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We consider the problem of comparing probability densities among multiple groups.

To this end, we develop a new probabilistic tensor product smoothing spline frame-

work to model the joint density of two variables. Under such a framework, the

probability density comparison is equivalent to testing the presence/absence of inter-

actions, for which we propose a penalized likelihood ratio test. Here we show that

the test statistic is asymptotically chi-squared distributed under the null hypothesis.

Furthermore, we derive a sharp minimax testing rate based on the Bernstein width for

nonparametric multi-sample tests, and show that our proposed test statistic is min-

imax optimal. In addition, we develop a data-adaptive tuning criterion for choosing

the penalty parameter. The results of simulations and real applications demonstrate

that the proposed test outperforms conventional approaches under various scenarios.

Key words: minimax optimality; nonparametric test; penalized likelihood ratio test;

smoothing splines; multi-sample test; Wilks’ phenomenon.
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1. Introduction

A fundamental problem in statistics is testing whether the probability densities

underlying U groups of observed data are the same, and is known as the multi-

sample test. This test plays an essential role in scientific fields such as modern

biological sciences and deep learning. For instance, in metagenomics studies,

comparing the densities of specific microbial species (or strains) from different

treatment groups yields insights on the disease and treatments (Bilban et al.,

2006; Turnbaugh et al., 2009; Qin et al., 2012); in genomics, identifying differ-

entially expressed genes among multiple groups or conditions is fundamental

to many downstream analyses; and in machine learning, the multi-sample test

is becoming an essential component in some deep learning algorithms (Li et al.,

2017).

In these modern applications, the underlying distributions usually demon-

strate complex patterns, including multi-modality and long tails, making it dif-

ficult to specify their distributional families. In general, the classic normality-

based tests, such as the two-sample t-test (Anderson, 1958) and the Shapiro–

Wilk test (Shapiro and Wilk, 1965), are not appropriate, and nonparametric

approaches are more appealing, owing to their distribution-free feature. Here

examples include distance-based tests, such as the Kolmogorov–Smirnov (K–

S) test (Darling, 1957) and Anderson–Darling (AD) test (Scholz and Stephens,
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1987), and their variants. An alternative is to apply discretization (“slicing”)

to continuous random variables (Miller and Siegmund, 1982). Jiang et al.

(2015) propose the dynamic slicing test (DSLICE), which penalizes the num-

ber of slices to regularize the test statistics. Gretton et al. (2007, 2012) propose

maximum mean discrepancy (MMD) two-sample tests by embedding the prob-

ability distribution into a reproducible kernel Hilbert space (RKHS). Eric et al.

(2008) propose the regularized MMD test by regularizing the eigenvalues of the

kernel matrix. Kim (2021) extend the MMD test to a multi-sample test using

the maximum of pair-wise MMDs. In addition, several approaches based on a

kernel density estimation have been proposed (Anderson et al., 1994; Cao and

Van Keilegom, 2006; Mart́ınez-Camblor et al., 2008; Mart́ınez-Camblor and

de Uña-Álvarez, 2009; Zhan and Hart, 2014). A common challenge for MMD–

based and kernel density–based testing approaches is the choice of the tuning

parameters, for example, the kernel bandwidth or the roughness penalty pa-

rameter, because the power of such methods is sensitive to these parameters.

Furthermore, they have drawbacks when applied to long-tailed distributions,

because the kernel bandwidth is fixed across the entire sample (Silverman,

1986), leading to low power in terms of detecting changes at the tails. In

many applications, such as gene expression analyses, metagenomics, and eco-

nomics, long-tailed distributions are common.
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To overcome these limitations, we propose a likelihood-based test that can

automatically adapt to densities with different shapes, and develop a data-

adaptive tuning method to automatically choose the penalization parameter.

We consider X as a continuous random vector and Z as a discrete random

variable, indicating the group information. Instead of directly comparing the

multiple densities, we characterize the dependence between X and Z using

its log-transformed joint density η(x, z) within a space H. The key idea is to

uniquely decompose the log-transformed joint density η ∈ H into the main

effects ηX , ηZ and the interaction effect ηXZ . To do so, we use a novel proba-

bilistic decomposition of H in which the magnitude of the interaction exactly

quantifies the density difference between multiple groups. The multi-sample

test is thus equivalent to the interaction test

H0 : ηXZ(x, z) = 0 vs. H1 : ηXZ(x, z) ̸= 0. (1.1)

We propose a penalized likelihood ratio (PLR) test by evaluating the penal-

ized log-likelihood functional of η under H0 and H1, and establish its null dis-

tribution as a chi–squared distribution. Distance–based with distance-based

testing methods are not easily generalizable to multi-sample tests, because

the asymptotic distribution of the maximum pair-wise distance usually does

not have an explicit form. In contrast, the proposed PLR test can be applied

directly to multi-sample tests by letting Z ∈ {1, . . . , U}. We further propose
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a data-adaptive rule that selects the tuning parameter to guarantee testing

optimality. The PLR test makes full use of the distribution information, and

is sensitive to the density difference between the null and the alternative hy-

potheses.

This work makes several main contributions to the literature. First, with-

out an explicit expression of the function estimate, the technical tools used

in the Wald–type nonparamatric tests in Xing et al. (2020) and Liu et al.

(2021, 2020) cannot be generalized to a likelihood-based test. We propose a

new probabilistic decomposition of the tensor product RKHS in Section 3.

Existing studies on functional decomposition without considering probabilis-

tic measures (Gu, 2013; Wahba, 1990) focus on estimation, leaving hypothesis

testing as an open problem. By embedding the probability measures of X

and Z into the tensor product decomposition of H, we can transform the

problem of a density comparison into a significance test of the interaction

between X and Z, which provides a foundation for the minimax testing prin-

ciple (see Section 4). This new probabilistic decomposition framework can be

generalized to a broader class of dependence tests, including higher–order in-

dependence tests and conditional independence tests, by using the magnitudes

of the decomposed terms to measure the corresponding dependency. Second,

we establish the minimax lower bound for density comparison problems based
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on the Bernstein width (Pinkus, 2012). Existing minimax lower bounds of

the testing rate are commonly derived from Gaussian sequence models (In-

gster, 1989, 1993; Wei and Wainwright, 2018; Xing et al., 2020) in a simple

regression setting, and thus cannot be adapted to a density comparison. In

contrast, our result can be easily generalized to a wide range of dependence

testing problems. We further prove that the PLR–based multi-sample test is

minimax optimal. In contrast to our proposed PLR test, the log-likelihood

ratio without a penalty term does not enjoy minimax optimality. Li and Yuan

(2019) propose a normalized MMD by choosing scaling parameters for the

Gaussian kernel properly, and establish its minimax property. Similar to the

original MMD (Gretton et al., 2007), the approach of Li and Yuan (2019) is

also based on a fixed kernel bandwidth, which can lead to low sensitivity when

the underlying densities are long-tailed. However, our proposed approach is

based on the penalized likelihood estimators, which can adapt automatically

to long–tailed distributions. As shown in the simulation and real-data stud-

ies in Sections 5 and 6 respectively, our proposed test exhibits greater power

when the underlying densities have complex features, such as long tails and

multi-modality. In addition, we reveal an interesting connection between the

PLR and MMD tests in the Supplimenary Material. We also thank our ref-

erees for helpful insights on the connections between the MMD test and the
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Hilbert–Schmidt independence criterion (HSIC) test. We show that the MMD

test (with a particularly selected kernel) is exactly the squared norm of the

gradient of the log-likelihood ratio.

The rest of this paper is organized as follows. In Section 2, we construct

our proposed penalized likelihood ratio test. Section 3 introduces the proba-

bilistic decomposition of the tensor product RHKS and the main theoretical

results, including the asymptotic distribution of the PLR test and its power

performance. Section 4 establishes the minimax lower bound of the density

comparisons, and we demonstrate the finite–sample performance of our test

using simulation studies. Section 6 presents analyses of two real-world exam-

ples using our test. Section 7 contains a discussion. In the Supplementary

Material, we extend our PLR test to the case when the number of samples

is divergent, and establish the minimax distinguishable rate and establish the

connection between our PLR test and the MMD test. Proofs of the main

results are provided in the Supplemenary Material.

2. PLR for a multi-sample test

The multi-sample problem can be stated as follows. Suppose we have n in-

dependent d-dimensional observations, Xi ∈ [0, 1]d, fori = 1, . . . , n. Each Xi

is associated with a label Zi ∈ {1, . . . , U}, which indicates that Xi is taken
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from the population indexed by Zi with a probability density function fZi
. We

aim to test whether f1, . . . , fU are the same. Other than a smoothness con-

straint, we do not impose any constraints on the probability density functions

f1, . . . , fU .

An equivalent formulation of the problem can be given in terms of the joint

distribution of X and Z and their conditional independence. That is, consider

n independent an identically distributed (i.i.d.) observations, Yi = (Xi, Zi),

for i = 1, . . . , n, taken from a population Y = (X,Z) with a joint probability

density f(x, z). Let

η(x, z) = log(f(x, z)).

Let fX|Z=z(x) be the conditional density of X given Z = z, for z = 1, . . . , U .

The multi-sample problem is equivalent to testing whether X and Z are in-

dependent, that is,

H0 : fX|Z=1(·) = · · · = fX|Z=U(·)

vs. H1 : ∃ u1 ̸= u2 such that fX|Z=u1(·) ̸= fX|Z=u2(·). (2.1)

We denote n1 = |{i : Zi = 1}|, . . . , nU = |{i : Zi = U}|, and assume that nj

are comparable, that is, there exist constants 0 < c1 ≤ c2 such that c1n1 ≤

nu ≤ c2n1, for ∀ u = 1, . . . , U . We characterize the dependence between X

and Z by their interaction with respect to their joint density, and show that
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testing the significance of this interaction is equivalent to the multi-sample

test. We first consider the case when U is a fixed constant, and then extend

the theory for diverging U .

In order to characterize the interaction between X and Z, we first define

two averaging operators acting on the log-transformed joint density function

η(x, z). For any x, the operator Ax maps η(x, z) to EXη(X, z), a function in

z, and for any z, the operator Az maps η(x, z) to EZη(x, Z). The interaction

term is then characterized by the decomposition

ηXZ(x, z) = (I−Ax)(I−Az)η(x, z) ≡ η(x, z)−(Axη)(z)−(Azη)(x)+AxAzη,

(2.2)

where I is the identity operator. Note that (2.2) is essentially derived from

a functional ANOVA decomposition of η(x, z), where AxAzη is the constant,

(I − Ax)Azη and (I − Az)Axη are the main effects of x and z, respectively,

and (I −Ax)(I −Az)η is the interaction effect. A straightforward derivation

shows that the multi-sample test is equivalent to testing whether ηXZ is zero;

see Proposition S.4 in the Supplimentary Material.

We assume that η is in an RKHS H, and let H0 = {η ∈ H | ηXZ = 0}

be the subspace of H containing all bivariate functions with ANOVA decom-

positions that have a zero interaction term. Based on Proposition S.4, the
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multi-sample test problem in (2.1) is equivalent to testing

H0 : η ∈ H0 vs. H1 : η ∈ H\H0. (2.3)

Consider estimating η by minimizing of the penalized likelihood

ℓn,λ(η) = − 1

n

n∑
i=1

η(xi, zi) +
∑

z∈{1,...,U}

∫
X
eη(x,z)dx+

λ

2
J(η), (2.4)

where X = [0, 1]d. The two sums form the negative log-likelihood representing

the goodness-of-fit, J(·) is a quadratic functional enforcing a roughness penalty

on η, and λ > 0 is a tuning parameter controlling the trade-off. We propose

the following PLR test statistic:

PLR = inf
η∈H0

ℓn,λ(η)− inf
η∈H

ℓn,λ(η), (2.5)

where the first and second terms are the optimal penalized likelihoods under

the reduced model H0 and the full model H, respectively.

Note that the integrals in (2.4) guarantee the unitary constraint of a prob-

ability density function (see Theorem 3.1 in Silverman (1982)). We choose

equation (2.4) instead of the logarithm of the integral in Gu and Qiu (1993),

because the Fréchet derivative of the PLR includes an integral in the denom-

inator, which makes the theoretical derivation more difficult.
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2.1 Penalized likelihood functional under the full model

2.1 Penalized likelihood functional under the full model

Under the full model, we minimize (2.4) in H. Let H⟨X⟩ be an RKHS of

functions on the marginal domain [0, 1]d and H⟨Z⟩ be an RKHS of functions

on {1, . . . , U}. Then, the full space H = H⟨X⟩ ⊗ H⟨Z⟩ is their tensor prod-

uct and also an RKHS, where ⊗ denotes the tensor product of two linear

spaces. Correspondingly, if K⟨X⟩ and K⟨Z⟩ are the reproducing kernels (RKs)

uniquely associated with the RKHS H⟨X⟩ and H⟨Z⟩, respectively, then the

RK for H is simply the product of K⟨X⟩ and K⟨Z⟩; that is, K(Yi,Yj) =

K⟨X⟩(Xi, Xj)K⟨Z⟩(Zi, Zj).

For the continuous domain [0, 1]d, we consider the mth–order Sobolev

space on [0, 1]d, that is, H⟨X⟩ = {f ∈ L2([0, 1]d) | f (α) ∈ L2([0, 1]d), ∀ |α| ≤

m}, where |α| =
∑d

l=1 αl. When d = 1, the associated kernel K⟨X⟩(Xi, Xj) =

1 + (−1)m−1k2m(Xi − Xj), where k2m(x) is the 2mth–order scaled Bernoulli

polynomial (Abramowitz and Stegun, 1948). For m = 2, k4(x) = 1
24
((x −

0.5)4 − 0.5(x − 0.5)2 + 7
240

), and the corresponding K⟨X⟩ is known as the

homogeneous cubic spline kernel. When d > 2, Novak et al. (2018) show that

the associated kernel is K⟨X⟩(Xi, Xj) =
∫
Rd [

∏d
l=1 cos(2π(Xil − Xjl)Gl)]/[1 +∑

0<|α|≤m

∏d
l=1(2πGl)

2αl ]dG, where G ∈ Rd. An example for the discrete

kernel is K(Zi, Zj) = 1{Zi=Zj}.
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2.1 Penalized likelihood functional under the full model

Let η̂n,λ be the penalized likelihood estimator of η under H1, that is,

η̂n,λ = argmin η∈Hℓn,λ(η). (2.6)

Because of the integration in (2.4), the representer theorem (Wahba, 1990)

does not apply here, and the exact solution is not computable (Gu, 2013). We

consider the efficient approximation of Gu (2013) by calculating the minimizer

of the penalized likelihood functional in H† = span{K(Yi, ·), i = 1, . . . , n}. By

the definition of H†, the minimizer η†(·) of ℓn,λ(η) for η† ∈ H† has the form

η†(·) =
n∑

i=1

K(Yi, ·)ci = ζTc, ∀η† ∈ H†, (2.7)

where ζT = (K(Y1, ·), · · · ,K(Yn, ·)) is the vector of functions obtained from

the kernel K with its first argument fixed at Yi, and c = (c1, · · · , cn) is the

coefficient vector. Because J(η) is ⟨η, η⟩H where ⟨·, ·⟩H is the inner product

in H with reproducing kernel K, we have J(η†) = cTQc, where Q ∈ Rn×n

is the empirical kernel matrix with (i, j)th entry Qij = K(Yi,Yj). This

representation converts the infinite-dimensional minimization problem of (2.4)

with respect to η into a finite-dimensional optimization problem with respect

to the coefficient vector c, by solving

ĉ = argmin
c

{
− 1

n
1T
nQc+

∫
Y
exp{ζTc}dy + λ

2
cTQc

}
, (2.8)

where 1n is an n × 1 vector of ones, and the second term is the same as the

second term in (2.4), with the summation and integration over (x, z) replaced
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2.2 Penalized likelihood functional under the reduced model

with an integration over y, for convenience of presentation. The objective

function in (2.8) is strictly convex (Tapia and Thompson, 1978). Thus, we

can optimize it with respect to c using a standard convex optimization pro-

cedure, such as the Newton–Raphson algorithm; see, for example, Gu (2013)

and Wang (2011). The integrals in (2.8) can be calculated using numerical

integration (see Section 7.4.2 in Gu (2013) for details). When n is large, the

representation (2.7) involves a large number of coefficients, which may lead to

numerical instability. To tackle this, one may consider only a subsample of

{Yi : i = 1, . . . , n} to use in the presentation (Kim and Gu, 2004; Ma et al.,

2015). For the nonparametric inference problem, the subsampling method

maintains the minimax optimality as a result of the properly selected subsam-

ple size, as shown in Liu et al. (2021). Practically, we follow Liu et al. (2021)

when selecting the subsample size, which shows comparable power with the

full data. In general, we denote by

η̂†n,λ = ζT ĉ (2.9)

the penalized maximum likelihood estimate under the full model.

2.2 Penalized likelihood functional under the reduced model

Let η̂0n,λ be the penalized likelihood estimator of η under H0 in (2.3), that is,

η̂0n,λ = argmin η∈H0
ℓn,λ(η). (2.10)
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2.2 Penalized likelihood functional under the reduced model

In Section 3.1, we show that H0 is also an RKHS, with a kernel function

K0(·, ·), which enables us to use a similar reparameterization trick to solve the

problem in (2.10). In the following, we show the kernel function K0(Yi,Yj) =

K⟨X⟩
0 (Xi, Xj)K⟨Z⟩

0 (Zi, Zj)+K⟨X⟩
1 (Xi, Xj)K⟨X⟩

0 (Zi, Zj)+K⟨X⟩
0 (Xi, Xj)K⟨X⟩

1 (Zi, Zj),

where K⟨X⟩
0 (Xi, Xj) = EX [K⟨X⟩(X,Xj)]+EX [K⟨X⟩(Xi, X)]−EX,X̃K⟨X⟩(X, X̃),

K⟨X⟩
1 = K⟨X⟩ −K⟨X⟩

0 , K⟨Z⟩
0 (Zi, Zj) = ωZi

+ωZj
−
∑1

ℓ=0 ω
2
ℓ , K

⟨Z⟩
1 = K⟨Z⟩ −K⟨Z⟩

1 ,

and ωl = P (Z = l), for l = 1, . . . , U . We insert the empirical estimate of

ω̂l = nl/n, for l = 1, . . . , U , to calculate K⟨Z⟩. The detailed derivation of K0

depends on our proposed probabilistic decomposition of H, and is deferred to

Section 3.1.

Similarly to (2.7), we consider the efficient approximation in Gu (2013)

by calculating the minimizer of the penalized likelihood functional in H0† =

span{K0(Yi, ·), i = 1, . . . , n}, which has the form

η0†(·) =
n∑

i=1

K0(Yi, ·)c0i = ζT0 c0, ∀η0† ∈ H0†. (2.11)

To obtain the penalized likelihood estimators, we first solve the quadratic

program

ĉ0 =argmin
c0

{
− 1

n
1T
nQ0c0 +

∫
Y
exp{ζT0 c0}+

λ

2
cT0Q0c0

}
, (2.12)
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2.3 Test statistics

where the (i, j)th entry of Q0 is K0(Yi,Yj). Numerically, we express

Q0 = [(In −H)Q⟨X⟩(In −H)] ◦ [(In −H)Q⟨Z⟩(In −H)]

+ [HQ⟨X⟩H] ◦ [(In−H)Q⟨Z⟩(In−H)]+ [(In−H)Q⟨X⟩(In−H)] ◦ [HQ⟨Z⟩H],

where Q⟨X⟩ is the empirical kernel matrix of H⟨X⟩ with (i, j)th entry Q
⟨X⟩
ij =

K⟨X⟩(Xi, Xj), Q
⟨Z⟩ is the empirical kernel matrix of H⟨Z⟩ with (i, j)th entry

Q
⟨Z⟩
ij = K⟨Z⟩(Zi, Zj), and H = In − 1

n
1n1

T
n , where In is the n × n identity

matrix, 1n is an n × 1 vector of ones, and ◦ denotes the Hadamard product.

Then, we solve the quadratic optimization similarly to (2.8), and output the

function estimate

η̂0,†n,λ = ζ0
T
ĉ0. (2.13)

2.3 Test statistics

Plugging the minimizers of the penalized likelihood functional under the full

and reduced models into (2.5), we have the PLR statistic

PLRn,λ = ℓn,λ(η̂
0
n,λ)− ℓn,λ(η̂n,λ). (2.14)

We show in Section 3.2 that PLRn,λ is asymptotically χ2 distributed under

H0 in the sense that (2bn,λ)
−1/2(2PLRn,λ − bn,λ) → N(0, 1) as bn,λ diverges,

for a wide range of λ. Because η̂n,λ and η̂0n,λ are not computable, we use

their efficient approximations η̂†n,λ and η̂0,†n,λ, respectively. Then, an efficient
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2.3 Test statistics

approximation of the test statistic (2.14) is

PLR†
n,λ = ℓn,λ(η̂

0,†
n,λ)− ℓn,λ(η̂

†
n,λ),

which we show that this efficient approximation has the same asymptotic

distribution as PLRn,λ. In practice, we use the gss package (Gu and Qiu, 1993)

to implement the scalable computation, using the efficient approximation in

Kim and Gu (2004) with a compuation cost of O(Nq2), with q = O(N2/(2m+1))

for the mth–order Sobolev space.

For the nonparametric multi-sample test, the parameter space under H0

is infinite-dimensional as n → ∞. Thus, the assumptions of the Neyman–

Pearson lemma are not satisfied, and the uniformly most powerful test may

not exist, in general. We evaluate the power performance using the minimax

rate of testing, which is defined as the minimal distance between the null

and the alternative hypotheses such that valid testing is possible (Ingster,

1989). For any generic 0–1 valued testing rule Φ = Φ(Y1, . . . ,Yn) and a

distinguishable rate dn > 0 measuring the distance between the null and the

alternative hypotheses, we define the total error Err(Φ, dn) of Φ under dn as

Err(Φ, dn) = EH0 {Φ}+ sup
∥ηXZ∥2≥dn

Eη {1− Φ} , (2.15)

where EH0 {·} denotes the expectation with respect to the truth η∗ under H0.

The first and second terms on the right side of (2.15) represent the type–I
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and type–II errors, respectively, of Φ. In Section 3, we show that the distin-

guishable rate of our proposed PLR test is related to the tuning parameter

λ. We then derive the optimal distinguishable rate by carefully selecting λ.

A data-adaptive tuning method is developed for practical use. In Section 4,

we use information theory to establish the minimum distinguishable rate dn

for general testing rules, extending the minimax testing principle pioneered

by Ingster (1989) to a density comparison.

3. Theoretical Properties of PLR Test

In this section, we first introduce the probabilistic decomposition of a tensor

product RKHS, enabling us to construct the kernel on the subspace H0. Such

a decomposition is also of independent interest for studying different kinds of

dependence between random variables. Compared with the function ANOVA

decomposition in Wahba (1990) and Gu and Qiu (1993), the proposed decom-

position makes the interaction term in (2.2) have a zero expectation under the

null hypothesis, which plays an essential role in deriving the limiting distri-

bution of our test statistic. We then derive the asymptotic null distribution

of our proposed test statistic and the optimal power of the test. Lastly, we

develop a data-adaptive tuning procedure to choose the penalty parameter.
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3.1 Probabilistic decomposition of the tensor product RKHS

3.1 Probabilistic decomposition of the tensor product RKHS

We assume that the function η(x, z) belongs to a tensor product RKHS H =

H⟨X⟩ ⊗ H⟨Z⟩, in which H⟨X⟩ and H⟨Z⟩ represent the marginal RKHS of X

and Z, respectively. We aim to decompose H into orthogonal subspaces with

a hierarchical structure similar to that of the main effects and interactions

in a smoothing spline ANOVA (Wahba, 1990; Gu, 2013; Lin, 2000; Wang,

2011), while embedding the probabilistic distributions of X and Z into the

decomposition. This decomposition enables us to convert the multi-sample

test problem into testing for the presence of an interaction. It includes two

steps: decompose each marginal RKHS into mean and main effects, and then

apply the distributive law to expand the tensor product of the marginal RKHS

into a series of subspaces.

We first introduce the probabilistic tensor decomposition of the discrete

domain function space H⟨Z⟩ := {f(z) : z ∈ {1, . . . , U}} using a probabilistic

averaging operator. Note that H⟨Z⟩ = RU , with the Euclidean inner product

(⟨·, ·⟩2), and the kernel on H⟨Z⟩ is K⟨Z⟩(z, z̃) = 1{z=z̃}. Consider a discrete

probabilistic measure PZ on Z = {1, . . . , U} such that PZ(Z = j) = ωj ≥ 0,

with
∑U

j=1 ωj = 1. Let ω = (ω1, . . . , ωU), and define the probabilistic aver-

aging operator as AZ := f → EZf(Z) = ⟨ω, f⟩H⟨Z⟩ . Because EZ [K⟨Z⟩
Z ] = ω,

we can rewrite the probabilistic averaging operator as AZ := f → EZf(Z) =
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3.1 Probabilistic decomposition of the tensor product RKHS

⟨EZ [K⟨Z⟩
Z ], f⟩2. Then, EZ [K⟨Z⟩

Z ] can be treated as a mean embedding of PZ in

H⟨Z⟩. We further define the tensor sum decomposition of H⟨Z⟩ as

H⟨Z⟩ = H⟨Z⟩
0 ⊕H⟨Z⟩

1 := span{EZK⟨Z⟩
Z } ⊕ {f ∈ H : EZ{f(Z)} = 0}, (3.1)

where H⟨Z⟩
0 is the grand mean space, and H⟨Z⟩

1 is the main effect space.

Each subspace in (3.1) is an RKHS with their corresponding kernels stated

in Lemma S.1 in the Supplimentary Material. For fixed a design of Z, we set

ωj = nj/
∑U

j=1 nj.

Next, let us consider the continuous random variable X ∈ X and a prob-

ability measure PX on X . We suppose H⟨X⟩ is the mth–order Sobolev space

with the corresponding inner product ⟨·, ·⟩H⟨X⟩ . The results also hold for

its homogeneous subspace. Let K⟨X⟩ be the corresponding kernel satisfying

⟨f,K⟨X⟩
x ⟩H⟨X⟩ = f(x), for any f ∈ H⟨X⟩. Similarly, the probabilistic averaging

operator is AX := f → EXf(X) = EX⟨K⟨X⟩
X , f⟩H⟨X⟩ = ⟨EXK⟨X⟩

X , f⟩H⟨X⟩ . Here,

EXK⟨X⟩
X plays the same role as ω in the Euclidean space. Then, the tensor

sum decomposition of a functional space is defined as

H⟨X⟩ = H⟨X⟩
0 ⊕H⟨X⟩

1 := span{EXK⟨X⟩
X } ⊕ {f ∈ H⟨X⟩ : AXf = 0}. (3.2)

Analogously, we call H⟨X⟩
0 the grand mean space and H⟨X⟩

1 the main effect

space. Here EXK⟨X⟩
X is known as the kernel mean embedding, which is well

established in the statistics literature (Berlinet and Thomas-Agnan, 2011).
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3.2 Asymptotic distribution and Wilks’ phenomenon

The construction of the kernel functions for H⟨X⟩
0 and H⟨X⟩

1 are included in

Lemma S.2 in the Supplementary Material.

We are now ready to consider the RKHS H = H⟨X⟩⊗H⟨Z⟩ on the product

domain Y = X × Z. Applying the distributive rule, the decomposition of H

is written as

H = (H⟨X⟩
0 ⊕H⟨X⟩

1 )⊗ (H⟨Z⟩
0 ⊕H⟨Z⟩

1 ) ≡ H00 ⊕H10 ⊕H01 ⊕H11, (3.3)

where Hij = H⟨X⟩
i ⊗ H⟨Z⟩

j , for i = 0, 1 and j = 0, 1. Analogously to the

classic ANOVA, H10 and H01 are the RKHSs for the main effects, and H11

is the RKHS for the interaction. We call the decomposition of H in (3.3)

the probabilistic decomposition of the tensor product RKHS H, because it

embeds the probability measure of the random variables X and Z. Based on

Theorem 2.6 in Gu (2013), we construct the kernels K00,K10,K01, and K11

for the subspaces H00,H10,H01, and H11, respectively; see Lemma S.3 in the

Supplimentary Material for a detailed construction.

3.2 Asymptotic distribution and Wilks’ phenomenon

In this section, we present the asymptotic distribution of our PLR test statistic

in Theorem 3.1. The proof relies on a technical lemma about the eigen-

structures of H0 and H; see Lemma 1 below. For any η, η̃ ∈ H, define

⟨η, η̃⟩ = V (η, η̃) + λJ(η, η̃), (3.4)
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3.2 Asymptotic distribution and Wilks’ phenomenon

where V (η, η̃) = Eη∗{η(Y)η̃(Y)} with the expectation taken under the true

η∗, and J is a bilinear form corresponding to (2.4). Then, it holds that H and

H0, endowed with the inner product (3.4), are both RKHSs; see Lemma 2. In

the following lemma, we characterize the eigenvalues and eigenvectors of the

Rayleigh quotient V/J .

Lemma 1. (a) There exist a sequence of functions {ξp}∞p=1 ⊂ H and a se-

quence of nonnegative eigenvalues {ρp}∞p=1, with ρp ≍ p2m/d, such that

V (ξp, ξp′) = δp,p′ , J(ξp, ξp′) = ρpδp,p′, for all p, p′ ≥ 1, and any η ∈ H

can be written as η =
∑∞

p=1 V (η, ξp)ξp.

(b) Moreover, there exists a proper subset {ρ0p, ξ0p}∞p=1 of {ρp, ξp}∞p=1 satis-

fying {ξ0p}∞p=1 ⊂ H0, and for any η ∈ H0, η =
∑∞

p=1 V (η, ξ0p)ξ
0
p. The

convergence of both series holds under (3.4).

(c) ρ⊥p ≍ p2m/d, where {ρ⊥p }∞p=1 ⊂ {ρp}∞p=1 is a subset of eigenvalues corre-

sponding to {ξ⊥p }∞p=1 ≡ {ξp}∞p=1\{ξ0p}∞p=1. The set {ξ⊥p }∞p=1 generates the

orthogonal complement of H0 under the inner product (3.4).

Lemma 1 introduces an eigensystem that simultaneously diagonalizes the

bilinear forms V and J . This eigensystem does not depend on the unknown

null density, depending only on the functional space H. Moreover, H0 can

be generated by a proper subset of the eigenfunctions, which is crucial for
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3.2 Asymptotic distribution and Wilks’ phenomenon

analyzing the likelihood ratios.

Let ⟨·, ·⟩0 denote the restriction of ⟨·, ·⟩ on the subspace H0. Specifically,

for any η, η̃ ∈ H0, ⟨η, η̃⟩0 = ⟨η, η̃⟩. Then, H and H0 are both RKHSs endowed

with these inner products.

Lemma 2. (H, ⟨·, ·⟩) and (H0, ⟨·, ·⟩0) are both RKHSs with the corresponding

inner products.

Following Lemma 2, there exist reproducing kernel functions K̃(·, ·) and

K̃0(·, ·) defined on Y × Y satisfying, for any y ∈ Y , η ∈ H, η̃ ∈ H0:

K̃y(·) ≡ K̃(y, ·) ∈ H, K̃0
y(·) ≡ K̃0(y, ·) ∈ H0,

⟨K̃y, η⟩ = η(y), ⟨K̃0
y, η̃⟩0 = η̃(y). (3.5)

We further introduce positive–definite self–adjoint operators Wλ : H → H

and W 0
λ : H0 → H0, such that

⟨Wλη, η̃⟩ = λJ(η, η̃) for all η, η̃ ∈ H,

⟨W 0
λη, η̃⟩0 = λJ0(η, η̃) for all η, η̃ ∈ H0, (3.6)

where J0(η, η̃) = θ−1
01 J01(η, η̃)+ θ−1

10 J10(η, η̃) is the restriction of J over H0. By

(3.6), we get ⟨η, η̃⟩ = V (η, η̃) + ⟨Wλη, η̃⟩, ⟨η, η̃⟩0 = V (η, η̃) + ⟨W 0
λη, η̃⟩0. In the

following, we give explicit expressions of K̃y(·) and Wλξp(·).
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3.2 Asymptotic distribution and Wilks’ phenomenon

Proposition 1. For any y ∈ Y and η ∈ H, we have

∥η∥2 =
∞∑
p=1

|V (η, ξp)|2(1 + λρp),

K̃y(·) =
∞∑
p=1

ξp(y)

1 + λρp
ξp(·), K̃0

y(·) =
∞∑
p=1

ξ0p(y)

1 + λρ0p
ξ0p(·),

Wλξp(·) =
λρp

1 + λρp
ξp(·), W 0

λξ
0
p(·) =

λρ0p
1 + λρ0p

ξ0p(·),

where {ρ0p, ξ0p}∞p=1 and {ρp, ξp}∞p=1 are the eigensystems defined in Lemma 1.

As shown in Proposition 1, the eigenvalues for K̃ are {(1+λρp)
−1}∞p=1, and

have a slower decay rate that of the eigenvalues for K, owing the scaling by

λ. In particular, K̃ can be viewed as a scaled kernel, with the product kernel

KH = K00 +K01 +K10 +K11 introduced in Lemma S.3 in the Supplimentary

Material. Note that trace(K̃) =
∑∞

p=1(1 + λρp)
−1 ≍ λ−d/(2m) is the effective

dimension that measures the complexity of H; see Bartlett et al. (2005) ande

Mendelson (2002).

Next, we derive the null asymptotic distribution of the PLR statistics,

which relies on the Taylor expansion of the PLR functional. First, we introduce

the Frechét derivatives of the log-likelihood functional. Denote by D,D2,and

D3 the first–, second–, and third–order Frechét derivatives, respectively, of

ℓn,λ(η). Let Sn,λ(η) and S0
n,λ be the score functions of the log-likelihood func-

tionals ℓn,λ and ℓ0n,λ, respectively. Define y = (x, z). Then, these derivatives

can be summarized as follows:
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3.2 Asymptotic distribution and Wilks’ phenomenon

For any η,∆η1,∆η2,∆η3 ∈ H,

Dℓn,λ(η)∆η1 = − 1

n

n∑
i=1

∆η1(Yi) +

∫
Y
∆η1(y)e

η(y)dy + λJ(η,∆η1)

= ⟨− 1

n

n∑
i=1

K̃Yi
+ EηK̃Y +Wλη,∆η1⟩

≡ ⟨Sn,λ(η),∆η1⟩, (3.7)

D2ℓn,λ(η)∆η1∆η2 =

∫
Y
∆η1(y)∆η2(y)e

η(y)dy + λJ(∆η1,∆η2), (3.8)

D3ℓn,λ(η)∆η1∆η2∆η3 =

∫
Y
∆η1(y)∆η2(y)∆η3(y)e

η(y)dy. (3.9)

The second equality of (3.7) follows from the reproducing property (3.5) and∫
Y
∆η(y)eη(y)dy = Eη∆η1(Y) = Eη⟨K̃Y,∆η1⟩ = ⟨EηK̃Y,∆η1⟩.

The Taylor expansion of the PLR functional gives

PLRn,λ = ℓn,λ(η̂
0
n,λ)− ℓn,λ(η̂n,λ)

= Dℓn,λ(η̂n,λ)g +

∫ 1

0

∫ 1

0

sD2ℓn,λ(η̂n,λ + ss′g)ggdsds′

=

∫ 1

0

∫ 1

0

s{D2ℓn,λ(η̂n,λ + ss′g)gg −D2ℓn,λ(η
∗)gg}dsds′ + 1

2
D2ℓn,λ(η

∗)gg

≡ I1 + I2, (3.10)

where g = η̂0n,λ − η̂n,λ and η∗ is the underlying truth. In the proof of Theorem

3.1, we show that I2 is a leading term compared with I1. From (3.8), we have

that I2 =
1
2
∥g∥2 = 1

2
∥η̂0n,λ− η̂n,λ∥2. As we will see, the asymptotic distribution

of ∥η̂n,λ − η̂0n,λ∥2 relies on the Bahadur representations of η̂0n,λ and η̂n,λ.
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3.2 Asymptotic distribution and Wilks’ phenomenon

We further prove the following Bahadur representations for the difference

between the two penalized likelihood estimators by adapting the empirical

processes technique of Shang and Cheng (2013). Lemma 3 is crucial for proving

Theorem 3.1.

Lemma 3. Suppose h = λ
d

2m and nh2 → ∞. Then, we have

n1/2∥η̂n,λ − η̂0n,λ∥ = n1/2∥S0
n,λ(η

∗)− Sn,λ(η
∗)∥+ oP (1),

where Sn,λ(η
∗) and S0

n,λ(η
∗) are the score functions for ℓn,λ and ℓ0n,λ, respec-

tively.

This lemma shows that the main term I2 in Taylor’s expansion of the

PLR functional is determined by the norm of the difference between the score

function of ℓn,λ and the score function of ℓ0n,λ. Because the score functions have

explicit expressions through Proposition 1, we can characterize the asymptotic

null distribution of I2 using the eigensystem introduced in Lemma 1.

Before stating our main theorem, we introduce an assumption commonly

used in the literature for deriving the rates of density estimates; see, for ex-

ample, Theorem 9.3 of Gu (2013).

Assumption 1. There exists a convex set B ⊂ H around η∗ and a constant

c1 > 0 such that, for any η ∈ B, cEη∗{η̃2(Y)} ≤ Eη{η̃2(Y)}. Furthermore,

with probability approaching one, η̂n,λ ∈ B; and, under H0, with probability
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3.2 Asymptotic distribution and Wilks’ phenomenon

approaching one, η̂0n,λ ∈ B.

This condition is satisfied when η̂n,λ and η̂0n,λ are stochastically bounded

and the members of B have uniform upper and lower bounds on the domain

Y . The following theorem provides the asymptotic distribution for the PLR

test statistic under Assumption 1. The proofs of Theorem 3.1 and Corollary

3.1.1 are in the Supplimentary Material S.6.3.

Theorem 3.1. Suppose m ≥ 1 and Assumption 1 holds. Let h = λ
d

2m and

nh2m+d = O(1), nh2 → ∞ as n → ∞. Under H0, we have

2n · PLRn,λ − θλ√
2σλ

d−→ N(0, 1), n → ∞, (3.11)

where θλ =
∑∞

p=1
1

1+λρ⊥p
, σ2

λ =
∑∞

p=1
1

(1+λρ⊥p )2
.

Note that h ≍ n−c, with 1
2m+d

≤ c ≤ 1
2
satisfying the rate conditions

in Theorem 3.1. Therefore the asymptotic distribution (3.11) holds under a

wide range of choices of h. The quantities θλ and σλ depend solely on the

eigenvalues ρ⊥p and λ. Based on (3.11), we propose the following decision rule

Φn,λ at the significance level α:

Φn,λ(α) = 1(|2n · PLRn,λ − θλ| ≥ z1−α/2

√
2σλ), (3.12)

where 1(·) is the indicator function, and z1−α/2 is the 1− α/2 quantile of the

standard normal distribution. Hence, we reject H0 at the significance level
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3.2 Asymptotic distribution and Wilks’ phenomenon

α if Φn,λ = 1. Wilks’ phenomenon is also observed here, similarly to the

nonparametric/semiparametric regression framework (Fan et al., 2001; Shang

and Cheng, 2013). Specifically, let rλ = θλ
σ2
λ
. Then, (3.11) implies that, as

n → ∞,

2nrλ · PLRn,λ − rλθλ√
2rλθλ

d−→ N(0, 1).

Therefore, 2nrλ·PLRn,λ is asymptotically distributed as a χ2 distribution with

degrees of freedom rλθλ. In the following corollary, we extend our asymptotic

theory to the emiprical version of ρ⊥p .

Corollary 3.1.1. Assume that Assumption 1 holds. Let h = λ
d

2m and

nh2m+d = O(1), nh2 → ∞ as n → ∞. Under H0, we have

2n · PLR†
n,λ − θλ√

2σλ

d−→ N(0, 1), n → ∞, (3.13)

where θ̂λ =
∑n

p=1
1

1+λρ̂⊥p
, σ̂2

λ =
∑n

p=1
1

(1+λρ̂⊥p )2
, {ρ̂⊥p }np=1 are empirical eigenval-

ues for K11.

In Corollary 3.1.1, we show the asymptotic distribution of the efficient ap-

proximation PLR†
n,λ. The proof of Corollary 3.1.1 uses the local Radamacher

complexity (Liu et al., 2021; Bartlett et al., 2005) to bound the tail sum of the

eigenvalues for H† and H0†, and the accurate error bound for the eigenvalues

of the kernel matrix in Braun (2006).

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0141



3.3 Power analysis and minimaxity

3.3 Power analysis and minimaxity

In this section, we investigate the power of PLR under local alternatives.

Define the distinguishable rate as

dn :=
√
λ+ σλ/n. (3.14)

The distinguishable rate is used to measure the distance between the null

and the alternative hypotheses. Theorem 3.2 shows that the power of PLR

approaches one, provided that the norm of η∗XZ , the interaction term in the

probabilistic decomposition of η∗, has a norm bounded below by dn. The

squared distinguishable rate d2n consists of two components: λ, representing

the squared bias of the estimator, and σλ/n, with the order of n−1h−1/2 rep-

resenting the standard derivation of PLRn,λ. Because σλ decreases with λ,

the minimal distinguishable rate for the PLR test is achieved by choosing an

appropriate λ such that λ ≍ σλ/n. Our result owes much to the analytic

expression of independence (in terms of interactions) based on the proposed

probabilistic tensor product decomposition framework.

Let Pη∗ denote the probability measure induced under η∗, ∥η∥sup denote

the supremum norm over Y , and ∥η∥2 =
√

V (η).

Theorem 3.2. Suppose Assumption 1 holds and let dn be the distinguishable

rate defined in (3.14), m > 3/2, η∗ ∈ H with ∥η∗XZ∥sup = o(1), J(η∗XZ) < ∞,

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0141



3.3 Power analysis and minimaxity

∥η∗XZ∥2 ≳ dn. For any ε ∈ (0, 1), there exists a positive Nε such that, for any

n ≥ Nε, Pη∗(Φn,λ(α) = 1) ≥ 1 − ε. When λ ≍ λ∗ ≡ n−4m/(4m+d), dn is upper

bounded by d∗n ≡ n−2m/(4m+d).

The proof of Theorem 3.2 is in the Supplimentary Material S.6.3. The-

orem 3.2 demonstrates that, when λ ≍ λ∗, PLR can successfully detect any

local alternatives, provided that they separate from the null by at least d∗n.

In Section 4, we establish the minimax lower bound for the distinguishable

rate of a general multi-sample test to show that this upper bound cannot be

improved. This means that no test can successfully detect local alternatives

if they separate from the null by a rate faster than d∗n. Therefore, we claim

that our PLR test is minimax optimal.

For any ε ∈ (0, 1) and α ∈ (0, ε), Theorem 3.1 shows that EH0{Φn,λ∗(α)}

tends to α. Theorem 3.2 shows that Eη∗{1−Φn,λ∗(α)} ≤ ε−α, provided that

∥η∗XZ∥2 ≥ Cε−αd
∗
n, for a large constant Cε−α. Therefore, asymptotically,

Err(Φn,λ∗(α), Cε−αd
∗
n) ≤ ε. (3.15)

In other words, the total error of PLR can be controlled by using an arbitrary

ε, provided that the null and local alternatives are d∗n apart.
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4. Minimax Lower Bound of the Distinguishable Rate

For any ε ∈ (0, 1), define the minimax distinguishable rate d⋄n(ε) as

d⋄n(ε) = inf{dn > 0 : inf
Φ

Err(Φ, dn) ≤ ε}, (4.1)

where the infimum in (4.1) is taken over all 0–1–valued testing rules based on

the sample Yi. Note that d
⋄
n(ε) characterizes the smallest separation between

the null and local alternatives such that there exists a testing approach with

a total error of at most ε. Next, we establish a lower bound for d⋄n. That is

if dn is smaller than a certain lower bound, no test exists that can distinguish

the alternative from the null.

We first introduce a geometric interpretation of the hypothesis testing

(2.3). Here, we consider the local alternatives in E = {η ∈ H : ∥η∥H < 1/2}.

Geometrically, E is an ellipsoid with axis lengths equal to the eigenvalues of

H. For any η ∈ E , the projection of η on E11 := H11 ∩ E is ηXZ , where H11

is defined in (3.3). The magnitude of the interaction ηXZ can be qualified by

∥ηXZ∥2. The distinguishable rate dn is the radius of the sphere centered at

ηXZ = 0 in E11.

Intuitively, the testing will be harder when the projection of η on H11 is

closer to the original point ηXZ = 0. We then introduce the Bernstein width

of Pinkus (2012) to characterize the testing difficulty. For a compact set C,
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the Bernstein k-width is defined as

bk,2(C) := argmax
r≥0

{Bk+1
2 (r) ⊂ C ∩ S for some subspace S ∈ Sk+1}, (4.2)

where Sk+1 denotes the set of all (k + 1)–dimensional subspaces, and Bk+1
2 (r)

is the (k+1)-dimensional L2-ball with radius r and center at ηXZ = 0 in H11.

Based on the Bernstein width, we give an upper bound of the testing radius,

namely, for any η projected in the ball with radius less than this bound, the

total error is larger than 1/2.

Lemma 4. For any η ∈ H, we have Err(Φ, dn) ≥ 1/2, for all dn ≪ rB(δ
∗) :=

sup{δ | δ ≤ 1
2
√
n
(kB(δ))

1/4}, where kB(δ) := argmaxk{b2k−1,2(H11) ≥ δ2} is the

Bernstein lower critical dimension, and rB(δ
∗) is called the Bernstein lower

critical radius.

In Lemma 4, we show that when dn is less than rB(δ
∗), there is no test

that can distinguish the alternative from the null. In order to achieve non-

trivial power, we need dn to be larger than the Bernstein lower critical radius

rB(δ
∗). The critical radius rB(δ

∗) depends on the shape of the space H11.

The lower bound of kB(δ) depends on the decay rate of the eigenvalues for

H11. According to the Liebig’s law, the radius of a k-dimensional ball that can

be embedded into H11 is determined by the kth largest eigenvalue. Lemma

5 characterizes the lower bound of kB(δ) by the largest k such that the kth
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largest eigenvalue is larger than δ2.

Lemma 5. Let γk be the kth largest eigenvalue of H11. Then, we have

kB(δ) > argmax
k

{√γk ≥ δ}. (4.3)

Note that γk ≍ k−2m/d. Then argmaxk{
√
γk ≥ δ} ≍ δ−d/m. Substituting

the lower bound of kB(δ) into Lemma 4, we achieve rB(δ
∗), which is the

minimax lower bound for the distinguishable rate in the following theorem.

Theorem 4.1. Suppose η ∈ H. For any ε ∈ (0, 1), the minimax distinguish-

able rate for the testing hypotheses (2.3) is d⋄n(ε) ≳ n−2m/(4m+d).

Theorem 4.1 provides general guidance justifying a local minimax test for

testing ηXZ = 0. The proof of Theorem 4.1 is presented in the Supplimentary

Material S.6.4. Comparing d⋄n(ε) with d∗n derived in Theorem 3.2, we find that

the PLR test is minimax optimal.

5. Simulation Studies

In this section, we demonstrate the finite–sample performance of the proposed

test, alongside that of its competitors, using simulation studies. We choose

the K–S and AD tests as representatives of the most popular CDF-based

tests, the normalized MMD test (Li and Yuan, 2019) as a kernel-based test,

the empirical likelihood test (ELT) (Cao and Van Keilegom, 2006) and kernel
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density test (KDT) (Zhan and Hart, 2014) as density-based tests, and the

DSLICE (Jiang et al., 2015) as a discretization-based test. We use the function

ad.test() provided in the kSamples R package for the AD test, conduct the

MMD test using the dHSIC R package with the default Gaussian kernel, use

the dslice R package for the DSLICE test, and implement the ELT and KDT

using the code provided by the authors. For our proposed PLR test, we choose

the roughness parameter using the data–adaptive tuning parameter selection

criteria in Section S.1 in the Supplimentary Material, and present. Also,

we have additional simulation studies for beta, beta mixtures, a multivariate

distribution (d > 2), and multiple distributions (U > 2) in the Supplimentary

Material S.4.

The samples Yi = (Xi, Zi), for i = 1, . . . , n, are generated as follows. We

first generate Zi
iid∼ Bernoulli(0.5), with 0/1 representing the control/treatment

group. Then, Xi are generated independently from the conditional distribu-

tion fX|Z(x) in the following settings. In each setting, we choose the averaged

sample size n in each group as 125, 250, 375, 500, 625, 750, 875, 1000. The

size and power are calculated as the proportions of rejection based on 1000

independent trials.

Setting 1: Gaussian distributions with mean zero and a group-specific vari-

ance: X | Z = z ∼ N (0, (1 + δ11z=1)
2), where δ1 = 0, 0.2, 0.3.
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Setting 2: Uni-modal Gaussian distribution versus bi-modal Gaussian distri-

bution: X | Z = z ∼ 0.5N (−δ21z=1, (1 + δ221z=0))+0.5N (δ21z=1, (1 + δ221z=0)),

where we set δ2 = 0, 1, 1.2.

Setting 3: Asymmetric mixture Gaussian distributions: X | Z = z ∼

0.5N(2, 1) + 0.5N(−2, (1− δ31z=1)
2), where δ3 = 0, 0.3, 0.45.

Setting 4: Symmetric mixture distributions: X | Z = z ∼ 0.5N(2, (1 −

δ41z=1)
2) + 0.5N(−2, (1− δ41z=1)

2), where δ4 = 0, 0.3, 0.6.

Note that δ1 = 0, δ2 = 0, δ3 = 0, or δ4 = 0 corresponds to the true H0,

which we use to examine the size of the test statistics. Nonzero δ represent

different levels of heterogeneity between the two groups.

Figure S1 in the Supplimentary Material displays the power of each of the

six tests. For Setting 1, Figure S1(a)–(b) show that the power of the PLR,

MMD, ELT, AD, DSLICE, and KDT tests rapidly approaches one when n or δ1

increases. The power of the K–S test increases slightly more slowly than that of

the other five tests. DSLICE appears to be slightly less powerful than the other

four tests, maybe because of its discrete nature and its challenges in choosing

a proper penalization parameter in the penalized slicing approach. For Setting

2, as shown in Figure S1(c)–(d), the MMD and PLR tests show comparable

power. The PLR test has slightly higher power when the heterogeneity is

higher. The power difference between these two tests increases as δ2 increases.
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AD and K–S show significantly lower power. For Setting 3, Figure S1(e)–(f)

show again that the PLR test has the highest power. DSLICE performs quite

well here, possibly because of its flexibility in slicing. In contrast, K-S, MMD,

ELT, AD, and KDT have significantly lower power than that of both PLR

and DSLICE. For Setting 4, PLR and DSLICE show similar power in Figure

S1(g)–(h). The power values of MMD, K–S and AD are significantly lower

than the others. The results demonstrate that both PLR and DSLICE are

more adaptive to differently shaped distributions than the other four methods

are. Furthermore, PLR enjoys additional advantages to DSLICE when the

underlying distribution is smooth.

Figure S2 in the Supplimentary Material displays the size of K–S, MMD,

ELT, AD, DSLICE, KDT, and PLR, all of which are around the nominal level

of 0.05 in Settings 1 and 2, confirming that all tests are asymptotically valid.

In Setting 3 and Setting 4, the size of the PLR test is still asymptotically

correct, and that of DSLICE is reasonably close. The sizes of K–S, MMD,

and ELT are significantly below 0.05, showing that these three tests are too

conservative in handling bimodal distributions. We also test the performance

under a multivariate distribution (d > 2) and under multiple distributions

in the Supplemenary Material, finding that the proposed tests maintain the

highest power with a controlled type-I error, as they do in simulation studies
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with beta and a mixtrure of beta distributions.

6. Real–Data Analysis

In this section, we apply the PLR K–S, and MMD tests to a metagenomic

analysis of type–II diabetes. We also present an example about a gene expres-

sion analysis of chronic lymphocytic leukaemia in the Supplementary Material

S.5.2.

Recent studies show that gut microbiota play an important role in many

human diseases, such as obesity and diabetes, and have observed significant as-

sociations between diseases and gut microbial composition (Turnbaugh et al.,

2009; Qin et al., 2012). Owing the rapid development of metagenomics, it

is possible to study microbial DNA contents directly using environmental

samples. Compared with traditional culture-based methods, metagenomics

can study unculturable microorganisms and are much more scalable. Several

metagenomic binning algorithms, such as MetaGen (Xing et al., 2017), have

been proposed to estimate the abundance of microbial species with high ac-

curacy. As observed in Turnbaugh et al. (2009), the microbial distributions

demonstrate large cross–individual differences, because there are many envi-

ronmental factors, such as age, dietary habits, and antibiotic usage, can alter

the composition of gut microbiota. A powerful test that can detect such dis-
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tributional differences between populations would be useful in metagenomic

analysis.

This study aims to detect whether the microbial species have different

distributions between the case and the control groups. For a particular micro-

bial species, let Xi be the log-transformed abundance for the ith individual,

and let Zi = 1/0 represent the case/control group. We apply the proposed

PLR test to a metagenomic data set, with 145 sequenced gut microbial DNA

samples from 71 T2D patients (case group) and 74 individuals unaffected by

T2D (control group), using Illumina Genome Analyzer, yielding 378.4 giga-

base paired-end reads. We use MetaGen (Xing et al., 2017) to perform the

metagenomic binning, in which DNA fragments are clustered into species-level

bins, and estimate the abundance of 2450 identified species bins. We apply

the K–S, MMD, and PLR tests to 1005 species clusters that have an abun-

dance larger than 1% of the mean abundance in more than 50% of the total

samples. The 1005 p-values are calculated using K–S, MMD, and PLR for

each species. We adjust the p-values using the Benjamini–Hochberg method

(Benjamini and Hochberg, 1995). Controlling the false discovery rate at 5%,

we compare the identified species from the three methods in Figure S7 in the

Supplimentary Material. The PLR, K–S, and MMD tests identify 101, 4, and

13 species, respectively. The species identified by PLR include those identified
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by K–S or MMD.

Moreover, two species are identified only by the PLR test in Figure S7

(B–C). The densities of these two species are both bimodal in both the case

and the control groups. Figure S7(B) plots the conditional density of the

log-transformed abundance of Roseburia intestinalis. The majority of the

case group has a significantly low abundance. In Figure S7(C), the other

species, Faecalibacterium prausnitzii has a lower abundance for a subgroup

of patients in the case group. Both species are butyrate–producing bacteria

that can exert profound immunometabolic effects, and thus are probiotic less

abundant in T2D patients. Our finding is consistent with that of Tilg and

Moschen (2014), who also observed that the two species’ concentrations are

lower in T2D subjects. In addition, we found that several Lactobacillus species

are increased in T2D patients, as in De La Vega-Monroy et al. (2013) and Qin

et al. (2012).

7. Discussion

We have proposed a probabilistic decomposition approach for probability den-

sities based on the PLR. As demonstrated in simulation studies, our method

performs well under various families of density functions of different modali-

ties. Notably, our test possesses Wilks’ phenomenon and testing minimaxity.

Such results are not easy to derive for distance–based methods. Furthermore,
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Wilks’ phenomenon leads to an easy–to–execute testing rule that does not

involve resampling.
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Supplementary Material The online Supplementary Materal contains fig-

ures related to the simulation studies and real–data analysis, additional sim-
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extension to the case of a divergent number of samples, the connection to the

maximum mean discrepancy, all technical proofs, and additional numerical

results.
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