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Abstract: Blockwise missing data occur frequently when we integrate multisource or multimodality

data, in which different sources or modalities contain complementary information. In this study, we

consider a high-dimensional linear regression model with blockwise missing covariates and a partially

observed response variable. Under this framework, we propose a computationally efficient estimator

for the regression coefficient vector based on carefully constructed unbiased estimating equations and

a blockwise imputation procedure, and obtain its rate of convergence. Furthermore, building on an

innovative projected estimating equation technique that intrinsically corrects any bias in the initial

estimator, we propose a nearly unbiased estimator for each individual regression coefficient, which is

asymptotically normally distributed under mild conditions. Based on these debiased estimators, we

construct asymptotically valid confidence intervals and statistical tests for each regression coefficient.

The results of our numerical studies and an application to data from the Alzheimer’s Disease Neu-

roimaging Initiative show that the proposed method outperforms existing methods, and benefits more

from unsupervised samples than existing methods do.
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1. Introduction

The problem of blockwise missing data arises when we integrate data from multiple modal-

ities, sources, or studies. For instance, the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) study collects data from magnetic resonance imaging (MRI), positron emission

tomography (PET) imaging, genetics, cerebrospinal fluid, cognitive tests, and demographic

information of patients (Mueller et al., 2005). However, because some subjects do not have

MRI or PET images, the biomarkers related to the images can be completely missing

for these subjects. As a result, when we integrate data from multiple sources, and group

patients based on their missing patterns, blocks of values may be missing, as illustrated

in Figure 1 (a), where white areas represent the missing blocks. Multimodality data also

appear in modern genomic studies of complex diseases. For example, the Genotype-Tissue

Expression (GTEx) study has collected RNA-seq gene expression data from over 45 tissues

of more than 800 donors (Lonsdale et al., 2013). In this case, the gene expression data in

the GTEx study are blockwise missing if a tissue sample is not available.

Many important scientific questions can be answered by using an association or regres-

sion analysis. In this case, for data sets with blockwise missing covariates, the response

variable is often also partially missing across the samples, for example, this situation could

occur when the outcomes are expensive to collect, such as in electronic health records

databases, where labeling the outcome for each individual is costly and time consuming

(Kohane, 2011). In the GTEx study, samples are collected only from non-diseased tissue

samples across individuals (GTEx Consortium, 2017), implying that the response is only

partially observed when we predict a gene expression in one tissue using gene expression

levels in other tissues.
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Figure 1: White areas represent missing blocks, while shaded areas represent observed blocks. (a) Missing

structure for ADNI data. (b) A blockwise missing example.

Therefore, to make the most use of such data sets, it is essential to develop methods

that are adaptive and can effectively use extra unsupervised samples to infer the underlying

models.

In this study, we consider a linear regression model

Y = X>β + ε, (1.1)

where Y is the response variable, X is a p-dimensional random vector of regression co-

variates, β is a p-dimensional regression sparse coefficient vector, and ε is a centered sub-

Gaussian random variable with variance σ2 and independent of X . Let s be the number

of relevant covariates with nonzero coefficients. Suppose that X consists of covariates from

S data sources. For instance, there are four sources in Figure 1 (a), and three sources in

Figure 1 (b). We further suppose that all samples are drawn independently from (X ,Y) in

(1.1) before going through certain missingness mechanisms.

Throughout, we allow the response variable to be missing. Specifically, we let the index

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0104



4

set of all samples be D = {1, . . . , N+n} = D1∪D2, where D1 is the index set of the samples

for which the response variable is not observable, D2 is the index set of the samples with

observed responses, and N and n are the numbers of samples in D1 and D2, respectively.

For simplicity, we slightly abuse the terminology, and refer to the samples in D1 as the

“unsupervised samples,” and refer to the samples in D2 as the “supervised samples.” We let

y denote the (N + n)-dimensional vector consisting of all samples of the response, and let

X denote the (N + n)× p design matrix, where y and X can both have missing values. In

Section S1 of the Supplementary Material, we provide a table explaining all notation used

in this paper.

We assume that the covariates are blockwise missing. Specifically, we assume that there

are R groups of samples in D, with the same missing covariate indices within each group,

and the missing covariates consist of variables in one or several data sources. This gives

rise to missing blocks in the design matrix, as shown in Figure 1. There are R = 8 missing

groups in Figure 1 (a), and R = 5 missing groups in Figure 1 (b). For any i = 1, . . . , N +n,

we let ξi be the group label of the ith sample, which takes random values in {1, . . . , R}. For

any r = 1, . . . , R, we let S(r) ⊆ D be the index set of the samples in Group r. Our goal is

to study statistical inference for the high-dimensional regression vector β in (1.1) based on

such partially observed responses and blockwise missing covariates.

In general, there are three types of missingness mechanisms (Little and Rubin, 2019).

If the missingness of a missing variable is independent of the values of both the missing

variables and the observed variables, then we refer to this as missing completely at random

(MCAR). If the missingness can be fully accounted for by observed variables for which we

have complete information, then the missing mechanism is missing at random (MAR). If the
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missingness depends on the values of the missing variables, then the missing mechanism is

called missing not at random (MNAR). For blockwise missing covariates, the corresponding

missing mechanism depends on the relationship between ξi(1 ≤ i ≤ N) and the covariates.

For example, if ξi depends only on covariates observed in all groups, then the missingness

mechanism of the blockwise missing covariates is MAR. We focus mainly on MAR, but do

also investigate MNAR in simulations in Section 5.

1.1 Related Works

Several methods have been developed recently related to blockwise missing data (Yuan

et al., 2012; Xiang et al., 2014; Yu et al., 2020; Cai et al., 2016; Xue and Qu, 2021). In

particular, Yuan et al. (2012) studied the integration of large-scale brain imaging data

sets from multiple imaging modalities, where data are blockwise missing, because each

modality contains missing measurements. They propose dividing the blockwise missing

data into several learning tasks, based on the availability of the data sources, and use

penalization to encourage the selection of a common set of features across all tasks. Xiang

et al. (2014) extended the method by letting feature-level parameters be the same across all

tasks, which is beneficial for the prediction of subjects with new missing patterns. Moreover,

they included parameters for source-level weights to reflect the effectiveness of each source.

Nevertheless, none of these existing methods aim to construct confidence intervals or test

hypotheses for the regression models, nor do they incorporate a partially observed response

with blockwise missing data.

In general, the simplest approach to handle missing data is to restrict the analysis to

complete cases. However, this might induce bias if the missingness mechanism is not com-
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pletely at random. The inverse probability weighting (IPW) is widely used to correct this

bias (Little and Rubin, 2019) by modeling the probability of being a complete case, given

some predictors, and then reweighting complete cases using the inverse of the estimated

probability. The augmented IPW methods improve the IPW by combining it with impu-

tation of missing values (Robins et al., 1994; Qin et al., 2017; Seaman and Vansteelandt,

2018). However, these methods are not directly applicable or easily extendable to blockwise

missing data, without sacrificing efficiency. This is because IPW-related methods usually

only consider whether or not a subject is completely observed, and cannot fully use the

blockwise missing structure of the blockwise missing covariates.

With regard to statistical inference for high-dimensional regression models under fully

observed settings, several studies employ a bias correction of regularized estimators, includ-

ing thos of Javanmard and Montanari (2014), van de Geer et al. (2014), Zhang and Zhang

(2014), Ning and Liu (2017), Javanmard and Montanari (2018), and Neykov et al. (2018),

among many others. More recently, high-dimensional inference problems with partially ob-

served responses have been studied (Bellec et al., 2018; Zhang and Bradic, 2019; Cai and

Guo, 2020; Deng et al., 2020). However, none of these methods address the problem of

missing covariates. In particular, to the best of our knowledge, there is no existing method

that focuses on statistical inference for a high-dimensional regression with blockwise missing

data.

1.2 Main Contributions

In this study, we build on a blockwise imputation (BI) procedure and carefully constructed

unbiased estimating equations to account for structural missing covariates and a partially

observed response variable. As such, we propose a computationally efficient sparse estimator
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for a high-dimensional regression coefficient vector, and obtain its theoretical properties un-

der mild regularity conditions. Importantly, unlike most existing methods, our method does

not require fully observed samples in the data, and benefit automatically from additional

unsupervised samples, until achieving the optimal rate of convergence of fully observed

samples.

In addition, we develop an innovative projected estimating equation technique that

leverages all available data, including the unsupervised samples, to correct the bias in the

initial sparse estimator, and to obtain nearly unbiased estimators for the individual regres-

sion coefficients. These estimators are shown to be asymptotically normally distributed,

with a variance that is minimized by construction. By carefully analyzing these debiased

estimators, we can construct asymptotically valid confidence intervals and statistical tests

about each regression coefficient accordingly. In particular, our theoretical analysis provides

important insights about the benefits of using unsupervised samples on the proposed infer-

ence procedures, revealing their important role in constructing estimators with competitive

efficiency (see also the discussions after Theorems 1 and 2).

1.3 Notation

Throughout, for a vector a = (a1, . . . , an)> ∈ Rn, we define the `p-norm ‖a‖p =
(∑n

i=1 a
p
i

)1/p
,

the `0-norm ‖a‖0 =
∑n

i=1 1{ai 6= 0}, and the `∞-norm ‖a‖∞ = max1≤j≤n |ai|. For an index

set E ⊂ {1, . . . , n}, we denote aE as the subvector of a consisting of all the components

aj, where j ∈ E . In addition, a−j ∈ Rn−1 denotes the subvector of a without the jth

component. For a matrix A ∈ Rp×q, λi(A) denotes the ith largest singular value of A, and

λmax(A) = λ1(A) and λmin(A) = λmin(p,q)(A). For index sets S1 ⊆ [1 : p] and S2 ⊆ [1 : q],
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we denote AS1S2 as the submatrix of A consisting of its entries in the rows indexed by S1

and the columns indexed by S2. We denote ‖A‖∞ = maxi,j |Aij|. For any positive integer n,

we denote the set {1, 2, . . . , n} as [1 : n]. For sequences {an} and {bn}, we write an = o(bn),

an � bn, or bn � an if limn an/bn = 0, and write an = O(bn), an . bn, or bn & an if there

exists a constant C such that an ≤ Cbn, for all n. We write an � bn if an . bn and an & bn.

For a set A, we denote |A| as its cardinality.

2. Parameter Estimation using Blockwise Imputation

2.1 Blockwise Imputation (BI)

The BI procedure is able to use more information from incomplete samples (or cases) than

traditional single regression imputation (SI) methods do, which impute missing values via

regression models using all the observed variables as the predictors (Baraldi and Enders,

2010; Zhang, 2016; Campos et al., 2015). For example, in Figure 1 (b), the traditional

SI method imputes missing values in Group 2 by modeling the relationship between the

variables in Source 3 and all other variables. This relationship can be estimated based on

complete samples in Group 1. However, Groups 3 and 4 also contain information about

Source 3 variables, but are not used by the SI. In contrast, the BI imputes the missing

values in a group by using both the dependence between the missing variables and all the

observed variables in this group, and the dependence between the missing variables and part

of the observed variables, which could lead to several imputations for each missing value.

The additional imputations based on part of the observed variables incorporate information

from incomplete groups, that is, Groups 3 and 4 in Figure 1 (b), because these incomplete

groups can be used to estimate the latter dependence.
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Specifically, for each missing group, the first step in BI is to determine the groups that

can be used to construct an association between the missing variables and at least part of

the observed variables in this group. For each Group r ∈ [1 : R], we let G(r) ⊆ [1 : R] be

the index set of the groups in which all the missing variables of Group r and the variables

in at least one of the other sources are observed, and let a(r), a(r)c ⊆ [1 : p] be the index

sets of the observed variables and missing variables, respectively, in Group r. For example,

when there are three sources of data with R = 5 missing groups, as shown in Figure 1 (b),

then G(2) = {1, 3, 4}, and a(2)c consists of indices of the covariates in Source 3. Group 5

is not in G(2), because it does not contain any information about the variables in Source 3

that are missing in Group 2. If Group r is completely observed, that is, there are no missing

values in Group r, we let G(r) = {r}.

In this paper, we assume, without loss of generality, that |G(r)| ≥ 1, for each r ∈ [1 : R],

implying that each covariate is observed in at least one group. This assumption is equivalent

to that, for each missing variable in Group r, there is at least one group of samples reflecting

the association between this missing variable and at least part of the observed variables in

Group r. Note that this assumption does not require the existence of complete samples,

because incomplete groups could also contain values for both missing variables and some

observed variables in Group r.

In the second step of BI, we impute missing values in Group r based on each of the

groups in G(r). Specifically, for any sample i in Group r ∈ [1 : R] (i.e., i ∈ S(r)), if

the variable Xij is missing (j ∈ a(r)c), then for any Group k ∈ G(r), we impute Xij by

E(Xij|Xia(r,k)), where Xij is the (i, j) element in the design matrixX, and a(r, k) ⊆ [1 : p] is

an index set of covariates observed in both Groups r and k. Throughout, for each r ∈ [1 : R]
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and i ∈ S(r), we define X
(k)
i = (X

(k)
i1 , . . . , X

(k)
ip )> as the imputed random vector for sample

i according to Group k ∈ G(r), so that X
(k)
ij = E(Xij|Xia(r,k)) if the jth covariate Xij is

missing in the ith sample Xi, otherwise X
(k)
ij = Xij. Note that the superscript (k) indicates

the conditional expectation imputation based on Group k.

Often, we can estimate the conditional expectation E(Xij|Xia(r,k)) by fitting a linear

regression model between Xij and the random vector Xia(r,k) using the samples in Group

k. To account for high dimensionality, we consider the Dantzig selector (Candes and Tao,

2007), defined as

γ̂j,a(r,k) = arg min
γ∈R|a(r,k)|

‖γ‖1, subject to
∥∥XS(k)j −XS(k)a(r,k)γ∥∥∞ ≤ τ, (2.1)

where τ > 0 is a tuning parameter. Then, we can approximate the imputed variable

X
(k)
ij = E(Xij|Xia(r,k)) by γ̂>j,a(r,k)Xia(r,k). The imputed values are deterministic, given

the data, and may be biased in the high-dimensional setting. Below, we carefully analyze

such an imputation error (Section 3), and propose a bias-correction procedure to construct

asymptotically unbiased estimators for the components of β (Section 2.3).

For each r ∈ [1 : R] and i ∈ S(r), we define X̂
(k)
i = (X̂

(k)
i1 , . . . , X̂

(k)
ip )> as the actual

imputed observations of sample i based on Group k ∈ G(r), where X̂
(k)
ij = γ̂>j,a(r,k)Xia(r,k)

if the jth covariate is missing in the ith sample Xi, otherwise X̂
(k)
ij = Xij. Importantly,

because for each group r, G(r) could contain multiple elements (e.g. |G(2)| = 3 in Figure 1

(b)), there could be multiple imputations for the missing blocks in this group, each associated

with a distinct k ∈ G(r). Finally, we obtain the theoretical value for the tuning parameter

τ in (2.1) in Section 3; in practice, τ can be determined using cross-validation (Section 5).
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2.2 Construction of Estimating Equations and the Proposed Estimator

To construct unbiased estimating equations for estimating the unknown regression coeffi-

cients, for each of these blockwise imputations, we consider their corresponding moment

conditions, as follows. For any r ∈ [1 : R], k ∈ G(r), and i ∈ D2, we consider

hirk(β) = I(ξi = r){yi − (X
(k)
i )>β} ·X(k)

ia(k), (2.2)

where yi is the response of the ith sample, and X
(k)
ia(k) is a subvector of X

(k)
i consisting of

elements corresponding to all covariates observed in Group k. Under the linear regression

model, whenever ξi is independent of all the covariates (MCAR), or depends only on the

observed covariates (MAR), it can be shown that E{hirk(β)} = 0 (Xue and Qu, 2021).

Intuitively, the construction of hirk(β) is inspired by the score function under the linear

regression model, which is still expected to be zero after the blockwise imputations. In

addition, note that for different k1, k2 ∈ G(r) or for different imputations, the dimension of

their corresponding equation (2.2) may be different, because the subset a(k) varies with k.

Integrating all missing groups and imputations, we can define a system of unbiased

estimating equations as

g(β) :=
1

|D2|
∑
i∈D2


θ̂−11 hi1(β)

...

θ̂−1R hiR(β)

 = 0, (2.3)

where θ̂r = |D2 ∩ S(r)|/|D2| is an estimate of the observed rate for the rth group among

D2, and hir(β) is a vector combining the components of the vectors in {hirk(β)}k∈G(r),

for r ∈ [1 : R]. In particular, g(β) is a vector of dimension Mg =
∑R

r=1

∑
k∈G(r) |a(k)|,

which may be larger than p. This overspecification is helpful in terms of making full use
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of the information contained in all the missing patterns and the available observations.

Nonetheless, it is shown in Section S5 of the Supplementary Material (Lemmas 1 and 2)

that, under a wide range of settings, the above system of estimating equations leads to a

feasible set that contains the true coefficient vector β with high probability.

However, the random vectors X
(k)
i required by (2.2) and (2.3) are not fully observed.

Instead, we use the imputed observations X̂
(k)
i as an approximation. Specifically, we define

the imputed counterpart of hirk(β) as

ĥirk(β) = I(ξi = r){yi − (X̂
(k)
i )>β} · X̂(k)

ia(k), (2.4)

and define the imputed estimating function as

gn(β) =
1

|D2|
∑
i∈D2


θ̂−11 ĥi1(β)

...

θ̂−1R ĥiR(β)

 , (2.5)

where n = |D2|, and ĥir(β) is a vector combining the components of the vectors in

{ĥirk(β)}k∈G(r), for each r ∈ [1 : R].

Finally, respecting the underlying sparsity of the coefficient vector β, we define the

proposed estimator as

β̂ = arg min
β∈Rp

‖β‖1, subject to ‖gn(β)‖∞ ≤ λ, (2.6)

where λ > 0 is a tuning parameter. In Section 3, we obtain the theoretical value for λ

up to a constant factor, such that the associated optimizer β̂ is a consistent estimator. In

practice, we recommend using cross-validation to determine the optimal choice of λ. See

Section 5 for more details about the numerical implementation of (2.6).
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2.3 Bias-Correction based on the Projected Estimating Equations

Although the proposed estimator β̂ performs well in terms of point estimation, it is actu-

ally biased, and cannot be used directly to develop powerful inference procedures, such as

confidence intervals and statistical tests. In this subsection, we propose a novel projected

estimation equation approach incorporating both the unsupervised and the supervised sam-

ples, and construct bias-corrected estimators that are asymptotically normally distributed

around the true coefficients.

From the imputed estimating function gn(β) in (2.5), we define g∗n(β) as a subvector of

gn(β), where we replace each ĥirk(β) in (2.4) with its subvector

ĥ∗irk(β) = I(ξi = r){yi − (X̂
(k)
i )>β} ·X(k)

ia(r,k) = I(ξi = r){yi − (X̂
(k)
i )>β} ·Xia(r,k).

The dimension of g∗n(β) is thus
∑R

r=1

∑
k∈G(r) |a(r, k)|. Note that ĥ∗irk(β) involves only

imputed values in X̂
(k)
i , whereas the remaining part in ĥirk(β) contains imputed values in

X̂
(k)
i and X̂

(k)
ia(k)\a(r,k), where X̂

(k)
ia(k)\a(r,k) is a subvector of X̂

(k)
i consisting of the covariates

indexed by a(k) \ a(r, k). We have two reasons for using g∗n(β) instead of gn(β). First,

from our theoretical analysis, g∗n(β) contributes less error caused by imputation to the final

debiased estimator. Second, it significantly simplifies our numerical implementation and

improves the finite-sample performance, especially in the optimization (2.9) below.

Based on the initial estimator β̂ and g∗n(β), we propose a bias-corrected estimator β̃j

of βj for each j ∈ [1 : p], defined as the root of the projected estimating function

Ŝj(β̂
∗
j ) = 0, (2.7)

where β̂∗j = (β̂1, . . . , β̂j−1, βj, β̂j+1, . . . , β̂p)
>, βj and β̂j are the jth elements of β and β̂,
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respectively, and

Ŝj(β) = v̂>j g
∗
n(β). (2.8)

Here, the equation (2.7) is treated as a univariate equation of the scalar βj, and the projec-

tion vector v̂j is defined as the solution to the following optimization problem:

v̂j = arg min
v

v>Wnv, subject to ‖v>Gn − ej‖∞ ≤ λ′, (2.9)

where λ′ > 0 is a tuning parameter, ej ∈ Rp has 1 as its jth element and is zero otherwise,

Wn is a block-diagonal matrix consisting of the sub-matrices

|D2|2

|D2 ∩ S(r)|2
∑
i∈D2

I{ξi = r}Xia(r,k)X
>
ia(r,k),

ordered first by r ∈ [1 : R] and then by k ∈ G(r), and

Gn =
d

dβ
g∗n(β) =

1

|D2|
∑
i∈D2


θ̂−11 dĥ∗i1(β)/dβ

...

θ̂−1R dĥ∗iR(β)/dβ

 . (2.10)

Here in (2.10), for each r ∈ [1 : R], we have dĥ∗ir(β)/dβ ∈ Rm′r×p with m′r =
∑

k∈G(r) |a(r, k)|

consisting of submatrices {I(ξi = r)Xia(r,k)(X̂
(k)
i )>}k∈G(r) combined by row. Importantly,

in (2.10) and (2.9), the unsupervised samples are implicitly used to construct the optimal

projection direction v̂j using the imputed variables. Moreover, in Section 3, we show that

having a sufficiently large set of unsupervised samples D1, and being able to incorporate the

information contained in D1, is necessary to reduce the bias and to obtain the asymptotically

normal estimator β̃j.

Remark 1. In Section 3, a theoretical value for the tuning parameter λ′ in the quadratic

optimization problem (2.9) is obtained, up to a constant factor. For numerical implementa-

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0104



2.3 Bias-Correction based on the Projected Estimating Equations15

tions, in Section 5, we propose a practical iterative procedure for determining an appropriate

value for λ′ that exhibits good numerical performance across various settings.

The rationale behind the projected estimating function in (2.8) is evident from a bias-

variance analysis for the estimator β̃j. Specifically, the projected estimating function is care-

fully constructed using the projection vector v̂j defined in (2.9), such that the bias term of β̃j

is dominated by a stochastic error, introduced below. Denote β̃∗j = (β̂1, . . . , β̂j−1, β̃j, β̂j+1, . . . , β̂p)
>.

By the Taylor expansion,

0 = Ŝj(β̃
∗
j ) = v̂>j g

∗
n(β̂∗j ) + v̂>j Gnej · (β̃j − βj)

= v̂>j g
∗
n(β) + v̂>j Gn(β̂∗j − β) + v̂>j Gnej · (β̃j − βj), (2.11)

which can be rewritten as

β̃j − βj = −
v̂>j g

∗
n(β)

v̂>j Gnej︸ ︷︷ ︸
Stochastic Error

−
v̂>j Gn(β̂∗j − β)

v̂>j Gnej︸ ︷︷ ︸
Remaining Bias

. (2.12)

The estimation error β̃j − βj is decomposed into two parts. The first term in (2.12) is a

stochastic error, which is asymptotically normal with variance determined by v̂>j Wnv̂j, and

the remaining bias is bounded by

∣∣∣∣ v̂>j Gn(β̂∗j − β)

v̂>j Gnej

∣∣∣∣ ≤ ‖(v̂>j Gn)−j‖∞‖(β̂∗j − β)−j‖1
1− |v̂>j Gnej − 1|

≤
‖v̂>j Gn − e>j ‖∞‖β̂ − β‖1

1− ‖v̂>j Gn − e>j ‖∞
, (2.13)

using Hölder’s inequality. As a result, the remaining bias is dominated by the stochastic

error, because the factor ‖v̂>j Gn−e>j ‖∞ is well controlled by (2.9), and ‖β̂−β‖1 is sufficiently

small.

From the above argument, the constrained optimization problem (2.9) is rooted in a

bias–variance trade-off: It aims to find a projection vector v̂j that controls ‖v̂>j Gn − e>j ‖∞
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in (2.13) to ensure the remaining bias in (2.12) is negligible with respect to the stochastic

error, while reducing the variance of the stochastic error, by minimizing v̂>j Wnv̂j, to obtain

a more efficient estimator.

Remark 2. For general missing data problems, there are likelihood-based approaches

where missing values are marginalized under distributional assumptions (Garcia et al., 2010;

Ibrahim et al., 1999; Chen et al., 2014). In particular, the expectation–maximization (EM)-

based estimating equation method also constructs estimating functions based on missing

data (Elashoff and Ryan, 2004). However, the proposed projected estimating equations and

the EM-based estimating equations are conceptually different. First, the proposed method

does not need to specify distributions for all the variables. Second, the projected estimating

equations are carefully designed to correct the bias of our initial estimator. In contrast,

the EM-based estimating equations are the derivatives of the log-likelihood function with

respect to the parameters (Elashoff and Ryan, 2004).

Remark 3. In our construction of β̃j, we mainly correct for the bias due to β̂−j, as in

(2.13), rather than the bias due to {γ̂j,a(r,k) : j ∈ a(r)c, k ∈ G(r), 1 ≤ r ≤ R} from the

imputation procedure. In general, the bias of the final estimator β̃j stems partially from

the estimation error of the conditional expectation E(Xij|Xia(r,k)), defined as the difference

between γ̂>j,a(r,k)Xia(r,k) and γ>j,a(r,k)Xia(r,k) under the linear assumption E(Xij | Xia(r,k)) =

γ>j,a(r,k)Xia(r,k). The estimation error can be well controlled by ‖γ̂j,a(r,k) − γj,a(r,k)‖2, which

contains both the bias and the variance of γ̂j,a(r,k). To obtain a small estimation error, we

leverage both unsupervised and supervised samples to ensure that ‖γ̂j,a(r,k) − γj,a(r,k)‖2 is

small with high probability.
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3. Theoretical Justifications

This section provides theoretical justifications for the proposed inference procedures by

studying the properties of the proposed estimator β̂ and its bias-corrected counterpart

β̃ = (β̃1, . . . , β̃p)
>. For technical reasons, we assume for simplicity that the blockwise

imputation step (2.1) is performed using the unsupervised samples D1 and a fixed portion

of the supervised samples D2 that preserve the blockwise missing pattern (i.e., the number

of groups and the missing variables in each group). On the other hand, the construction of

the estimators β̂ and β̃ is based on the imputed observations of the other portion of the

supervised samples D2. In practice, however, splitting the supervised samples D2 into two

parts is not needed, and the proposed method works well numerically when all the samples

are used for imputation and inference; see the numerical results in Sections 5 and 6.

We first introduce the notation and assumptions for the theoretical results. For any

r ∈ [1 : R], k ∈ G(r) and i ∈ D, we define Σ(r,k) = E[I{ξi = r}X(k)
i (X

(k)
i )>] ∈ Rp×p.

Recall that ξi ∈ [1 : R] denotes the random group label of the ith sample, a(k)c is the index

set of the missing covariates in Group k, a(k) is the index set of the observed covariates

in Group k, and a(r, k) is the index set of the covariates observed in both Groups r and

k. We also denote Nr = |D1 ∩ S(r)| as the number of unsupervised samples in Group r,

nr = |D2 ∩ S(r)| as the number of supervised samples in Group r, and N = |D1|. For the

missingness mechanism, we assume the following:

(A1) The random group label ξi is independent of all covariates or depends only on covari-

ates observed in all groups, and the response is MCAR.

(A2) For the missing patterns, we assume R is a finite integer, and for all r ∈ [1 : R] and
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k ∈ G(r), we have |a(r)|/p, a(r, k)/p ∈ [C1, C2] and nr/n,Nr/N ∈ [c1, c2], with probability

at least 1− p−c for some constants 0 < C1 < C2 < 1, 0 < c1 < c2 < 1, and c > 0.

The assumption for the random group label in (A1) implies the missingness mechanisms of

the covariates are either MCAR or MAR, because the missingness (or group assignments) is

completely random or can be fully explained by completely observed variables. Assumption

(A2) is mild, because it essentially ensures that the missing patterns are finite and balanced.

For the design covariates, and the regression coefficient vector β, we assume the following:

(A3) Each Xi, for i ∈ D, is an independent centered sub-Gaussian random vector with

Σ = E[XiX
>
i ] satisfying C−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C, for some absolute constant

C > 1, and γj = arg minγ∈Rp−1 E(Xij − γ>Xi,−j)
2 satisfies ‖γj‖0 ≤ s, for each j ∈ [1 : p];

(A4) β satisfies ‖β‖2 ≤ C, for some absolute constant C > 0.

(A5) There exists some r ∈ [1 : R], k1, k2 ∈ G(r) and some constant c0 > 0, such that

λmin(Σ
(r,k)
a(k),a(k)) ≥ 7c0 > c0 ≥ λmax(Σ

(r,k)
a(k),a(k)c), for k = k1, k2, and a(k1) ∪ a(k2) = [1 : p].

In Assumption (A3), the sub-Gaussian condition includes many important cases, such as

Gaussian, bounded, and binary covariates, or any combinations of them. This makes our

proposed method applicable to many practical settings. The sparsity condition on the best

linear predictor coefficient γj ensures the quality of the Lasso-based imputation step, which

essentially requires a sparse conditional dependence structure among the covariates. For

example, when Xi ∼i.i.d. N(0,Σ), this condition is equivalent to a sparse Gaussian graph

condition, requiring each row of Σ−1 = (ωij) to be s-sparse.

Assumption (A5) requires the existence of two groups {k1, k2} ⊆ G(r), such that

each covariate is observed in one of these two groups. However, the eigenvalue condi-

tion λmin(Σ
(r,k)
a(k),a(k)) ≥ 7c0 > c0 ≥ λmax(Σ

(r,k)
a(k),a(k)c) requires the existence of a pair of groups
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(r, k) ∈ [1 : R] × G(r) such that, for each i ∈ S(r), the subvector X
(k)
ia(k) of the imputed

vector X
(k)
i does not contain variables that are highly correlated within themselves, or with

the variables in X
(k)
ia(k)c . This condition essentially ensures that each covariate is sufficiently

informative. In Section S8 of the Supplementary Material, a more interpretable sufficient

condition is obtained under the Gaussian design.

The following theorem concerns the convergence rates of the estimator β̂ in (2.6).

Theorem 1. Suppose (A1) to (A5) hold, log p� min{N, n}, and s� min{
√
n/log p, (n+

N)/ log p}. For sufficiently large (n, p), if we choose τ �
√

log p/(n+N) in (2.1) and

λ �
√

log p/n+ s
√

log p/(n+N) in (2.6), then ‖β̂−β‖1 . sλ and ‖β̂−β‖2 . s1/2λ hold

with probability at least 1− p−c, for some absolute constant c > 0.

Some remarks about Theorem 1 are in order. First, our theorem shows that the rate of

convergence under the `2-norm is bounded by
√
s log p/n + s3/2

√
log p/(n+N). The first

term
√
s log p/n is the ordinary estimation error for the Lasso or Dantzig selector type of

estimators, whereas the second term s3/2
√

log p/(n+N) comes from the estimation error

of the conditional expectation in the BI step for the missing covariates. Intuitively, the esti-

mation error of the conditional expectation depends on both N and n, because the BI step

uses both the supervised and the unsupervised samples. In contrast, the estimation error

of the Lasso or Dantzig selector depends only on n, because only the imputed supervised

samples are used in the estimating equations (2.5).

Second, compared with the minimax optimal rate
√
s log p/n for estimating β with

complete observations of n samples with λ �
√

log p/n (Verzelen, 2012), the above error

rate has an additional term s3/2
√

log p/(n+N) under λ �
√

log p/n + s
√

log p/(n+N).

This extra error term and the different choice of tuning parameters reflect the cost of
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imputing the missing variables; see also Chandrasekher et al. (2020) for similar phenomena

in the imputation of unstructured missing data using the Lasso method. However, Theorem

1 also implies that when the number of unsupervised samples is sufficiently large, that

is, when N & s2n, the estimation error of the conditional expectation is dominated by

the estimation error
√
s log p/n, and the estimator β̂ achieves the minimax optimal rate

for complete observations of n samples. In other words, our method benefits from the

extra unsupervised samples to improve the estimation. Nevertheless, note that even in the

presence of a far greater number of unsupervised samples (N � n), the convergence rate

cannot be better than
√
s log p/n. After all, there are only n observations of the response

variable, rather than n complete samples.

Third, unlike many existing inferential methods for missing data, such as those of Cai

et al. (2016), Kundu et al. (2019), and Yu et al. (2020), our method does not require fully

observed samples. In other words, each sample in the data set may have missing variables,

which precludes using existing methods for fully observed data. In contrast, our method

should work, as long as |G(r)| ≥ 1 and the missing groups are finite and asymptotically

balanced.

The proof of Theorem 1 is involved and quite different to existing works that analyze

the risk bound of the Dantzig selector or the Lasso estimator for the linear regression model

with complete data (Candes and Tao, 2007; Bickel et al., 2009). The detailed proof can be

found in Section S5 of the Supplementary Material. In particular, as a key component of our

theoretical analysis, we develop a novel restricted singular value inequality that accounts

for the blockwise-imputed samples, and plays a similar role to the restricted eigenvalue

condition (Raskutti et al., 2010) or the restricted strong convexity property (Negahban et al.,
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2012; Negahban and Wainwright, 2012) needed to analyze of high-dimensional `1-penalized

estimators. This inequality, proved in Section S7.4 of the Supplementary Material, could

be of independent interest.

Proposition 1. Under the conditions of Theorem 1, there exist some r ∈ [1 : R] and

k ∈ G(r), such that, with probability at least 1− p−c for some absolute constant c > 0,

inf
‖u‖2=1,u∈Es(p)
‖ua(k)‖2≥1/2

∣∣∣∣n−1r n∑
i=1

I{ξi = r}(ua(k)/‖ua(k)‖2)>X̂(k)
ia(k)(X̂

(k)
i )>u

∣∣∣∣ ≥ c0, (3.1)

for some constant c0 > 0, where Es(p) = {δ ∈ Rp : ‖δ‖2 = 1, ‖δSc‖1 ≤ ‖δS‖1, for some set

S ⊂ [1 : p] with |S| ≤ s}, and Sc represents the complement of set S.

Our next theorem establishes the asymptotic normality of the bias-corrected estimator

β̃j, supporting the asymptotic validity of the confidence intervals and the statistical tests

proposed in Section 4. We need the following condition, ensuring the existence of a true

projection vector satisfying the constraint in (2.9), with high probability:

(A6) For G = dg∗(β)/dβ with g∗(β) being the population counterpart of g∗n(β), we have

λmin(E{G}) ≥ c, for some absolute constant c > 0,

Theorem 2. Suppose the conditions of Theorem 1 and (A6) hold, and N & n log p. If we

choose λ′ �
√

log p/n and s� min
{ √

n
log p

,
√

N
n log p

}
, then, for each j ∈ [1 : p], we have

n(β̃j − βj)/sj = AB +D, (3.2)

where sj is defined in (4.1), A → 1 and D → 0 in probability, and B|X̂ → N(0, 1) in

distribution, in which X̂ = {X̂(k)
i }i∈D2 is the set of all imputed observations.

Theorem 2 shows that to obtain an asymptotically normally distributed estimator, we

needa sufficiently large set of unsupervised samples for both the blockwise imputation and
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the bias correction. Specifically, from our proof of Theorem 2 (such as Lemma 6 in the Sup-

plementary Material), it seems that, under the current analytical framework, the condition

N & n log p is likely necessary for constructing nearly unbiased estimators with efficiency

competitive to β̃j. In addition, the condition s�
√

N
n log p

ensures that the imputation error

is o(n−1/2), whereas the more standard condition s �
√
n

log p
implies that the remaining bias

in (2.12) after the bias-correction step is negligible.

These conditions are explained as follows. On the one hand, additional unsupervised

samples are needed to achieve desirable imputation quality, that is, to ensure the imputa-

tion error is dominated by the estimation error for β̂. Intuitively, if the imputation error

dominates the estimation error in the bias of β̂, then such a bias is intrinsic, and may not be

removed by any approach based on the imputed data. On the other hand, the unsupervised

samples help to reduce bias: the proposed projected estimating equation approach incor-

porates both the unsuperivsed and the supervised samples to jointly determine the best

projection direction in (2.9) for bias correction. We also provide theoretical results when we

have only supervised samples in Section S4 of the Supplementary Material, showing that the

convergence rate of the proposed estimator is faster for both supervised and unsupervised

samples than it is for only supervised samples.

4. Confidence Intervals and Statistical Tests

In this section, we develop asymptotically valid confidence intervals and statistical tests for

each coefficient βj, with j ∈ [1 : p]. As shown in Section 3, by carefully analyzing the

bias-corrected estimator β̃j, conditional on the imputed covariates, under mild regularity
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conditions, β̃j is asymptotically normally distributed with variance s2j/|D2|2, where

s2j =
∑
i∈D2

∑
k∈G(r),1≤r≤R

|D2|2σ2
r,k

|D2 ∩ S(r)|2
I{ξi = r}(v̂>j,rkXia(r,k))

2, (4.1)

σ2
r,k = σ2 + β>a(r)cE[ε

(k)
ia(r)c(ε

(k)
ia(r)c)

>]βa(r)c , ε
(k)
ia(r)c ∈ R|a(r)c| is the residual term of the ith

sample in the regression model of Xia(r)c , with Xia(r,k) as covariates, and v̂j,rk ∈ R|a(r,k)|,

with r ∈ [1 : R] and k ∈ G(r), is the subvector of the projection vector v̂j corresponding to

the estimating functions in g∗n(β) associated with Group k ∈ G(r). Consequently, for any

given j ∈ [1 : p], an asymptotically (1−α)-level confidence interval for βj can be constructed

as CIα(βj) =

[
β̃j −

zα/2ŝj
|D2| , β̃j +

zα/2ŝj
|D2|

]
, where zα/2 = Φ−1(1−α/2) is the upper α/2-quantile

of the standard normal distribution,

ŝ2j = σ̂2
∑
i∈D2

∑
k∈G(r),1≤r≤R

|D2|2

|D2 ∩ S(r)|2
I{ξi = r}[v̂>j,rkXia(r,k)]

2, (4.2)

and σ̂2 is some reasonable estimator for maxk,r σ
2
r,k (see Section S2 of the Supplementary

Material).

Along with the above confidence interval, we also construct an asymptotically valid

statistical test for the null hypothesis H0 : βj = bj, for any bj ∈ R. Specifically, we define a

test statistic Tj = |D2|(β̃j − bj)/ŝj. Then, an asymptotically α-level two-sided test rejects

H0 whenever |Tj| > zα/2. With these component-wise test statistics, one can also construct

tests for the global null hypothesis H0 : β = 0, and the multiple simultaneous hypotheses

H0j : βj = 0, j ∈ [1 : p]. For example, to test the global null hypothesis, we could adopt the

maximum-type test statistic M = max1≤j≤p T
2
j , and compare its empirical values with the

quantile of the Gumbel distribution given in Theorem 1 of Ma et al. (2021).

To test simultaneous null hypotheses while controlling for false discovery rates, we can

apply the modified Benjamini–Hochberg procedure in Javanmard and Javadi (2019) and
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Ma et al. (2021) to design covariates that are weakly correlated, or the Benjamini–Yekutieli

procedure (Benjamini and Yekutieli, 2001) if the design covariates are arbitrarily corre-

lated. The theoretical validity of these simultaneous inference procedures follows from the

arguments in Javanmard and Javadi (2019) and Ma et al. (2021).

5. Simulation

We provide simulation studies to compare the proposed method with existing methods, in-

cluding the debiased Lasso method (Javanmard and Montanari, 2014) with complete cases,

the Lasso projection method (van de Geer et al., 2014; Zhang and Zhang, 2014) with com-

plete cases, the debiased Lasso method with single regression imputation, and the Lasso

projection method with the single regression imputation. Here, “single regression imputa-

tion” refers to predicting missing values using linear regressions, with observed variables as

predictors (Baraldi and Enders, 2010; Zhang, 2016; Campos et al., 2015).

To implement of the proposed method, we use the R packages glmnet1 , Rglpk2 , and

osqp3 to solve the minimization problem in (2.1), the linear programming problem in

(2.6), and the quadratic programming problem in (2.9), respectively. The parameters

τ and λ are determined by cross-validation, which might not achieve the desired the-

oretical convergence rates. This is one limitation of the proposed method. We let

λ′ = 0.1(log p/n)1/2, and scale it up if there is no solution to the quadratic programming

problem in (2.9). The R functions of the proposed method have been made publicly avail-

able online at https://github.com/feixue-stat/Inference blockmissing. We use the

1https://cran.r-Bproject.org/web/packages/glmnet/index.html

2https://cran.r-Bproject.org/web/packages/Rglpk/index.html

3https://cran.r-Bproject.org/web/packages/osqp/index.html
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R code in https://web.stanford.edu/~montanar/sslasso/ to implement the debiased

Lasso method. For the Lasso projection method, we apply the R package hdi1 .

For each i ∈ [1 : (n+N)], we simulate Xi independently from a multivariate Gaussian

distribution with mean zero and a covariance matrix Σ, and generate yi = X>i β + εi with

εi ∼i.i.d. N(0, 1). The relevant covariates share the same signal strength βs; that is, the

nonzero elements in β are all equal to βs. In the following three settings, all samples are

randomly assigned to four missing groups. In Settings 1 and 2, we assume MNAR for the

covariates from three sources, and the four missing pattern groups are shown in Figure 2.

In contrast, we assume MAR in Setting 3, and add one additional data source, where the

variables are all observed for each subject. For the missingness of the response, in each

setting, the response is MCAR, where only n/N of all samples in each group are observed.

This satisfies Assumption (A1).

In each setting, we construct confidence intervals for a relevant covariate with confidence

level 95%, and evaluate each method using the coverage rate and average length of the

confidence intervals based on 250 replications. Let pl denote the number of total covariates

in the lth data source, and sl denote the number of relevant covariates in the lth data

source, for l ∈ [1 : S]. Recall that s denotes the number of all relevant covariates, specifying

the sparsity of the coefficient vector β. That is, we have s nonzero elements in β. In

addition, recall that nr denotes the number of supervised samples in the rth missing group,

for r ∈ [1 : R]. Then, we have
∑R

r=1 nr = n.

Setting 1. Let n = 150, p = 200, s = 9, R = 4, S = 3, N = 300, βs = 0.2, n1 = 30, n2 = 70,

n3 = n4 = 25, p1 = 115, p2 = 45, p3 = 40, s1 = 5, s2 = s3 = 2, and Σ = diag{Ip1 ,A},
1https://cran.r-Bproject.org/web/packages/hdi/index.html
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Source 1 Source 2 Source 3

Group 1

Group 2

Group 3

Group 4

Figure 2: Blockwise missing structure used for simulation.

where Ip1 is an identity matrix of size p1, and A is a (p2 + p3) × (p2 + p3) exchangeable

matrix with diagonal elements one and off-diagonal elements ρ. We let ρ = 0.1 or 0.3, and

let the covariates be MNAR. Specifically, samples are sequentially randomly assigned into

the complete case group with probabilities proportional to exp(−10yi) for 1 ≤ i ≤ n + N .

Otherwise, they are uniformly assigned to the other three missing groups.

Setting 2. The same as Setting 1, except that p = 700 and p1 = 615.

Setting 3. The same as Setting 1, except that n = 120, S = 4, N = 600, n1 = 15,

n2 = n3 = n4 = 35, p2 = 40, p4 = 5, s1 = 4, s4 = 1, and Σ = diag{Ip1 ,A, Ip4}. We

let the covariates be MAR. Specifically, samples are sequentially randomly assigned into

the complete case group with probabilities proportional to exp(−10di) for 1 ≤ i ≤ n + N ,

where di is the sum of the ith samples of covariates in the fourth source of data. Otherwise,

they are uniformly assigned to the other three missing groups. The missing patterns of the

covariates in Sources 1–3 are the same as that in Figure 2, and covariates in Source 4 are

all observed.

The results of Settings 1–3 are provided in Table 1, where ρ represents the correla-
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tions between covariates. We use different ρ to investigate the performance under various

strengths of dependence between the covariates. In Table 1, the proposed method outper-

forms existing methods across all settings in terms of coverage rate. In Setting 1, 80% of

samples have missing covariates, and the missingness is MNAR. Even so, as shown in Table

1, the coverage of the proposed method is at least 42.0% and 19.7% more than that of other

methods when ρ = 0.1 and ρ = 0.3, respectively.

Table 1: Simulation results of Settings 1–3. DL-CC: the debiased Lasso method with com-

plete cases. LP-CC: the Lasso projection method with complete cases. DL-SI: the debiased Lasso

method with single regression imputation. LP-SI: the Lasso projection method with single regres-

sion imputation.

ρ = 0.1 ρ = 0.3

Method Coverage rate Average length Coverage rate Average length

Setting 1

Proposed 0.920 0.581 0.876 0.560

DL-CC 0.264 0.274 0.248 0.291

LP-CC 0.636 0.423 0.644 0.429

DL-SI 0.036 0.140 0.036 0.135

LP-SI 0.648 0.326 0.732 0.362

Setting 2

Proposed 0.944 0.931 0.908 0.881

DL-CC 0.000 0.004 0.000 0.008

LP-CC 0.628 0.428 0.668 0.443

DL-SI 0.036 0.146 0.016 0.140

LP-SI 0.804 0.375 0.800 0.380

Setting 3

Proposed 0.956 0.722 0.956 0.699

DL-CC 0.260 0.217 0.308 0.229

LP-CC 0.964 1.229 0.924 1.228

DL-SI 0.116 0.191 0.116 0.173

LP-SI 0.356 0.227 0.404 0.252
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In Setting 2, we consider simulations with potential predictors to mimic the ADNI data

in Section 6. The proposed method still produces the largest coverage rate. Moreover, when

ρ = 0.1, the coverage rate of the proposed method is 94.4%, which is close to 95%. Note

that the MNAR missingness mechanism of the covariates in both Settings 1 and 2 violates

the MAR assumption (A1), which may explain why the coverage of the proposed method

does not achieve 95%. However, there might be other reasons for the lower coverage, such

as the limited sample size, missing proportion of responses, and structure of the covariance

matrix Σ.

Setting 3 focuses on MAR and contains additional unsupervised samples. In Table 1,

the proposed method and the Lasso projection method with complete cases (LP-CC) both

achieve desirable coverage. However, the average length of the confidence intervals of the

proposed method is much smaller than that of the LP-CC, indicating that the confidence

intervals of the proposed method are more accurate.

In Table 4 of the Supplementary Material, we compare the empirical bias and the

empirical standard deviation of each method under Setting 3, and with the multivariate

imputation by chained equations (MICE) method. The results show that the proposed

estimator has a much smaller empirical standard deviation than that of the LP-CC, and

that MICE-based methods produce much larger biases than that of the proposed method.

Moreover, although in Table 1 the confidence intervals of LP-SI have poor coverage, Table

4 of the Supplementary Material shows that its point estimator has the smallest mean

squared error (squared bias plus variance). In addition, we provide absolute values of

empirical biases of β̂j and β̃j, and histograms of β̂j for the jth covariate under Setting 3

in the Supplementary Material, showing that the empirical bias of β̂j is much larger than
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that of β̃j, and that the empirical distribution of β̂j is right-skewed.

For the effects of the degree of correlations (ρ) between the covariates on the proposed

method, Table 1 shows that the coverage rate of the proposed method is lower for larger ρ

under Settings 1 and 2, and Table 4 of the Supplementary Material shows that the proposed

method has slightly greater bias for larger ρ under Setting 3.

6. Real-data application

In this section, we apply the proposed method to the ADNI data set, which contains multi-

source measurements: MRI, PET imaging, gene expressions, and cognitive tests (Mueller

et al., 2005). Of the latter tests, the mini-mental state examination is often used to diagnose

Alzheimer’s Disease (AD) (Chapman et al., 2016). It is therefore important to identify the

imaging and gene expression features that are associated with and can predict the score of

the mini-mental state examination. To identify biomarkers associated with AD, we use the

score of the mini-mental state examination as our response variable, and treat the MRI,

PET, and gene expression variables as predictors.

Specifically, the MRI variables contain volumes, surface areas, average cortical thick-

ness, and the standard deviation of the cortical thickness of regions of interest in the brain,

which are extracted from the MRIs by the Center for Imaging of Neurodegenerative Dis-

eases at the University of California, San Francisco. To mitigate bias due to different head

sizes, we normalize the MRI variables by dividing the region volumes, surface areas, and

cortical thicknesses by the whole-brain volume, the total surface area, and the mean cortical

thickness of each subject, respectively (Zhou et al., 2014; Kang et al., 2019). The PET vari-

ables are standard uptake value ratios of brain regions of interest, that represent metabolic
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activity, and are provided by the Jagust Lab at the University of California, Berkeley. Gene

expression levels at different probes are contributed by Bristol-Myers Squibb laboratories

from blood samples of ADNI participants.

Although the ADNI is a longitudinal study, we focus on data collected in the second

phase of the study (ADNI-2), at month 48. In total, there are 212 samples, 267 MRI vari-

ables, 113 PET variables, and 49386 gene expression variables. The blockwise missingness

emerges when we combine the MRI, PET, and gene expression data. The missing pattern

structure is the same as that in Figure 2, with four groups and 69 complete observations.

Because of the relatively small sample sizes, we first screen the gene expression variables us-

ing marginal correlations based on sure independence screening (Fan and Lv, 2008) retaining

300 gene expression variables. We compute the marginal correlation between the response

variable and each gene expression variable based on all available pairs of observations of the

two variables.

We first apply the proposed method to all n = 212 samples in order to identify the

biomarkers associated with the score of the mini-mental state examination. We test the

simultaneous hypotheses H0j : βj = 0, 1 ≤ j ≤ p = 680, while controlling the false discovery

rate (FDR), using the modified Benjamini–Hochberg procedure of Ma et al. (2021) with the

proposed estimators β̃j and their variance estimators ŝ2j . The multiple testing procedure

assumes that the true alternatives are sparse, and is shown to control the FDR in probability

under mild conditions as n → ∞. See Section S9 of the Supplementary Material for more

details about the testing procedure.

The biomarkers identified by the methods at the significance level α = 0.01 are provided

in Table 6 of the Supplementary Material. For the gene expression probes, we provide the
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corresponding gene names in the table. The proposed method identifies 36 biomarkers,

including 19, 2, and 15 variables from the MRI, PET, and gene expressions, respectively.

Some of these biomarkers are also selected by other methods. We provide the biomark-

ers identified by both the proposed method and one of other methods in Table 7 in the

Supplementary Material. Although the debiased Lasso using complete cases or using sin-

gle regression imputation seems to identify many more markers, based on our simulation

results, many of the identified markers may be false positives, because the corresponding

confidence intervals do not provide the correct coverage probabilities.

Among the associated genes, SFRP1 is selected by all the methods, and is crucial in

AD pathogenesis (Esteve et al., 2019). PJA2 is identified only by the proposed method,

and has reduced expressions in AD patients than on normal controls. PJA2 has been

shown to regulate AD marker genes in mouse hippocampal neuronal cells, indicating its the

potential relevance to the pathophysiology of AD (Gong et al., 2020). Among the MRI

related markers, “ST30SV” is identified by our method as well as DL-SI and LP-SI, and

represents the volume of the left inferior lateral ventricle, which is related to AD (Bartos

et al., 2019; Ledig et al., 2018). However, only the proposed method identifies “ST101SV” and

“ST35TA”, representing the volume of the right pallidum and the average cortical thickness

of the left lateral occipital, respectively. Both are shown to be associated with AD (Kautzky

et al., 2018; Yang et al., 2019). Finally, the PET biomarker “CTX RH TEMPORALPOLE,” the

standardized uptake value of the right temporal pole, is identified only by our method. This

agrees with the observation that hypometabolism in the temporal lobe often appears in AD

patients (Sanabria-Diaz et al., 2013).

To show that the multiple sources in the ADNI study contain complementary infor-
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mation, we compare the proposed method with the Lasso using only the MRI, PET, or

gene expression variables for prediction. We also compare the proposed method with the

naive mean prediction method and the Lasso using only complete observations. The naive

mean prediction method uses the sample mean of the response variable, calculated based on

training sets for prediction. Specifically, we randomly hide 10% of all values of the response

variable as testing responses 150 times, and apply all the methods to the remaining data.

In each replication, we calculate the prediction mean squared error
∑

1≤i≤T (ŷi − yi)
2/T ,

where yi is a testing response, ŷi is the corresponding predicted value, and T is the num-

ber of testing responses. We also compute the improvement rates of the proposed method

relative to other methods in terms of the prediction mean squared error, which is defined

as (PEM−PEP)/PEP , where PEP and PEM denote the averages of the prediction mean

squared errors of the proposed method and the method M, respectively, based on the 150

replications.

As shown in Table 2, the proposed estimator β̂ produces smaller prediction mean

squared errors than other estimators, indicating that the proposed method can achieve

higher prediction accuracy than when using data from only one source or when using only

complete cases. This implies that using all the data sources (MRI, PET, and Gene) with

the proposed method can improve the prediction compared with using a subset of predic-

tors. Note that this is not over-fitting, because the prediction errors in Table 2 are testing

errors, rather than training errors. Thus, different data sources in the ADNI study con-

tain complementary information, and the proposed integration method is suitable in that

respect.

Specifically, the proposed method reduces the prediction mean squared errors of other
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Table 2: Averages of prediction mean squared errors based on 150 replications. Proposed (β̂): the

proposed method with the estimator β̂. MRI Lasso, PET Lasso, and Gene Lasso: Lasso method

using only MRI, PET, and gene expression variables, respectively. CC Lasso: the Lasso method

using only complete cases. Naive mean: using the sample mean of the response variable in the

training sets for prediction. SD: standard deviation of prediction mean squared errors calculated

based on 150 replications.

Method Prediction mean squared error (SD) Improvement rate

Proposed (β̂) 13.898 (4.427) —

MRI Lasso 15.546 (5.715) 10.6%

PET Lasso 16.975 (7.009) 18.1%

Gene Lasso 19.946 (8.909) 30.3%

CC Lasso 19.956 (9.724) 30.4%

Naive mean 21.018 (10.410) 33.9%

methods by at least 10.6%. In particular, the improvement rate with respect to the Lasso

method using only gene expression variables or using only complete cases is over 30%.

Moreover, the standard deviation of the prediction mean squared errors of the proposed

method is smaller than that of other the methods, indicating that the proposed method is

more stable. Furthermore, we provide the absolute mean (absolute value of the mean) and

standard deviation of ŷi − yi, for i = 1, . . . , T , in Table 8 of the Supplementary Material.

We also provide the squared bias
∑n

i=1 I(yi ∈ T ) · (
∑ti

j=1 ŷij/ti − yi)
2/|T | and variance∑n

i=1 I(yi ∈ T ) ·
∑ti

j=1(ŷij −
∑ti

j=1 ŷij/ti)
2/(ti|T |) in Table 9 of the Supplementary Material,

where n is the total number of samples in the real data, T is the set of responses that are

included in at least one test set, ŷij is the jth predicted value by a method for yi in all test

sets, and ti is the total number of the predicted values ŷij in all test sets. The results show

that the proposed method produces the smallest squared bias among all the methods.

In summary, the proposed estimator produces smaller prediction mean squared errors
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and smaller squared bias than using only one source data or using only complete observa-

tions, implying that integrating data from multiple sources and using incomplete observa-

tions are critical. Additionally, the proposed method identifies meaningful and important

biomarkers not selected by other methods, indicating that the proposed method is more

powerful in terms of integrating multimodal data.

7. Discussion

As mentioned in Section 2.1, methods that consider blockwise missing patterns, such as the

proposed method and the method of Xue and Qu (2021), can incorporate both the complete

case group and the incomplete groups in the imputation step, thus ensuring better accuracy.

This is the main advantage of the proposed method compared with many existing imputation

methods. However, our method may become complicated when there are too many data

sources or different missing groups, leading to many blockwise imputations for each missing

block, and thus many estimating equations to be solved. In general, the proposed method is

more suitable for blockwise data with a small number of data sources and missing groups.

Although the MNAR mechanism is not covered in our theoretical justifications, simu-

lation studies in Section 5 show that the proposed method still outperforms other methods

under some MNAR settings. This may be because the proposed method incorporates more

groups in the imputation of each missing block via the blockwise imputation. In this way,

the proposed method aggregates information from various groups to reduce the selection

bias in the groups caused by the MNAR mechanism. In future work, we may investigate

managing MNAR situations by modeling the missingness or using instrumental variables.

A few other extensions are also worth exploring in the future. For example, because
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AD is a progressive brain disease, it is of interest to incorporate longitudinal data in the

estimating functions to improve efficiency. In addition, currently, our method focuses only

on linear regression with continuous responses; thus, it would be worthwhile generalizing

our method to include binary and categorical responses.

Supplementary Material

We provide additional numerical and theoretical results and discussion, as well as proofs

for all the theorems in the main text in the online Supplementary Material.
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