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Abstract: Multivariate varying-coefficient models are popular statistical tools for analyzing the relationship

between multiple responses and covariates. Nevertheless, estimating large numbers of coefficient functions is

challenging, especially with limited samples. In this work, we propose a reduced-dimension model based on

the Tucker decomposition that unifies several existing models. In addition, we use sparse predictor effects,

in the sense that only a few predictors are related to the responses, to achieve an interpretable model and

sufficiently reduce the number of unknown functions to be estimated. These dimension-reduction and sparsity

considerations are integrated into a penalized least squares problem on the constraint domain of third-order

tensors. To compute the proposed estimator, we propose a block updating algorithm based on the alternating

direction method of multipliers and manifold optimization. We also establish the oracle inequality for the

prediction risk of the proposed estimator. A real data set from the Framingham Heart Study is used to

demonstrate the good predictive performance of the proposed method.
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2 1. INTRODUCTION

1. Introduction

Varying-coefficient models (VCMs, Hastie and Tibshirani, 1993) are popular structured regression

models that have reasonably flexible nonparametric components and can be estimated well with

a moderate amount of data (Ruppert et al., 2003). In VCMs, the regression coefficients of

the predictors vary with an observable exposure variable. VCMs have been studied extensively

in literature and are widely used in practice; see, for example, Hoover et al. (1998), Huang

et al. (2002), Park et al. (2015), and the references therein. For settings with a large number of

predictors (possibly larger than the sample size), Wang et al. (2008) use basis function expansions

and the smoothly clipped absolute deviation (SCAD) penalty to address the problem of variable

selection. Wei et al. (2011) and Lian (2012) apply an adaptive group least absolute shrinkage

and selection operator (lasso) and spline function approximations to simultaneously identify the

relevant predictors and estimate the varying-coefficient functions of those that have been selected.

The latter works also obtain the rate of convergence and variable-selection consistency for their

estimators under suitable conditions. Xue and Qu (2012) use a truncated `1-penalty (TLP)

to select variables, and obtain the oracle properties for their varying-coefficient estimator. To

enhance the computational scalability, feature screening techniques for the VCM are considered

in Fan et al. (2014) and Liu et al. (2014), who propose to rank the marginal nonparametric

contributions of each predictor, given the exposure variable, and investigate sure independent

screening properties.

In many applications, multiple responses are jointly observed with the predictors and the

exposure variable. For instance, the Framingham Heart Study (Dawber et al., 1951) collected

multiple phenotype variables from patients to identify common factors related to cardiovascu-
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3 1. INTRODUCTION

lar diseases. Obviously, one can simply model each response variable separately using VCMs.

Together, these models are viewed as a regression model for the multivariate response, called

an unstructured multivariate varying-coefficient model (MVCM). One challenge associated with

such models is the significant number of coefficient functions required to be estimated. More

specifically, we need to estimate pq functions if there are p covariates and q responses. To circum-

vent this problem, one may use structures among these pq functions. He et al. (2018) propose

a principal-component-based approach in which they assume the coefficient functions can all be

approximated by linear combinations of a much smaller number of unknown functions. However,

they do not explore the correlations between the responses, and their method cannot handle the

settings with a large number of responses. Lian and Ma (2013) assume a low-rank structure in

the conditional means of the responses of the samples. However, their model does not consider

the correlations between the predictors and/or the varying coefficients. Furthermore, they do not

propose an efficient algorithm to solve their penalized least squares problem.

In this work, we propose a novel method using dimension-reduction tools of tensors (Kolda

and Bader, 2009) to handle an MVCM in a high-dimensional setting. In particular, we show that

dimension reductions in the predictors, the space of the coefficient functions, and the responses

correspond to the low rankness in the first, second, and third modes, respectively, of a third-order

tensor. Thus, we propose using the Tucker decomposition (Tucker, 1966) to integrate these three

dimension reductions into a simple notion of low multilinear rank. The models of He et al. (2018)

and Lian and Ma (2013) can be viewed as special cases of our proposed model. In addition,

sparse predictor effects, in the sense that only a few predictors are related to the responses,

is often a reasonable assumption in high-dimensional settings. The aforementioned dimension-
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4 2. MODEL

reduction and sparsity considerations can be incorporated into the estimation procedure by using

a penalized least squares problem on the constraint domain of third-order tensors. To compute

the proposed estimator, we design a block updating algorithm based on the alternating direction

method of multipliers (ADMM, Boyd et al., 2011) and manifold optimization (Edelman et al.,

1998; Absil et al., 2009). We also establish the oracle inequality for the prediction risk of the

proposed estimator.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed reduced

MVCM using the Tucker decomposition. The estimation method and computational details are

presented in Sections 3 and 4, respectively. We establish the oracle inequality for the prediction

risk of the proposed estimator in Section 5. We use both a simulation study and a real-data

application in Section 6 to illustrate the practical performance of the proposed method. The

main contributions of this paper are summarized in Section 7 with some concluding remarks.

Technical details are provided in the online Supplementary Material.

2. Model

Let y = (y1, . . . , yq)
ᵀ, x = (x1, . . . , xp)

ᵀ, and t be the q-dimensional vector of responses, the p-

dimensional vector of predictors, and the exposure variable with compact domain T , respectively.

Without loss of generality, we assume T = [0, 1]. Each response is posited to follow a univariate-

response VCM, that is,

yl =

p∑
j=1

fjl(t)xj + εl, l = 1, . . . , q, (2.1)

where {fjl(t)} are the coefficient functions and {εl} are the noise variables, with mean zero and

variance σ2
l . These noise variables are independent of (x, t). By setting x1 = 1, the model can
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5 2. MODEL

accommodate an intercept function. In vector-matrix notation, (2.1) can be written as

y = F (t)ᵀx+ ε, (2.2)

where F (t) = (fjl(t))p×q and ε = (ε1, . . . , εq)
ᵀ. We call (2.2) the full model of MVCM, in which

pq varying-coefficient functions need to be estimated nonparametrically.

When pq is relatively large, there are huge numbers of nonparametric functions, which are

difficult to estimate accurately with a small or moderate amount of data. To cope with this

challenge, Lian and Ma (2013) assume a rank-R3 structure on the matrix of coefficient functions,

with R3 < q, aiming to reduce the model complexity among the responses. Specifically, Lian and

Ma (2013) proposed reducing the full MVCM (2.2) to

y = CF̃ (t)ᵀx+ ε, (2.3)

where C ∈ Rq×R3 , with CᵀC = IR3 , and F̃ (t) is a matrix of p × R3 unknown functions. Model

(2.3) implies that the means of the responses conditional on the predictors and the exposure

variable are R3 linearly dependent among the samples. Compared with (2.2), the number of

parameters is reduced to pR3 functions, together with a q × R3 coefficient matrix. He et al.

(2018) propose a functional principal-component-based approach that assumes all pq coefficient

functions can be well approximated by a small number of R2 unknown data-driven principal

functions β(t) = (β1(t), . . . , βR2(t))
ᵀ. More precisely, they assume that the vectorized F (t) can be

represented by vec{F (t)} = Dβ(t), with a coefficient matrix D ∈ Rpq×R2 . Then, the conditional

mean of the responses in the full MVCM (2.2) reduces to

E(y|x, t) = vec{xᵀF (t)} = (Iq ⊗ xᵀ)vec{F (t)} = (Iq ⊗ xᵀ)Dβ(t). (2.4)

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0103



6 2. MODEL

For model identifiability, the principal functions β(t) are required to be orthonormal, that is,

∫
T
β(t)β(t)ᵀ dt = IR2 .

Thus, one only needs to estimate R2 principal functions and a p × R2 × q coefficient tensor for

a reduced MVCM in (2.4). In the univariate-response VCM, that is, q = 1, Jiang et al. (2013)

propose another principal component VCM. Specifically, treating the lth response in (2.1) as a

single response, the model of Jiang et al. (2013) is equivalent to

yl = fl(t)
ᵀAᵀxᵀ + εl, (2.5)

where fl(t) is a vector of R1 unknown functions, and A ∈ Rp×R1 is the principal loading matrix.

Overall, Models (2.3), (2.4), and (2.5) encompass dimension reductions within the responses, the

coefficient functions, and the predictors, respectively.

However, it is difficult to compare the above models because they employ different methods

for dimension reduction. In this work, we observe that these models can be unified into a general

model that allows simultaneous reductions and provides a coherent understanding of these meth-

ods. To illustrate this idea, we begin with the form of (2.4). Denote S̄ ∈ Rp×R2×q as a third-order

tensor satisfying S̄(2) = Dᵀ. Model (2.4) can be written as

y = {S̄ ×̄2 β(t)}ᵀx+ ε, (2.6)

where ×̄2 denotes the 2-mode (vector) product of a tensor with a vector (Kolda and Bader,

2009). More precisely, the result of the d-mode (vector) product of a generic Nth-order tensor

G = (gi1,i2,...,iN ) ∈ RI1×I2×···IN and a vector v ∈ RId is a tensor of order N − 1, with dimension

I1 × · · · × Id−1 × Id+1 × · · · × IN , such that its (i1, . . . , id−1, id+1, . . . , iN)th element is
∑Id

id=1 vid ·
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7 2. MODEL

gi1,i2,...,iN . This reformulation shows that exploring the correlations between the varying-coefficient

functions is equivalent to the dimension reduction on the second mode of a third-order tensor.

Figure 1 illustrates the corresponding matrix of coefficient functions in (2.6) using this tensor-

vector product. Similarly, the correlations between the predictors and the responses are related

to dimension reductions on the first and third modes, respectively.

Figure 1: An illustration plot of the coefficient functions matrix in (2.6) using a tensor formulation

and the 2-mode (vector) product.

Therefore, to simultaneously explore all reductions, we propose

y = {S ×1 A×3 C ×̄2 β(t)} ×̄1 x+ ε, (2.7)

where ×d denotes the d-mode (matrix) product of a tensor with a matrix (Kolda and Bader,

2009), for d = 1, 2, 3; β(t) is a vector of R2 unknown principal functions; and S ∈ RR1×R2×R3 ,

A ∈ Rp×R1 , and C ∈ Rq×R3 are coefficients to be estimated. We depict S ×1 A in Figure 2 to

illustrate the d-mode (matrix) product of a tensor with a matrix. Similarly to Jiang et al. (2013),

Lian and Ma (2013), and He et al. (2018), we require A, C, and β(t) to be orthonormal, that is,

AᵀA = IR1 , CᵀC = IR3 , and

∫
T
β(t)β(t)ᵀ dt = IR2 . (2.8)
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8 2. MODEL

Figure 2: An illustration plot of the d-mode (matrix) product of a tensor and a matrix.

The multilinear structure of the varying coefficients S×1A×3C ×̄2 β(t) coincides with the Tucker

decomposition (Tucker, 1966) for a third-order tensor. We observe that Models (2.3), (2.4), and

(2.5) are all special cases of Model (2.7). In particular, removing the first and second mode

reductions in (2.7) and writing S×1A ×̄2 β(t) = F̃ (t), (2.7) can recover (2.3). Furthermore, (2.4)

can be obtained directly by letting S̄ = S ×1A×3C. Finally, singling out A and treating q = 1

in S×3C ×̄2 β(t) recovers (2.5). Therefore, each mode in the decomposition S×1A×3C ×̄2 β(t)

corresponds to one of the aforementioned reduced models.

Note that the constraint (2.8) does not guarantee the identifiability of the proposed model

(2.7). Indeed for any U ∈ RR2×R2 with UU ᵀ = IR2 , we have

{S ×1 A×3 C ×̄2 β(t)}ᵀx =
[
(S ×2 U)×1 A×3 C ×̄2 {Uβ(t)}

]ᵀ
x.

In other words, (S,A,C,β(t)) and (S ×2 U ,A,C,Uβ(t)) result in the same reduced MVCM

model. However, we need only identify the regression coefficient functions F (t) to understand the

reduced MVCM (2.7), which is fulfilled, because F (t) = S ×1A×3 C ×̄2 β(t). In terms of com-

putation, these identifiability issues may lead to algorithmic instability. Therefore, we introduce

some further regularizations on (S,A,C,β(t)) in Section 3 to obtain an efficient algorithm.
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9 3. PENALIZED LEAST SQUARES ESTIMATION

3. Penalized Least Squares Estimation

To estimate the parameters in our reduced MVCM (2.7), we first approximate the principal

component functions β(t) using splines. Specifically, let b(t) = (b1(t), . . . , bK(t))ᵀ be a vector

of orthonormal B-spline basis functions with dimension K. For the r2th principal component

function βr2(t), we write

βr2(t) ≈
K∑
k=1

Bk,r2bk(t),

where {Bk,r2} are the corresponding spline coefficients. Denote Br2 = (B1,r1 , . . . , BK,r2)
ᵀ. We

stack Br2 , for r2 = 1, . . . , R2, into a matrix of coefficients, and let B = (B1, . . . ,BR2) ∈ RK×R2 .

Moreover, we require B satisfies the constraint BᵀB = IR2 , which leads to the orthonormality

of β(t) in (2.8). Ignoring the approximation error, Model (2.7) can then be written as

y = {S ×1 A ×̄2B
ᵀb(t)×3 C}ᵀx+ ε

= {S ×1 A×2 B ×3 C ×̄2 b(t)}ᵀx+ ε.

(3.1)

The above basis expansion enables us to recast the problem of estimating the varying coefficients of

the reduced model (2.7) as that of estimating the parameters (S,A,B,C), where S ∈ RR1×R2×R3 ,

A ∈ Rp×R1 with AᵀA = IR1 , B ∈ RK×R2 with BᵀB = IR2 , and C ∈ Rq×R3 with CᵀC =

IR3 . Given independent and identically distributed (i.i.d.) copies {(yi,xi, ti)}ni=1 of (y,x, t), we

consider the constrained least squares estimator

arg min
S,A,B,C

n∑
i=1

∥∥yi − {S ×1 A×2 B ×3 C ×̄2 b(ti)}ᵀxi
∥∥2
2

s.t. AᵀA = IR1 , B
ᵀB = IR2 , C

ᵀC = IR3 .

(3.2)

In (3.1) and (3.2), S ×1 A ×2 B ×3 C is the Tucker decomposition of a third-order tensor.

In particular, letting G = S ×1 A ×2 B ×3 C, we have rank1(G) ≤ R1, rank2(G) ≤ R2,

Statistica Sinica: Preprint 
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10 3. PENALIZED LEAST SQUARES ESTIMATION

and rank3(G) ≤ R3, where rankd(·) denotes the d-rank of a tensor (Kolda and Bader, 2009),

for d = 1, 2, 3. We depict the Tucker decomposition representation of model (3.1) in Figure

3. For further discussions on the Tucker decomposition and its relationship with other tensor

decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition (Harshman, 1970)

and tensor-train decomposition (Oseledets, 2011), we refer the readers to Kolda and Bader (2009).

Using the form of the Tucker decomposition, the least squares problem (3.2) is equivalent to

arg min
G

n∑
i=1

∥∥yi − {G ×̄2 b(ti)}ᵀxi
∥∥2
2

s.t. rankd(G) ≤ Rd, d = 1, 2, 3. (3.3)

The benefits of using a low-rank structure in tensor regression models rather than simply flattening

the covariate tensor to a matrix or a vector are discussed in Zhou et al. (2013), Li et al. (2018),

and Ahmed et al. (2020). Note that our problem is different from those in existing works on the

Tucker tensor regression (Li et al., 2018) and its generalizations (Lu et al., 2020; Ahmed et al.,

2020) in two aspects. First, (3.1) is not the proposed model, but merely an approximation of the

target nonparametric model (2.7). Second, we study a multivariate response y, whereas Li et al.

(2018); Lu et al. (2020); Ahmed et al. (2020) all assume the response variable is a scalar.

For a large value of pq, the dimension reduction in terms of a low-rank Tucker decomposition

may not lead to an accurate estimation for the varying coefficients. Many applications expect

the responses to have similar/related structures, and thus share many important predictors.

Furthermore, the union of these important predictors usually has a small size. In other words, we

assume that only s (s < p and unknown) predictors are relevant for predicting all the responses.

This assumption is shown to be suitable for many real-world applications; see, for example,

Wang et al. (2008); Wei et al. (2011) and He et al. (2018), among many others. We use a

sparsity-inducing penalization to filter out the irrelevant predictors during the estimation. To

Statistica Sinica: Preprint 
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Figure 3: The Tucker decomposition representation of model (3.1).

formulate a suitable penalty function, we use the Tucker decomposition G = S ×1A×2B ×3C

again, and rewrite (3.1) as

y = {G ×̄2 b(t)}ᵀx+ ε = {Iq ⊗ b(t)ᵀ}Gᵀ
(1)x+ ε, (3.4)

where G(1) ∈ Rp×qK is the mode-1 matricization (unfolding) of tensor G, and ⊗ is the Kronecker

product of matrices (Kolda and Bader, 2009). Let Gᵀ
(1),j denote the jth row of G(1), for j =

1, . . . , p. In light of (3.4), all unknown coefficients associated with the jth predictor are contained

in Gᵀ
(1),j. Therefore, the jth predictor becomes irrelevant whenever the coefficient matrix Gᵀ

(1),j =

0. Borrowing the idea from the group lasso penalization (Yuan and Lin, 2006), we propose the

following penalized least squares problem:

arg min
G

n∑
i=1

∥∥yi − {G ×̄2 b(ti)}ᵀxi
∥∥2
2

+

p∑
j=1

λ‖G(1),j‖2, s.t. rankd(G) ≤ Rd, d = 1, 2, 3, (3.5)

where ‖ · ‖2 is the group lasso penalty, and λ ≥ 0 is the penalty parameter. Note that G(1) =

AS(1)(C ⊗ B)ᵀ. Let aᵀ
j be the jth row of A. Then, Gᵀ

(1),j = aᵀ
jS(1)(C ⊗ B)ᵀ. Due to the

Statistica Sinica: Preprint 
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12 4. COMPUTATION

orthonormal conditions of B and C, we have ‖G(1),j‖2 = ‖aᵀ
jS(1)(C ⊗ B)ᵀ‖2 = ‖aᵀ

jS(1)‖2.

Therefore, (3.5) is equivalent to

arg min
S,A,B,C

n∑
i=1

∥∥yi − {S ×1 A×2 B ×3 C ×̄2 b(ti)}ᵀxi
∥∥2
2

+

p∑
j=1

λ‖aᵀ
jS(1)‖2

s.t. AᵀA = IR1 , B
ᵀB = IR2 , C

ᵀC = IR3 .

(3.6)

Let (Ŝ, Â, B̂, Ĉ) be a solution of (3.6). Correspondingly, a solution of (3.5) can be constructed

as Ĝ = Ŝ ×1 Â ×2 B̂ ×3 Ĉ (or, equivalently, Ĝ(1) = ÂŜ(1)(Ĉ ⊗ B̂)ᵀ). The resulting estimated

fjl(t) becomes

f̂jl(t) =
K∑
k=1

Ĝjklbk(t), (3.7)

where Ĝjkl is the (j, k, l)th element of Ĝ. We provide a theoretical analysis of the proposed

estimation in Section 5.

4. Computation

To calculate the estimator, we propose a block updating algorithm to solve the problem given in

(3.6), that is, updating S, A, B, and C alternately while keeping the other components fixed.

To facilitate the discussion, we let L(S,A,B,C) be the objective function in (3.6) for a given λ,

and denote the squared loss and the penalty by

H(S,A,B,C) =
n∑
i=1

∥∥yi − {S ×1 A×2 B ×3 C ×̄2 b(ti)}ᵀxi
∥∥2
2

and P (S,A) =

p∑
j=1

λ‖aᵀ
jS(1)‖2,

respectively. Denote S(t),A(t),B(t), and C(t) as the tth iteration (t ≥ 1) of S, A, B, and C,

respectively, in the proposed algorithm. When we update one block with the other blocks fixed,

we use H and/or P with suitable subscripts to simplify the objective functions with respect to
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13 4. COMPUTATION

the target block. For example, when A(t), B(t), and C(t) are fixed, we let HA(t),B(t),C(t)(S) =

H(S,A(t),B(t),C(t)) and PA(t)(S) = P (S,A(t)) be the functions with respect to S. Analogously,

we have HS(t+1),B(t),C(t)(A), HS(t+1),A(t+1),C(t)(B), and PS(t+1)(A). The details for each block are

discussed in the following subsections.

4.1 Updating S

Using the properties of vectorization (unfolding of a tensor) and the d-mode (matrix) product

(Kolda and Bader, 2009), we can rewrite HA(t),B(t),C(t)(S) and PA(t)(S) as

HA(t),B(t),C(t)(S) =
n∑
i=1

‖yi − [C(t) ⊗ {bᵀ(ti)B(t)} ⊗ (xᵀ
iA

(t))]vec{S(1)}‖22

and PA(t)(S) = λ

p∑
j=1

‖(a(t)
j )ᵀS(1)‖2,

respectively, where S(1) ∈ RR1×R2R3 is the mode-1 matricization (unfolding) of the tensor S, vec(·)

is the vectorization operator, and (a
(t)
j )ᵀ is the jth row of A(t). Thus, updating S is equivalent

to obtaining the solution of

min
S∈RR1×R2×R3

HA(t),B(t),C(t)(S) + PA(t)(S). (4.1)

Because PA(t)(S) is not differentiable, we propose using a majorization-minimization (MM) al-

gorithm. The acronym can also stand for minorization-maximization if one aims to find the

maximum of an objective function; see, for example, Hunter and Lange (2004). MM algorithms

are useful extensions of the well-known class of EM algorithms, in which the E-step is equivalent

to a minorization step. To construct the majorized function for PA(t)(S), we extend the MM

algorithm of the lasso penalty (Hunter and Li, 2005) to the group lasso penalization. Moreover,

Statistica Sinica: Preprint 
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14 4. COMPUTATION

since (4.1) is an objective function with respect to a tensor, some tensor operations need to be

considered and applied to this subproblem. See Section S.1.1 of the Supplementary Material for

more details, where Algorithm S.1 summarizes the proposed MM algorithm to update S.

4.2 Updating A

Similarly to Section 4.1, we use the properties of vectorization and the d-mode (matrix) product

(Kolda and Bader, 2009) to rewrite HS̃(t+1),B(t),C(t)(A) as

HS̃(t+1),B(t),C(t)(A) =
1

2

n∑
i=1

∥∥yi − [{[C(t) ⊗ {bᵀ(ti)B(t)}
](
S̃

(t+1)
(1)

)ᵀ}⊗ xᵀ
i

]
vec(A)

∥∥2.
To simplify the updating procedure for A, we first remove the orthonormal constraint on A

and update A in the Euclidean space. An orthonormalization step is added in the outer loop

to project the updated A back to an orthonormal matrix. The subproblem of A without the

orthonormal constraint can then be written as

min
A

{
HS̃(t+1),B(t),C(t)(A) + PS(t+1)(A)

}
, (4.2)

where PS(t+1)(A) = λ
∑p

j=1 ‖(S̃
(t+1)
(1) )ᵀaj‖. Because there is no analytic solution to (4.2), we

propose using the ADMM (Gabay and Mercier, 1976). Denote g(x) = ‖x‖ and introduce the

slack variable γj ∈ RR2R3 , for j = 1, . . . , p. We rewrite the optimization problem (4.2) as

min
A,Γ

{
HS̃(t+1),B(t),C(t)(A) + λ

p∑
j=1

g(γj)

}
, s.t. Γ = AS̃

(t+1)
(1) , (4.3)

where Γ = (γ1,γ2, . . . ,γp)
ᵀ. In (4.3), the constraint is equivalent to γj = (S̃

(t+1)
(1) )ᵀaj, for j =

1, 2, . . . , p. The corresponding augmented Lagrangian function is

Lρ(A,Γ;ν) = HS̃(t+1),B(t),C(t)(A) + λ

p∑
j=1

g(γj) +
ρ

2

∥∥∥∥AS̃(t+1)
(1) − Γ +

1

ρ
ν

∥∥∥∥2
2

, (4.4)
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15 4. COMPUTATION

where ν ∈ Rp×R2R3 is the dual variable.

We defer the detailed analysis of (4.4) to Section S.1.2 of the Supplementary Material, in

which Algorithm S.2 summarizes the proposed ADMM algorithm. Let Ã(t+1) denote the output

of Algorithm S.2 for A. To project Ã(t+1) onto the space of orthonormal matrices, we further

let qr.Q(Ã(t+1)) and qr.R(Ã(t+1)) be the Q and R factors of the QR decomposition of Ã(t+1),

respectively. Here, we require the R factor to have positive diagonal elements for the QR identi-

fiability. We update A(t+1) as qr.Q(Ã(t+1)), and then update S
(t+1)
(1) as qr.R(Ã(t+1)) · S̃(t+1)

(1) . By

using the inverse of the mode-1 unfolding on S
(t+1)
(1) , S(t+1) is also obtained. Note that the direct

output of Algorithm S.2 does not result in the exact row sparsity of Ã(t+1)S̃
(t+1)
(1) . To select the

variables in our algorithm, we output the slack variable Γ(t+1) in Algorithm S.2 as an auxiliary

result, and replace Ã(t+1)S̃
(t+1)
(1) with Γ(t+1). Due to the constraint of the slack variable in (4.3),

the difference between these two terms is sufficiently small. The output of Γ(t+1) in Algorithm

S.2 remains unchanged after applying the above orthonormalization step.

4.3 Updating B

We let the orthogonal Stiefel manifold be

St(R2, K) = {B ∈ RK×R2 : BᵀB = IR2}. (4.5)

Using the properties of the d-mode product of a tensor and a matrix (Kolda and Bader, 2009),

we can rewrite HS(t+1),A(t+1),C(t)(B), and update B from solving the optimization problem

B(t+1) = arg min
B∈St(R2,K)

n∑
i=1

∥∥∥yi − ([{C(t) ⊗ (xᵀ
iA

(t+1))}{S(t+1)
(2) }

ᵀ]⊗ bᵀ(ti))vec(B)
∥∥∥2
2
, (4.6)
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16 4. COMPUTATION

where S(2) is the mode-2 matricization of tensor S. Note that the objective function in (4.6) is

a smooth function with respect to B on the Stiefel manifold (4.5), so we can use the manifold

gradient method (Absil et al., 2009), which is an extension of the gradient descent algorithm to

the manifold space. Algorithm S.3 in Section S.1.3 of the Supplementary Material specializes our

implementation to use the gradient descent algorithm on the Stiefel manifold.

4.4 Updating C

Using S(3) as the mode-3 matricization (unfolding) of tensor S, we can rewrite (3.1) as

y = CS(3){(bᵀ(t)B)⊗ (xᵀA)}ᵀ + ε.

Denote Y = (y1, . . . ,yn)ᵀ ∈ Rn×q and M
(t)
C = (M

(t)
C,1, . . . ,M

(t)
C,n)ᵀ ∈ Rn×R3 , where M

(t)
C,i =

{bᵀ(ti)B(t+1)⊗ (xᵀ
iA

(t+1))}(S(t+1)
(3) ) ∈ RR3 , for i = 1, . . . , n. We then focus the following subprob-

lem to update C:

C(t+1) = arg min
CᵀC=I

∥∥Y −M (t)
C C

ᵀ
∥∥2
F
, (4.7)

which is known as the orthonormal Procrustes problem (Gower and Dijksterhuis, 2004). Fining

the solution to this problem is equivalent to determining the nearest orthonormal matrix of

Y ᵀM
(t)
C . Therefore, write the singular value decomposition of Y ᵀM

(t)
C as

Y ᵀM
(t)
C = UΣV ᵀ, (4.8)

where U ∈ Rq×R3 and V ∈ RR3×R3 are orthonormal matrices, and Σ ∈ RR3×R3 is a diagonal

matrix with nonnegative values in its diagonal. The analytic solution to (4.7) can be obtained as

C(t+1) = UV ᵀ. (4.9)
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4.5 Summary and Initializations

Here, we summarize the block updating algorithm in Algorithm 1. To achieve a sparse solution,

the output of Algorithm 1 is Ĝ(1) = Γ̂(Ĉ ⊗ B̂)ᵀ. We can then reconstruct Ĝ from the estimated

Ĝ(1) by using the inverse of the mode-1 unfolding, and obtain the estimator of the varying

coefficients using (3.7).

For the subproblems of S and A, owing to convexity, we can show that the corresponding

MM algorithm generates a sequence converging to the unique minimizer of each subproblem,

using similar arguments to those for Corollary 3.3 of Hunter and Li (2005). We thus use random

initializations for S and A at the first iteration of the outer loop. Then, we set the outputs of S

and A from the preceding iteration of the outer loop as the initialization values for the next iter-

ation of the outer loop. For C, the corresponding subproblem for this component can be written

as an orthogonal Procrustes problem that has a closed-form solution and, thus, no initialization

is needed for C. Finally, the subproblem for B is not convex due to the orthonormal constraint,

and the proposed manifold gradient descent algorithm uses only the first-order information on the

objective function, which may not guarantee the convergence to a local minimizer (Absil et al.,

2009). Therefore, although Algorithm 1 can guarantee a sequence of decreasing values of the

objective function, it is unclear whether this algorithm can guarantee the convergence to a global

minimizer. Nevertheless, Absil et al. (2009) show that using any sub-sequence of the iterations

generated by the manifold gradient descent algorithm converges to the stationary point of the

subproblem. We can thus run Algorithm 1 from multiple initializations of B and return the best

result. However, this is computationally expensive. Instead, we propose using a rough estimator

Binit as an initial point for the manifold optimization of B. Specifically, at the (t+1)th iteration,
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define

B̃ := arg min
B∈RK×R2

HS(t+1),A(t+1),C(t)(B),

which can be solved easily, since the objective function is differentiable with respect to B in the

Euclidean space. Next, we simply project B̃ onto the Stiefel manifold, and let the projection be

the initial point, that is,

Binit = PSt(R2,K)(B̃) = B̃(B̃ᵀB̃)−1/2.

We use the above Binit as the initial value in Algorithm S.3 when we update B. Our numerical

experiments show that this strategy is not only faster than using multiple random initializations

but also generates stable iteration sequences.

4.6 Tuning Parameters

Our model has a total of six tuning parameters (m,K,R1, R2, R3, λ), where m is the order of

the spline basis, K is the number of basis functions, (R1, R2, R3) are the Tucker ranks, and λ

is the regularization parameter. We first fix the spline order m = 4 (cubic spline) to alleviate

the computational burden of estimating nonparametric functions (Ruppert et al., 2003). For the

number K of spline basis functions, many data-driven methods have been proposed to decide

K based on the sample size (see, e.g., Huang et al., 2002, 2004; Ruppert et al., 2003, and the

references therein) in empirical studies. To be computationally simple, we follow the strategy

used in Fan et al. (2014) by letting K = [2n1/5], where [·] denotes rounding to the nearest integer.

The knots of spline basis functions are also data-driven, and chosen as equally spaced quantiles.

We find this empirical rule works well in all of our experiments. For the choice of R3, which

corresponds to the dimension reduction associated with the responses, we conduct a singular
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Algorithm 1: Block Updating Algorithm to Solve (3.6).

Input: Data set {yi,Xi, ti}ni=1; Random initial points

S(0) ∈ RR1×R2×R3 ,A(0) ∈ Rp×R1 ,B(0) ∈ St(R2, K),C(0) ∈ St(R3, q), and t = 0.

Output: Ĝ(1) = Γ̂(Ĉ ⊗ B̂)ᵀ.

repeat

1. Update S̃(t+1) using Algorithm S.1.

2. Update Ã(t+1) using Algorithm S.2 and Γ(t+1) for variable selection.

3. After the QR decomposition of Ã(t+1), let A(t+1) and S
(t+1)
(1) be qr.Q(Ã(t+1)) and

qr.R(Ã(t+1)) · S̃(t+1)
(1) , repectively.

4. Update B(t+1) using the manifold gradient descent method (Algorithm S.3).

5. Update C(t+1) = UV ᵀ as in (4.9), with U and V defined in (4.8).

6. t = t+ 1.

until L(S(t+1),A(t+1),B(t+1),C(t+1)) − L(S(t),A(t),B(t),C(t)) < ε. Denote Γ̂ = Γ(t+1),

Ĉ = C(t+1), and B̂ = B(t+1).

value decomposition of the response matrix Y ∈ Rn×q. We then choose R3 such that the first

R3 dominant singular values together account for at least 90% of the sum of all singular values.

For (R1, R2) and λ, we apply the hold-out method (He et al., 2018; Hannun et al., 2019) in our

numerical study, for its computational efficiency. More precisely, we randomly split the available

data into two subsets: a training set with 75% of the samples, and a validation set with 25% of

the samples. We set the validation samples aside, and use Algorithm 1 to fit our proposed method
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on the training set. The parameters (R1, R2) and λ are selected by minimizing the validation

error

1

nvalid

nvalid∑
i=1

(yvalid,i − ŷvalid,i)2

over the grids of the corresponding tuning parameters, where nvalid is the size of the validation

set, and ŷvalid,i is the prediction value of the ith observation yvalid,i in the validation set.

5. Theory

In this section, we establish the oracle inequality for the prediction accuracy of the proposed

estimator. For readability, we first show the oracle inequality under a fixed-design setting, where

the predictors and the exposure variable are fixed. Similarly, we say a setting is random-design

if these variables are distributed randomly. To extend our results to random-design settings, we

show that the corresponding assumption on the design (that is, Condition M(J , δJ ) presented

below) can be satisfied with high probability (tending to one) when x and t are random, under

some mild regularity conditions. The result under the fixed-design setting is presented below; we

defer the theoretical result for the random design to Section S.4 of the Supplementary Material.

Let Σ = ZᵀZ/n, Z = (z1, . . . ,zn)ᵀ, where zi = xi ⊗ b(ti) ∈ RpK . We use λmax(·) and

λmin(·) to denote the maximum and minimum eigenvalues of a matrix, respectively. Denote

by S0, A0, C0, and β0 the true values of S, A, C, and β in (2.7), respectively. Denote by

s the number of nonzero rows in A0, which corresponds to the relevant predictors. We also

write H0 = S0 ×1 A0 ×3 C0 ∈ Rp×R2×q, and correspondingly, the true coefficient functions are

(f0,jl(t))p×q = F0(t) = H0 ×̄2 β0(t). Let

Y = (y1, . . . ,yn)ᵀ ∈ Rn×q and E = (ε1, . . . , εn)ᵀ ∈ Rn×q.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0103



21 5. THEORY

Now, we state a condition required to describe the oracle inequality in our theoretical results.

Condition M(J , δJ ). We say the design matrix Σ satisfies Condition M(J , δJ ) for an index

set J ⊂ {1, . . . , p} and a positive number δJ if

tr(M ᵀΣM ) ≥ δJ
∑
j∈J

‖Mj‖2F ,

for all M ∈ RpK×q satisfying 2
∑

j∈J ‖Mj‖F ≥
∑

j∈J c ‖Mj‖F , where Mj is the collection of

rows related to the jth predictor in M , and tr(·) denotes the trace of a matrix.

Condition M(J , δJ ) is similar to the one used in Bunea et al. (2012) for reduced rank

regression models. In particular, ConditionM(J , δJ ) is motivated by the “restricted eigenvalue”

(RE) condition introduced in Bickel et al. (2009) for studying the asymptotic properties of high-

dimensional linear regression. This condition implies that the least eigenvalue of the relevant

predictors is greater than or equal to δJ by letting Mj = 0, for j ∈ J c. Note that the constant

2 in the inequality 2
∑

j∈J ‖Mj‖F ≥
∑

j∈J c ‖Mj‖F of Condition M(J , δJ ) is chosen merely for

neat presentation of the statements, and it can be replaced by any positive constant greater than

one. Lemma S.3 of the Supplementary Material shows that when n is at least as large as the

magnitude of |J |2q2K2 + |J |2qK log p, Condition M(J , δJ ) holds for a constant δJ > 0 with

probability tending to one, under some mild conditions of random design.

The following assumptions are needed in our analysis.

Assumption 1. The entries of the noise matrix E are i.i.d. Gaussian random variables with

mean zero and variance σ2.

Assumption 2. The columns of the true parameters H0,(2) (mode-2 matricization of H0) have

Euclidean norms bounded by a constant.
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Assumption 3. The domain of the exposure variable t is T = [0, 1]. The order of the B-spline

satisfies ζ ≥ τ + 1/2. Let 0 = ξ1 < ξ2 < · · · < ξK−ζ+2 = 1 denote the knots of the B-spline basis.

Furthermore, there exists a positive constant S1 such that

hn = max
k=1,...,K−ζ+1

|ξk+1 − ξk| � K−1 and hn

/
min

k=1,...,K−ζ+1
|ξk+1 − ξk| ≤ S1.

Assumption 4. The true principal functions β0,r2 ∈ H, for r2 = 1, . . . , R2. Here, H is the space

of functions from [0, 1] to R satisfying the Hölder condition of order ω, that is,

H =
{
g : ∃C ∈ (0,∞) s.t. |g(ι)(x1)− g(ι)(x2)| ≤ C|x1 − x2|ω, ∀ x1, x2 ∈ [0, 1]

}
,

where ι is a nonnegative integer and g(ι) is the ιth derivative of g, such that ω ∈ (0, 1] and

τ = ι+ ω > 1/2.

Assumptions 1–4 are common in the literature on nonparametric regressions (Huang et al.,

2010; He et al., 2018). Specifically, Assumption 1 controls the stochastic error. Under Assump-

tions 3 and 4, it follows from Lemma 5 of Stone (1985) that there existsB0,r2 = (B0,r2,1, . . . , B0,r2,K)ᵀ

such that, for some constant S2,∥∥∥∥β0,r2 − K∑
k=1

B0,r2,kbk

∥∥∥∥
∞
≤ S2

Kτ
, r2 = 1, . . . , R2, (5.1)

where ‖ · ‖∞ is the uniform norm of functions. Let B0 = (B0,1, . . . ,B0,R2)
ᵀ ∈ RK×R2 and

G0 = S0 ×1 A0 ×2 B0 ×3 C0 ∈ Rp×K×q.

Note that {G0 ×̄2 b(t)}ᵀx is only an approximation of the true regression function, owing to the

nonparametric nature of the MVCM. Using the matricization operator of a tensor (Kolda and

Bader, 2009), it can be shown that

{G0 ×̄2 b(ti)}ᵀxi = G0,(3)zi, i = 1, . . . , n, (5.2)
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where G0,(3) is the mode-3 matricization of G0. By (5.1), (5.2), and Assumption 2, the approxi-

mation error over n observations, R := Y −E −ZGᵀ
0,(3), satisfies

‖R‖2F = ‖Y −E −ZGᵀ
0,(3)‖

2
F ≤ S3

nsq

K2τ
, (5.3)

for some positive constant S3, where s is the number of relevant predictors.

In addition, for any G ∈ Rp×K×q with rank restrictions rankd(G) ≤ Rd, for d = 1, 2, 3, we

write

∆G =

{ n∑
i=1

‖{G ×̄2 b(ti)}ᵀxi − {G0 ×̄2 b(ti)}ᵀxi‖2
}1/2

(5.4)

as the discrepancy between G and G0 in terms of prediction. Similarly, we write

∆F =

{ n∑
i=1

‖F (ti)
ᵀxi − F0(ti)

ᵀxi‖2
}1/2

(5.5)

as the discrepancy between the coefficient functions F (·), with F (·) = G ×̄2 b(·) and F0(·). The

following Theorem 1 shows the prediction accuracy for a solution Ĝ of (3.5); and its proof is

deferred to Section S.2 of the Supplementary Material.

Theorem 1. Let J (G) be the index set of nonzero rows of G(1), the mode-1 matricization of G

with rankd(G) ≤ Rd, for d = 1, 2, 3, and denote R = min(R1R2, R3). Suppose Assumptions 1–4

hold. Taking

λ2 = S4R3Rnλmax(Σ)Kσ2{1 + log(p)}, (5.6)

for some constant S4 > 0, we then have

∆2
Ĝ
≤ S5∆

2
G + S6qRσ

2 + S7
R3RK|J (G)|λmax(Σ)σ2 log(p)

δJ (G)

+ S8
nsq

K2τ
, (5.7)

with probability at least

1− 8 exp(−q/2)

3K log(p)
, (5.8)
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provided Σ satisfies Condition M(J (G), δJ (G)), where S5, . . . , S8 are positive constants.

Theorem 1 shows the finite-sample oracle inequality for the prediction error between the

proposed estimator and its oracle spline approximation. Because the proposed Algorithm 1 may

not guarantee that the generated sequence converges to a global minimum of the optimization

problem, we remark that there is a gap between the oracle inequality for the global optimizer and

the practical output from the proposed block updating algorithm.

For the coefficient functions, we correspondingly denote F̂ (t) = Ĝ ×̄2 b(t), where Ĝ is a

solution to (3.5). Theorem 1 can then be generalized to the prediction error for F̂ (t) in terms of

(5.5), as shown in the following corollary. The proof of Corollary 1 is deferred to Section S.3 of

the Supplementary Material.

Corollary 1. We have

∆2
F̂
≤ 2S5∆

2
G + 2S6qRσ

2 + 2S7
R3RK|J (G)|λmax(Σ)σ2 log(p)

δJ (G)

+ (2S8 + 2S3)
nsq

K2τ

with probability at least (5.8), under the same conditions as those of Theorem 1.

One direct application of Theorem 1 is to obtain the rate of convergence for the prediction

accuracy of the proposed estimator. We can also show that the relevant predictors can be iden-

tified, with probability tending to one. In the following, let ‖f0,jl‖2 be the L2-norm of f0,jl under

the Lebesgue measure, and f̂jl be the estimated coefficient function of f0,jl from (3.7). The proof

of Corollary 2 is deferred to Section S.3 of the Supplementary Material.

Corollary 2. Suppose Assumptions 1–4 hold and Σ satisfies Condition M(J (G0), δJ (G0)). If

we let

K �
{

nδJ (G0)q

R3Rλmax(Σ) log(p)

}1/(2τ+1)

,
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and λ2 is given as in (5.6), then the prediction error ∆2
F̂
/n of the estimated coefficient functions

F̂ satisfies

∆2
F̂
/n = Op

(
qR

n
+

{
R3Rλmax(Σ) log(p)

nδJ (G0)

}2τ/(2τ+1)

sq1/(2τ+1)

)
. (5.9)

Furthermore, if

q(4τ+1)/(2τ+2)δ
−1/(2τ+2)
J (G0)

R{R3λmax(Σ) log(p)}−τ/(τ+1)

n

+
s(2τ+1)/τq1/(2τ)δ

−(4τ+1)/(2τ)
J (G0)

R3Rλmax(Σ) log(p)

n
→ 0

(5.10)

as n→∞ and
∑q

l=1 ‖f0,jl‖22 ≥ S9, for some constant S9 > 0, ∀j ∈ J (G0), we then have

P
{
F̂j(t) 6= 0, j ∈ J (G0)} → 1 as n→∞,

where F̂ ᵀ
j (t) = (f̂j1, . . . , f̂jq) is the jth row F̂ .

As discussed in Section 2, Models (2.3) (Lian and Ma, 2013) and (2.4) (He et al., 2018) can

be regarded as special cases of our proposed all-mode reduction method. The derived rate of

convergence in (5.9) includes those of He et al. (2018) and Lian and Ma (2013) as special cases,

with an extra log p term due to the use of a different penalization method. Condition (5.10)

for the variable selection consistency indicates that the sample size n should be sufficiently large

relative to the numbers of relevant predictors s and responses q. A simple and sufficient condition

for (5.10) to hold is that n should be larger than the magnitude of q2s4R3Rλmax(Σ) log(p)δ−2J (G0)
.
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6. Experiments

6.1 Synthetic Data

We conduct a simulation study to evaluate the performance of the proposed model. The data are

simulated from the following model:

yil =

p∑
j=1

fjl(ti)xil + εil, i = 1, . . . , n; l = 1, . . . , q,

where {εil} are i.i.d. random variables with normal distribution N (0, σ2). We set xi1 = 1 as the

intercept for all i, and the remaining p− 1 predictors are generated from a multivariate Gaussian

distribution with mean zero and covariance Cov(xij1 , xij2) = ρ|j1−j2|, 1 6 j1, j2 6 p − 1. The

exposure variable ti is generated from the uniform distribution on [0, 1], for i = 1, . . . , n, and

{fjl} are generated according to the all-mode reduction model, as in (2.7). In particular, the

elements of S ∈ RR1×R2×R3 and C ∈ Rq×R3 are i.i.d. N (0, 1) random variables. We let the first

s predictors, including the intercept, be the truly relevant predictor variables, and the remaining

p− s predictors have no effect on the responses {yil}. Therefore, we generated the entries of the

first s rows of A ∈ Rp×R1 independently from N (0, 1), and the remaining rows are set as zero.

We set R1 = R2 = R3 = 2, p = 51 or 201, s = 11, q = 15, and ρ = 0.3. We choose σ2

according to the signal-to-noise ratio (SNR), trace{Var(
∑p

j=1 fjl(ti)xil)}/qσ2. More specifically,

we investigate two SNRs, 20 and 2, in our simulation study. The normalized principal functions

are specified as β(t) = (β1(t), β2(t))
ᵀ = (

√
2 cos(πt),

√
2 sin(2πt))ᵀ on the domain t ∈ [0, 1], which

satisfy
∫
β(t)β(t)ᵀ dt = I2, a 2× 2 identity matrix. We consider two sample sizes, 200 and 400.

For each scenario, we generate 50 replicates of data sets.

To fit our model on each simulated data set, all the tuning parameters of the proposed
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method are selected as discussed in Section 4.6. We refer to our proposed method as the all-mode

reduction in the following discussion.

We compare the all-mode reduction with four alternative methods: the mode-3 reduction

model (Lian and Ma, 2013), the mode-2 reduction model (He et al., 2018), the full model, and

the linear model. Here, the full model refers to (2.2) with the group lasso method (Yuan and

Lin, 2006) employed to select the relevant predictors. We can set R1 = p, R2 = K, and R3 = q

in our model and use Algorithm S.1 of the Supplementary Material to solve the estimator of

the full model. In the linear model, the regression coefficients are assumed to be constants, and

the group lasso method is also employed. Both the full model and the linear model have the

tuning parameter λ. To select λ, we use the same hold-out method as in our model for the

full model, and cross-validation for the linear model. The mode-3 reduction model corresponds

to dimension reduction in the responses. Therefore, its estimator can be obtained by setting

R1 = p and R2 = K in our model and iteratively updating S and C using Algorithm S.1 of

the Supplementary Material and (4.9). The tuning parameters R3 and λ are selected using the

hold-out method. As for the mode-2 reduction model, we apply the implementation provided in

He et al. (2018), who use cross-validation to select the tuning parameters R2 and λ.

In terms of variable selection, we calculate “True Discovery” as the average number of predic-

tors selected by various methods that are actually relevant, and used “False Discovery” to stand

for the average number of predictors selected by various methods that are actually irrelevant.

The variable selection performance of the competing methods is summarized in Tables 1 and 2

for sample sizes n = 200 and n = 400, respectively, together with the performance of the rank

selection R̂1, R̂2, and R̂3 for the corresponding methods. Note that the reported selected ranks
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are the average values of 50 replicates. Tables 1 and 2 show that the proposed all-mode reduction

model identifies all nonzero varying-coefficient functions with the fewest number of false discovery

among the competing methods. Though the full and linear models have high accuracy in terms of

identifying the relevant predictors, their poor performance in terms of false discovery show that

they falsely include many irrelevant predictors in their estimators. The mode-2 and mode-3 re-

duction methods have similar performance, and do not always correctly identify the true nonzero

varying coefficients, especially when the SNR is relatively small. For the rank selections, it is

shown that the third rank can be correctly selected as R̂3 = 2 by using our proposed model. For

the first and second ranks, we find that the proposed all-mode reduction method selects more

than 76% and 80% of the 50 replicates as the true rank 2, respectively, in the setting of p = 51,

n = 200, and the SNR is 20. On average, the proposed all-mode method may tend to select R̂1

and R̂2 slightly larger than their true values.

To evaluate the estimation accuracy, we calculate the average integrated squared error (AISE)

as

AISE =
1

q

p∑
j=1

q∑
l=1

∫ 1

0

{f̂jl(t)− fjl(t)}2 dt,

where f̂jl(t) denotes a generic estimator of fjl(t) using the various methods. The above integrals

are computed using the Monte Carlo method. Table 3 reports the AISEs of the competing

methods, with the corresponding standard errors. For benchmark, we add the oracle estimator

which includes only the true relevant predictors in its model. In other words, the true relevant

predictors are assumed to be known in the oracle setting. Therefore, we do not include the

penalization in the objective function, enabling us to use the least squares method to estimate

S and A. We use the same framework of block updating Algorithm 1 to compute the oracle
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R̂1 R̂2 R̂3 True Discovery False Discovery

p = 51

SNR=20

All-mode Reduction 2.34 2.14 2.00 11.00 (0.00) 3.26 (0.28)

Mode-3 Reduction - - 2.00 10.86 (0.55) 10.45 (0.83)

Mode-2 Reduction - 2.19 - 11.00 (0.00) 11.39 (0.70)

Full Model - - - 11.00 (0.00) 13.48 (0.93)

Linear Model - - - 11.00 (0.00) 19.07 (1.19)

SNR=2

All-mode Reduction 2.64 2.34 2.00 11.00 (0.00) 3.65 (0.34)

Mode-3 Reduction - - 2.00 10.34 (0.95) 14.43 (1.14)

Mode-2 Reduction - 2.25 - 11.00 (0.00) 18.75 (1.40)

Full Model - - - 11.00 (0.00) 21.31 (1.54)

Linear Model - - - 11.00 (0.00) 24.87 (1.60)

p = 201

SNR=20

All-mode Reduction 2.67 2.58 2.00 11.00 (0.00) 12.08 (0.59)

Mode-3 Reduction - - 2.00 10.96 (0.54) 19.40 (1.15)

Mode-2 Reduction - 2.41 - 11.00 (0.00) 25.86 (1.46)

Full Model - - - 11.00 (0.00) 28.47 (1.96)

Linear Model - - - 11.00 (0.00) 31.51 (2.57)

SNR=2

All-mode Reduction 2.57 2.60 2.00 10.44 (0.39) 15.42 (1.32)

Mode-3 Reduction - - 2.00 9.96 (1.21) 19.87 (1.47)

Mode-2 Reduction - 2.84 - 9.83 (0.81) 23.17 (1.74)

Full Model - - - 11.00 (0.00) 36.48 (2.18)

Linear Model - - - 11.00 (0.00) 44.87 (2.45)

Table 1: Dimension reduction and variable selection results for group lasso penalized estimators

for n = 200. The numbers in parentheses are the standard errors based on 50 replicates.
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R̂1 R̂2 R̂3 True Discovery False Discovery

p = 51

SNR=20

All-mode Reduction 2.31 2.15 2.00 11.00 (0.00) 2.42 (0.28)

Mode-3 Reduction - - 2.00 11.00 (0.00) 8.64 (0.61)

Mode-2 Reduction - 2.20 - 11.00 (0.00) 8.78 (0.66)

Full Model - - - 11.00 (0.00) 11.52 (0.84)

Linear Model - - - 11.00 (0.00) 17.87 (1.15)

SNR=2

All-mode Reduction 2.39 2.21 2.00 11.00 (0.00) 3.71 (0.34)

Mode-3 Reduction - - 2.00 10.52 (0.78) 10.72 (0.90)

Mode-2 Reduction - 2.23 - 11.00 (0.00) 12.38 (0.92)

Full Model - - - 11.00 (0.00) 16.86 (1.01)

Linear Model - - - 11.00 (0.00) 21.87 (1.45)

p = 201

SNR=20

All-mode Reduction 2.45 2.50 2.00 11.00 (0.00) 10.71 (0.58)

Mode-3 Reduction - - 2.00 11.00 (0.00) 18.85 (1.02)

Mode-2 Reduction - 2.38 - 11.00 (0.00) 20.32 (1.38)

Full Model - - - 11.00 (0.00) 23.10 (1.82)

Linear Model - - - 11.00 (0.00) 30.51 (2.47)

SNR=2

All-mode Reduction 2.45 2.70 2.00 10.50 (0.24) 11.83 (1.00)

Mode-3 Reduction - - 2.00 10.12 (1.11) 17.57 (1.16)

Mode-2 Reduction - 2.49 - 10.33 (0.93) 19.48 (1.36)

Full Model - - - 11.00 (0.00) 31.59 (2.28)

Linear Model - - - 11.00 (0.00) 43.07 (1.82)

Table 2: Similar to Table 1, but for n = 400.

estimator. A box plot of the AISEs for the various methods with sample size n = 400 is depicted in

Figure 4. We conclude from Table 3 and Figure 4 that the all-mode reduction model outperforms
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other non-oracle estimators, with the smallest AISE. For example, when the sample size n =

400, the all-mode reduction method reduces the AISE by 48%–94% compared with the mode-3

reduction, and by 78%–98% compared with the mode-2 reduction. The performance of the all-

mode reduction method improves when the sample size increases, which is consistent with our

theoretical investigation. Among the alternative methods, the full model and the linear model

show the worst performance.

Figure 4: A box plot of the AISEs for the competing methods when n = 400 and the SNR is

20. The left and right panels represent the AISEs for p = 51 and for p = 201, respectively. The

y-axis is measured in logarithmic scale.

6.2 Real Data

We further illustrate the proposed method on the data set from the Framingham Heart Study

(FHS; Dawber et al. 1951), which aims to identify common factors that lead to cardiovascular

diseases. The data set collects the measurements on 15 phenotypes from 325 patients, in addition

to the single nucleotide polymorohism (SNP) information. All variables are standardized with
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n p SNR Oracle
All-mode

Reduction

Mode-3

Reduction

Mode-2

Reduction

Full

Model

Linear

Model

200

51

20
0.007

(0.002)

0.011

(0.003)

0.237

(0.019)

0.782

(0.082)

3.459

(0.339)

6.761

(0.674)

2
0.031

(0.004)

0.085

(0.007)

0.314

(0.015)

1.484

(0.104)

6.348

(0.454)

10.197

(0.568)

201

20
0.008

(0.004)

0.223

(0.051)

0.496

(0.052)

0.794

(0.084)

4.327

(0.453)

15.192

(0.961)

2
0.042

(0.006)

0.293

(0.009)

0.615

(0.063)

2.940

(0.281)

10.361

(0.972)

20.387

(1.623)

400

51

20
0.004

(0.001)

0.010

(0.002)

0.164

(0.011)

0.501

(0.042)

2.240

(0.268)

4.933

(0.469)

2
0.018

(0.002)

0.022

(0.002)

0.281

(0.016)

0.841

(0.065)

4.418

(0.399)

8.910

(0.457)

201

20
0.005

(0.001)

0.101

(0.007)

0.403

(0.042)

0.679

(0.049)

4.229

(0.532)

14.584

(0.567)

2
0.022

(0.002)

0.286

(0.009)

0.549

(0.065)

1.306

(0.118)

9.061

(0.895)

17.178

(1.340)

Table 3: The AISEs for the competing methods. The numbers in parentheses are the standard

errors based on 50 replicates.

mean zero and variance one. After matching the SNP data with the phenotypes and deleting

observations with missing values and outliers, we focus on a subset of 258 patients in our analysis.

We preselected six phenotypes of interest: height, bi-deltoid girth, right arm girth-upper third,
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waist girth, hip girth, and thigh girth. The exposure variable is set as weight. We follow the

screening procedure in Fan et al. (2014) to select 200 SNPs as predictors (the intercept is also

included in the model). To fit our proposed method, all the tuning parameters are selected as

discussed in Section 4.6. Specifically, we split the data set randomly into three subsets, namely,

a training set, a validation set, and a test set, of size 150, 50, and 58, respectively. The training

and validation sets are used to determine (R1, R2) and λ, and the test set is used to evaluate

the out-of-sample prediction performance. The recommended rule K = [2n1/5] for the number of

basis functions leads to K = 6. To evaluate the performance, the corresponding prediction error

is defined as

Prediction Error =
1

ntest

ntest∑
i=1

‖yi − ŷi‖22,

where {yi} are the observed responses in the test set, ŷi = {Ĝ ×̄2 b(t)}ᵀxi with the corresponding

predictors xi, and ntest is the size of the test set. We compare the proposed model, namely the

all-mode reduction, with four non-oracle alternatives in Section 6.1. Furthermore, we implement

the elementwise-sparsity method on the full model to fit this data set. Here, we can achieve the

full model with the elementwise-sparsity method by using the group lasso penalization (Yuan and

Lin, 2006) on each coefficient function in (2.2) to select the relevant predictors for the response

variables. The performance of each method is evaluated based on 50 random splittings of training,

validation, and test sets.

Table 4 records the average prediction error of the competing methods on the test data and

the performance of the dimension reduction. We observe in Table 4 that the full model with the

row-sparsity method outperforms the elementwise-sparsity method, implying that the FHS data

set may be better fitted using the row-sparsity methods than the elementwise-sparsity methods.
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In addition, the proposed all-mode reduction model has the highest prediction accuracy, and

achieves significant dimensionality reduction on each mode. This result is consistent with that

based on the synthetic data. To investigate a biological interpretation of the identified SNPs,

we input the submitted ss] of the identified SNPs to the NCBI database (Sherry et al., 2001) to

retrieve the reference rs] records. The proposed all-mode reduction method identified 30 SNPs

by combining the variable selection results of 50 random splits. Some of these SNPs have been

confirmed scientifically. For example, the reference SNP rs4896044 is found to be associated

with hypertension (Consortium, 2007), and rs9321440 has links with multiple heart diseases

(Gagliardi, 2011). The mode-3 reduction method identified 51 SNPs, including all 30 SNPs

selected by the all-mode reduction method. On the other hand, the mode-2 reduction method

identified 47 SNPs, with 25 of the SNPs selected by the all-mode reduction method, including

the scientifically confirmed rs4896044 and rs9321440.

Prediction error R̂1 R̂2 R̂3

All-mode Reduction 0.4542 (0.0071) 2.7 3.1 2.0

Mode-3 Reduction 0.6011 (0.0196) - - 2.0

Mode-2 Reduction 0.6385 (0.0357) - 4.3 -

Full Model (row-sparsity) 1.0181 (0.0417) - - -

Full Model (elementwise-sparsity) 1.2106 (0.0403) - - -

Linear Model 1.2578 (0.0488) - - -

Table 4: Prediction error of the test data. The numbers in parentheses are the standard errors

based on 50 replicates of random splitting.
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6.3 Additional Numerical Results

To further demonstrate the utility of the proposed all-mode reduction method, we conduct addi-

tional numerical experiments, and present the results in Section S.5 of the Supplementary Mate-

rial. More precisely, we extend our simulation settings to larger numbers of response variables q,

and plot the trend of the performance of the proposed method when q increases in Section S.5.1

of the Supplementary Material. In Section S.5.2 of the Supplementary Material, we depict the

fitted coefficient functions of the biologically confirmed SNP rs9321440 based on 50 replicates of

random splitting. Our results show that rs9321440 may have different effects on the phenotypes

of height, bi-deltoid girth, right arm girth-upper third, hip girth, and thigh girth, given distinct

body weights. For the phenotype of waist girth, the effect of this SNP may not vary significantly

with body weight. We refer readers to Section S.5 of the Supplementary Material for details.

7. Discussion

We have proposed a dimension-reduction method based on the Tucker decomposition of a third-

order tensor to estimate the varying coefficients of an MVCM under a high-dimensional setting.

The proposed model unifies dimensionality reductions in three aspects: relevant predictors, coef-

ficient functions, and responses. To take sparsity into account, we integrate a sparsity-inducing

penalization into the estimation. The oracle inequality for the prediction risk of the proposed

estimator is derived under fixed and random designs. We have used both simulated and real data

sets to evaluate and compare the empirical performance of the proposed model with that of other

methods, and the results illustrate the superior performance of our method.

One difficulty of applying the proposed method is the need to tune the ranks of the Tucker
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decomposition, which may become computationally expensive when the dimension is extremely

high. Developing an efficient way to tune the ranks requires further investigation. Furthermore, in

some applications, the relationships between responses can be determined using external covari-

ates, such as spatial locations, providing extra information for measuring the similarity between

responses, thus inducing a (weighted) graphical structure among the tasks. Therefore, future re-

search should extend the proposed model to the problem of graph regularized multi-task learning.

Finally, incorporating the elementwise-sparsity method with the all-mode reduction model may

be useful in other real applications. This, too, is left as a future research topic.

Supplementary Material

The online Supplementary Material contains: (i) the details of updating S, A, and B; (ii) the

technical proofs of Theorem 1 and Corollaries 1–2; (iii) the theoretical results for the random-

design settings and the corresponding proofs; and (iv) additional numerical results for the simu-

lation study and the analysis of real data set.
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