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Abstract: “Rich-get-richer” and “homophily” are two essential phenomena in

evolving social networks. “Rich-get-richer” means people with greater followings

are more likely to attract new followers, and “homophily” means people prefer

to bond with others of the same social group, or who have some other attribute

in common. To formalize these phenomena simultaneously in the context of an

evolving social network, we consider a K-group preferential attachment (KPA)

model, which is helpful for social network recommender systems. Our primary

contribution is to propose a new evolving social network model that incorporates

the mechanisms of rich-get-richer and homophily. We show that the proposed

KPA model exhibits a power-law degree distribution for each group, and prove

the central limit theorem for the maximum likelihood estimation of the param-

eters in the model. In addition, we verify the robustness of the proposed pa-

rameter estimation methods, and apply them to simulated data and to real-data

examples.

Key words and phrases: evolving network, homophily, preferential attachment,

recommender system.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0136



1. Introduction

The “rich-get-richer” (or preferential attachment) mechanism has been stud-

ied by numerous researchers. In preferential attachment models, new edges

in evolving networks are attached to older nodes, chosen according to a

probability distribution that is an affine function of the older nodes’ de-

grees. This way, nodes with high degrees are more likely to attract edge

connections and attain higher degrees, which explains why they are called

rich-get-richer models. A basic introduction to the preferential attachment

model can be found in Easley et al. (2010) and Barabási and Albert (1999).

To further understand the statistical properties of this model, Chung and

Lu (2006), Durrett (2007), and Van Der Hofstad (2024) show the limit

theories and asymptotic characteristics.

The “homophily” mechanism has a profound effect on individuals and

groups in society (Lazarsfeld et al. (1954)). This well-documented phe-

nomenon appears in social networks, and describes how people often prefer

to connect with others who have similar characteristics (McPherson et al.

(2001)). For example, people are more likely to build social relations, such

as marriage, friendship, and colleagues, with someone of the same age or

education, or who has similar hobbies. In other words, homophily influ-

ences the connection structure in human society. Furthermore, many stud-
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ies show that homophily affects not only society’s static structures, but

also its dynamic operations. Jackson et al. (2008) and Jackson and López-

Pintado (2013) show the effect of homophily on the welfare of individuals

and diffusion patterns of information in social networks.

On social network platforms (e.g., Twitter, TikTok, and Sina Weibo),

rich-get-richer and homophily often co-occur. This study supposes that it

takes two steps for a person to connect with another in a social network:

(1) become aware of someone through a referral or a social media feed,

and (2) decide whether to follow or connect with that person. Internet

celebrities are more likely to be introduced to others (the first step), im-

plying that the rich-get-richer phenomenon affects the celebrity’s followers.

In the second step, a person prefers to follow somebody with, for exam-

ple, the same hobby, which means homophily is also involved. Moreover,

homophily can work contrary to the influence of rich-get-richer. For ex-

ample, Lebron James is a basketball superstar with a huge following. His

popularity makes it easy for him to get more followers, but someone with

no interest in basketball will not follow him, even if friends recommend

him. Thus, it is meaningful to study evolving networks, while considering

interactions of rich-get-richer and homophily. Unfortunately, most pre-

vious studies typically consider rich-get-richer and homophily separately.
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Some recent papers (Lee et al. (2019), Avin et al. (2020), and Hajek and

Sankagiri (2019)) have tried to combine these ideas. However, they do not

focus on statistical problems, such as estimators and central limit theorems.

Hajek and Sankagiri (2019) concentrated on the community recovery prob-

lem of the preferential attachment model without edge-steps, which greatly

inspired our research. Compared with their work, ours estimates the ho-

mophily parameter and our model considers edge-steps, which are common

in evolving social networks.

In this paper, we propose the K-group preferential attachment (KPA)

model, based on the Barabási–Albert model (Barabási and Albert (1999)

and the work of Albert and Barabási (2002)). The unit time point of the

dynamic process is divided into two parts: (1) [rich-get-richer] The evolving

network tries to connect a chosen older node to the new node. The higher

the degree of the older node, the higher the probability that it will be

chosen. (2) [homophily] The new node will accept the connection with a

probability dependent on the similarity of the two nodes.

We divide all nodes into K groups according to a specific feature. Ho-

mophily states that nodes in the same group are more easily connected.

We introduce a parameter θ to the classic Barabási–Albert model to rep-

resent the influence of homophily on the generation of evolving networks.
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Using the KPA model, we obtain theoretical results about degrees. Then,

we propose the estimators of the homophily and the other parameters in

an evolving network featuring both rich-get-richer and homophily. We also

give the joint asymptotic distribution of these estimators. It is commonly

acknowledged that recommender systems play a vital role in big data (see

Jannach et al. (2010) and Ricci et al. (2015)). Accurate estimation of the ef-

fects of homophily helps improve the recommender system of any social net-

work platform. If the homophily is strong, recommending connections from

other groups (i.e., groups to which recommended node does not belong) is

inefficient. In contrast, when the homophily is not strong, recommending

nodes with high degrees from different groups is meaningful.

The remainder of the paper is organized as follows. In Section 2, we

introduce the specific construction process of the KPA model and the mean-

ing of each random variable. The main asymptotic results are presented in

Section 3. The parameter estimation methods are given in Section 4. Sec-

tion 5 focuses on the change point, and Section 6 discusses the robustness of

the estimations. Section 7 contains simulations to illustrate the theoretical

results. In Section 8, we apply our methods to real-life data. Simulations

showing the robustness of the estimators and the proofs of the lemmas and

theorems are provided in the Supplementary Material.
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Notation

In this paper, for a set M, |M| means the number of elements in M,

and for a constant x ∈ R, |x| means the absolute value of x. We use

[n] := {1, · · · , n}, for some n ∈ Z+, and 1{·} denotes the indicator function.

We use the graph G(t) = (V(t), E(t),G(t)) to record the state of an

evolving network at time t ∈ Z, where V(t) is the set of nodes, E(t) is

the set of edges, and G(t) is the set of node group labels. Furthermore,

t is discrete, and if the network structure changes, t changes (t → t + 1,

G(t)→ G(t+ 1)). An evolving network on the time range [0, T ] means the

discrete process {G(t)}Tt=0, where T ∈ Z+. The graph G(0) is the initial

state of the dynamic process, and the graph G(T ) is the final stage.

2. Model

According to the classic Barabási–Albert model, an initial graph G(0) has

an isolated node with one loop, and its degree is one (Chung and Lu (2006)).

There are two operations on the evolving network:

• Vertex-step: A new node w is added to the network, and connects to

node u with the edge (w, u).

• Edge-step: No new node arrives, but a new edge (w, u) is added to
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the network. Nodes w, u are pre-existing in the network.

Here, V(t) is the node set in graph G(t). Let v(t) := |V(t)| − |V(t− 1)|.

For t > 0, G(t) is formed from G(t− 1) by performing a vertex-step when

v(t) = 1, or an edge-step when v(t) = 0. Assume there are K groups of

nodes in the network, where K is a fixed known constant. Let gi ∈ [K] be

the group label of node i. We make the following assumptions:

Assumption 1. Group label gi is known (or observed) for each node i.

Assumption 2. The new node comes from group k with unknown proba-

bility pk at the vertex-step, for k ∈ [K], where pk ∈ [0, 1] and
∑K

k=1 pk = 1.

Assumption 3. {v(t)}Tt=1 are independent and identically distributed (i.i.d.)

random variables with a Bernoulli distribution B(1, q), where q ∈ (0, 1] is

an unknown constant.

Assumption 3 implies that qt is an approximation for |V(t)|.

Assumption 4. In the initial graph G(0), the number of nodes from group

k is pkn0. We assume that n0 is a constant large enough for pkn0 to be an

integer, for k ∈ [K]. Each node is isolated and has a loop (the node’s degree

is one).
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(a) v(t) = 1 (b) v(t) = 0

Figure 1: The dotted circle shows the graph G(t− 1), the node outside the

circle represent the new one and the arrow represent the new edge at time

t.

Next, we discuss the process of generating network data by using a KPA

model in detail. Beginning with the initial graph G(0), with n0 (n0 ≥ K)

isolated nodes (each node has a loop) from K groups, v(t) is generated

randomly at time t. Let di(t) be the degree of node i in G(t). Next, the

two operations are as follows:

• Vertex-step:

Step 1. A new node w comes to the network at time t+ 1.

Step 2. An older node u1 in G(t) is chosen to connect to w with probabil-

ity du1(t)/[
∑

i∈V(t) di(t)]. If u1 and w are from the same group, w

accepts the connection without hesitation. Otherwise, w rejects
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the connection with probability 1− γ, γ ∈ (0, 1].

Step 3. If w successfully connects to u1 in Step 2, the vertex-step process

stops. Otherwise, the network chooses another node in G(t) to

connect with w in Step 4, after w rejects u1.

Step 4. Another node u2 inG(t) is chosen with probability αdu2(t)/[
∑

i∈V(t),gi=gw
di(t)],

for α ∈ (0, 1], if u2 and w are from the same group. Other-

wise, the chosen probability is (1− α)du2(t)/[
∑

i∈V(t),gi ̸=gw
di(t)].

Furthermore, if u2 and w are from the same group, w accepts

the connection without hesitation. Otherwise, w rejects u2 with

probability 1− γ.

Step 5. If w successfully connects to u2 in Step 4, the vertex-step process

stops. Otherwise, the network chooses another node to connect

to w, and goes back to Step 4.

• Edge-step: This process is identical to the vertex-step, except for Step

1.

Step 1. No new node arrives at time t. Randomly select a node w in the

network with probability dw(t)/[
∑

i∈V(t) di(t)].

Remark 1. We allow multiple edges between any two nodes in the edge-

step. The first edge between the two nodes denotes following to become a
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friend, and subsequent edges denote liking, commenting, and other interac-

tions after becoming friends. Both following and interactions increase the

degrees of the nodes.

Remark 2. In the vertex-step, both the number of nodes and the number

of edges increase by one. In contrast, only the number of edges increases

by one in the edge-step. When q is away from zero and t tends to infinity,

the number of nodes and the number of edges have the same order. From

Page 128 of Newman (2018), the connectance or density ρ of the present

network is |E|/[(|V| − 1)|V|] , where |E| is the number of edges, and |V| is

the number of nodes. Thus, ρ tends to zero, and the network is sparse.

Remark 3. The case γ = 1 means connections from all groups are ac-

cepted without hesitation, which implies there is no homophily effect on

the network. If γ < 1, then connections from other groups are rejected

with a certain probability, which implies that nodes of the same group are

more easily connected, and homophily exists in the network. To illustrate

the meaning and role of the parameter γ in dynamic networks, we present

three examples.

1. Groups with different political orientations from different commu-

nities on Twitter. After observation, people with different political
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orientations follow each other very little. At this point, the dynamic

network parameter γ is close to zero.

2. On TikTok, users can follow each other. Users who like different ball

games come from different communities. Users who like basketball

tend to follow other users who like basketball, or who post about

basketball. However, they sometimes also follow or know about other

popular sports-related users, such as football or tennis players. Here,

the dynamic network parameter γ is away from zero.

3. Some groups in social networks overlap significantly. For example,

Chinese young people who are interested in an animation also pay

close attention to the game. In this case, γ may be close to one.

If γ = 1, the recommender should recommend older nodes with high

degrees from different groups to the new node to construct a large network

with centralized nodes. If γ is small, recommending nodes from the same

group is safer. As a result, many sub-networks of different groups are

generated.

We suppose that people do not refuse to make friends with people

who share their interests, so nodes must accept connections from the same

group. Furthermore, we assume that if a person refuses to be friends with
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a celebrity because their interests do not match, he or she will pay more

attention in future to people with the same interests, rather than simply

because the person is famous. Thus, if the new node rejects connections

from other groups the first time, the older nodes in the same group will be

chosen with probability α next time, where α is large. If we know informa-

tion about a connection rejection, we can infer and estimate γ. However,

general network data shows only information about successful connections.

Thus, we introduce the following discussion and a new parameter θ.

Using the above details for the KPA model, we can calculate the condi-

tional probability of the edge e(t+ 1) := (e1(t+ 1), e2(t+ 1)) connected at

time t+ 1, where e1(t+ 1), e2(t+ 1) are the two nodes of the edge e(t+ 1):

P (e(t+ 1) = (w, u)|gw, gu, G(t))

=



du(t)∑
i∈V(t) di(t)

+ α(1−γ)
γ+α(1−γ)

∑
i, gi ̸=gw

di(t)∑
i∈V(t) di(t)

du(t)∑
i,gi=gw

di(t)
, case 1;

γ
γ+α(1−γ)

du(t)∑
i∈V(t) di(t)

, case 2;

dw(t)∑
i di(t)

[
du(t)∑
i di(t)

+ α(1−γ)
γ+α(1−γ)

∑
i,gi ̸=gw

di(t)∑
i di(t)

du(t)∑
i,gi=gw

di(t)

]
, case 3;

dw(t)∑
i∈V(t) di(t)

γ
γ+α(1−γ)

du(t)∑
i∈V(t) di(t)

, case 4.

(2.1)

where case 1: gw = gu, v(t + 1) = 1; case 2: gw ̸= gu, v(t + 1) = 1; case 3:

gw = gu, v(t+ 1) = 0; case 4: gw ̸= gu, v(t+ 1) = 0.

Let θ := γ/[γ + α(1− γ)] ∈ (0, 1]. We find that θ is the parameter that
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ultimately determines the influence of homophily on the network structure.

Figure 2 shows the influence of θ on the network structure. Although γ

is unobservable, we can infer the homophily by estimating θ and testing

whether θ = 1, using the methods described in Section 4. We can see

that θ = 1 infers γ = 1, and θ ≥ γ implies that θ < 1 can infer γ < 1.

Then, we can recommend older users to new users using a strategy based

on θ, as follows. If the result of statistical inference is θ = 1 and there is no

homophily, we recommend older users with high degrees in different groups.

This process contributes to constructing a large network. Otherwise, when

the result of the statistical inference is θ < 1 and there is homophily, we

recommend older users from the same group to ensure the new users can

connect to the network quickly. Thus, in this study, we foucus on how to

obtain information about the parameter θ.
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(a) θ = 0.1 (b) θ = 0.5 (c) θ = 0.9

Figure 2: The network generated by the KPA model with the time range

[0, 100] and parameters K = 2, q = 0.5, p1 = p2 = 0.5.

In the following sections, we focus on θ instead of γ and α.

3. Asymptotic results

Theorem 1. Under Assumptions 1–3, let di(t) be the degree of node i in

graph G(t). Let Dk(t) =
∑

i∈V(t) di(t)1{gi = k} be the total degrees from

group k in G(t), for k ∈ [K]. When t tends to infinity,

Dk(t)

2t

a.s.−→ pk.

Here, Dk(t)/2t is the ratio of the degrees from group k, the sum of the nodes’

degrees from group k divided by the total degrees at time t.

Consider the edge added at time t, e(t) = (e1(t), e2(t)). Let X(t) =
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1{ge1(t) = ge2(t)} and S(t) =
∑t

i=1X(i). Here, S(t) is the number of edges

when two nodes are from the same group in graph G(t).

Corollary 1. Under the conditions of Theorem 1, for any node i in graph

G(t), we have when t tends to infinity,

di(t)

2t

i.p.−→ 0.

Corollary 1 coincides with the sparsity in Remark 2.

Corollary 2. Under the conditions of Theorem 1, we have that when t

tends to infinity,

S(t)

t

a.s.−→ 1 + θ

(
K∑
k=1

p2k − 1

)
.

Theorem 1 implies a limit of the ratio of nodes’ degrees from group k.

However, the limit might differ from what we get at a particular time t. We

give a probabilistic estimate of the difference in the following theorem.

Theorem 2. Under Assumptions 1–4, for some time point t, we have:

P
(
|Dk(t)− pk(2t+ n0)| ≥ 2c1(t)t

1/2
)
≤ C1e

−[c1(t)]2 , if 1
2−θ

< q ≤ 1,

P
(
|Dk(t)− pk(2t+ n0)| ≥ 2c2(t)log

1/2(t)
)
≤ C2e

− [c2(t)]
2

t , if q = 1
2−θ

,

P (|Dk(t)− pk(2t+ n0)| ≥ 2c3(t)) ≤ C3e
− [c3(t)]

2

t2−q(2−θ) , if 0 < q < 1
2−θ

,

where c1(t), c2(t), and c3(t) are strictly monotonically increasing positive

functions of t, and C1, C2, and C3 are constants greater than zero.
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Remark 4. The phase transition phenomenon in Theorem 2 is because of∑t
j=1 j

q(2−θ)−2 with different q, which is described in detail in Section S5 of

the Supplementary Material.

Remark 5. To better understand the convergence rate of the group degree,

let c1(t) = log1/2(t), c2(t) = (t log(t))1/2, and c3(t) = (t2−q(2−θ) log(t))1/2.

Then,

P
(
|Dk(t)− pk(2t+ n0)| ≥ 2t1/2 log1/2(t)

)
≤ C1t

−1, if 1
2−θ

< q ≤ 1,

P
(
|Dk(t)− pk(2t+ n0)| ≥ 2t1/2log(t)

)
≤ C2t

−1, if q = 1
2−θ

,

P
(
|Dk(t)− pk(2t+ n0)| ≥ 2t1−q(2−θ)/2 log1/2(t)

)
≤ C3t

−1, if 0 < q < 1
2−θ

.

The degree distribution obeying the power law is an attractive property

of the classic preferential attachment model. For the KPA model, the nodes

are from K groups. We now have the power-law degree distribution for each

group.

Theorem 3. Under the conditions of Theorem 2, let mk,d(t) denote the

number of nodes with degree d from group k in graph G(t). Note that

mk,1(0) = pkn0 and mk,0(t) = 0. For k ∈ [K], letting Mk,d = limt→∞E(mk,d(t))/t,

we have

Mk,d =
2qpk
4− q

d∏
j=2

(j − 1)(2− q)
2 + j(2− q)

∝ d−[1+2/(2−q)].
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(a) θ, p1, q = (0.1, 0.5, 0.5) (b) θ, p1, q = (0.5, 0.5, 0.5) (c) θ, p1, q = (0.9, 0.5, 0.5)

(d) θ, p1, q = (0.5, 0.1, 0.5) (e) θ, p1, q = (0.5, 0.5, 0.5) (f) θ, p1, q = (0.5, 0.9, 0.5)

(g) θ, p1, q = (0.5, 0.5, 0.1) (h) θ, p1, q = (0.5, 0.5, 0.5) (i) θ, p1, q = (0.5, 0.5, 0.9)

Figure 3: The x-axis is log(d) and the y-axis is log(mk,d(T )/T ).

Figure 3 shows the power-law degree distribution of a simulated network

data set where T = 100000, and K = 2. Hollow nodes and solid nodes come

from two groups, and the solid line is y = −[1 + 2/(2− q)]x+ C.

Theorem 3 implies that the rich-get-richer mechanism leads to a degree
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distribution following the power law. For network data with a power-law

degree distribution, stochastic block models (SBMs) cannot explain the sig-

nificant difference between the nodes’ degrees, and degree correction block

models (DCBMs) cannot explain the existence of nodes with enormous or

tiny degrees. In contrast, our KPA model is suitable for interpreting net-

work data with a power-law degree distribution. We show the significant

difference in the degree distributions between the SBM model and the rich-

get-rich model in Section S1 of the Supplementary Material.

4. Parameter estimation

4.1 With historical information

The parameters involved in the KPAmodel are (θ, {pk}Kk=1, q), where
∑K

k=1 pk =

1. Let ψ = (θ, {pk}K−1
k=1 , q)

⊤. Then, {G(t)}Tt=0 is an evolving network process

generated by a KPA model with the time range [0, T ]. Based on {G(t)}Tt=0,

we can obtain the MLE of the parameters:

For k ∈ [K], p̂k =

∑T
t=1 1{v(t) = 1, ge1(t) = k}∑T

t=1 v(t)
; q̂ =

∑T
t=1 v(t)

T
;

θ̂ = arg max
θ∈(0,1+ϵ)

logL2(θ|{G(t)}Tt=0),
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4.1 With historical information

where

logL2(θ|{G(t)}Tt=0)

=
T∑
t=1

K∑
k=1

1{v(t) = 1, ge1(t) = ge2(t) = k} log [Pk(t) + (1− θ) (1− Pk(t))]

+
T∑
t=1

K∑
k=1

1{v(t) = 1, ge1(t) = k, ge2(t) ̸= k} log [(1− Pk(t)) θ]

+
T∑
t=1

K∑
k=1

1{v(t) = 0, ge1(t) = ge2(t) = k} log [Pk(t) (Pk(t) + (1− θ) (1− Pk(t)))]

+
T∑
t=1

K∑
k=1

1{v(t) = 0, ge1(t) = k, ge2(t) ̸= k} log [Pk(t) (1− Pk(t)) θ] . (4.1)

e(t) = (e1(t), e2(t)), ϵ = mink∈[K]{min{Pk(t)/(1− Pk(t)) : t ∈ [1, T ], ge1(t) =

ge2(t) = k}}, Pk(t) = Dk(t− 1)/[2(t− 1) + n0].

Definition 1. To avoid confusion of symbols, let ψ∗ = (θ∗, {p∗k}K−1
k=1 , q

∗)⊤ be

the vector of true parameters of the KPA model. Let ψ̂ = (θ̂, {p̂k}K−1
k=1 , q̂)

⊤

be the MLE based on {G(t)}Tt=0.

Theorem 4. Assume the evolving network {G(t)}Tt=0 is generated by a KPA

model under Assumptions 1–3. Then, when T tends to infinity,

ψ̂
a.s.−→ ψ∗.

Theorem 4 guarantees the convergence of the MLE, and we can obtain

the asymptotic normality.
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4.1 With historical information

Theorem 5. Under the conditions of Theorem 4, when T tends to infinity,

T 1/2
(
ψ̂ − ψ∗

)
d−→ N(0,Σ−1),

Σ =


∑K

k=1

[
p∗k(1−p∗k)

θ∗
+

p∗k(1−p∗k)
2

p∗k+(1−p∗k)(1−θ∗)

]
0 0

0 Σ22 0

0 0 1
q∗(1−q∗)

 ,
where p∗K = 1−

∑K−1
k=1 p

∗
k and Σ22 is a (K− 1)× (K− 1) symmetric matrix

satisfying

Σ22(ij) =


q∗/p∗K , i ̸= j;

q∗(p∗l + p∗K)/(p
∗
l p

∗
K), i = j = l.

Corollary 3. Under the conditions of Theorem 4, when T tends to infinity,

T 1/2Σ̂1/2(ψ̂ − ψ∗)
d−→ N(0, IK+1),

where IK+1 is the (K + 1)×(K + 1) identity matrix, and Σ̂ is the estimator

of Σ:

Σ̂ =


∑K

k=1

[
p̂k(1−p̂k)

θ̂
+ p̂k(1−p̂k)

2

p̂k+(1−p̂k)(1−θ̂)

]
0 0

0 Σ̂22 0

0 0 1
q̂(1−q̂)

 ,
where p̂K = 1−

∑K−1
k=1 p̂k and

Σ̂22(ij) =


q̂/p̂K , i ̸= j;

q̂(p̂l + p̂K)/(p̂lp̂K), i = j = l.
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4.1 With historical information

Theorems 4–5 exhibit the excellent asymptotic properties of the MLE.

We can construct a confidence interval for θ̂ with level α,

CI = [θ̂ − µα/2∆, θ̂ + µα/2∆], (4.2)

where∆ =
[
T
∑K

k=1

{
p̂k(1− p̂k)/θ̂ + p̂k(1− p̂k)2/{p̂k + (1− p̂k)(1− θ̂)}

}]−1/2

,

and µα/2 is the α/2 upper-quantile of the standard normal distribution.

Corollary 3 implies limT→∞ P (θ∗ ∈ CI) = 1 − α if the null hypothesis is

valid.

For the case θ∗ = 1, there is no homophily in the evolving network.

Whether an evolving network has homophily is a significant issue for re-

searchers. Therefore, we construct a hypothesis test as follows:

H0 : θ
∗ = 1←→ H1 : θ

∗ < 1. (4.3)

The validity of the null hypothesis indicates that there is no homophily

in the network. Note that if θ∗ = 1, then∑K
k=1 [p

∗
k(1− p∗k)/θ∗ + p∗k(1− p∗k)2/{p∗k + (1− p∗k)(1− θ∗)}] = K − 1.

Construct the rejection region:

D = {θ : θ ∈ (0, θα)},

θα = 1− µα[T (K − 1)]−1/2.

(4.4)

Theorem 5 implies that limT→∞ P (θ̂ ∈ D) = α under the null hypoth-

esis H0 : θ∗ = 1. Thus, when we have θ̂ by the MLE, the criterion for
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homophily existing is as follows:
if θ̂ ≥ θα, there is no homophily effect in the evolving network;

if θ̂ < θα, the evolving network has a homophily structure.
(4.5)

Corollary 3 also allows us to test the hypothesis:

H0 : θ
∗ = θ0 ←→ H1 : θ

∗ ̸= θ0, (4.6)

where θ0 ∈ (0, 1), and

D = {θ : |θ − θ0| > cα},

cα =

[
T

K∑
k=1

{
p̂k(1− p̂k)

θ0
+

p̂k(1− p̂k)2

p̂k + (1− p̂k)(1− θ0)

}]−1/2

.

(4.7)

Theorem 5 implies that limT→∞ P (θ̂ ∈ D) = α under the null hypoth-

esis H0 : θ
∗ = θ0.

4.2 Snapshot

A snapshot of an evolving network refers to the present state of the network

without historical information. In our work, the snapshot is the graph G(T )

of an evolving process {G(t)}Tt=0.

We propose a parameter estimation procedure based on G(T ).

For k ∈ [K], p̃k =
|Vk(T )|
|V(T )|

; q̃ =
|V(T )|
|E(T )|

;

θ̃ = arg max
θ∈(0,1+ϵ̃)

LT (θ|G(T )),
(4.8)
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where Vk(T ) is the set of nodes from group k in G(T ), and Ek,1(T ) =

{(e1, e2) ∈ E(T ) : ge1 = ge2 = k}, Ek,0(T ) = {(e1, e2) ∈ E(T ) : ge1 =

k, ge2 ̸= k}. And LT (θ|G(T )) satisfies

LT (θ|G(T ))

=
K∑
k=1

|Ek,1(T )| log
[
Dk(T )

2|E(T )|

{
Dk(T )

2|E(T )|
+ (1− θ)(1− Dk(T )

2|E(T )|
)

}]

+
K∑
k=1

|Ek,0(T )| log
[
Dk(T )

2|E(T )|
θ(1− Dk(T )

2|E(T )|
)

]
, (4.9)

where ϵ̃ = mink∈[K]

[
Dk(T )
2|E(T )|/(1−

Dk(T )
2|E(T )|)

]
.

Theorem 6. Let the evolving network {G(t)}Tt=0 be generated by a KPA

model under Assumptions 1–3. Let ψ∗ = (θ∗, {p∗k}K−1
k=1 , q

∗)⊤ be the vec-

tor of true parameters of the KPA model. The parameter estimator ψ̃ =

(θ̃, {p̃k}K−1
k=1 , q̃)

⊤ based on G(T ) satisfies the following: when T tends to

infinity,

ψ̃
a.s.−→ ψ∗.

Theorems 4–6 provide consistent estimations of the homophily param-

eter – θ∗. The absence of homophily can be viewed as the case θ∗ = 1.

In the real world, most evolving network data sets are in the form of a

snapshot. Thus, Theorem 6 alone cannot infer whether an evolving network

has homophily. However, when we have obtained θ̃ from the snapshot
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estimation method, we can use the following algorithm to test whether the

evolving network has a homophily structure:

Algorithm 1 Homophily structure test on the snapshot.
Input: A snapshot graph G(T ); the number of randomized trials R; the

statistical significance level α.

Output: 1 or 0.

“1”: this evolving network has a homophily structure;

“0”: there is no homophily effect in this evolving network.

1: Estimate ψ by the Equation (4.8) to get ψ̃ = (θ̃, {p̃k}K−1
k=1 , q̃)

⊤ and E(T );

2: Assuming ψ∗ = (1, {p̃k}K−1
k=1 , q̃)

⊤, generate an evolving network with the

time range [0, |E(T )|] by G(0) with n0 nodes satisfying Assumption 4

and the KPA model in R trials;

3: Estimate θ using the snapshot estimation method in the rth trial, and

record the estimator as θ̃r, for r ∈ [R];

4: Let θα,R be the α-quantile of {θ̃r}Rr=1;

5: return 1{θ̃ < θα,R};

The effectiveness of Algorithm 1 is demonstrated in Simulation 7.4.
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5. Location of the change point

A change point τ ∗ ∈ [2, T ] means the parameter θ∗ of a KPA model changes

at time τ ∗, which implies that the influence of homophily on the network

structure has changed. Assume that the network follows a KPA model

with parameter θ∗1 in the time range [0, τ ∗], and follows a KPA model with

parameter θ∗2 in the time range [τ ∗ + 1, T ], such that θ∗2 ̸= θ∗1.

Assumption 5. τ ∗ ∈ [t0, T − t0], where t0/T ≡ c0, c0 ∈ (0, 1) is a constant.

Assumption 6. There is no difference in the parameters ({p∗k}K−1
k=1 , q

∗)

before and after the change point τ ∗.

Assumption 5 guarantees that we have enough information before and

after the change to locate the point τ ∗. Assumption 6 excludes the influence

of other factors.

We estimate the change point τ ∗ by using the maximum likelihood

method:

τ̂ = arg max
t0≤τ≤T−t0

[ max
θ1∈(0,1+ϵ1)

logL2(θ1|{G(t)}τt=0) + max
θ2∈(0,1+ϵ2)

logL2(θ2|{G(t)}Tt=τ ];

θ̂1 = arg max
θ1∈(0,1+ϵ1)

logL2(θ1|{G(t)}τ̂t=0);

θ̂2 = arg max
θ2∈(0,1+ϵ2)

logL2(θ2|{G(t)}Tt=τ̂ ), (5.1)

where ϵ1 = mink∈[K][mint{Pk(t)/(1 − Pk(t)) : t ∈ [1, τ ], ge1(t) = ge2(t) = k}],

and ϵ2 = mink∈[K][mint{Pk(t)/(1−Pk(t)) : t ∈ [τ+1, T ], ge1(t) = ge2(t) = k}].

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0136



Here, logL2(θ|{G(t)}) is defined by Equation (4.1).

Theorem 7. Under Assumptions 1–6, we have when T tends to infinity,

|τ̂ − τ ∗|
T

a.s.−−→ 0.

6. Robustness of the estimation and the group label recovery

This section discusses the robustness of the proposed estimators from var-

ious perspectives. The KPA model’s estimation accuracy is influenced by

several factors: the incorrect or missing assignment of group labels to nodes;

unobserved edge connections in the network generation process; and the in-

stability of the distribution parameter q of the vertex-steps.

Based on our research and simulations, we conclude the following about

the robustness of our estimators:

• The absence of group labels for nodes can be considered a special case

of erroneous group labels, because a random label can be assigned to

each node without a label. When θ∗ = 1, the CLT of T 1/2(θ̂ − 1)

still works, even though the nodes are labeled as wrong groups with a

probability away from one. When θ∗ < 1, the effect on the estimation

is slight when nodes are assigned to incorrect groups with a small

probability. However, if the nodes with erroneous group labels have
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high degrees, they can severely affect the parameter estimation, even

in small and finite numbers. To address this issue, we propose a

method for recovering group labels, following Hajek and Sankagiri

(2019). Note the following:

• Our estimators still performance well, even if edges added to the net-

work are unobserved with a certain probability.

• The convergence of our estimation method is proved both theoreti-

cally and experimentally, even if the parameter q has undergone a

finite number of changes.

Therefore, our estimators are robust. Details of the methods, theoret-

ical results, and proofs and simulations related to the robustness can be

found in Sections S2–S3 of the Supplementary Material.

7. Simulations

This section verifies the theorems in Sections 3–5 by randomly generat-

ing an evolving network from the KPA model in B trials. We design the

simulations as follows:

• The evolving network’s time range is [0, T ], and the number of groups

is K.
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7.1 Performance of Dk(T )

• The initial graph has n0 isolated nodes with loops, and n0× pk nodes

are from group k, for k ∈ [K].

• For each time t, a vertex-step occurs with probability q. In a vertex-

step, the node from group k arrives with probability pk.

• Record {v(t), e(t) = (e1(t), e2(t))} and {Dk(t)}Kk=1 at each time t ∈

[1, T ] in each trial.

Set

p(K) =



(0.5, 0.3, 0.2), K = 3;

(0.4, 0.2, 0.2, 0.1, 0.1), K = 5;

(0.2, 0.2, 0.1, 0.1, 0.1, 0.06, 0.06, · · ·︸ ︷︷ ︸
5

), K = 10.

(7.1)

7.1 Performance of Dk(T )

This subsection verifies Theorems 1–2. Set B = 500, T = 10000, K ∈

{3, 5, 10}, n0 = 100, θ ∈ {0.8, 0.5, 0.2}, q ∈ {0.9, 1/(1 − θ), 0.1}, and p =

p(K) in Equation (7.1).

Table 1 shows the convergence of Dk(T )/2T and the effect of q on the

convergence rate. “Bias” records the absolute sum of the bias from B trials:∑K
k=1

∣∣∣∑B
b=1[(Dk,b(T )/2T )− pk]/B

∣∣∣. “MSE” records the sum of the mean

squared error from B trials:
∑K

k=1

∑B
b=1 [(Dk,b(T )/2T )− pk]2/B.
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7.2 Estimators of parameters with historical information

Table 1: Behavior of Dk(T )/2T with T = 10000.

Bias MSE

q = 0.9 q = 1/(2− θ) q = 0.1 q = 0.9 q = 1/(2− θ) q = 0.1

K = 3 θ = 0.8 1.1564e− 03 1.4024e− 03 1.844e− 03 1.5215e− 04 1.8449e− 04 4.3004e− 03

θ = 0.5 3.5264e− 04 4.6249e− 04 3.7849e− 03 1.0701e− 04 2.2359e− 04 4.4340e− 03

θ = 0.2 1.3015e− 04 9.8866e− 04 1.9522e− 04 8.6749e− 05 2.9715e− 04 5.6653e− 03

K = 5 θ = 0.8 1.4314e− 03 1.6414e− 03 7.5471e− 03 1.9349e− 04 2.3103e− 04 5.5345e− 03

θ = 0.5 9.2040e− 04 1.7393e− 03 7.9041e− 03 1.2686e− 04 2.8392e− 04 5.4508e− 03

θ = 0.2 6.3920e− 04 1.6032e− 03 3.4957e− 03 1.0529e− 04 3.7104e− 04 6.2910e− 03

K = 10 θ = 0.8 1.7843e− 03 2.7916e− 03 0.0102 2.2084e− 04 2.8741e− 04 5.9235e− 03

θ = 0.5 1.2434e− 03 1.3576e− 03 7.7375e− 03 1.5407e− 04 3.4378e− 04 6.7235e− 03

θ = 0.2 1.6965e− 03 3.8501e− 03 8.6197e− 03 1.2460e− 04 4.1959e− 04 7.1033e− 03

7.2 Estimators of parameters with historical information

This subsection verifies Theorems 4–5 and Corollary 3. We test the conver-

gence of θ̂ in B simulation trials. Set B = 500, T = 10000, K ∈ {3, 5, 10},

n0 = 100, θ ∈ {0.8, 0.5, 0.2}, q ∈ {0.9, 0.1}, and p = p(K) in Equation

(7.1).

{{Dk(t)}Kk=1, v(t), ge1(t), ge2(t)}Tt=1 are used to construct the maximum

likelihood equation and record the estimators of θ and Σ11 in the bth trial:-

θ̂b, Σ̂11,b, b ∈ [B].

For θ̂, we have the following. “Bias” records the absolute sum of the bias

from B trials:
∑B

b=1(θ̂b − θ)/B. “MSE” records the sum of the mean square

error from B trials:
∑B

b=1 (θ̂b − θ)2/B. “Cover rate” records the percentage

of B trials that θ fall in the confidence interval:
∑B

b=1 1{θ ∈ CI(b)}/B,
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where CI(b) = [θ̂b − µα/2∆, θ̂b + µα/2∆], α = 0.05,

∆ =
[
T
∑K

k=1 {pk(1− pk)/θ + pk(1− pk)2/{pk + (1− pk)(1− θ)}}
]−1/2

.

For (θ̂− θ)/Σ̂1/2
11 , “Bias” records

∑B
b=1(θ̂b− θ)/(Σ̂

1/2
11,bB), “MSE” records∑B

b=1(θ̂b−θ)2/(Σ̂11,bB), and “Cover rate” records
∑B

b=1 1{(θ − θ̂b)/Σ̂
1/2
11,b ∈ CI}/B,

where CI = [−µα/2, µα/2], α = 0.05.

The results of θ̂b and (θ̂b − θ)/Σ̂1/2
11,b are recorded in Table 2.

Table 2: Performance of θ̂ and (θ̂ − θ)/Σ̂1/2
11 .

θ̂ q = 0.9 q = 0.1

Bias MSE Cover rate Bias MSE Cover rate

K = 3 θ = 0.8 2.9744e− 05 5.6869e− 05 0.956 3.8720e− 04 5.9814e− 05 0.958

θ = 0.5 −2.9054− 04 5.2692e− 05 0.95 −3.0766e− 05 5.6951e− 05 0.94

θ = 0.2 2.3003e− 05 3.0974e− 05 0.952 1.5615e− 04 2.9925e− 05 0.946

K = 5 θ = 0.8 −1.6917e− 04 3.9761e− 05 0.96 2.7934e− 04 3.6486e− 05 0.962

θ = 0.5 −8.6336e− 05 4.0488e− 05 0.95 1.5401e− 04 3.9474e− 05 0.96

θ = 0.2 −1.6008e− 04 2.2379e− 05 0.956 −2.0367e− 04 2.1806e− 05 0.96

K = 10 θ = 0.8 1.8203e− 05 2.6514e− 05 0.954 6.8822e− 05 2.5242e− 05 0.956

θ = 0.5 −1.6593e− 04 3.3950e− 05 0.96 2.3263e− 05 3.5618e− 05 0.944

θ = 0.2 −1.2789e− 04 1.8692e− 05 0.958 −2.3689e− 04 2.0406e− 05 0.942

(θ̂ − θ)/Σ̂1/2
11 Bias MSE Cover rate Bias MSE Cover rate

K = 3 θ = 0.8 −0.0306 1.0564 0.946 0.0366 1.0159 0.944

θ = 0.5 0.0274 0.9302 0.96 −0.0248 0.9675 0.956

θ = 0.2 0.0237 0.9094 0.964 −0.0457 0.9996 0.958

K = 5 θ = 0.8 −0.0478 1.0184 0.948 −0.0236 0.9684 0.962

θ = 0.5 −9.3054e− 04 1.0922 0.94 0.0407 0.9865 0.952

θ = 0.2 −0.0229 0.9492 0.96 0.0563 0.9652 0.958

K = 10 θ = 0.8 0.0262 0.9633 0.966 −0.0834 0.9840 0.954

θ = 0.5 −0.0724 0.9287 0.958 −0.0288 1.0255 0.942

θ = 0.2 −0.0923 1.0773 0.95 0.0378 0.9487 0.958
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7.3 Snapshot

This subsection verifies Theorem 6, the convergence of the snapshot esti-

mation based on graph G(T ). Set B = 500, T = 10000, K ∈ {3, 5, 10},

n0 = 100, q = 0.5, and p = p(K) in Equation (7.1).

{{Dk(t)}Kk=1, v(t), ge1(t), ge2(t)}Tt=1 are used to construct the maximum

likelihood equation (Equation (4.1)) and record the estimator of θ as θ̂mle(b)

in the bth trial, b ∈ [B]. {Dk(T ), Ek,1(T ), Ek,0(T )}Kk=1 are used to construct

the snapshot estimation (Equation (4.9)) and record the estimator of θ as

θ̂snap(b) in the bth trial, for b ∈ [B].

We calculate the mean absolute error (MAE) and the mean squared

error (MSE) for θ̂mle =
∑B

b=1 θ̂mle(b)/B and θ̂snap =
∑B

b=1 θ̂snap(b)/B, for

b ∈ [B].

Table 3 compares the results of the two methods.
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Table 3: Comparison of the MLE and snapshot estimations.

Bias MAE MSE

θ̂mle − θ θ̂snap − θ
∑B

b=1 |θ̂snap(b)− θ|/B
∑B

b=1 |θ̂mle(b)− θ|/B
∑B

b=1(θ̂snap(b)− θ)2/B
∑B

b=1(θ̂mle(b)− θ)2/B

K = 3 θ = 0.8 −1.2620e− 04 −3.9170e− 05 6.1264e− 03 6.1511e− 03 5.9312e− 05 5.9918e− 05

θ = 0.5 −4.4441e− 04 −5.7596e− 04 6.0634e− 03 6.1599e− 03 5.7998e− 05 5.7998e− 05

θ = 0.2 −4.6652e− 04 −4.7906e− 04 4.1808e− 03 4.2455− e03 2.8312e− 05 2.8898e− 05

K = 5 θ = 0.8 −1.2516e− 04 −1.0208e− 04 4.9228e− 03 4.9908e− 03 3.8822e− 05 3.9828e− 05

θ = 0.5 −8.7880e− 05 −1.6979e− 04 5.0875e− 03 5.1120e− 03 4.0902e− 05 4.1537e− 05

θ = 0.2 2.4947e− 04 2.4115e− 4 3.6752e− 03 3.6703e− 03 2.1145e− 05 2.1027e− 05

K = 10 θ = 0.8 −3.8862e− 05 −4.8347e− 05 4.185e− 03 4.1786e− 03 2.6769e− 05 2.6822e− 05

θ = 0.5 6.6961e− 05 5.3035e− 05 4.3469e− 03 4.3455e− 03 2.9281e− 05 2.9428e− 05

θ = 0.2 −1.4646e− 04 −1.8334e− 04 3.7049e− 03 3.7002e− 03 2.1952e− 05 2.1979e− 05

7.4 Homophily structure test on the snapshot

This subsection verifies Algorithm 1. SetB = 500, n0 = 10, T ∈ {200, 500, 1000},

K ∈ {3, 5, 10}, θ ∈ {1, 0.9, 0.95}, q ∈ {0.9, 0.5}, and p = p(K) in Equation

(7.1) if K ∈ {3, 5}, and p = (0.1, 0.1, · · ·︸ ︷︷ ︸
10

) if K = 10.

{Dk(T ), Ek,0(T ), Ek,1(T )}Kk=1 are used to construct the snapshot estima-

tion and record the estimator of (θ, {pk}K−1
k=1 , q) in the bth trial: (θ̂b, {p̂k,b}K−1

k=1 , q̂b),

b ∈ [B].

Using Algorithm 1, we obtain θα,R,b based on the parameters (1, {p̂k,b}K−1
k=1 , q̂b)

in the bth trial, where α = 0.05 and R = 500. Table 4 records the percent-

age of B trials that accept the null hypothesis —
∑B

b=1 1{θ̂b ≥ θα,R,b}/B —
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when θ = 1, and the percentage of B trials that reject the null hypothesis

—
∑B

b=1 1{θ̂b < θα,R,b}/B — when θ < 1.

Table 4: The effect of Algorithm 1.

θ = 1 θ = 0.95 θ = 0.9∑B
b=1 1{θ̂b ≥ θα,R,b}/B

∑B
b=1 1{θ̂b < θα,R,b}/B

∑B
b=1 1{θ̂b < θα,R,b}/B

q = 0.9 q = 0.5 q = 0.9 q = 0.5 q = 0.9 q = 0.5

K = 3 T = 200 0.946 0.956 0.256 0.286 0.622 0.616

T = 500 0.956 0.942 0.452 0.506 0.922 0.932

T = 1000 0.958 0.94 0.722 0.736 1 0.996

K = 5 T = 200 0.956 0.954 0.428 0.396 0.872 0.858

T = 500 0.938 0.942 0.724 0.736 0.99 0.994

T = 1000 0.944 0.95 0.894 0.926 1 1

K = 10 T = 200 0.946 0.948 0.712 0.652 0.986 0.976

T = 500 0.95 0.94 0.93 0.922 1 1

T = 1000 0.948 0.948 0.998 1 1 1

7.5 Change point

This subsection verifies Theorem 7, the method of locating the change point

τ . Set B = 500, T ∈ {10000, 20000}, K = 10, n0 = 100, q = 0.5, and

p = (0.2, 0.2, 0.1, 0.1, 0.1, 0.06, 0.06, · · ·︸ ︷︷ ︸
5

).

Set c0 = t0/T = 0.1, τ/T ∈ {0.25, 0.5, 0.75}. The homophily parameter

is θ1 before the change point, and θ2 after the change point, with (θ1, θ2) ∈

{(0.4, 0.6), (0.1, 0.9)}.

{{Dk(t)}Kk=1, v(t), ge1(t), ge2(t)}Tt=1 are used to construct the maximum

likelihood equation (Equation (4.1)), and to obtain the estimator τ̂(b), θ̂1(b)
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and θ̂2(b) from Equation (5.1) in the bth trial, b ∈ [B]. Table 5 shows the

results for τ̂ =
∑B

b=1 τ̂(b)/B and θ̂1 =
∑B

b=1 θ̂1(b)/B, θ̂2 =
∑B

b=1 θ̂2(b)/B.

Table 5: Accuracy of change point location.

Estimator MSE

T = 1000 τ̂ (τ̂ − τ)/T θ̂1 θ̂2
∑B

b=1[(τ̂(b)− τ)/T ]2/B
∑B

b=1(θ̂1(b)− θ1)2/B
∑B

b=1(θ̂2(b)− θ2)2/B

τ = 250 (θ1, θ2) = (0.1, 0.9) 250.092 9.2e− 05 0.0989 0.9008 2.132e− 06 3.7703e− 04 2.6951e− 04

(θ1, θ2) = (0.4, 0.6) 255.1 0.0051 0.3928 0.6051 2.0025e− 03 1.3744e− 03 5.0610e− 04

τ = 500 (θ1, θ2) = (0.1, 0.9) 500.22 2.2e− 04 0.1008 0.9028 2.548e− 06 1.8752e− 04 4.6358e− 04

(θ1, θ2) = (0.4, 0.6) 500.4 4e− 04 0.3942 0.6056 2.5436e− 03 6.036e− 04 8.1849e− 04

τ = 750 (θ1, θ2) = (0.1, 0.9) 750.264 2.64e− 04 0.0997 0.9002 2.328e− 06 1.4643e− 04 7.7421e− 04

(θ1, θ2) = (0.4, 0.6) 749.58 −4.2e− 04 0.3967 0.6098 2.5096e− 03 3.897e− 04 1.7278e− 03

T = 2000 τ̂ (τ̂ − τ)/T θ̂1 θ̂2
∑B

b=1[(τ̂(b)− τ)/T ]2/B
∑B

b=1(θ̂1(b)− θ1)2/B
∑B

b=1(θ̂2(b)− θ2)2/B

τ = 500 (θ1, θ2) = (0.1, 0.9) 500.028 1.4e− 05 0.0996 0.9001 6.53e− 07 1.8623e− 04 1.3056e− 04

(θ1, θ2) = (0.4, 0.6) 494.156 −2.922e− 03 0.3931 0.5993 5.5524e− 04 7.4999e− 04 2.2043e− 04

τ = 1000 (θ1, θ2) = (0.1, 0.9) 999.996 −2e− 06 0.0996 0.9016 9.19e− 07 1.0328e− 04 2.1915e− 04

(θ1, θ2) = (0.4, 0.6) 998.892 −5.54e− 04 0.3961 0.6007 4.6902e− 04 3.5954e− 04 3.5254e− 04

τ = 1500 (θ1, θ2) = (0.1, 0.9) 1500.04 2e− 05 0.0993 0.9026 4.6e− 07 7.2221e− 05 4.3321e− 04

(θ1, θ2) = (0.4, 0.6) 1499.3 −3.5e− 04 0.3980 0.6042 3.8961e− 04 1.8925e− 04 8.2859e− 04

8. Data application

We selected two real network data sets to test our KPA model and the esti-

mation methods. Both have group labels for nodes, and one has timestamp

information about edges. The data sets are as follows:

• CL-10K-1d8-L5 is a network data set with group information, but

without a timestamp from the Network Repository (Rossi and Ahmed

(2015)) available at

https://networkrepository.com/CL-10K-1d8-L5.php.
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• Soc-political-retweet is a network data set with group information

and timestamp information from the Network Repository (Rossi and

Ahmed (2015)) available at

https://networkrepository.com/soc-political-retweet.php.

The basic information about these network data sets is in Table S10 of

the Supplementary Material.

The θ̂snap of CL-10K-1d8-L5 by the snapshot estimation is 0.9999, and

the θ̂mle of soc-political-retweet is 0.0413.

For the snapshot estimation of CL-10K-1d8-L5, the estimated parame-

ters are (p̂1, p̂2, p̂3, p̂4, p̂5, q̂) = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2227). Based on (p̂1, p̂2, p̂3, p̂4, p̂5, q̂)

and θ∗ = 1, with the time range [0, 44896], we can test the homophily by

using Algorithm 1. Letting the statistical significance level be α = 0.05

and the number of randomized trials be R = 500, we have θα,R = 0.9963

and 1{0.9999 < 0.9963} = 0. These results imply there is no homophily in

CL-10K-1d8-L5.

For the MLE of soc-political-retweet, the estimated parameters are

(p̂1, p̂2, q̂) = (0.3852, 0.6148, 0.3020), T = 61157, and K = 2. By Equa-

tion (4.4), we get θα = 0.9933, where α = 0.05 and θ̂ < θα, which means

the evolving network has a homophily structure.

Tables S1–S2 in the Supplementary Material show that our estimations
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are robust when the nodes are mislabeled with a small probability. Fur-

thermore, consider the mislabeling that arose with probability, as specified

in Assumption S.1. Theorem S.1 implies that the rejection region is the

same, regardless of any mislabeling. Thus, Equation (4.5) is still valid. We

can still infer that soc-political-retweet has a homophily structure, because

it rejects the null hypothesis.

Rich-get-richer is another essential mechanism of the KPA model. Fig-

ures 4–5 show the power-law degree distribution of the data sets. Each

group’s power-law degree distribution is provided in the Supplementary

Material.

(a) Histogram of degree distribution
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(b) log-log scale of degree distribution

Figure 4: Degree distribution of CL-10K-1d8-L5.
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(a) Histogram of degree distribution (b) log-log scale of degree distribution

Figure 5: Degree distribution of soc-political-retweet.

Supplementary Materials

In the supplementary material, we discuss the applicability of the KPA

model. We also give proofs of the theoretical results presented in Sections

3–6 and the basic information of datasets in Section 8. More simulations

for the estimations’ robustness and the group label recovery in Section 6

are also listed.
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