To generate the third distribution,

we generate a gamma(4,2) distribution with a shape parameter of four and

a scale parameter of two for each dimension. To center its mean to zero,

one can subtract the random samples from the mean of 4/2 = 2.

The nominal significance level is set to α = 0.05 and κ is adaptively se-

lected from Γ = {0.05, 0.5, 0.95}. For the choice of L and R in our proposed

test, the results are qualitatively the same for L = 10, 20, and 30 and for

R = 2.5, 3, and 3.5. The results are also similar under different covariance

matrix structures. For the sake of simplicity, we present only the results

based on L = 10 and R = 3 under covariance Model (a). The power and

empirical type-I error rate are calculated from 1000 replications.
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Table 1: The empirical type-I error rates of various tests under a multivariate

normal distribution based on Model (a).

Number of replicates = 1, 000

c=1 c=2

n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX

200 0.06 0.05 0.10 0.05 0.04 0.04 0.06 0.05 0.08 0.06 0.05 0.04

250 0.05 0.04 0.09 0.05 0.04 0.04 0.05 0.05 0.07 0.05 0.04 0.04

300 0.06 0.06 0.09 0.05 0.04 0.05 0.06 0.05 0.07 0.05 0.04 0.05

Number of replicates = 2, 000

c=1 c=2

n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX

200 0.06 0.05 0.10 0.06 0.04 0.04 0.06 0.06 0.07 0.06 0.05 0.05

250 0.05 0.04 0.09 0.05 0.04 0.04 0.05 0.05 0.07 0.05 0.04 0.04

300 0.06 0.06 0.09 0.05 0.04 0.05 0.06 0.05 0.07 0.05 0.04 0.05

Table 2: The empirical type-I error rates of various tests under a multivariate

gamma distribution based on Model (a).

c=1 c=2

n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX

200 0.06 0.04 0.11 0.05 0.04 0.04 0.06 0.06 0.08 0.06 0.05 0.05

250 0.05 0.06 0.09 0.06 0.05 0.04 0.06 0.04 0.08 0.05 0.05 0.05

300 0.05 0.05 0.10 0.05 0.04 0.05 0.05 0.06 0.07 0.06 0.05 0.05

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0143



4 .1 Empirical type-I error rate

Table 3: The empirical type-I error rates of various tests under a multivariate t3

distribution based on Model (a).

c=1 c=2

n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX

200 0.05 0.04 0.09 0.05 0.01 0.03 0.05 0.05 0.07 0.05 0.00 0.04

250 0.06 0.04 0.08 0.06 0.01 0.04 0.06 0.04 0.07 0.06 0.00 0.05

300 0.05 0.03 0.08 0.05 0.01 0.03 0.04 0.04 0.06 0.04 0.00 0.04

4 .1 Empirical type-I error rate

Table 1 summarizes the empirical type-I error rates of the above tests under

the multivariate normal distributions based on Model (a). Denote c as the

ratio of p to n, that is, c = p/n. The results based on 1,000 and 2,000

replicates are presented, showing that the difference in the type-I error rate

based on 1,000 and 2,000 replicates is negligible. For simplicity, we obtain

the simulation results based on 1,000 replicates throughout the remainder

of the paper.

In addition, we compare the computation times of among the AWCT,

ASPU, and GCT tests. Consider p = 400 and n1 = n2 = 200 as an example.

On a personal computer (MacBook Air with a 1.6 GHz Dual-Core Intel Core

i5 processor and 8 GB memory), it takes around 6.78 seconds for the ASPU

test to approximate the type-I error rate, 0.37 seconds for the AWCT test,
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4 .2 Power comparisons

and 0.05 seconds for the GCT test. Thus, the GCT and AWCT tests are

clealy more computationally efficient than the ASPU test.

Table 1 shows that under the multivariate normal distribution, nearly

all tests maintain close-to-nominal type-I error rates. Only the GCT ex-

hibits inflated type-I error rates, perhaps because of its low convergence

rate to the asymptotic null distribution. Tables 2 and 3 present the empir-

ical type-I error rates of the above tests under the multivariate gamma and

t3 distributions, respectively. Table 2 show that, under the multivariate

gamma distribution, the results are similar to those under the multivariate

normal distribution. From Table 3, under the multivariate t3 distribution,

in addition to the GCT method, the BS method also fails to maintain the

nominal type-I error rate, whereas the other tests maintain close-to-nominal

type-I error rates.

4 .2 Power comparisons

Figure 2 compares the power curves of the above tests against r under

different sparsity levels of β based on Model (a) with normal innovations and

Σ1 = Σ2. For the case of dense signals (β = 0.3), the AWCT has the highest

power, and the CLX has the lowest power. This is not surprising, the CLX

is a supremum-based test, which is less efficient in terms of detecting dense
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4 .2 Power comparisons

Figure 2: Power curves of the various tests against r under different sparsity

levels of β, based on Model (a), with normal innovations and Σ1 = Σ2.

signals. When β increases to β = 0.5, the AWCT has higher power than the

ASPU, CQ, and BS, followed by the CLX and GCT, which has the lowest

power. This illustrates that the power of the GCT decreases substantially

as the sparsity level of the signals increases. When β further increases

to β = 0.7, the AWCT, ASPU, and CLX methods exhibit competitive

power, and outperform the CQ, BS, and GCT methods. To compare the

power performance under skewed innovations, Figure 3 compares the power

curves of the above tests against r under different sparsity levels of β based

on Model (a), with centered gamma(4, 2) innovations and Σ1 = Σ2. The

results are similar to those with normal innovations.

To illustrate the effect of heavy-tailedness on the performance of the
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4 .2 Power comparisons

Figure 3: Power curves of the various tests against r under different sparsity levels

of β, based on Model (a) with centered gamma(4, 2) innovations and Σ1 = Σ2.

proposed test, Figure 4 shows the power curves of the various tests against

r under different sparsity levels of β, based on Model (a) with multivariate

t3 innovations and Σ1 = Σ2. The results do not differ greatly from those

of the normal and skewed innovations.

In summary, Figures 2 to 4 indicate a good property of the proposed

test. In particular, the AWCT always has the highest power, or power close

to the highest. This indicates the capability of the AWCT to provide overall

good power in a wide variety of situations. The simulation results under

Models (b) and (c) are provided in the Supplementary Material, because

they are similar to those under Model (a).
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4 .3 Effect of heteroscedasticity

Figure 4: Power curves of the various tests against r under different sparsity

levels of β, based on Model (a) with multivariate t3 innovations and Σ1 = Σ2.

4 .3 Effect of heteroscedasticity

Extreme values of t2j tend to occur if s21,jj and s22,jj are very small under the

alternative hypothesis. On the other hand, large values of s21,jj and s22,jj

tend to reduce t2j , and thus extreme values do not occur. The size of a test

is expected to be robust to any scaling of the variances. To investigate the

effect of heteroscedasticity on the performance of the above tests, following

the method of Gregory et al. (2015), we scale the standard deviation of

each component by the square root of a realization from the exponential

distribution with mean 1/2, shifted to the right by 1/2. Thus, the average

scaling is one and the scaled variances are bounded away from zero.
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4 .4 Performance under unequal magnitudes of mean differences

Figure 5: Power curves of the various tests against r under unequal magnitudes

of mean differences, based on Model (a) with multivariate normal innovations

and Σ1 = Σ2 when β = 0.3, 0.5, 0.7.

We repeat the power simulation using the centered gamma(4,2) under

Model (a) under the heteroscedastic condition; the results are shown in the

Supplementary Material for simplicity. Our results show that the AWCT

method maintains overall good power under the heteroscedastic condition

in comparison with other tests.

4 .4 Performance under unequal magnitudes of mean differences

The above analysis focuses mainly on the case with equal magnitude for the

nonzero-mean differences. Here, we investigate the performance under un-

equal magnitudes for the nonzero-mean differences, which is more general,

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0143



and natural in practice. A potential benefit of the AWCT is that it allocates

different weights to the components with varying magnitudes, in contrast

to the GCT. Therefore, when the true mean differences between the two

populations have unequal magnitudes, we expect the AWCT method to

outperform the GCT significantly.

Figure 5 shows the power curves of the various tests against r under

unequal magnitudes of mean differences, based on Model (a) with multi-

variate normal innovations and Σ1 = Σ2. For the components with nonzero

means, the magnitudes are set to be linearly increasing over the range from

{1.5r (1/n1 + 1/n2) log p}1/2 to {2.5r (1/n1 + 1/n2) log p}1/2, following the

setting of Benjamini and Hochberg (1995). As shown in Figure 5, the

AWCT outperforms the GCT, regardless of the value of β.

5 . Real-Data Analysis

In this section, we apply the aforementioned methods to two real data sets:

a DNA methylation data set and a data set from a semiconductor manu-

facturing process. Both data sets are publicly available. The first can be

downloaded from the NCBI GEO website with GEO number GSE19711,

and the second is available from the UC Irvine Machine Learning Repository

https://archive.ics.uci.edu/ml/datasets/SECOM. Here, we present
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the application to DNA methylation data; the application to a semiconduc-

tor manufacturing process is given in the Supplementary Material. Death

from ovarian cancer among women ranks fifth in the United States (Jemal

et al. (2006)), and has been found to be associated with aberrant DNA

methylation. A genome-wide DNA methylation profiling of the United

Kingdom Ovarian Cancer Population Study (UKOPS) was conducted to

identify methylation signatures associated with carcinogenesis (Teschen-

dorff et al. (2010)). The data originate from the Illumina Infinium 27k

Human DNA methylation Beadchip v1.2 with 27578 CpGs, from 540 whole

blood samples, including 266 samples from post-menopausal ovarian cancer

patients, and 274 samples from age-matched normal controls.

In genomic data analysis, β-values and M -values are commonly used

to quantify the level of DNA methylation (Bibikova et al. (2011)). The β-

value is calculated from the intensity of the methylated allele (Max(M, 0))

and the unmethylated allele (Max(U, 0)), as follows:

β = Max(M, 0)/[Max(M, 0) +Max(U, 0) + 100]−1.

The β-values are usually preprocessed for the downstream statistical anal-

ysis, including quality control, background correction, and normalization.

For differential DNA methylation analysis, the average β-value denotes the

methylation level, or the percentage for an interrogated locus. The average
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β-value varies between zero and one. In an ideal situation, zero indicates

that no copy of the CpG site in the sample is methylated. The value one

indicates that every copy of the site is methylated. The average β-value

approximates the methylation percentage for the population of a sampled

CpG site. As an alternative, some investigators use the M -value, consid-

ering it to be statistically more valid (Du et al. (2010)). However, the

interpretation of M -values is not as intuitive as it is for β-values. For this

reason, we restrict our discussion to β-values.

We apply the AWCT, ASPU, GCT, CQ, BS, and CLX tests to test

whether there is a significant difference in the DNA methylation levels be-

tween the cancer group and the normal group. The 27578 CpGs of the

ovarian cancer data are from all 23 pairs of chromosomes, including the sex

chromosomes, namely, chromosomes X and Y. We exclude chromosome Y

from our analysis, because there are only seven CpGs from this chromosome,

in which the sample size is larger than the dimension of the data. Prior to

analysis, each missing value is replaced with the mean of the nonmissing

values for the same CpGs in the same group.

Table 4 shows the p-values produced by the six tests for the equality of

the methylation levels measured using the β-values on each chromosome.

The R value is set to three for the AWCT. Nearly all the tests reject the
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null hypothesis at the 5% significance level. The only exception is the BS

test on chromosomes 16 and 19. The p-values of the AWCT, ASPU, and

GCT methods are nearly zero for all chromosomes.

The small p-values in Table 4 indicate that the differences in the DNA

methylation levels on each CpGs between the cancer and the normal group

are dense, and that some are large in magnitude. Thus, after identifying the

CpGs with significant differences, the remaining CpGs are still likely to yield

additional signals, which need more further investigation. For this purpose,

we first exclude those CpGs with significant differences in the following

analysis. In particular, we exclude those CpGs with p-values less than 0.05,

based on the univariate t-test, with a Bonferroni correction within each

chromosome. The differences in the remaining CpGs are of the “dense, but

weak” pattern.

6 . Conclusion

The classical two-sample tests for high-dimensional mean vectors are of-

ten designed to focus on sparse or dense mean differences. However, the

sparsity level of mean differences is often unknown. In addition, the mean

differences can have varying magnitudes, but are often assumed to be equal

in existing methods. Here, we propose a robust test, capable of perform-
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Table 4: The p-values of the tests for the equality of the DNA methylation levels,

measured using β-values on each chromosome (Chr).

Chr No. 1 2 3 4 5 6 7 8

AWCT 0 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0 0

CQ 0 0 0 0 0 0 0 0

BS 0.03 0.03 0.02 2.03×10−3 6.15×10−3 3.72×10−3 0.01 6.51×10−3

CLX 3.34×10−14 7.44×10−13 1.04×10−12 5.87×10−13 7.17×10−12 1.47×10−13 7.77×10−16 0

Chr No. 9 10 11 12 13 14 15 16

AWCT 0 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0 0

CQ 0 1.11×10−16 0 0 0 0 0 2.11×10−15

BS 0.01 0.03 0.02 0.01 5.33×10−4 0.02 0.02 0.09

CLX 9.75×10−11 5.80×10−14 1.11×10−16 4.88×10−15 0 1.87×10−14 1.05×10−14 6.66×10−16

Chr No. 17 18 19 20 21 22 X

AWCT 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0

CQ 0 8.62×10−14 0 0 0 1.83×10−13 0

BS 0.05 0.02 0.06 3.72×10−3 4.28×10−4 0.04 0

CLX 1.35×10−14 2.35×10−6 1.55×10−13 2.55×10−15 4.69×10−13 1.20×10−10 2.72×10−12
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ing relatively well without the assumptions on the mean differences or the

magnitude of each component. The proposed test comprises two steps: dy-

namically allocating weights to components with varying magnitudes, and

then combining multiple WCTs to be adaptive to different sparsity levels

of the mean differences.

The proposed test, the AWCT, can be viewed as a generalization of

the GCT, which places equal weight on each component. Furthermore, the

AWCT shares the idea of the ASPU by optimizing the power among a class

of tests. Our simulation studies and real examples both demonstrate that

the proposed test achieves good overall performance with a wide variety

of signal sparsity, especially for the medium case, as opposed to existing

approaches that focus on either sparse or dense signals.

Supplementary Materials

The online supplementary materials include the Appendix (Proofs of Main

Theorems), related proofs and additional numerical results.
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