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Abstract: In this paper, we propose an outlier detection procedure, based on a high-breakdown minimum

ridge covariance determinant estimator that is especially useful for the large p/n scenario. The estimator

is obtained from the subset of observations, after excluding potential outliers, by applying the so-called

concentration steps. We explore the asymptotic distribution of the modified Mahalanobis distance related

to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff value for outlier

identification. We also improve the outlier detection power by adding a one-step reweighting procedure.

Lastly, we investigate the performance of the proposed methods using simulations and a real-data analysis.

Key words and phrases: High dimension, minimum covariance determinant estimator, random matrices.

1. Introduction

Data frequently contain one or more atypical observations, known as outliers, that is, observations

that are well separated from the majority of the data, or in some way deviate from the general

pattern of the data (Maronna et al., 2019). Outliers cannot be avoided, and may make up

between 1% and 10% of the data in a regular data set, possibly more in specific applications

(Hampel et al., 2005). The decreasing cost of collecting data means that modern data sets can

be both large and complex, sometimes with a very high number of variables. The chance of

contamination or imperfections in the data increases, both with the number of observations and
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their dimension. Thus, detecting potential outliers is important, either as a preprocessing step

to avoid model misspecification and biased parameter estimation, or for some specific interest in

finding anomalous observations.

Let {x1, . . . ,xn} be a random sample of the p-dimensional random vector X with mean vec-

tor µ = (µ1, . . . , µp)
⊤ and covariance matrix Σp = (σij)p×p. A common measure of outlyingness

for an individual observation xi = (xi1, . . . , xip)
⊤ is the Mahalanobis distance

d2i (µ,Σp) = (xi − µ)⊤Σ−1
p (xi − µ) . (1.1)

The well-known minimum covariance determinant algorithm (Rousseeuw and Van Driessen, 1999)

searches for a subsequence of {x1, . . . ,xn} of size h, with n/2 < h < n, that has a sample co-

variance matrix with the smallest determinant. Thus, it obtains reliable estimates of µ and Σp

in (1.1). To determine the cutoff value for outlying points, Hardin and Rocke (2005) present a

distributional result of (1.1) under a Gaussian assumption that is superior to the commonly used

chi-square cutoff. The consistency and asymptotic normality of the minimum covariance deter-

minant (MCD) estimator (Rousseeuw, 1985) are shown by Cator and Lopuhaä (2012). Based on

the small-sample correction factors constructed by Pison et al. (2002), Cerioli (2010) proposes

an iterated reweighted-MCD procedure that performs well for detecting multiple outliers.

However, when p/n increases, conventional outlier detection methods based on the MCD

estimator become infeasible and suffer power loss (Adrover and Yohai, 2002; Alqallaf et al.,

2009). In fact, the MCD approach is often recommended when n > 5p (Boudt et al., 2019). For

outlier detection, Filzmoser et al. (2008) developed a computationally fast procedure by using a

principal component analysis to identify outliers in a transformed space when p/n ≥ 1. Ro et

al. (2015) introduce the following alternative for (1.1):

d2i (µ, Dp) = (xi − µ)⊤D−1
p (xi − µ) , (1.2)
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where Dp = diag (σ11, . . . , σpp). By replacing (1.1) with (1.2), they propose a computationally

efficient refined minimum diagonal product algorithm, and conduct simulation studies for autore-

gressive correlation and moving average models. Li and Jin (2022) consider a different alternative

for (1.1):

d2i (µ, DΣ) = (xi − µ)⊤D−1
Σ (xi − µ) , (1.3)

where DΣ is the 2 × 2 block-diagonal partition of Σp. As such, they develop a high-breakdown

block-diagonal product estimator. Other outlier detection techniques for high-dimensional data

based on (1.2) include those of Yang et al. (2018) and Wang et al. (2021).

Ridge covariance determinant estimate

Let x̄n = n−1
∑n

i=1 xi and Sn = n−1
∑n

i=1 (xi − x̄n) (xi − x̄n)
⊤. Denote Ip as the p × p

identity matrix. Motivated by the regularized Hotelling’s T 2 test statistic used in the high-

dimensional mean test (Chen et al., 2011; Ha et al., 2021), we modify (1.1) as

d2i (µ, Sn(λ)) = (xi − µ)⊤ [Sn(λ)]
−1 (xi − µ) , (1.4)

where Sn(λ) = Sn + λIp, and λ > 0 is a scalar tuning parameter. Here, the product λIp is

the perturbation that we add to the covariance estimator Sn, such that the matrix Sn(λ) is

positive definite, and hence invertible. Boudt et al. (2019) suggest adding a preprocessing step

to standardize each xi as

ui = D−1
X (xi − vX) ,

where DX is a diagonal matrix in which the jth diagonal element is the Qn estimator (Rousseeuw

and Croux, 1993), and vX is a location vector with elements that consist of the medians of all

the variables. Then, they define the regularized sample covariance matrix by

K = ρT + (1− ρ)cαSU ,

where SU is the sample covariance matrix of U = {u1, . . . ,un}, T is a predetermined positive-
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definite target matrix, ρ is a regularization parameter selected to bound the condition number of

K, and cα is the consistency factor defined by Croux and Haesbroeck (1999). However, there is

no distributional result or reweighting step in method of Boudt et al. (2019), and it is not easy

to obtain appropriate standardized observations in high-dimensional settings.

Here, we consider outlier detection for the large p/n scenario, where c1 ≤ p/n ≤ c2, with c1

and c2 being some positive constants. By relaxing the Gaussian assumption, we derive the exact

distribution of (1.4). We then propose a high-breakdown minimum ridge covariance determinant

estimator. We explore the asymptotic distribution of the modified Mahalanobis distance related

to the proposed estimator under certain moment conditions, and obtain a theoretical cutoff

value for outlier identification, which is the basis for the proposed outlier detection procedure.

We improve the outlier detection power by adding a one-step reweighting procedure. Lastly, we

use simulation studies and an analysis of real data to show that the proposed procedure achieves

higher detection power against sparse signals than that of its main competitors.

The remainder of the paper is organized as follows. In Section 2, we give our model assump-

tions, introduce the minimum ridge covariance determinant estimator, and present the main

results. In Section 3, we examine the performance of the proposed methods using simulations

and a real-data analysis. We conclude the paper in Section 4. All theoretical proofs are provided

in the Appendix.
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2. Methods and properties

2.1 Model assumptions

Let Xn be a pn-dimensional random vector admitting the independent components model

Xn = TpnZn + µn, (2.1)

where µn = (µ1,n, . . . , µpn,n)
⊤ is the location vector, Tpn is a pn × pn full-rank transformation

matrix, and Zn is a pn-dimensional random vector with independent and identically distributed

(i.i.d.) components. Denote the jth component of Zn by zj,n. For simplicity, we suppress the

subscript n in the above notation if there is no confusion in the context.

Let FΣp denote the empirical spectral distribution (ESD) of a matrix Σp (Bai and Silverstein,

2010), that is,

FΣp(u) =
1

p

p∑
j=1

I[λj ,∞)(u),

where λj, for j = 1, . . . , p, are the eigenvalues of Σp, and IA(·) denotes the indicator function of

the set A.

Our main assumptions are as follows:

Condition A1. p, n → ∞ such that cn ≜ p/n → c ∈ (0,∞).

Condition A2. Σp ≜ TpT
⊤
p is a p× p positive-definite matrix.

Condition A3. FΣp converges to a proper probability measure F as p → ∞.

Condition A4. lim supp→∞ ∥Σp∥ < ∞ and lim supp→∞
∥∥Σ−1

p

∥∥ < ∞, where ∥ · ∥ denotes the

spectral norm.

Condition A5. The first four moments of z1 match those of the standard normal distribution

N(0, 1).
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2.2 The minimum ridge covariance determinant estimate

Conditions A1–A4 are common in research on the ESD of a high-dimensional sample covariance

matrix; see, for example, Chen et al. (2011) and Ha et al. (2021). The four-moment matching

condition in Condition A5 is required to obtain the limiting distribution of (1.4). Condition

A5 is most closely related to the four-moment theorem for random covariance matrices of Tao

and Vu (2012). The first and second moment conditions of z1 are easy to meet in practice.

The third moment condition is necessary for some of our lemmas, especially Lemma A.2. The

fourth moment is essential for the proof of Lemma A.4, given in the Appendix. Extending the

theoretical results using a relaxed version of Condition A5 is left to future research.

2.2 The minimum ridge covariance determinant estimate

The classical minimum covariance determinant procedure finds a subset of observations that have

a sample covariance matrix with the smallest determinant by iteratively computing and sorting

the Mahalanobis distances of each observation. To generalize this procedure to high-dimensional

data sets, our method searches for a subset of h observations that minimizes the determinant of

the ridge sample covariance matrix.

Let X = {x1, . . . ,xn} be a collection of n observations of Xn in (2.1). Define H = {H ⊂

{1, . . . , n} : |H| = h, h > n/2}, the collection of all subsets of size h, where |H| denotes the

cardinality of H. We set h > n/2, because potential outliers account for no more than half of

the total observations. For any H ∈ H, denote x̄H = |H|−1∑
i∈H xi,

SH = |H|−1
∑
i∈H

(xi − x̄H) (xi − x̄H)
⊤ ,

and SH(λ) = SH+λIp, with λ ∈ (0,∞), a ridge sample covariance matrix in terms of {xi, i ∈ H}.

It is easy to see that SH(λ) for a given λ is positive definite.

Definition 1. The minimum ridge covariance determinant (abbreviated as RICD) estimate of
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2.2 The minimum ridge covariance determinant estimate

µ, the multivariate location parameter, for a given λ > 0, is defined as

µ̂RICD = x̄HRICD
with HRICD = argmin

H∈H
det[SH(λ)]. (2.2)

Note that for p > h, the MCD estimate (Rousseeuw, 1985) becomes ill-defined, because

det[SH ] = 0 for such H. Denote the scatter estimate of Σp by Σ̂RICD = SHRICD
(λ). Note that

µ̂RICD and Σ̂RICD can be shown to be location invariant and orthogonal equivariant, but not

affine equivariant. See (Lopuhaä and Rousseeuw, 1991) for the definitions of location invariance,

orthogonal equivariance, and affine equivariance of a covariance estimate.

When X is contaminated, there exist one or more xi that are not observations of Xn in (2.1).

These xi may be arbitrary values, or go to ∞ as n → ∞. Thus, x̄n is no longer an appropriate

estimate of µ, and ∥x̄n∥F may be arbitrarily large, such that it “breaks down,” where ∥ · ∥F

denotes the Frobenius norm. The finite-sample breakdown point (Maronna et al., 2019) εn of an

estimate θ̂n of the parameter θ is the smallest proportion of observations from X that need to

be replaced by arbitrary values to carry θ̂n beyond all bounds:

εn(θ̂n,X ) = min
1≤t≤n

{
t/n : sup

X̃

∥∥∥θ̂n(X )− θ̂n

(
X̃
)∥∥∥

F
= ∞

}
,

where X̃ = {x̃1, . . . , x̃n} is a data set with at least (n− t) elements in common with X , that is,

|X ∩ X̃ | ≥ n− t. It is easy to see that εn(x̄n,X ) = 1/n. For the finite-sample breakdown point

of the proposed estimates, we have the following theorem.

Theorem 1. Suppose that n/2 < h < n and λ > 0. Then, we have

εn (µ̂RICD,X ) = εn(Σ̂RICD,X ) = min{(n− h+ 1)/n, 0.5}. (2.3)

Theorem 1 shows that the proposed estimates can achieve the highest breakdown value,

that is, 50%, when h = [n/2] + 1, where [a] denotes the integer part of a. To achieve the best
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2.2 The minimum ridge covariance determinant estimate

performance in practice, while ensuring εn (µ̂RICD,X ) and εn(Σ̂RICD,X ) are as high as possible,

we recommend a default choice of hdefault = [n/2] + 1.

To find HRICD defined in (2.2), we modify the fast minimum covariance determinant al-

gorithm (Rousseeuw and Van Driessen, 1999) by replacing the Mahalanobis distance with its

high-dimensional counterpart (1.4). However, when n < p+ 1, the original algorithm requires a

random initial subset Hini containing p+ 1 data points sampled from X . To solve this problem,

we set the size of the random initial subset to hini = hdefault, given that εn (µ̂RICD,X ) does not

depend on p.

Similarly to Rousseeuw and Van Driessen (1999), we refer to the construction in the following

theorem as a concentration step, consisting of two parts. This theorem illustrates the function

of the second part of the concentration step, that is, sorting the distances of all xi to the center

of the subset obtained in the first part. By performing this part in the concentration step, we

obtain a more concentrated h-sized subset, with a lower possibility of being contaminated by

atypical points. This guarantees that an iteration process of repeating concentration steps leads

to an optimal H, which, for convenience, is still denoted as HRICD.

Theorem 2. Let H be a subset of {1, . . . , n}, with |H| = h > n/2. If H̃ ⊂ {1, . . . , n} with∣∣∣H̃∣∣∣ = h is such that
{
d2i (x̄H , SH(λ)) : i ∈ H̃

}
= {d2(1) (x̄H , SH(λ)) , . . . , d

2
(h) (x̄H , SH(λ))}, where

d2(1) (x̄H , SH(λ)) ≤ . . . ≤ d2(n) (x̄H , SH(λ)) denote the order statistics of {d2i (x̄H , SH(λ)) , for i =

1, . . . , n}, then

det [SH̃(λ)] ≤ det [SH(λ)]

with equality if and only if x̄H = x̄H̃ and SH(λ) = SH̃(λ).
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2.3 Asymptotic properties

2.3 Asymptotic properties

The following theorem serves as a theoretical background for constructing a rule for identifying

outliers. We first define additional notation:

Θ(1) (λ, c, A) =
1− λm1(−λ)

1− c [1− λm1(−λ)]
,

Θ(2) (λ, c, A) =
1− λm1(−λ)

[1− c+ cλm1(−λ)]3
− λ

m1(−λ)− λm2(−λ)

[1− c+ cλm1(−λ)]4
,

(2.4)

where c is a constant, A is a p× p nonnegative-definite matrix, m1(z) is defined as the Stieltjes

transform of the ESD of A, m1(z) = tr (A− zIp)
−1 /p, and m2(z) = tr (A− zIp)

−2 /p.

Theorem 3. Assume that Conditions A1–A5 hold. Let X1,n, . . . ,Xn,n be i.i.d. random vectors

that have the same distribution as Xn in (2.1). Then, for any k and λ > 0, we have

√
p
(
(1/p)d2k(X̄n, Sn(λ))−Θ(1) (λ, cn, Sn)

)√
2Θ(2) (λ, cn, Sn)

D→ N(0, 1), as p → ∞, (2.5)

where X̄n = n−1
∑n

i=1Xi,n, Sn(λ) = Sn + λIp, with Sn = n−1
∑n

i=1

(
Xi,n − X̄n

) (
Xi,n − X̄n

)⊤
,

and “
D→ ” denotes convergence in distribution.

Note that we can suppress the second subscript n in X1,n, . . . ,Xn,n if there is no confusion

in the context.

Because the computations of Θ(1) (λ, cn, Sn) and Θ(2) (λ, cn, Sn) do not require any knowledge

of the true covariance matrix Σp beyond its positive definiteness, Theorem 3 provides a practical

and efficient way for determining the cutoff value for identifying outliers.

2.4 The minimum ridge covariance determinant procedure

We adapt the procedure of the fast minimum covariance determinant approach (Rousseeuw and

Van Driessen, 1999) to solve the optimization problem (2.2) in a high-dimensional setting. We

present a procedure to find HRICD and the raw cutoff. We first explain what we mean by
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2.5 Refined minimum RICD procedure

applying the concentration step described in Theorem 2 to a subset of {1, . . . , n}, ℓ times: apply

the concentration step to this subset, say H(0), and obtain a new subset of {1, . . . , n}, say H(1);

apply the concentration step to H(1), and obtain another new subset of {1, . . . , n}, say H(2);

repeat ℓ− 2 times, and obtain the final subset of {1, . . . , n}, say H(ℓ).

Denote zα as the upper α-quantile of the standard normal distribution. Our procedure is

given below.

Algorithm 1: The minimum ridge covariance determinant (RICD) procedure.

Step 1. Randomly sample cs initial subsets Hj,ini from {1, . . . , n}, with |Hj,ini| = [n/2] + 1, for

j = 1, . . . , cs. Apply the concentration step to each initial subset three times, and obtain

cs concentrated subsets. Select l subsets from the above cs concentrated subsets that have

the lowest ridge covariance determinants.

Step 2. For each subset in the above l subsets, continue applying the concentration step until

convergence, and obtain l final subsets. Select the best subset, with the minimum ridge

covariance determinant as HRICD.

Step 3. Compute µ̂RICD and Σ̂RICD, and Θ(1) (λ, ch, SHRICD
) and Θ(2) (λ, ch, SHRICD

), with ch =

p/h. For a given significance level of α, the kth observation is declared an outlier if

d2k

(
µ̂RICD, Σ̂RICD

)
> pΘ(1) (λ, ch, SHRICD

) + zα
{
2pΘ(2) (λ, ch, SHRICD

)
}1/2

. (2.6)

2.5 Refined minimum RICD procedure

A one-step reweighting scheme is often an effective way of increasing the efficiency of an algorithm

(Cerioli, 2010; Ro et al., 2015). Therefore, we improve the power of the proposed outlier test,

described in Section 2.4, by adding a further reweighting step. Following Ro et al. (2015), we

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0142



2.5 Refined minimum RICD procedure

first assume that the parameters µ and Σp are known, and define the weights

Wk =


0 if d2k (µ, Sn(λ)) > aδ,

1 otherwise,

(2.7)

where aδ is the upper δ-quantile of the distribution of d2k (µ, Sn(λ)). By (A1) in Lemma A.4,

given in the Appendix, it follows that

aδ = tr
(
Sn(λ)

−1Σp

)
+ zδ

√
2 tr (Sn(λ)−1Σp)

2. (2.8)

We have the following proposition.

Proposition 1. Assume that Conditions A1–A4 hold. Let X1, . . . ,Xn be i.i.d. p-dimensional

random vectors from Np(µ,Σp). Then, E (Xkj | Wk = 1) = µj, the jth element of µ, and

Var (Xkj | Wk = 1) = σjj

1− 2ϕ (zδ) (ΣpSn(λ)
−1Σp)jj

σjj(1− δ)
√

2 tr (Sn(λ)−1Σp)
2
+ o(1)

 ≡ σjjτj, (2.9)

where (ΣpSn(λ)
−1Σp)jj is the jth diagonal element of ΣpSn(λ)

−1Σp, for j = 1, . . . , p, and ϕ is the

standard normal density function.

This proposition reveals that Var (Xkj | Wk = 1) is smaller than the true scatter parameter

σjj. Therefore, if too many observations are identified as outliers, we have a biased type-I

error. Cerioli (2010) shows by simulation that multiplying the raw MCD scatter estimate by a

proportionality constant kMCD(h, n, v) improves the finite-sample performance of its algorithm.

Denote WRICD = {k1, . . . , knw} as the set of indices of the observations xk for which wk = 1,

where wk = 0 if (2.6) holds, wk = 1 otherwise, and nw =
∑n

k=1 wk. Following Cerioli (2010), we

refine our estimates as follows:

µ̃ = x̄WRICD
, S̃ = kRICD(h, p)SWRICD

, (2.10)
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2.5 Refined minimum RICD procedure

where kRICD(h, p) is an adjustment coefficient that depends on both h and p.

It is difficult to obtain a consistent estimate of τj in (2.9) in a high-dimensional setting for

j = 1, . . . , p. Nevertheless, it can be shown that

median1≤j≤p τ
−1
j ≈

1 + 2ϕ (zδ) tr (Sn(λ)
−1Σp)

p(1− δ)
√

2 tr (Sn(λ)−1Σp)
2

 {1 + o(1)}, p → ∞,

where tr (Sn(λ)
−1Σp) and tr (Sn(λ)

−1Σp)
2
can be estimated more easily. By Lemma A.2 in the

Appendix, we can set the scaling factor kRICD(h, p) in (2.10) as

kRICD(h, p) = 1 +
2ϕ (zδw)Θ

(1) (λ, ch, SHRICD
)

(1− δw)
√
2pΘ(2) (λ, ch, SHRICD

)
, (2.11)

where δw = 1−nw/n is the actual proportion of observations that are effectively excluded in the

reweighting step. Our refined RICD procedure for outlier detection is summarized as follows.

Algorithm 2: Refined minimum RICD procedure

Step 1. Select the significance level α. Set h = [n/2]+1. Choose cs, for example, cs = 100, and

l, for example, l = 10. Apply Algorithm 1. Calculate the distance d2k

(
µ̂RICD, Σ̂RICD

)
, and

assign a weight to each observation according to (2.6), based on an appropriately chosen

δ, for example, δ = α/2.

Step 2. Obtain nw and WRICD, and compute the refined location and scatter estimates µ̃ and

S̃, respectively, using (2.10) and (2.11), respectively.

Step 3. Calculate the refined distance d2k

(
µ̃, S̃(λ)

)
, update Θ(1)

(
λ, cnw , S̃

)
and Θ(2)

(
λ, cnw , S̃

)
according to (2.4) with cnw = p/nw and S̃(λ) = S̃ + λIp. For a given significance level of

α, the kth observation is declared an outlier if

d2k

(
µ̃, S̃(λ)

)
> pΘ(1)

(
λ, cnw , S̃

)
+ zα

{
2pΘ(2)

(
λ, cnw , S̃

)}1/2

. (2.12)
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2.6 Choice of λ

2.6 Choice of λ

Chen et al. (2011) suggest using the asymptotic approximation to choose the degree of regu-

larization in their RHT test statistic (2). Based on the asymptotic properties of the modified

Mahalanobis distance d2 (x̄n, Sn(λ)), we propose a data-driven approach for choosing the degree

of regularization λ. Specifically, for each λ, we first calculate Θ(1) (λ, cn, Sn) and Θ(2) (λ, cn, Sn)

based on the observed data X . Then, for a target significance level α, the difference between

d2 (x̄n, Sn(λ)) and its asymptotic approximation is measured by

Dα(λ) = median1≤k≤n d
2
k (x̄n, Sn(λ))− pΘ(1) (λ, cn, Sn)− zα

{
2pΘ(2) (λ, cn, Sn)

}1/2
.

We select λ as

λ̂ = min {λ : λ ∈ Ξ, |Dα(λ)| ≤ ϱ} ,

where Ξ is a prespecified selecting range for λ, and ϱ is a small positive value. We set α = 0.05,

Ξ = [0.05, 200], and ϱ = 1 in our simulation studies. Note that the optimal λ̂ remains unchanged

in the application of Algorithm 2 after it is chosen.

3. Numerical studies

3.1 Simulations

In this section, we carry out simulation studies to evaluate the performance of the proposed

procedure (refined RICD). We generate the data set X = {x1, . . . ,xn} in two scenarios.

Scenario (I):

Here, x1, . . . ,xn are independently distributed observations, where xi is an observation

from an ϵ-contaminated multivariate normal distribution (1 − ϵ)Np (0,Σp) +
1
2
ϵNp (κηi,Σp) +

1
2
ϵNp (−κηi,Σp), unless stated otherwise. Two cases of ηi are considered: (i) (dense mean vector
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3.1 Simulations

case): ηi is the normalized p-dimensional vector ζi consisting of p i.i.d. random variables from

the uniform distribution U(0, 1), that is, ηi = ζi/ ∥ζi∥F ; and (ii) (sparse mean vector case) ηi is

the normalized p-dimensional vector ζi in which [p0.1] randomly selected elements are i.i.d. from

U(0, 1), and the others are all zeros, that is, ηi = ζi/ ∥ζi∥F .

We fix the sample size n = 100, set the dimension p as 100, 200, and 400, and let the con-

tamination ratio ϵ be 0.1 or 0.2. The two settings of the covariance structure and the magnitude

of abnormality κ are given below:

Case (a) (Autoregressive correlation structure setting) Σp =
(
0.3|i−j|)

p×p
; κ = 8, 9, 10,

respectively, for p = 100, 200, 400;

Case (b) (Random structure setting) Σp = Q⊤D0Q, with D0 a diagonal matrix with diagonal

elements djj
i.i.d.∼ U(1, 5), for j = 1, . . . , p, and Q an orthonormal matrix constructed from

the spectral decomposition of W⊤W (W⊤W = Q⊤ΛQ), with W = (wij)p×p being such that

wij
i.i.d.∼ U(0, 1); κ = 12, 14, 16, respectively, for p = 100, 200, 400.

Scenario (II) (Non-Gaussian scenario):

Case (c) Let the p-dimensional random vector ξ = 0.7827γ + 0.6224ν, where γ has i.i.d.

elements with the common distribution U(−
√
3,
√
3), and ν, independent of γ, has i.i.d. elements

with the common density function

f(ν) =


√
2
2
e−

√
2ν , if ν ≥ 0,

√
2
2
e
√
2ν , if ν < 0.

It can be shown that the distribution of ξ1, the first element of ξ, satisfies Condition A5. Denote

the distribution of ξ by Fξ. Replace the ϵ-contaminated multivariate normal distribution in

Scenatio (I) with (1 − ϵ)Fξ +
1
2
ϵNp (κηi, Ip) +

1
2
ϵNp (−κηi, Ip); κ = 8, 9, or 10, respectively, for

p = 100, 200, or 400.
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3.1 Simulations

Table 1: Average type-I error (%) by the proposed procedure for various p, ϵ, and α.

ϵ = 0.1 ϵ = 0.2

ηi Case p α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(i) (a) 100 1.74 6.97 13.2 1.21 5.56 11.13

200 1.41 6.59 13.15 1.00 5.28 11.16

400 1.38 6.50 12.16 0.97 5.16 9.77

(b) 100 1.62 6.86 12.89 1.22 5.44 10.75

200 1.38 6.48 12.74 0.97 5.15 10.52

400 1.26 6.05 11.02 0.83 4.50 8.03

(c) 100 1.63 6.06 11.49 1.09 4.84 9.55

200 1.33 6.00 11.73 0.92 4.74 9.81

400 1.31 5.99 10.87 0.90 4.66 8.60

(ii) (a) 100 1.75 7.00 13.17 1.24 5.60 11.16

200 1.42 6.63 13.14 1.02 5.30 11.09

400 1.41 6.52 12.19 1.02 5.15 9.54

(b) 100 1.61 6.85 12.87 1.20 5.41 10.75

200 1.39 6.49 12.71 0.98 5.17 10.50

400 1.27 6.05 10.75 0.87 4.56 7.97

(c) 100 1.61 6.08 11.52 1.08 4.84 9.56

200 1.35 6.00 11.73 0.92 4.71 9.76

400 1.29 5.99 10.76 0.92 4.65 8.40
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3.1 Simulations

We compare the performance of the proposed procedure (RICD) with that of several existing

methods, namely, the refined minimum diagonal product procedure (RMDP) of Ro et al. (2015),

the block diagonal product procedure (BDP) of Li and Jin (2022), and the principal component

outlier detection procedure (PCout) of Filzmoser et al. (2008), for each setting. We evaluate

the outlier identification performance using the type-I error rate, that is, the proportion of good

observations that are incorrectly classified as outliers, and the detection power, that is, the

proportion of contaminated observations that are correctly flagged. The average type-I error

rate ᾱ and the detection power β̄ presented in this section are calculated from 500 replications.

The average type-I error rates (%) of the the proposed RICD procedure for various p and ϵ

are displayed in Table 1, where the nominal significance level α is set to be 0.01, 0.05, or 0.1.

The results show that the empirical type-I error rates are close to the nominal levels in most

settings.

The simulation results for the four methods with α = 0.05, ϵ = 0.1, and 0.2 are summarized

in Tables 2–3, showing that (i) the proposed method outperforms both the RMDP and the BDP

procedures in terms of detection power in most cases, and (ii) the PCout method exhibits similar

performance to that of our method in Case (i) for ϵ = 0.1. However, the former has a conservative

type-I error rate when the contamination ratio increases to 0.2, and suffers from some power loss

in Case (ii).

In Scenario (I), we consider the following radial contamination scheme (Cerioli, 2010):

Case (d) (Scatter outliers) x
(ϵ)
i is an observation from (1− ϵ)Np (0,Σp)+ ϵNp

(
0,Σ(i)

)
, where

Σp is set as in Case (a), [p0.5] random diagonal components of Σ(i) are 7.5, and the other entries

are the same as those of Σp.

We fix the significance level α = 0.05 in this case. A comparison of the results with different
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3.1 Simulations

Table 2: Average type-I error (%) and detection power (%), where α = 0.05 and ϵ = 0.1.

RICD RMDP BDP PCout

ηi Case p ᾱ β̄ ᾱ β̄ ᾱ β̄ ᾱ β̄

(i) (a) 100 6.97 94.60 6.59 94.22 6.95 91.72 5.33 97.24

200 6.59 92.53 6.19 92.69 7.34 90.92 5.01 97.52

400 6.50 90.09 5.86 87.05 7.94 85.82 5.15 97.19

(b) 100 6.86 88.47 6.10 86.72 6.61 83.31 5.65 92.91

200 6.48 88.21 6.15 87.11 7.32 84.17 5.09 95.33

400 6.05 83.56 5.85 83.92 8.42 83.67 4.71 95.73

(c) 100 6.06 97.80 6.15 97.24 6.41 95.38 4.61 99.33

200 6.00 96.61 6.12 96.29 7.57 94.98 4.15 100.00

400 5.99 93.76 5.96 93.20 8.34 91.70 4.38 98.57

(ii) (a) 100 7.00 97.35 6.33 92.80 6.79 95.07 6.86 30.79

200 6.63 95.12 6.22 90.48 7.34 92.70 7.06 21.11

400 6.52 92.42 6.17 83.68 8.47 84.60 7.62 17.64

(b) 100 6.85 88.28 6.31 81.71 6.80 83.28 7.66 24.76

200 6.49 88.13 6.40 81.72 7.60 83.19 7.20 16.59

400 6.05 84.92 5.99 77.01 8.70 78.98 7.66 14.69

(c) 100 6.08 97.66 6.16 95.18 6.59 95.66 6.98 39.96

200 6.00 96.27 6.11 93.11 7.58 93.40 6.63 27.44

400 5.99 94.27 5.78 86.49 8.57 85.84 7.03 19.46
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3.1 Simulations

Table 3: Average type-I error (ᾱ %) and detection power (β̄ %), where α = 0.05 and ϵ = 0.2.

RICD RMDP BDP PCout

ηi Case p ᾱ β̄ ᾱ β̄ ᾱ β̄ ᾱ β̄

(i) (a) 100 5.56 93.38 4.89 91.80 5.25 87.92 2.22 98.12

200 5.28 91.42 4.87 89.87 5.78 86.28 1.97 99.62

400 5.19 88.53 4.31 84.26 6.17 81.13 1.69 99.85

(b) 100 5.44 84.88 4.49 83.85 4.81 77.58 2.04 99.42

200 5.15 85.12 4.55 83.43 5.73 78.54 1.71 99.96

400 4.50 79.50 4.24 78.63 6.15 76.34 1.60 99.95

(c) 100 4.84 96.84 4.67 96.76 5.31 93.89 1.55 99.99

200 4.74 95.67 4.57 94.84 5.87 91.59 1.39 100.00

400 4.66 92.22 4.46 90.84 6.62 87.62 1.26 100.00

(ii) (a) 100 5.60 96.28 4.76 90.95 5.20 93.44 5.63 30.88

200 5.30 94.10 4.73 86.91 5.78 89.30 6.57 19.99

400 5.15 90.64 4.88 79.92 7.13 81.51 6.91 15.49

(b) 100 5.41 85.48 4.90 78.20 5.31 79.20 6.24 23.06

200 5.17 85.53 5.06 77.80 6.04 79.57 6.78 16.90

400 4.56 81.06 4.91 72.98 7.28 74.80 7.14 14.66

(c) 100 4.84 96.79 4.78 93.63 5.25 93.96 5.59 35.75

200 4.71 94.92 4.82 90.21 6.23 90.76 5.53 24.93

400 4.65 93.09 4.55 83.70 6.96 82.62 6.37 19.55
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3.2 Real-data analysis

Table 4: Average type-I error (ᾱ %) and detection power (β̄ %) in Case (d), where α = 0.05.

RICD RMDP BDP PCout

Case ϵ p ᾱ β̄ ᾱ β̄ ᾱ β̄ ᾱ β̄

(d) 0.1 100 6.89 89.00 6.27 86.74 6.70 89.25 7.23 33.86

200 6.55 91.25 6.36 89.23 7.48 91.96 7.08 26.64

400 6.46 94.14 5.90 92.15 8.14 94.60 6.90 25.51

0.2 100 5.62 87.30 4.76 83.35 5.21 86.20 5.61 33.02

200 5.28 89.45 4.87 87.13 5.97 90.26 5.82 25.67

400 5.15 93.00 4.30 90.17 6.17 93.12 5.79 23.64

contamination ratios are reported in Table 4, which shows that the proposed method simultane-

ously maintains the desired type-I error rate and achieves high detection power. Similarly to the

location outlier settings, the PCout procedure appears to be insensitive to sparse signals. The

BDP procedure does not control the type-I error rate as well as the proposed method does for

p ≥ 200 and ϵ = 0.1.

3.2 Real-data analysis

We illustrate the proposed method on an octane data set consisting of near-infrared absorbance

spectra, with p = 226 wavelengths collected on n = 39 gasoline samples. The data set is described

in Esbensen et al. (1996), and is available in the R package rrcov. Because this data set has

a large p/n ratio, we cannot compute the original minimum covariance determinant estimate.

Furthermore, because the 25th, 26th, 36th, 37th, 38th, and 39th samples contain added ethanol,
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Figure 1: Q-Q plot of the distance measures based on the RICD.

they are outliers. We apply the proposed method to this data set at a significance level of

0.01, and record the distance measures
[
d2(µ̃, S̃(λ))− pΘ(1)(λ, cnw , S̃)

]
/
[
2pΘ(2)(λ, cnw , S̃)

]1/2
(see (2.12)). The Q-Q plot of the distance measures is given in Figure 1, in which the dashed

horizontal line indicates the cutoff value, “good” points are around the black solid line, and

the true outliers are labeled as solid points. This figure clearly demonstrates that the proposed

procedure correctly identifies all six outliers.

Additional numerical studies are given in the Supplementary Material.

4. Conclusion

We have proposed a new outlier detection procedure based on the ridge sample covariance matrix.

The resulting high-breakdown ridge covariance determinant estimate is well defined for high-

dimensional data and contains more information on the correlations between the variables than
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the MDP estimate does (Ro et al., 2015). We obtain the asymptotic distribution of the modified

Mahalanobis distance by relaxing the commonly used Gaussian assumption. This novel outlier

detection procedure first finds a clean subset by applying a concentration step, and then identifies

outliers with modified distances that are above the cutoff value. The regularization parameter is

selected adaptively based on the data, thus enhancing the robustness of the proposed method.

Using simulations and a real-data example, we have shown that the proposed method is robust

to the masking and swamping effects of the contaminated data, and outperforms the existing

RMDP, BDP, and PCout methods in certain situations.

Supplementary Material

Supplementary Material available online includes additional simulation results and a real-data

example.

Acknowledgments

The authors thank the editor, associate editor, and two anonymous referees for their insight-

ful comments and constructive suggestions. This work was partially supported by the National

Natural Science Foundation of China (Grants 72111530199, 12231017, 72293573), Natural Sci-

ence Foundation of Anhui Province of China (Grants 2108085J02), and Natural Sciences and

Engineering Research Council of Canada (Grant RGPIN-2017-05720).

Appendix

First, we give some lemmas.

Lemma A.1. (Lemma 4 of Chen et al. (2011)) Given random variables {xn, yn}∞n=1. fn (xn, yn)
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is a real function of xn and yn. If fn | Fn
D→ G and distribution G is independent of Fn, here

| Fn denotes conditional on Fn and Fn is the σ-field generated by {y1, . . . , yn}, then we have

fn
D→ G.

Lemma A.2. (Theorem 2.3 of Ha et al. (2021)) Assume that Conditions A1–A5 hold. Let

X1,n, . . . ,Xn,n be i.i.d. random vectors that have the same distribution as Xn in (2.1). For any

λ > 0, we have

√
p

∣∣∣∣1p tr
(
Sn(λ)

−1Σp

)
−Θ(1) (λ, cn, Sn)

∣∣∣∣ p→ 0

and

1

p
tr
(
Sn(λ)

−1Σp

)2 −Θ(2) (λ, cn, Sn)
p→ 0, as p → ∞,

where “
p→ ” denotes convergence in probability, Θ(i), i = 1, 2, are defined in (2.4).

Lemma A.3. (Lemmas 4.2–4.4 of Ha et al. (2021)) Assume that Condition A1 holds. Let A be

a p× p nonrandom symmetric matrix with bounded spectral norm, and Z = (zij) a p×n random

matrix whose entries are i.i.d., satisfying

E z11 = 0, E z211 = 1, E z411 < ∞, and |z11| ≤ ηn
√
n,

where {ηn} is a deterministic sequence with ηn ↓ 0 whose convergence rate can be made arbitrarily

slow. Then

E
∣∣z̄⊤

k Az̄k

∣∣v ≤ kv, E

∣∣∣∣ 1nz⊤
k Azk

∣∣∣∣v ≤ kv, E
∣∣z̄⊤

k Azk

∣∣v ≤ kv, v = 1, 2, . . .

where z̄k = 1
n

∑n
j ̸=k zj, k = 1, . . . , n, zj is the jth column of Z, and kv is a constant depending

on v.

When Xk,n ∈ {X1,n, . . . ,Xn,n}, it is difficult to obtain the universality of the CLT for

the proposed estimator directly since Xk,n is not independent of the sample covariance Sn,
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and hence the ridge covariance Sn(λ). Thus we divide the proof into two steps. Let Ωn =

{X1,n, . . . ,Xn,n, . . .} denote the complete set of random vectors generated by model (2.1). At

first, Lemma A.4 is derived to characterize the asymptotic distribution of the modified distance

(1.4) when the objective X̃ /∈ {X1,n, . . . ,Xn,n}. Define d̃2(η, Sn(λ)) = (X̃−η)⊤Sn(λ)
−1(X̃−η).

Lemma A.4. Assume that Conditions A1–A5 hold. Let X1,n, . . . ,Xn,n, . . . be i.i.d. random

vectors that have the same distribution as Xn in (2.1). If the random vector X̃ is independent

of {X1,n, . . . ,Xn,n} and λ > 0, we have

d̃2(µ, Sn(λ))− tr (Sn(λ)
−1Σp)√

2 tr (Sn(λ)−1Σp)
2

D→ N(0, 1), p → ∞, (A1)

where d̃2(µ, Sn(λ)) = (X̃ − µ)⊤Sn(λ)
−1(X̃ − µ).

Lemma A.5. Assume that Conditions A1–A4 hold. Let X1,n, . . . ,Xn,n, . . . be i.i.d. random

vectors that have the same distribution as Xn in (2.1) satisfying that E z11 = 0 and E z211 = 1. If

the random vector X̃ is independent of {X1,n, . . . ,Xn,n} and λ > 0, we have∣∣∣d̃2(X̄n, Sn(λ))− d̃2(µ, Sn(λ))
∣∣∣√

2 tr (Sn(λ)−1Σp)
2

= op(1), p → ∞. (A2)

The asymptotic bias between d̃2(X̄n, Sn(λ)) and d̃2(µ, Sn(λ)) is formally given in Lemma

A.5, which ensures that we can use the raw location and scatter estimators to select a cutoff

value for outlier identification. Next, instead of letting X̃ be independent of {X1,n, . . . ,Xn,n},

we consider the modified distance (1.4) if X̃ ∈ {X1,n, . . . ,Xn,n}.

LetXk0,n = (X1,n, . . . , Xk−1,n, 0, Xk+1,n, . . . , Xn,n)
⊤, X̄k0 =

1
n
X⊤

k0,n1n, Sn,k0 =
1
n
Xk0,nX

⊤
k0,n−

X̄k0X̄
⊤
k0 and S0(λ) = Sn,k0+λIp. Here 1n denotes an n-dimensional vector consisting of 1s. The

asymptotic bias between d2k(X̄n, Sn(λ)) and d2k(X̄k0, S0(λ)) is given in the following lemma.
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Lemma A.6. Assume that Conditions A1–A4 hold. Let X1,n, . . . ,Xn,n be i.i.d. random vectors

that have the same distribution as Xn in (2.1) satisfying that E z11 = 0, E z211 = 1 and E z411 < ∞.

For any Xk,n ∈ {X1,n, . . . ,Xn,n} and λ > 0, the following three arguments hold:∣∣d2k (X̄n, Sn(λ)
)
− d2k

(
X̄k0, S0(λ)

)∣∣√
2 tr (S0(λ)−1Σp)

2
= op(1), (A3)

tr
(
S0(λ)

−1Σp

)2 − tr
(
Sn(λ)

−1Σp

)2
= Op(1), (A4)

tr
(
S0(λ)

−1Σp

)
− tr

(
Sn(λ)

−1Σp

)
= Op(1), p → ∞. (A5)

Although (A1) presupposes that the estimate of µ and Sn(λ) are a sample without outliers,

it is also expected to be roughly valid for the distance d2k(µ̂RICD, Σ̂RICD), where µ̂RICD and Σ̂RICD

are reliable approximations to those obtained from a clean sample. This lemma, in conjunction

with (A1) and (A2), suggests that we could use normal distributions to construct a threshold

rule.

Note that both tr (Sn(λ)
−1Σp) and tr (Sn(λ)

−1Σp)
2
in (A1) involve the unknown covariance

matrix Σp. Thus, Σp needs to be estimated in order to obtain the cutoff value for outlier

identification. By the Stieltjes transform of the empirical spectral measure of a random matrix,

we can simply adapt the estimates Θ(1) (λ, c) and Θ(2) (λ, c) from Ha et al. (2021).

The proofs of Theorems 1–2, Lemmas A.4–A.6, Theorem 3, and Proposition 1 are given

below. For simplicity, we suppress the subscripts of Σp, Sn, Sn(λ) and X̄n, and suppress the

second subscript n in the subscript {ℓ, n} if there is no confusion in the context.

Proof of Theorem 1. First we prove that εn (µ̂RICD,X ) ≤ (n − h + 1)/n. If we replace

(n− h + 1) observations of the original data set X , then the optimal subset H̃RICD of X̃ would
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contain at least one outlier, but the least square method breaks down even with one single outlier.

Denote µ̃RICD = x̄H̃RICD
, it then follows that ∥µ̃RICD∥F is not bounded.

On the other hand, to show εn (µ̂RICD,X ) ≥ (n−h+1)/n, we prove that there exists a value

M , which only depends on X and λ, such that for every X̃ obtained by replacing at most (n−h)

observations in X , the Frobenius norm of the RICD location estimate µ̃RICD based on X̃ is still

bounded by M from above.

If we take any data set X̃ by replacing (n− h) observations in X , there still exists a subset

H1 ∈ H containing indices only corresponding to the data points of the original dataset X . The

determinant of SH1(λ) is

det [SH1(λ)] =

p∏
k=1

ηk ≤

(
1

p

p∑
k=1

ηk

)p

=

[
1

hp

p∑
k=1

∑
j∈H1

{xjk − µ̂k (H1)}2 + λ

]p

≤
(
4N2 + λ

)p
,

where (η1, . . . , ηp) are the eigenvalues of the matrix SH1(λ), µ̂k (H1) denotes the kth component

of x̄H1 , and N is defined as max1≤i≤n,1≤j≤p |xij|.

Let H2 be the optimal subset corresponding to X̃ , then µ̃RICD = x̄H2 . Since h− (n−h) ≥ 1,

the set H2 contains one observation xi0 from X . Thus we have

det [SH2(λ)] = det[A+B] = det(A) · det
(
Ip + A−1B

)
,

where

A = h−1 (xi0 − x̄H2) (xi0 − x̄H2)
⊤ + 2−1λIp,

and

B = h−1
∑

i∈H2,i̸=i0

(xi − x̄H2) (xi − x̄H2)
⊤ + 2−1λIp.
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It follows that

det [SH2(λ)] > det(A)

= 2−pλp det

[
Ip +

2

hλ
(xi0 − x̄H2) (xi0 − x̄H2)

⊤
]

= 2−pλp +
1

h
21−pλp−1 (xi0 − x̄H2)

⊤ (xi0 − x̄H2) .

Let

M = p1/2
[{[(

4N2 + λ
)p − 2−pλp

]
2p−1λ1−ph

}1/2
+N

]
.

If ∥µ̃RICD∥F > M , then there exists j0 such that |µ̂j0 (H2)| > M/p1/2. Thus,

det [SH2(λ)] > 2−pλp +
1

h
21−pλp−1 [xi0j0 − µ̂j0 (H2)]

2

≥ 2−pλp +
1

h
21−pλp−1 [|xi0j0| − |µ̂j0 (H2)|]2

≥ 2−pλp +
1

h
21−pλp−1

[
M

p1/2
−N

]2
=
(
4N2 + λ

)p
by the definition of M . This implies det [SH2(λ)] > det [SH1(λ)], which contradicts the definition

of µ̂RICD. So, we conclude that ∥µ̃RICD∥F ≤ M . Since Σ̂RICD is obtained from µ̂RICD based on

the same subset HRICD, we have εn

(
Σ̂RICD,X

)
= εn (µ̂RICD,X ), which concludes the proof of

Theorem 1.

Proof of Theorem 2. The conclusions of Theorem 2 can be derived from Theorem 1 of Boudt

et al. (2019), which is briefly described below:

For a givenH, Boudt et al. (2019) regularized the sample covariance matrix SH asKH = ρT+

(1−ρ)SH , where 0 < ρ < 1 is a scalar weight coefficient and T is a predetermined positive-definite

target matrix. One can thus compute the distance d2i (x̄H , KH) = (xi − x̄H)
⊤K−1

H (xi − x̄H).

If we take T = Ip and ρ = λ/(1 + λ), we have SH(λ) = (λ + 1)KH , d
2
i (x̄H , SH(λ)) = (λ +

1)−1d2i (x̄H , KH). Thus, Theorem 1 follows from Theorem 1 of Boudt et al. (2019).
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Proof of Lemma A.4. First, let V = Σ1/2S(λ)−1Σ1/2. By Condition A2 and the definition of

S(λ), the matrix V can be decomposed as Q⊤ΛQ, where Q is an orthogonal matrix and Λ is a

diagonal matrix with positive diagonal elements ζn,1 ≤ ζn,2 ≤ · · · ≤ ζn,p. It is obvious that for

any n, the largest eigenvalue of S(λ)−1 is bounded above by 1/λ. On the other hand, Theorem

3.6 in Bai and Silverstein (2010) implies that F S(x) tends to the M-P law under Condition A1

(see Eq.(3.1.1) in Bai & Silverstein, 2010), and hence the largest eigenvalue of S is bounded away

from infinity asymptotically. Therefore, we conclude that {ζn,i} are bounded away from both

zero and infinity asymptotically.

Next, by the definition of V , we have

d̃2(µ, S(λ)) = Ỹ ⊤ΛỸ =

p∑
i=1

ζn,iỹ
2
i =

p∑
i=1

ζn,iwn,i, (A6)

where Ỹ = QΣ−1/2TpZ̃ = (ỹ1, . . . , ỹp)
⊤ with X̃ = TpZ̃ + µ (see the equation (2.1)), and

wn,i = ỹ2i . Since X̃ is independent of S thus independent of Q, by Conditions A2 and A5,

Ewn,i = 1, Ew2
n,i = 3.

Let Wn,i = ζn,i (wn,i − 1), ϑp =
√
2
∑p

i=1 ζ
2
n,i. Denote the σ-field generated by {ζn,1, . . . , ζn,p}

by F . It is easy to see that
√
2pζn,1 ≤ ϑp ≤

√
2pζn,p. Conditional on F , we have E (Wn,i | F) = 0,
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E
(
W 2

n,i | F) = 2ζ2n,i, and
∑p

i=1 E

((
Wn,i

ϑp

)2
| F
)

= 1. It follows that

p∑
i=1

E

(∣∣∣∣Wn,i

ϑp

∣∣∣∣2 ; ∣∣∣∣Wn,i

ϑp

∣∣∣∣ > ϵ | F

)

=
1

ϑ2
p

p∑
i=1

E
(
ζ2n,i (wn,i − 1)2 ; |wn,i − 1| > ϵϑp/ζn,i | F

)
≤ 1

ϑ2
p

p∑
i=1

E
(
ζ2n,p (wn,i − 1)2 ; |wn,i − 1| > ϵϑp/ζn,p | F

)
≤ p

ϑ2
p

E
(
ζ2n,p (wn,i − 1)2 ; |wn,i − 1| > ϵ

√
2pζn,1/ζn,p | F

)
≤ 1

2ζ2n,1
E
(
W 2

n,p; |Wn,p| > ϵ
√
2pζn,1 | F

)
p→ 0, as p → ∞.

Here E(x; a | b) denotes the expected value of x restricted to a while conditioned on b. Then,

according to the Lindeberg-Feller central limit theorem, we have
∑p

i=1 Wp,i

ϑp
| F D→ N(0, 1). Base

on Lemma A.1 we have

d̃2(µ, S(λ))−
∑p

i=1 ζn,i√
2
∑p

i=1 ζ
2
n,i

D→ N(0, 1).

The proof is complete.

Proof of Lemma A.5. By (A6), we have d̃2(µ, S(λ)) = Ỹ ⊤ΛỸ , where Ỹ = (ỹ1, . . . , ỹp)
⊤.

Similarly, for each Xi, i = 1, . . . , n, we can also define Yi = QΣ−1/2TpZi with Xi = TpZi + µ

and Ȳ = n−1
∑n

i=1 Yi, where Yi = (yi1, . . . , yip)
⊤. Then∣∣∣d̃2 (X̄, S(λ)

)
− d̃2 (µ, S(λ))

∣∣∣ = ∣∣∣∣(Ỹ − Ȳ
)⊤

Λ
(
Ỹ − Ȳ

)
− Ỹ ⊤ΛỸ

∣∣∣∣
=
∣∣∣Ȳ ⊤ΛȲ − 2Ỹ ⊤ΛȲ

∣∣∣ ≤ ∣∣Ȳ ⊤ΛȲ
∣∣+ 2

∣∣∣Ỹ ⊤ΛȲ
∣∣∣ .

As discussed in the proof of Lemma A.4, by Conditions A1 and A4 and the fact that the largest

eigenvalue of S(λ)−1 is bounded above by 1/λ, the spectral norm of Λ, ζn,p, is bounded above,

say by ϖ. By Conditions A2 and the definition of Yi, we have

E yij = 0, E y2ij = 1.
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Similar arguments also hold for ỹj, j = 1, . . . , p. Therefore, we have, for large n and p,

E
(∣∣Ȳ ⊤ΛȲ

∣∣) ≤ ϖE
(
Ȳ ⊤Ȳ

)
≤ ϖE

 p∑
j=1

(
1

n

n∑
i=1

yij

)2
 = ϖp/n < 2cϖ,

and

E
(∣∣∣Ỹ ⊤ΛȲ

∣∣∣) ≤ ϖE
(
Ỹ ⊤Ȳ

)
≤ ϖE

[
p∑

j=1

(
1

n

n∑
i=1

yij ỹj

)]
< 2cϖ,

which concludes the lemma.

Proof of Lemma A.6. Following steps of the truncation, centralization, and rescaling similar

to those in Bai and Silverstein (2004), we may assume that the random variables {xij} satisfy

that

Exij = 0, Ex2
ij = 1, Ex4

ij < ∞, and |xij| ≤ ηn
√
n,

where {ηn} is a deterministic sequence such that ηn ↓ 0 whose convergence rate can be made

arbitrarily slow. Under these assumptions, for any α > 4, we have

E |xij|α = O
((

ηn
√
n
)α−4

)
.

Since

X̄ = X̄k0 +
1

n
Xk,

we have

Sn = Sn,k0 + anXkX
⊤
k − n−1XkX̄

⊤
k0 − n−1X̄k0X

⊤
k

= Sn,k+ − n−1
(
XkX̄

⊤
k0 + X̄k0X

⊤
k

)
,

where Sn,k+ = Sn,k0 + anXkX
⊤
k with an = (n − 1)/n2. For simplicity in writing, denote Rn =

Sn(λ), R0 = S0(λ), and R1 = Sn,k+ + λIp. By the inverse matrix formula,

R−1
n = R−1

1 +R−1
1

(
n−1Xk, X̄k0

)
∆−1

 X̄⊤
k0

n−1X⊤
k

R−1
1 , (A7)
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where

R−1
1 = R−1

0 − anR
−1
0 XkX

⊤
k R

−1
0

1 + anX⊤
k R

−1
0 Xk

,

and

∆ = I2 −

 n−1X̄⊤
k0R

−1
1 Xk X̄⊤

k0R
−1
1 X̄k0

n−2X⊤
k R

−1
1 Xk n−1X⊤

k R
−1
1 X̄k0

 .

Denote

Υk =R−1
1

(
n−1Xk, X̄k0

)
∆−1

 X̄⊤
k0

n−1X⊤
k

R−1
1 .

We have

Υk =
Υ(

1− n−1X⊤
k R

−1
1 X̄k0

)2 − n−2X⊤
k R

−1
1 XkX̄⊤

k0R
−1
1 X̄k0

, (A8)

where

Υ =n−1R−1
1 Xk

(
1− n−1X⊤

k R
−1
1 X̄k0

)
X̄⊤

k0R
−1
1

+ n−2R−1
1 X̄k0X

⊤
k R

−1
1 XkX̄

⊤
k0R

−1
1

+ n−2R−1
1 XkX̄

⊤
k0R

−1
1 X̄k0X

⊤
k R

−1
1

+ n−1R−1
1 X̄k0

(
1− n−1X̄⊤

k0R
−1
1 Xk

)
X⊤

k R
−1
1 .

(A9)

Let βk = 1/(1+ anX
⊤
k R

−1
0 Xk

)
. By applying the identity

R−1
1 = R−1

0 − anβkR
−1
0 XkX

⊤
k R

−1
0 , (A10)

we obtain that

X⊤
k ΥXk := I + II + III + IV,
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where

I =n−1βkX
⊤
k R

−1
0 Xk

(
1− n−1βkX

⊤
k R

−1
0 X̄k0

)
×
(
X̄⊤

k0R
−1
0 Xk − anβkX̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

)
,

II =n−2βk

(
X⊤

k R
−1
0 X̄k0 − anβkX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 X̄k0

)
×X⊤

k R
−1
0 Xk

(
X̄⊤

k0R
−1
0 Xk − anβkX̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

)
,

III =n−2β2
kX

⊤
k R

−1
0 Xk

(
X̄⊤

k0R
−1
0 X̄k0

−anβkX̄
⊤
k0R

−1
0 XkX

⊤
k R

−1
0 X̄k0

)
X⊤

k R
−1
0 Xk,

and

IV =n−1βk

(
X⊤

k R
−1
0 X̄k0 − anβkX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 X̄k0

)
×
(
1− n−1βkX̄

⊤
k0R

−1
0 Xk

)
X⊤

k R
−1
0 Xk.

For the first term I, we have

I =n−1βkX
⊤
k R

−1
0 XkX̄

⊤
k0R

−1
0 Xk

− n−2β2
kX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 X̄k0X̄

⊤
k0R

−1
0 Xk

− n−1anβ
2
kX

⊤
k R

−1
0 XkX̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

+ n−2anβ
3
kX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 X̄k0X̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk.

(A11)

Note that βk and ∥Ri∥ for i = n, 0, or 1 are all bounded by some constant. It is easy to show

that the order of the difference between 1/
(
1 +X⊤

k R
−1
0 Xk/n

)
and βk = 1/

(
1 + anX

⊤
k R

−1
0 Xk

)
is OL1 (n

−1), say ιn = OL1 (n
−1), denoting that E |nιn| is bounded by some constant. Thus, we

simplify (A11) by substituting βk with 1/
(
1 +X⊤

k R
−1
0 Xk/n

)
. Similarly, we substitute an with
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1/n there. By applying Lemma A.3 and Cauchy-Schwarz inequality, we obtain that

E
∣∣n−1X⊤

k R
−1
0 XkX̄

⊤
k0R

−1
0 Xk

∣∣
≤
√

E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2 E ∣∣X̄⊤
k0R

−1
0 Xk

∣∣2
=O(1),

E
∣∣n−1X⊤

k R
−1
0 XkX

⊤
k R

−1
0 X̄k0X̄

⊤
k0R

−1
0 Xk

∣∣
≤
√

E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2 E ∣∣X⊤
k R

−1
0 X̄k0X̄⊤

k0R
−1
0 Xk

∣∣2
≤
√
E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2√E
∣∣X⊤

k R
−1
0 X̄k0

∣∣4 E ∣∣X̄⊤
k0R

−1
0 Xk

∣∣4
=O(1),

E
∣∣n−2X⊤

k R
−1
0 XkX̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

∣∣
≤
√

E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2 E ∣∣n−1X̄⊤
k0R

−1
0 XkX⊤

k R
−1
0 Xk

∣∣2
≤
√

E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣2√E
∣∣X̄⊤

k0R
−1
0 Xk

∣∣4 E ∣∣n−1X⊤
k R

−1
0 Xk

∣∣4
=O(1),

and

E
∣∣n−2X⊤

k R
−1
0 XkX

⊤
k R

−1
0 X̄k0X̄

⊤
k0R

−1
0 XkX

⊤
k R

−1
0 Xk

∣∣
≤
√

E
∣∣n−1X⊤

k R
−1
0 XkX⊤

k R
−1
0 X̄k0

∣∣2 E ∣∣n−1X̄⊤
k0R

−1
0 XkX⊤

k R
−1
0 Xk

∣∣2
≤
√

E
∣∣n−1X⊤

k R
−1
0 Xk

∣∣4 E ∣∣X̄⊤
k0R

−1
0 Xk

∣∣4
=O(1),

which imply that I = OL1(1). The orders of the other three terms, that is, II, III, and IV, can

be derived similarly, from which one can verify that

X⊤
k ΥXk = OL1(1).

Furthermore, by (4.33) of Ha et al. (2021), the denominator of Υk in (A8) has the order of
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1 +OL1(1), and hence it follows that

X⊤
k ΥkXk = OL1(1). (A12)

Similarly, it can be shown that

X⊤
k ΥkX̄k0 = OL1(1). (A13)

Returning to the first argument (A3) of Lemma A.6, we have

d2k
(
X̄, Sn(λ)

)
− d2k

(
X̄k0, S0(λ)

)
= (Xk − X̄)⊤R−1

n (Xk − X̄)− (Xk − X̄k0)
⊤R−1

0 (Xk − X̄k0)

= X⊤
k R

−1
n Xk + (X̄k0 + n−1Xk)

⊤R−1
n (X̄k0 + n−1Xk) + 2X⊤

k R
−1
0 X̄k0

− 2X⊤
k R

−1
n (X̄k0 + n−1Xk)−X⊤

k R
−1
0 Xk − X̄⊤

k0R
−1
0 X̄k0,

which, jointly with Lemma A.3, (A7), (A8), (A10), (A12) and (A13), implies that

d2k
(
X̄, Sn(λ)

)
− d2k

(
X̄k0, S0(λ)

)
= −anβkX

⊤
k R

−1
0 XkX

⊤
k R

−1
0 Xk +OL1(1). (A14)

By the end of the proof of their Lemma 4.3 on Page 14 of Ha et al. (2021), we have that for any

zi satisfying the conditions of Lemma A.3,

p∑
i=1

E

(
1

n
|zi|2

)v

≤


O (n−v+1) if v ≤ 2,

O (η2v−4
n n−1) if v > 2.

By replacing the coefficient 1/n of |zi|2 with n−1/2 in the above inequality, and taking v = 2, it

is obvious that
p∑

i=1

E
(
n−1/2 |zi|2

)2 ≤ |O(1)|.

Thus, E(−anβk(X
⊤
k R

−1
0 Xk)

2), the expectation of the first term of (A14), has the order of O(1),

which concludes the first argument of Lemma A.6.

Next, we consider the third argument of Lemma A.6, that is, (A5). We have

tr
(
R−1

0 Σ
)
− tr

(
R−1

n Σ
)
= tr

(
R−1

0 −R−1
0 + anβkR

−1
0 XkX

⊤
k R

−1
0 −Υk

)
Σ.
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As it has been shown above that

tr
(
anβkR

−1
0 XkX

⊤
k R

−1
0

)
Σ = anβkX

⊤
k R

−1
0 ΣR−1

0 Xk = OL1(1),

we only need to find the order of tr(ΥkΣ). By the first term of tr(ΥΣ) in (A9), we have

tr
(
n−1R−1

1 Xk

(
1− n−1X⊤

k R
−1
1 X̄k0

)
X̄⊤

k0R
−1
1 Σ

)
= n−1X̄⊤

k0R
−1
1 ΣR−1

1 Xk

(
1− n−1X⊤

k R
−1
1 X̄k0

)
= OL1(n

−1),

and we can also show that the rest terms are also OL1(n
−1). Thus, we obtain that tr

(
R−1

0 Σ
)
−

tr (R−1
n Σ) = OL1(1).

We now prove the second argument of Lemma A.6, that is, (A4). By the fact that

tr
(
R−1

n ΣR−1
n Σ

)
− tr

(
R−1

0 ΣR−1
0 Σ

)
=

tr
[
−anβkR

−1
0 ΣR−1

0 XkX
⊤
k R

−1
0 Σ +R−1

0 ΣΥkΣ

− anβkR
−1
0 XkX

⊤
k R

−1
0 ΣR−1

0 Σ +ΥkΣΥkΣ

− anβkR
−1
0 XkX

⊤
k R

−1
0 ΣΥkΣ +ΥkΣR

−1
0 Σ

+ a2nβ
2
kR

−1
0 XkX

⊤
k R

−1
0 ΣR−1

0 XkX
⊤
k R

−1
0 Σ

−anβkΥkΣR
−1
0 XkX

⊤
k R

−1
0 Σ

]
,

it follows that tr (R−1
n ΣR−1

n Σ)− tr
(
R−1

0 ΣR−1
0 Σ

)
= OL1(1), which completes the proof of (A4).

Proof of Theorem 3. In view of Lemma A.2 and Lemmas A.2–A.6, Theorem 3 is a natural

extension by applying the Slutsky’s Theorem, as

d2k(X̄, Sn(λ))− tr (Sn(λ)
−1Σ)√

2 tr (Sn(λ)−1Σ)2
= (C1 + C2 + C3 + C4)× C5,

where

C1 =
d2k
(
X̄, Sn(λ)

)
− d2k

(
X̄k0, S0(λ)

)√
2 tr (S0(λ)−1Σ)2

, C2 =
d2k
(
X̄k0, S0(λ)

)
− d2k (µ, S0(λ))√

2 tr (S0(λ)−1Σ)2
,

C3 =
d2k (µ, S0(λ))− tr (S0(λ)

−1Σ)√
2 tr (S0(λ)−1Σ)2

, C4 =
tr (S0(λ)

−1Σ)− tr (Sn(λ)
−1Σ)√

2 tr (S0(λ)−1Σ)2
, C5 =

√
2 tr (S0(λ)−1Σ)2√
2 tr (Sn(λ)−1Σ)2

.
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Proof of Proposition 1. We first consider the moment generating function,

M(T ) = E
(
eT

⊤X1 | w1 = 1
)
. (A15)

Following the discussion about d̃2(µ, S(λ)) in the proof of Lemma A.4, we let V = Σ1/2S(λ)−1Σ1/2.

Assume that V = Q⊤ΛQ, where Q⊤Q = Ip and Λ = diag (ζ1, . . . , ζp). We have

M(T ) =
1

1− δ
E
{
eT

⊤X1I (w1 = 1)
}

=
1

1− δ

1

(2π)p/2|Σ|1/2

∫
{(X1−µ)⊤S(λ)−1(X1−µ)≤aδ}

exp
{
T⊤X1 − (X1 − µ)⊤Σ−1(X1 − µ)/2

}
dX1

=
1

1− δ

1

(2π)p/2
eT

⊤µ+T⊤ΣT /2

∫
{z⊤Λz≤aδ}

exp
{
−
(
z −QΣ1/2T

)⊤ (
z −QΣ1/2T

)
/2
}
dz

=
1

1− δ
eT

⊤µ+T⊤ΣT /2FT (aδ) ,

(A16)

where z = QΣ−1/2(X1−µ), and FT (a) is the cumulative distribution function of the non-negative

definite quadratic form in non-central normal variables, that is

FT (a) = P
(
Z⊤

v ΛZv ≤ a
)
, Zv ∼ N (v, Ip) , v = QΣ1/2T .

Without loss of generality, we prove the proposition for x11 | w1 = 1, whose moment generating

function is

m1 (t1) = E
(
et1x11 | w1 = 1

)
.

In (A15), let T = (t1, 0, . . . , 0)
⊤ with p− 1 components of 0s. Then, it follows from (A16) that

m1 (t1) =
1

1− δ
et1µ1+σ11t21/2Ft1 (aδ) ,

where

Ft1(aδ) =
1

(2π)p/2

∫
{z⊤Λz≤aδ}

exp
{
− (z − t1v1)

⊤ (z − t1v1) /2
}
dz,
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v1 is the first row of QΣ1/2 and v⊤
1 v1 = σ11. Since aδ is the upper δ-quantile of d2k (µ, S(λ)), by

the Berry-Esseen inequality, we have

aδ − tr (S(λ)−1Σ)√
2 tr (S(λ)−1Σ)2

= zδ + o(1).

It is straightforward to show that

Ft1 (aδ)|t1=0 =
1

(2π)p/2

∫
{z⊤Λz≤aδ}

exp
(
−z⊤z/2

)
dz = P

{
d2k(µ, S(λ)) ≤ aδ

}
,

∂Ft1 (aδ)

∂t1

∣∣∣∣
t1=0

=
1

(2π)p/2

∫
{z⊤Λz≤aδ}

(
v⊤
1 z − v⊤

1 v1t1
)
exp

{
− (z − t1v1)

⊤ (z − t1v1) /2
}
dz

∣∣∣∣∣
t1=0

=
1

(2π)p/2

∫
{z⊤Λz≤aδ}

(
v⊤
1 z
)
exp

(
−z⊤z/2

)
dz = 0,

and

∂2Ft1 (aδ)

∂t21

∣∣∣∣
t1=0

=
1

(2π)p/2

∫
{z⊤Λz≤aδ}

{(
v⊤
1 z − v⊤

1 v1t1
)2 − v⊤

1 v1

}
exp

{
− (z − t1v1)

⊤ (z − t1v1) /2
}
dz

∣∣∣∣∣
t1=0

=
1

(2π)p/2

∫
{z⊤Λz≤aδ}

(
p∑

j=1

v21jz
2
j

)
exp

(
−z⊤z/2

)
dz − σ11P

(
d2k(µ, S(λ)) ≤ aδ

)
=− σ11P

{
d2k(µ, S(λ)) ≤ aδ

}
+

p∑
j=1

v21j

Φ
aδ − tr (S(λ)−1Σ)√

2 tr (S(λ)−1Σ)2

− 2ϕ

aδ − tr (S(λ)−1Σ)√
2 tr (S(λ)−1Σ)2

 ζj√
2 tr (S(λ)−1Σ)2

+
aδ − tr (S(λ)−1Σ)√

2 tr (S(λ)−1Σ)2

ζ2j

2 tr (S(λ)−1Σ)2

+ o(1)

 .

Thus, we have

E (x11 | w1 = 1) =
∂m1 (t1)

∂t1

∣∣∣∣
t1=0

=
1

1− δ

{
µ1Ft1 (aδ)|t1=0 +

∂Ft1 (aδ)

∂t1

∣∣∣∣
t1=0

}

= µ1,
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and

Var (x11 | w1 = 1) =
∂2m1 (t1)

∂t21

∣∣∣∣
t1=0

− µ2
1 = σ11 +

1

1− δ

∂2Ft1 (aδ)

∂t21

∣∣∣∣
t1=0

.

Finally, we have

Var (x11 | w1 = 1)

=
1

1− δ

p∑
j=1

v21j

(1− δ)− 2ϕ (zδ)

 ζj√
2 tr (S(λ)−1Σ)2

+ zδ
ζ2j

2 tr (S(λ)−1Σ)2

+ o(1)


=

1

1− δ

p∑
j=1

v21j

(1− δ)− 2ϕ (zδ)
ζj√

2 tr (S(λ)−1Σ)2
+ o(1)


= σ11

1− 2ϕ (zδ)

1− δ

(ΣS(λ)−1Σ)11

σ11

√
2 tr (S(λ)−1Σ)2

+ o(1)


= σ11τ1,

which completes the proof.
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