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Abstract: Estimating finite mixture models is a fundamental and challenging problem.

We propose a penalized method for a Gaussian mixture linear regression, where the error

terms follow a location–scale mixture of Gaussian distributions. The objective function

is a combination of the likelihood function of the observed data and a penalty on the

pairwise differences of the parameters. We develop an alternating direction method of

multipliers algorithm, and establish its convergence property. By clustering and merging

similar observations in an automatic manner, our method provides an integrated tool for

simultaneously determining the number of components and estimating the parameters

in finite mixture models. Moreover, the proposed method allows the mean and precision

parameters to have different structures, enabling us to obtain pooled estimators. We also

establish the statistical properties of our estimators. Extensive simulations and real-data

examples are presented to evaluate the numerical performance of the proposed method.

Key words and phrases: alternating direction method of multipliers, consistency, linear

regression, pairwise difference, pooled estimator
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1. Introduction

Finite mixture models are often used to model heterogeneous data from com-

plex distributions, in areas such as density estimation (Escobar and West, 1995),

pattern clustering (Liu et al., 2022), and quality control (Li et al., 2021). As

the most popular mixture model, the Gaussian mixture model (GMM) possesses

many appealing features, including computational tractability, affine invariance,

and flexibility of representations.

Several methods have been proposed to estimate the parameters of GMMs.

Owing to missing information in the component membership, the complete-data

likelihood cannot be calculated directly. The expectation–maximization (EM)

algorithm is often used to estimate the parameters for a given number of compo-

nents, which is usually unknown in practice. To determine the number of com-

ponents, conventional methods often take a model-selection approach using the

Akaike information criterion (AIC) or the Bayesian information criterion (BIC).

Leroux (1992) show that the number of components estimated using the AIC or

BIC is at least as large as the true number. Another approach is use penalized

methods, which jointly learn the cluster structures and estimate the parameters.

Chen and Khalili (2009) impose two penalty functions on the mixing proportions

and the location parameters in GMMs, but do not consider heterogeneity among

precisions. Huang et al. (2017) propose a new penalized likelihood method for

multivariate GMMs in which they penalize the mixing probabilities, which can be
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applied to location–scale mixtures. Hao et al. (2018) introduce a joint graphical

lasso penalty on the elements of the precision matrices to extract both homo-

geneity and heterogeneity components for high-dimensional Gaussian graphical

mixture models. Recently, Ren et al. (2022) conducted heterogeneity analyses for

Gaussian graphical models by imposing fusion penalties on the mean and on the

precision matrix parameters, thus determining the number of components and

estimating the parameters in an automated way.

In a linear regression, when the distribution of the error terms deviates sig-

nificantly from normality, an effective strategy is to assume that the error terms

follow a mixture of Gaussian distributions. As suggested by Rossi (2014), any

distribution can be approximated by a Gaussian mixture, to a sufficient level of

accuracy, by using an adequate number of components. The EM algorithm can

be generalized naturally to the regression setting (Bartolucci and Scaccia, 2005),

which also requires a specification of the number of mixture components. To-

gether, the linear regression mixture model and the pairwise fusion penalty can

accommodate subject-specific intercepts (Ma and Huang, 2017), but focus only

on the skewness of the errors as a departure from normality, without consider-

ing heterogeneity among precisions. Motivated by this work, we consider a more

general framework that incorporates the heterogeneity among both the means

and the precisions. These location–scale Gaussian mixtures are expected to per-

form better in a heteroscedastic model, for example, when the errors follow a

leptokurtic distribution. Our objective function is a combination of the likelihood
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of the observed data and a concave fusion penalty that measures the pairwise

differences of the means and the precisions. An alternating direction method of

multipliers (ADMM) algorithm is developed for optimization. As the weight for

the penalty term increases, some pairwise differences of the estimated parameters

shrink to zero, enabling us to identify the number of components, and estimate

the parameters.

Our work builds on, but differs from existing works on GMMs (Huang et al.,

2017; Hao et al., 2018; Ren et al., 2022) by considering regression settings. Our

framework is motivated by the penalization and shrinkage strategies in existing

heterogeneity studies (Ma and Huang, 2017), extending them to accommodate

heterogeneity among precisions. More importantly, most existing GMM methods

assume that either the means and the precisions share the same structure, or

that the precisions of all components are equal. An appealing feature of our

method is that it allows the means and precisions to have different structures,

thus obtaining more accurate pooled estimators than those of previous studies

from the perspective of computation and theory. In particular, we conduct a

rigorous theoretical investigation of our pooled estimators. Lastly, we extensively

investigate the numerical convergence of the ADMM algorithm for optimization

with finite samples when using nonconvex penalties.

The rest of this paper is organized as follows. In Section 2, we develop a

penalized method for a linear regression in order to identify the number of com-

ponents in a GMM using pairwise fusion and estimate the unknown parameters.
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In Section 3, we develop an ADMM algorithm to facilitate the computation, and

establish the statistical properties in Section 4. In Section 5, we conduct exten-

sive simulations to evaluate the numerical performance of the proposed method.

Section 6 demonstrates the feasibility of our method based on real data. Finally,

Section 7 concludes the paper with a discussion.

2. Gaussian mixture with pairwise fusion

For any vector u, let ∥u∥2 denote its L2-norm, and u−1 denote a vector with

components that are the reciprocals of those of u. For a matrix Θ, let θ[i·] and

θ[·i] denote its ith row and ith column, respectively. Let y ∈ R be the response

variable and x ∈ X ⊂ Rp be the p-dimensional vector of covariates. We consider

the linear regression model,

yi = β⊤xi + ϵi, i = 1, . . . , n,

where β ∈ Rp is the vector of unknown coefficients, ϵi is the random error, and n

is the sample size. Let

ϕ(z;µ, τ) =
( τ
2π

)1/2
exp

{
−τ(z − µ)2

2

}
,

which is the density function of a Gaussian distribution with mean µ and precision

τ . Suppose that ϵi is from a Gaussian distribution ϕ(ϵi; θi1, θi2), where θi1 and θi2

are the mean and precision, respectively, for subject i. The data heterogeneity

between ϵi and ϵj is represented by the difference between two vectors, namely,
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θ[i·] = (θi1, θi2)
⊤ and θ[j·] = (θj1, θj2)

⊤. If ϵi and ϵj are from the same component,

then θ[i·] = θ[j·]; otherwise, θ[i·] ̸= θ[j·], meaning that at least one element is not

equal. Suppose there are Km distinct values in θ[·m], for m = 1, 2, denoted by µ =

(µ1, . . . , µK1)
⊤ and τ = (τ1, . . . , τK2)

⊤, respectively, where µi ̸= µj and τi ̸= τj, for

any i ̸= j. Given K1 and K2, one can apply the EM algorithm to estimate β, θ[·1],

and θ[·2] by introducing latent variables (Bartolucci and Scaccia, 2005). However,

in practice, it is difficult to identify the values of K1 and K2. By introducing

pairwise fusion penalties, we propose a novel approach to automatically determine

the number of components and simultaneously estimate the parameters.

Let y = (y1, . . . , yn)
⊤ and X = (x1, . . . ,xn)

⊤ denote the observed data. The

log-likelihood function is

L(β,Θ) =
n∑

i=1

log ϕ(ϵi; θi1, θi2) =
n∑

i=1

log ϕ(yi − β⊤xi; θi1, θi2).

Our goal is to identify the values of K1 and K2, and to estimate β and Θ.

We introduce a fusion penalty (Tibshirani et al., 2005) to penalize the pairwise

differences between θim, encouraging the sparsity of the pairwise differences. The

objective function is

Q(β,Θ) =− L(β,Θ) +
2∑

m=1

∑
1≤i<j≤n

p(|θim − θjm|, λm, γm), (2.1)

where p(·, λ, γ) is a penalty function with tuning parameters λ and γ.

It is critical to choose an appropriate penalty function p(·, λ, γ). The L1-

penalty, which is similar to the least absolute shrinkage and selection operator
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(lasso) (Tibshirani, 1996), with p(|θim−θjm|, λm, γm) = λm|θim−θjm|, penalizes all

paired differences |θim−θjm|. The L1-penalty tends to overshrink large coefficients,

and fails to recover the group structure (Fan and Li, 2001; Zou, 2006). On the

other hand, there are established theories for nonconvex penalties, such as hard

penalties and the smoothly clipped absolute deviation (SCAD) penalty. The hard

penalty defined in Antoniadis (1997) takes the form

p(u, λ, γ) = (−u2/2 + λ|u|)I(|u| < λ) + (λ2/2)I(|u| ≥ λ), (2.2)

where I(·) is the indicator function. The SCAD penalty function is p(u, λ, γ) =

λ
∫ u

0
min{1, (γ − t/λ)+/(γ − 1)}dt, where t+ = tI(t ≥ 0) denotes the nonnegative

part of t ∈ R, with λ ≥ 0 and γ > 2. The tuning parameter γ controls the

concavity of the SCAD penalty function, that is, how fast the penalization rate

goes to zero. As γ → ∞, it reduces to the L1-penalty. A smaller γ results in

more concavity and less bias, but the estimates become unstable, because there

is a greater chance of multiple local minima. These nonconvex penalties achieve

sparsity at individual levels and, more importantly, lead to an approximately

unbiased estimation of the coefficients and correctly shrink group differences, with

high probability, under regular conditions.

3. The ADMM algorithm

Because the penalty function is not separable in θim for m = 1, 2, it is difficult

to directly minimize the objective function in (2.1). To overcome this challenge,
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we introduce new variables, defined as ∆ijm = θim − θjm, for 1 ≤ i < j ≤ n and

m = 1, 2. Let ∆ = {(∆ij1,∆ij2)
⊤, i < j}. The optimization problem is

minQ(β,Θ,∆) = −L(β,Θ) +
2∑

m=1

∑
1≤i<j≤n

p(|∆ijm|, λm, γm),

subject to θim − θjm −∆ijm = 0, 1 ≤ i < j ≤ n;m = 1, 2. (3.1)

Using the augmented Lagrangian method, we can estimate the parameters by

minimizing

H(β,Θ,∆,ν) =Q(β,Θ,∆) +
2∑

m=1

∑
i<j

νijm(θim − θjm −∆ijm)

+
ρ

2

2∑
m=1

∑
i<j

(θim − θjm −∆ijm)
2,

where ν = {(νij1, νij2)⊤, i < j} are Lagrangian multipliers, and ρ > 0 is the

penalty parameter. To implement the ADMM algorithm (Boyd et al., 2011), we

first derive the updating equations for β and θ[·1]. We aim to minimize

H(β,Θ,∆,ν) =− L(β,Θ) +
ρ

2

∑
i<j

{
(ei − ej)

⊤θ[·1] −∆ij1 + ρ−1νij1
}2

+ C,

=− L(β,Θ) +
ρ

2

∥∥Eθ[·1] −∆[·1] + ρ−1ν[·1]
∥∥2
2
+ C,

where ei is a vector of length n of zeros except for the ith element being one,

E = {(ei − ej), i < j}⊤, ∆[·1] = {∆ij1, i < j}⊤, ν[·1] = {νij1, i < j}⊤, and C is a

generic symbol for a constant. As shown in the Supplementary Material, given

the current estimates θ
(t)
[·2], ∆

(t)
[·1], and ν

(t)
[·1], the updating equations for θ[·1] and β
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at the (t+ 1)th iteration are

θ
(t+1)
[·1] =

(
ρE⊤E +A(t)

)−1
{
A(t)y + ρE⊤

(
∆

(t)
[·1] − ρ−1ν

(t)
[·1]

)}
, (3.2)

β(t+1) =(X⊤W (t)X)−1X⊤W (t)(y − θ
(t+1)
[·1] ), (3.3)

respectively, where A(t) = W (t)(In − X(X⊤W (t)X)−1X⊤W (t)), with W (t) a

diagonal matrix of θ(t)
[·2] and In an n× n identity matrix.

Because there is no closed form when we update θi2 simultaneously, we use

a cyclic coordinate descent scheme at the (t + 1)th iteration. Specifically, we

cycle through θi2, for i = 1, . . . , n, so that at the ith step, we update θ(t+1)
i2 , while

holding all other {θ(t+1)
j2 , j ̸= i} fixed as

θ
(t+1)
i2 = {2ρ(n− 1)}−1

(
−b(t+1)

i +

√
(b

(t+1)
i )2 + 2ρ(n− 1)

)
, (3.4)

with

b
(t+1)
i =(yi − (β(t+1))⊤xi − θ

(t+1)
i1 )2/2 +

∑
j>i

ν
(t)
ij2 −

∑
j<i

ν
(t)
ji2

− ρ
{∑

j>i
(θ

(t+1)
j2 +∆

(t)
ij2) +

∑
j<i

(θ
(t+1)
j2 −∆

(t)
ji2)
}
,

for which the derivation is given in the Supplementary Material. The updating

of θ[·2] = (θ12, . . . , θn2)
⊤ at the (t + 1)th iteration proceeds by applying (3.4)

repeatedly in a cyclical manner, until the relative distance of the parameters

between two cycles is smaller than a tolerance (e.g., 10−3).
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To update ∆[·m], for m = 1, 2, we minimize

∑
i<j

p(|∆ijm|, λm, γm) +
∑
i<j

νijm(θim − θjm −∆ijm) +
ρ

2

∑
i<j

(θim − θjm −∆ijm)
2

=2−1ρ
∑
i<j

{
(θim − θjm + νijm/ρ−∆ijm)

2
}
+
∑
i<j

p(|∆ijm|, λm, γm) + C, (3.5)

where C is a constant. For simplicity, let rijm = θim − θjm + νijm/ρ and r[·m] =

(rijm)i<j. Minimizing (3.5) with respect to ∆[·m] is equivalent to solving the

penalized linear regression problem

min

{
2−1∥r[·m] −∆[·m]∥2 + ρ−1

∑
i<j

p(|∆ijm|, λm, γm)

}
. (3.6)

Because the design matrix in (3.6) is orthogonal, even for nonconvex penalties

such as the hard penalty and SCAD, it still often results in a unique solution, as

suggested by She (2009). As shown in the Supplementary Material, the updating

equation for ∆ijm under the hard penalty (2.2) is

∆
(t+1)
ijm =


S(r(t+1)

ijm , ρ−1λm)/(1− ρ−1), if |r(t+1)
ijm | < λm,

r
(t+1)
ijm , if |r(t+1)

ijm | ≥ λm,

(3.7)

where S(u, c) = sign(u)(|u| − c)+ is the soft-thresholding function. In addition,

the updating equation of ∆ijm under the SCAD penalty with γm > (1 + ρ−1) is

∆
(t+1)
ijm =



S(r(t+1)
ijm , ρ−1λm), if |r(t+1)

ijm | ≤ λm(1 + ρ−1),

S(r(t+1)
ijm , γmρ−1λm/(γm − 1))

1− ρ−1/(γm − 1)
, if (1 + ρ−1)λm < |r(t+1)

ijm | ≤ γmλm,

r
(t+1)
ijm , if |r(t+1)

ijm | > γmλm.

(3.8)
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Finally, for 1 ≤ i < j ≤ n and m = 1, 2, νijm is updated using

ν
(t+1)
ijm =ν

(t)
ijm + ρ

(
θ
(t+1)
im − θ

(t+1)
jm −∆

(t+1)
ijm

)
. (3.9)

Define the primal and dual residuals as Rp(Θ,∆) = EΘ − ∆ and R
(t)
d =

ρE⊤(∆(t+1) − ∆(t)), respectively. Boyd et al. (2011) suggest that a reasonable

termination criterion for the ADMM algorithm is ∥Rp(Θ
(t),∆(t))∥F ≤ κpri and

∥R(t)
d ∥F ≤ κdual, with

κpri =
√
n(n− 1)/2κabs + κrel max{∥EΘ(t)∥F , ∥∆(t)∥F},

κdual =
√
nκabs + κrel∥E⊤ν(t)∥F ,

(3.10)

where ∥ · ∥F is the Frobenius norm, κabs is an absolute tolerance, κrel is a rela-

tive tolerance, and both of the latter are small positive numbers. The detailed

procedure for estimating β, θ[·1], and θ[·2] is summarized in Algorithm S1 in the

Supplementary Material.

We now analyze the computational complexity of Algorithm S1. Because

E⊤E is computed in advance with complexity O(n4), we do not need to com-

pute it again in the loops. Updating θ
(t+1)
[·1] has complexity O(p3 + n3). When

updating β(t+1), note that (X⊤W (t)X)−1X⊤W (t) has been computed when up-

dating θ
(t+1)
[·1] , and thus need not be computed again. As a result, the complexity

of updating β(t+1) is O(pn). The computational complexity of updating θ
(t+1)
[·2]

is O((n + p)NC), where NC is the iterative number of our coordinate descent

method. Finally, updating ∆(t+1) and ν(t+1) has complexity O(n2). Therefore,
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for each loop of the ADMM method, the overall computational complexity is

O(p3 + n3 + (n+ p)NC). Next, we compare the computational complexity of our

method with that of Ma and Huang (2017), who do not consider heterogeneity

among precisions. First, many operations for updating the mean vector in Ma and

Huang (2017) can be computed in advance, rather than in each loop. For exam-

ple, in (3.2), we need to compute (X⊤W (t)X)−1X⊤W (t) in each loop, whereas

in the updating equation for means in Ma and Huang (2017), (X⊤X)−1X⊤ can

be computed in advance. Second, there is no need to update precisions in Ma

and Huang (2017). Third, the sizes of ∆(t+1) and ν(t+1) in Ma and Huang (2017)

are half of those in our method. As a result, in Ma and Huang (2017), the

computational complexity for operations in advance is O(p3 + n4), and that for

operations in each loop is O(pn + n3). When p ≤ n, for operations in advance,

the computational complexity of both methods is O(n4); for each loop of the

ADMM algorithm, the computational complexity is O(n3 +nNC) in our method,

and O(n3) in the method of Ma and Huang (2017). Therefore, when p ≤ n, the

increase in computational complexity of our method is due mainly to updating

precisions.

The convergence of the ADMM in nonconvex optimization has been studied

extensively, for example, by Wang et al. (2019). However, to the best of our

knowledge, existing conclusions in the literature cannot be applied directly to

establish the convergence of Algorithm S1. Nevertheless, we can still prove it

following similar steps to those in Wang et al. (2019), with some modifications.
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We first present two lemmas, and then show the convergence property of our

ADMM algorithm.

Lemma 1. Assume the penalty function p(·, λ, γ) is weakly convex with modulus

Cp and its subdifferential is bounded, that is, |∂p(·, λ, γ)| ≤ Cs, for some constant

Cs. If ρ > Cp, it holds that the augmented Lagrangian H(β(t),Θ(t),∆(t),ν(t)) is

lower bounded.

Lemma 2. Under the assumption in Lemma 1, it holds that

H(β(t),Θ(t),∆(t),ν(t))−H(β(t−1),Θ(t−1),∆(t−1),ν(t−1))

≤4ρ−1n(n− 1)C2
s −

ρ

2
∥EΘ(t) −EΘ(t−1)∥2F − ρ− Cp

2
∥∆(t) −∆(t−1)∥2F .

Theorem 1. Under the assumption in Lemma 1, if ρ > Cp, the following hold:

(1) the primal residual Rp(Θ
(t),∆(t)) and the dual residual R(t)

d of Algorithm S1

satisfy limt→∞ ∥Rp(Θ
(t),∆(t))∥F = 0 and limt→∞ ∥R(t)

d ∥F = 0, respectively.

(2) the sequence {β(t),Θ(t),∆(t),ν(t)} has at least a limit point {β∗,Θ∗,∆∗,ν∗},

and any limit point is a stationary point.

Both the hard and SCAD penalties are weakly convex, and their subdiffer-

entials are bounded by constants. Lemma 1 shows that, for sufficiently large ρ,

the augmented Lagrangian is lower bounded, and Lemma 2 shows that its change

between successive iterations is upper bounded. Then, Theorem 1 presents that

the ADMM algorithm achieves primal feasibility and dual feasibility. Moreover,
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it converges to an optimal solution, which may be a local minimum. The proof is

given in the Supplementary Material.

Given the tuning parameters, the pairwise fused penalty may result in ∆ijm =

0 for some i and j. As discussed in Section 2, we assume that ϵi and ϵj are from

the same component if ∆ij1 = ∆ij2 = 0. Therefore, we can recover the group

structure of the errors using the shrinkage procedure. Denote the estimates as

β̂, θ̂[·1], and θ̂[·2]. As a result, we have K̂1 estimated distinct values for the

mean, which divide the data into groups Ĝ(1)
1 , . . . , Ĝ(1)

K̂1
. The estimated mean for

the kth group is µ̂k = |Ĝ(1)
k |−1

∑
i∈Ĝ(1)

k
θ̂i1, where | · | is the cardinality of a set.

Similarly, there are K̂2 estimated distinct values for the precision, which divide

the data into groups Ĝ(2)
1 , . . . , Ĝ(2)

K̂2
. The estimated precision for the k′th group is

τ̂k′ = |Ĝ(2)
k′ |−1

∑
i∈Ĝ(2)

k′
θ̂i2.

4. Asymptotic properties

4.1 Heterogeneous model

We first study the theoretical properties of the proposed estimator under a het-

erogeneous model, where at least two components exist in the mixture, that is,

max{K1, K2} ≥ 2. We discuss the homogeneous setting in the next section.

We show that under some regularity conditions, there exists a local minimizer

of the objective function converging to the true parameter. Specifically, we first

prove that the oracle estimator converges to the true parameter, and then show
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that the oracle estimator is a local minimizer of the objective function, with

probability approaching one. Let β0, θ0
[·1], and θ0

[·2] denote the true parame-

ters. For m = 1, 2, suppose there are Km distinct values in θ0
[·m], which divide

{ϵi}ni=1 into Km groups, G(m)
1 , . . . ,G(m)

Km
. Let IG(m) be the subspace of Rn, de-

fined as IG(m) = {θ[·m] ∈ Rn : θim = θjm for any i, j ∈ G(m)
k , 1 ≤ k ≤ Km}. Let

Z(m) = (z
(m)
ik ) be the n × Km matrix with z

(m)
ik = 1 for i ∈ G(m)

k , and z
(m)
ik = 0

otherwise. In addition, let µ0 = (µ0
1, . . . , µ

0
K1
)⊤ and τ 0 = (τ 01 , . . . , τ

0
K2
)⊤, where

µ0
k is the mean for group G(1)

k and τ 0k′ is the precision for group G(2)
k′ . When the

underlying group structures G(m)
1 , . . . ,G(m)

Km
, for m = 1, 2, are known, the oracle

estimators for β, θ[·1], and θ[·2] are defined as the maximizers of the log-likelihood

function

((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) = argmax
θ[·1]∈IG(1) ,θ[·2]∈IG(2)

n∑
i=1

log ϕ(yi − β⊤xi; θi1, θi2). (4.1)

Moreover, define the oracle estimators for β, µ, and τ as

((β̂or)⊤, (µ̂or)⊤, (τ̂ or)⊤)

= argmaxn−1

n∑
i=1

K2∑
k′=1

z
(2)
ik′

{
log τk′ − τk′(yi − β⊤xi − µ⊤z

(1)
[i·] )

2
}
.

For notational simplicity, we define for any vector u = (u1, . . . , us)
⊤ ∈ Rs,

∥u∥∞ = max1≤l≤s |ul|. For any an, bn ∈ R+, we denote an ≫ bn, if a−1
n bn =

o(1). Let p′(|t|, λ, γ) be the derivative of p(|t|, λ, γ) with respect to |t|, that is,

p′(|t|, λ, γ) = ∂p(|t|, λ, γ)/∂|t|. Let |G(m)
min | = min{|G(m)

1 |, . . . , |G(m)
Km

|}, for m = 1, 2.

To establish the asymptotic properties for the estimators, the following regular

15

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0092



Gaussian Mixture Models 4.1 Heterogeneous model

conditions are required:

(C1) There exist constants 0 < M, c1 < +∞ such that ∥x∥∞ ≤ M for any

x ∈ X , and the smallest eigenvalues of (X,Z(1))⊤(X,Z(1)) are bounded

by c1|G(1)
min|.

(C2) There exist constants 0 < τmin ≤ τmax < +∞ such that τmin ≤ τ 0k′ ≤ τmax,

for k′ = 1, . . . , K2.

(C3) The mixing probability πkk′ that a subject belongs to G(1)
k ∩ G(2)

k′ satisfies

min
k,k′

πkk′ = O

(
max
k,k′

πkk′

)
.

(C4) The penalty function p(|t|, λ, γ) is symmetric with respect to t, and non-

decreasing and concave in terms of |t|. There exists some constant 0 <

a < +∞ such that p(|t|, λ, γ) is a constant for all t with |t| ≥ aλ, and

p(0, λ, γ) = 0. The derivative p′(|t|, λ, γ) exists and is continuous, except

for a finite number of t, and λ−1p′(|t|, λ, γ) = 1 as |t| → 0.

By definition, the smallest eigenvalue of (Z(1))⊤Z(1) is |G(1)
min|, and it is reasonable

to assume that the smallest eigenvalue of X⊤X is bounded by Cn, for some con-

stant 0 < C < +∞. Therefore, Condition (C1) assumes the smallest eigenvalue

of (X,Z(1))⊤(X,Z(1)) is bounded by c1|G(1)
min|, similarly to Ma and Huang (2017).

Condition (C2) assumes that the true value of the precision is bounded, which is

a common assumption in GMMs (Hao et al., 2018; Ren et al., 2022). Condition

(C3) requires that the groups in the mixture model are not too imbalanced, sim-
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ilarly to Ren et al. (2022). Condition (C4) is widely adopted in high-dimensional

settings (Ma and Huang, 2017), and is satisfied by the hard and SCAD penalties.

Theorem 2. Under Conditions (C1)–(C3), assuming max{K1, K2}
√
p+K1K2 =

o(
√
n(log n)−1), it holds that

∥((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤)− ((β0)⊤, (θ0
[·1])

⊤, (θ0
[·2])

⊤)∥∞

=Op

(
max(K1, K2)

√
(p+K1)K2

2 log n

n
+max(K1, K2)

√
K2 log n

n

)
.

Theorem 2 states that the oracle estimators of β, θ[·1], and θ[·2] converge to

the true parameters; the proof is given in the Supplementary Material. It al-

lows p, K1, and K2 to diverge with n, and requires max{K1, K2}
√
p+K1K2 =

o(
√
n(log n)−1). The result in Ma and Huang (2017) can be viewed as a spe-

cial case of Theorem 2 by assuming K2 = 1 (the negative log-likelihood re-

duces to the mean squared error) or that the heterogeneity precisions are al-

ready known. In these cases, we need only estimate the coefficients and the

means. The required condition is then K1

√
p+K1 = o(

√
n(log n)−1), and hence

K1 = o(n1/3(log n)−1/3), which is the same as in Ma and Huang (2017). The

bound in Theorem 2 is then K1

√
(p+K1)n−1 log n, which is also the same as

in Ma and Huang (2017) (see Remark 4 in their paper). Moreover, Hao et al.

(2018) consider high-dimensional Gaussian graphical mixture models, which as-

sume that the mean and precision vectors have the same group structure and do

not incorporate covariates. If we set K1 = K2 and p = 0, the bound in Theorem 2
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is
√
K5

1n
−1 log n+

√
K3

1n
−1 log n, which is the same as in Hao et al. (2018) when

applied to a one-dimensional GMM. In particular, when p, K1, and K2 are fixed,

the error bound is
√
n−1 log n.

As suggested by Hao et al. (2018), the first term of the bound in Theorem

2 represents the mean error, and the second term is the precision error. The

structure of the means affects the estimation of the precisions, and vice versa.

Specifically, given K1, the mean error is affected by the value of K2, and given

K2, the value of K1 also affects the precision error. Theorem 2 reveals the ad-

vantage of separately investigating the structures of the means and the preci-

sions. We consider two special cases, (K1 = K,K2 = 1) and (K1 = 1, K2 = K).

The error bound is
√
K2(p+K)n−1 log n +

√
K2n−1 log n in the first case, and√

K4(p+ 1)n−1 log n+
√
K3n−1 log n for the latter. If we assume the mean and

precision share the same group structure, as in the literature, that is, K1 = K2 =

K, then the error bound is
√
K4(p+K)n−1 log n+

√
K3n−1 log n for both cases.

As expected, identifying the structure of the parameters separately leads to esti-

mates with smaller estimation errors. In addition, the estimation problem with

the same mean but heterogeneous precisions (K1 = 1, K2 = K) is more difficult

than that with heterogeneous means and the same precision (K1 = K,K2 = 1).

Remark 1. Let X̃ = (X,Z(1)). By the first-order optimality condition, we have

((β̂or)⊤, (µ̂or)⊤)⊤ = (X̃⊤diag(θ̂or
[·2])X̃)−1(X̃⊤diag(θ̂or

[·2])y), which can be viewed as

a weighted least squares estimator for a heteroskedastic linear regression. Because

θ0
[·2] = Z(2)τ 0 is a smooth function and θ̂or

[·2] is a consistent estimator of θ0
[·2], by
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Carroll (1982), we have that

((β̂or)⊤, (µ̂or)⊤)⊤ − ((β0)⊤, (µ0)⊤)⊤
d→ N

(
0,
(
X̃⊤diag(θ0

[·2])X̃
)−1
)
,

where d→ represents convergence in distribution. Therefore, as claimed in a large

amount of literature (e.g., Shao (1989)), ((β̂or)⊤, (µ̂or)⊤)⊤ is more efficient than

the ordinary least squares estimator in Ma and Huang (2017) when K2 ≥ 2.

Assuming max{K1, K2} ≥ 2, let bn = min{mini ̸=j |θ0i1−θ0j1|,mini ̸=j |θ0i2−θ0j2|}

be the minimal difference of the means or precisions between two groups. For

simplicity, let ψn = max(K1, K2)
√
n−1 log n

(√
(p+K1)K2

2 +
√
K2

)
.

Theorem 3. Under Conditions (C1)–(C4), and assuming that the conditions in

Theorem 2 hold, max{K1, K2} ≥ 2, bn ≥ amax{λ1, λ2}, and min{λ1, λ2} ≫ ψn,

with a defined in Condition (C4), there exists a local minimizer {β̂(λ,γ), θ̂
(λ,γ)
[·1] , θ̂

(λ,γ)
[·2] }

of the objective function Q(β,Θ), such that

P
(
((β̂(λ,γ))⊤, (θ̂

(λ,γ)
[·1] )⊤, (θ̂

(λ,γ)
[·2] )⊤) = ((β̂or)⊤, (θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤)
)
→ 1

as n→ ∞.

Theorem 3 shows that the oracle estimator ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) is a local

minimizer of the objective function Q(β,Θ) with probability approaching one as

n→ ∞; the proof is given in the Supplementary Material. Combining Theorems

2 and 3, we conclude that there exists a local minimizer of the objective function

converging to the true parameter.

19

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0092



Gaussian Mixture Models 4.2 Homogeneous model

4.2 Homogeneous model

When the true model is homogeneous, that is, K1 = K2 = 1, we show that the

minimizer of the penalized objective functionQ(β,Θ) also has the oracle property.

For m = 1, 2, let Im be the subspace of Rn, defined as Im = {θ[·m] ∈ Rn : θ1m =

· · · = θnm}. The oracle estimators under the homogeneous model are defined as

((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) = argmaxθ[·1]∈I1,θ[·2]∈I2
∑n

i=1 log ϕ(yi − β⊤xi; θi1, θi2).

Theorem 4. Under Conditions (C1) and (C4), assuming p = o(n(log n)−1), the

following hold:

(1) ∥((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤)− ((β0)⊤, (θ0
[·1])

⊤, (θ0
[·2])

⊤)∥∞

= Op

(√
(p+ 1)n−1 log n+

√
n−1 log n

)
.

(2) if λ ≫
√

(p+ 1)n−1 log n +
√
n−1 log n, there exists a local minimizer

{β̂(λ,γ), θ̂
(λ,γ)
[·1] , θ̂

(λ,γ)
[·2] } of Q(β,Θ) such that

P
(
((β̂(λ,γ))⊤, (θ̂

(λ,γ)
[·1] )⊤, (θ̂

(λ,γ)
[·2] )⊤) = ((β̂or)⊤, (θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤)
)
→ 1

as n→ ∞.

Theorem 4 shows that under a homogeneous model, there exists a local min-

imizer ((β̂(λ,γ))⊤, (θ̂
(λ,γ)
[·1] )⊤, (θ̂

(λ,γ)
[·2] )⊤) converging to ((β0)⊤, (θ0

[·1])
⊤, (θ0

[·2])
⊤); the

proof is given in the Supplementary Material.
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5. Simulations

We conduct extensive simulations to demonstrate the numerical performance of

the proposed method for GMMs using the hard and SCAD penalties (abbre-

viated as Hard-GMM and SCAD-GMM, respectively), and compare the results

with those of several existing methods. Specifically, we consider the following

methods: (i) the method proposed by Ma and Huang (2017), which conducts sub-

group analyses in a linear regression with different means using a concave fusion

penalty (SubAna); (ii) the EM algorithm for finite mixtures in a linear regres-

sion, with the Gaussian error terms implemented using the R package “flexmix”

(Grün and Leisch, 2008), in which regression coefficients are restricted to be equal

over all components (FlexMix); and (iii) the method using model selection for

GMMs without covariates proposed by Huang et al. (2017), which penalizes mix-

ing probabilities, and implements a modified EM algorithm for the estimation

(MS-GMM). As suggested by the authors, we use the SCAD penalty for SubAna

and MS-GMM.

Based on preliminary experiments, we fix ρ = 1.2 for the hard penalty and

ρ = 0.5 for the SCAD penalty. To apply the proposed method, one needs to

select the tuning parameters λ1, λ2 (for both penalties) and γ1, γ2 (for the SCAD

penalty). Simulation results show that the numerical performance is not sensitive

to the selection of γ1, γ2, and we set γ1 = γ2 = 3.7, following Fan and Li (2001).

Although information criteria such as the AIC and BIC have been proposed for

21

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0092



Gaussian Mixture Models

parameter tuning in the context of clustering, the model complexity penalty in

these criteria is often ad hoc. Motivated by the work of She (2010) and She and

Tran (2019), we set aside a separate validation data set to calculate the validation

error (negative log-likelihood) and select the tuning parameters using the one

standard error rule, which lead to the simplest model and a validation error that

falls within one standard error of the minimum. The size of the validation set is

fixed as 10 times that of the training set in our analysis. Moreover, we adopt an

alternative search strategy to tune the parameters, which has been shown to be

efficient (She, 2009). Specifically, we first search along the λ2-path with λ1 fixed

at the minimum, median, and maximum in its candidate set. Then, we select

the optimal value, denoted by λ(opt)2 . Then, we search along the λ1-path with λ2

fixed at λ(opt)2 . Accordingly, we search along four one-dimensional paths in total,

including three λ1-paths and one λ2-path. Although this strategy does not cover

the full parameter space, it is more computationally efficient than a grid search,

and leads to satisfactory estimates.

Owing to the critical role of the initial values in Algorithm S1, we borrow

ideas from prior works (Ma et al., 2020; Hu et al., 2021; Wang et al., 2023) and

consider the optimization problem with a ridge fusion penalty,

min

{
n∑

i=1

(yi − β⊤xi − θi1)
2 +

2∑
m=1

∑
1≤i<j≤n

λ̃m(θim − θjm)
2

}
. (5.1)

The parameters λ̃1 and λ̃2 are selected from the set {10−1, 10−2, . . . , 10−6} us-

ing the same procedure described above. The objective function in (5.1) is dif-
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ferentiable, and thus we apply the limited-memory Broyden–Fletcher–Goldfarb–

Shanno algorithm for bound constrained optimization to solve it, which is com-

putationally fast. Denote the solutions as β(rid), θ
(rid)
[·1] , and θ

(rid)
[·2] . Then, for

m = 1, 2, we divide the subjects into ⌊n1/2⌋ subgroups by ranking θ
(rid)
[·m] , where

⌊n1/2⌋ represents the maximum integer that does not exceed n1/2. Denote these

subgroups as G̃(m)
1 , . . . , G̃(m)

⌊n1/2⌋. Lastly, we set the initial estimates β(0) = β(rid) and

θ
(0)
[·m] = (θ

(0)
1m, . . . , θ

(0)
nm)⊤, where θ(0)im is equal to the median of {θ(rid)jm : j ∈ G̃(m)

k },

with G̃(m)
k the subgroup to which the ith subject belongs, for k = 1, . . . , ⌊n1/2⌋.

Previous studies (Ma et al., 2020; Hu et al., 2021; Wang et al., 2023) have verified

the validity of such an initialization procedure in various scenarios. As indicated

by the following numerical studies, it can also provide a good start point for our

ADMM algorithm.

To evaluate the performance of our method, we consider the identification of

K1 and K2, as well as the estimation of β, θ[·1], and θ[·2]. Note that SubAna

does not estimate the precision parameters, thus there is no result for K2 and

θ[·2] for this method. To apply MS-GMM in our regression setting, we first obtain

the ordinary least squares (OLS) estimator β̂ols, and then implement MS-GMM

on the pseudo errors yi − (β̂ols)⊤xi. In addition, FlexMix and MS-GMM assume

the means and precisions have the same structure, thus the estimated values

of K1 and K2 are always the same. We investigate two scenarios of mixture

models. Scenario 1 assumes a scale GMM with two components, which have the

same mean, but different precisions. Scenario 2 adopts a much more complicated
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mixture model, with six distinct means and three distinct precisions. Set κabs = 0

and κrel = 0.01 in (3.10) for the termination criterion. Under each scenario, we

conduct 100 replications.

Scenario 1. For i = 1, . . . , n, ϵi is from a Gaussian distribution with density

ϕ(ϵi; θi1, θi2), where θi1 ≡ 1 and θi2 is generated from the distribution P (θi2 =

(0.2)−2) = 1/3 and P (θi2 = (0.9)−2) = 2/3. Let xi = (xi1, . . . , xi5)
⊤, where xij

are independent and identically generated from the standard normal distribution.

We simulate responses as yi = β⊤xi + ϵi, with β = (3, 2, 0.5,−2,−3)⊤, and set

n = 200.

We set the maximum number of iterations in Algorithm S1 to 200. For

the hard penalty, the candidate sets for λ1 and λ2 are {0.5, 0.6, . . . , 1.5} and

{5, 5.2, . . . , 7.2}, respectively; for the SCAD penalty, they are {0.05, 0.06, . . . , 0.15}

and {1, 1.2, . . . , 3.2}, respectively. Figure 1 shows the solution paths of θ̂[·1] and

θ̂[·2] by SCAD-GMM for one simulated data set. The values of θ̂[·1] and θ̂[·2] show a

similar pattern from divergence to convergence along the path. When λ1 is small,

the estimated means tend to be different, which should be close to the residuals

yi − β̂⊤xi. As λ1 increases, the estimated means converge to one point around

the true value, one. The trend for the estimated precisions is similar. When λ2

is small, there are more than two distinct values for the estimated precisions.

They converge to the true values (0.2)−2 and (0.9)−2 as λ2 increases, and finally

converge to one point if λ2 continues to increase.

Table 1 reports the average value and standard deviation (given as a sub-
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script) of the bias and the square root of the mean squared error (RMSE) for the

estimated values of β over 100 replications. For a vector u = (u1, . . . , us)
⊤ and its

estimator û = (û1, . . . , ûs)
⊤, the bias of ûj is defined as |ûj −uj|, for j = 1, . . . , s,

and the RMSE of û is ∥û−u∥2/
√
s. We consider the four methods Hard-GMM,

SCAD-GMM, SubAna, and FlexMix. The oracle and OLS estimators are also

presented as references. Table 1 shows that Hard-GMM and SCAD-GMM per-

form similarly and deliver the results closest to those of the oracle estimators.

The other two competitors, SubAna and FlexMix, are inferior to our method in

terms of estimating β.

Table 2 shows the median of K̂m, the proportion of K̂m equal to the true

value, and the RMSEs of θ̂[·1] and θ̂
−1/2
[·2] (i.e., standard deviation), as well as

the computation time to train the model once on the whole training set with

the specified tuning parameters. The results show that Hard-GMM and SCAD-

GMM always correctly identify the numbers of components, and perform best in

terms of estimating the parameters. SubAna also correctly identifies the num-

ber of components for the means, and ranks second in terms of estimating θ̂[·1].

In comparison, the proposed method delivers more accurate and robust estima-

tors than those of SubAna, because we consider heterogeneity among precisions.

In addition, our method shows great advantages over the EM-based algorithms,

FlexMix and MS-GMM, in terms of both determining the numbers of components

and estimating the parameters. We next focus on the computation time, where

MS-GMM runs fastest, followed by FlexMix, SubAna, Hard-GMM, and SCAD-
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(a) θ̂[·1] against λ1, with λ2 fixed at 1.8 (b) θ̂[·2] against λ2, with λ1 fixed at 0.1

Figure 1: Solution paths for estimated values against tuning parameters by
SCAD-GMM for one simulated data set under Scenario 1, where the dashed lines
correspond to the optimal tuning parameters.

GMM. In general, the EM-based algorithms run much faster than the ADMM-

based algorithms. Compared to SubAna, our method spends twice as much time

in estimating precisions. We further compare the performance of these meth-

ods in terms of clustering; detailed results and discussions are provided in the

Supplementary Material, where Table S1 shows that our method performs best.

We now check the convergence of the ADMM algorithm, and present the re-

sults of Hard-GMM for illustration purposes. In Figure 2, we show the average

curves over 20 runs of the primal relative residual ∥Rp(Θ
(t),∆(t))∥F (max{∥EΘ(t)∥F , ∥∆(t)∥F})−1

and the dual relative residual ∥R(t)
d ∥F (∥E⊤ν(t)∥F )−1 against the number of iter-

ations. The results show that the ADMM algorithm converges steadily in this

scenario, and the termination criterion is satisfied within 50 iterations, on average.

The primal relative residual gets close to zero after about 10 iterations, whereas
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Table 1: The average value and standard deviation of the bias and the square
root of the mean squared error (RMSE) of β̂ over 100 replications.

Bias(β̂1) Bias(β̂2) Bias(β̂3) Bias(β̂4) Bias(β̂5) RMSE(β̂)

Scenario 1
Oracle 0.0210.017 0.0210.015 0.0200.016 0.0200.016 0.0200.014 0.0240.008
Hard-GMM 0.0340.027 0.0310.022 0.0300.026 0.0290.022 0.0340.028 0.0380.014
SCAD-GMM 0.0340.027 0.0310.021 0.0300.026 0.0300.023 0.0330.027 0.0380.014
SubAna 0.0450.034 0.0440.031 0.0450.030 0.0430.034 0.0430.036 0.0520.018
FlexMix 0.0420.032 0.0390.031 0.0440.033 0.0470.034 0.0430.036 0.0510.018
OLS 0.0450.034 0.0440.031 0.0450.030 0.0430.034 0.0430.036 0.0520.018

Scenario 2
Oracle 0.0150.011 0.0140.010 0.0140.010 0.0160.011 0.0150.010 0.0170.005
Hard-GMM 0.1100.257 0.0730.226 0.1160.207 0.0850.208 0.0920.217 0.1110.224
SCAD-GMM 0.1120.271 0.0770.242 0.1150.201 0.0800.200 0.0910.212 0.1100.225
SubAna 0.2640.382 0.2090.282 0.2380.356 0.2410.340 0.2290.359 0.2800.311
FlexMix 0.3250.412 0.3100.404 0.3360.513 0.3990.539 0.3540.387 0.4200.388
OLS 0.6740.482 0.5700.421 0.6280.481 0.6040.472 0.6460.472 0.7430.234

Oracle: the oracle estimators defined in (4.1); Hard-GMM: the proposed method under
the hard penalty; SCAD-GMM: the proposed method under the SCAD penalty; SubAna:
subgroup analysis proposed by Ma and Huang (2017); FlexMix: the EM algorithm for finite
mixtures of linear regression developed by Grün and Leisch (2008); OLS: the ordinary least
squares estimators.

the dual relative residual decreases relatively slowly. We also show the relative

residuals after 200 iterations in Figure S1 in the Supplementary Material, which

verify that the dual relative residual continues to decrease, albeit slowly, as the

number of iterations increases. Figure 2 also shows the average curves of the ob-

jective value Q(β(t),Θ(t)), which converges fast with iterations. Furthermore, the

RMSEs of β(t), θ(t)
[·1], and (θ

(t)
[·2])

−1/2 in Figure 2 show that the ADMM algorithm

converges to a stationary point after a number of iterations. We study the con-

vergence of the RMSEs further for parameters under different sample sizes; see
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Table 2: The median (Med) of K̂1 and K̂2, the proportion (Prop) of K̂1 and
K̂2 equal to the true values, the average value and standard deviation of the
square root of the mean squared error (RMSE) of θ̂[·1] and θ̂

−1/2
[·2] , and the

average computation time in seconds over 100 repetitions.

K̂1 K̂2 RMSE Time
Med Prop Med Prop θ̂[·1] (θ̂[·2])

−1/2

Scenario 1
Oracle – – – – 0.0190.014 0.0440.076 –
Hard-GMM 1 1 2 1 0.0300.023 0.2120.082 7.61
SCAD-GMM 1 1 2 1 0.0300.023 0.2190.080 8.22
SubAna 1 1 – – 0.0390.032 – 3.83
FlexMix 2 0.76 2 0.76 0.0640.059 0.2770.081 1.10
MS-GMM 2 0.74 2 0.74 0.1620.206 0.2590.126 0.08

Scenario 2
Oracle – – – – 0.0750.027 0.0300.015 –
Hard-GMM 6 0.69 3 0.95 0.6210.779 0.3860.184 38.98
SCAD-GMM 6 0.69 3 0.93 0.6560.788 0.3830.171 40.78
SubAna 6 0.68 – – 1.1471.150 – 24.26
FlexMix 6 0.54 6 0.54 2.4482.103 2.3712.056 1.55
MS-GMM 6 0.57 6 0.57 1.9982.063 2.2332.023 0.11
Oracle: the oracle estimators defined in (4.1); Hard-GMM: the proposed method under
the hard penalty; SCAD-GMM: the proposed method under the SCAD penalty; SubAna:
subgroup analysis proposed by Ma and Huang (2017); FlexMix: the EM algorithm for
finite mixtures of linear regression developed by Grün and Leisch (2008); MS-GMM: model
selection for GMMs proposed by Huang et al. (2017), applied to yi − (β̂ols)⊤xi.

Figure 3, which shows that the obtained solutions converge faster, and eventually

converge to smaller RMSEs with larger sample sizes.

We finally investigate the sensitivity of SCAD-GMM to γ1 and γ2. We set

γ1 = γ2 = γ to 3.1, 3.3, . . . , 4.9. Figure 4 shows the RMSEs of the parameters

against the value of γ over 100 repetitions, indicating that the estimation of the

parameters is not sensitive to the value of γ. Figure S2 in the Supplementary
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Figure 2: Average curves for the primal and dual relative residuals, the objective
value, and the RMSEs of the estimated parameters against the number of itera-
tions by Hard-GMM over 20 repetitions under Scenario 1.

Material shows the primal and dual relative residuals for γ = 3.1, 3.7, 4.9. The

ADMM algorithm converges for all three values of γ, and the convergence rate is

slower for γ = 4.9.

Scenario 2. We simulate data from a more complicated mixture model. For

i = 1, . . . , n, ϵi is from a Gaussian distribution with density ϕ(ϵi; θi1, θi2), where
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Figure 3: Average curves for the RMSEs of the estimated parameters against the
number of iterations with different sample sizes by Hard-GMM over 20 repetitions
under Scenario 1.

Figure 4: Average curves for the RMSEs of the estimated parameters against the
value of γ by SCAD-GMM over 100 repetitions under Scenario 1.

θi1 is generated from {−20,−12,−4, 4, 12, 20} with equal probabilities and

θi2 =



(0.2)−2, if θi1 = −20 or − 12,

(0.4)−2, if θi1 = −4,

(0.7)−2, otherwise.

Let xi = (xi1, . . . , xi5)
⊤, where xij are independent and identically generated from

the standard normal distribution. We simulate responses as yi = β⊤xi + ϵi, with
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β = (3, 2, 0.5,−2,−3)⊤, and set n = 300.

We set the maximum number of iterations in Algorithm S1 to 500 for this

complicated scenario. The estimated results are shown in Tables 1 and 2. In this

scenario, the proposed method demonstrates significant advantages in terms of

structure identification and parameter estimation. Although SubAna performs

similarly to our method in terms of identifying the number of components for the

means, it does not consider heterogeneity among precisions. On the other hand,

our method achieves high accuracy in terms of identifying the structure of the

precisions. As a result, the proposed method delivers more accurate and robust

estimations of β and θ[·1] than those of SubAna. In addition, MS-GMM performs

poorly in this scenario, because it is applied to the pseudo residuals yi−(β̂ols)⊤xi,

where the OLS estimator is biased because of heterogeneity. Although FlexMix

delivers reasonable results in terms of estimating β, it also performs poorly in

terms of estimating θ[·1] and θ[·2]. One possible reason is that the EM algorithm

is sensitive to the initial points in this complicated scenario. Therefore, we adopt

the suggested strategy of Grün and Leisch (2008) to first make several runs of the

stochastic EM algorithm with different random initializations, and then start the

EM using the best solution obtained. Nevertheless, it still performs unsatisfac-

torily. For computation, the ADMM-based methods, Hard-GMM, SCAD-GMM,

and SubAna, run much slower than MS-GMM and FlexMix for this larger data

set, because the latter two are less affected by the sample size. The improvement

in terms of estimation accuracy of our method is achieved at the cost of com-
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Figure 5: Average curves for the primal and dual relative residuals, the objective
value, and the RMSEs of the estimated parameters against the number of itera-
tions by SCAD-GMM over 20 repetitions under Scenario 2.

putation. We also present clustering results in Table S1 in the Supplementary

Material, which show the superiority of our method. To check the convergence of

the ADMM algorithm, Figure 5 shows the average results for SCAD-GMM over

20 runs. As shown, although the optimization problem becomes difficult in this

complicated scenario, the relative residuals still satisfy the termination criterion,

and the obtained solutions converge to stationary points within 500 iterations, on

average.
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6. Real-data example

For illustration, we apply the proposed method to Cleveland Heart Disease data

from the UCI repository. The selection of the tuning parameters λ1 and λ2 is the

same as in Section 5, except that the validation error is calculated using five-fold

cross-validation.

The data contain 303 individuals and 14 variables, where the first 13 variables

are clinical measurements, and the last one indicates whether an individual suffers

from heart disease. After deleting observations with missing values, there remain

297 observations. The variable “thalach”, which represents the maximum heart

rate achieved, is related to cardiac mortality (Lauer et al., 1999). Our analysis

aims to identify group structures when predicting “thalach.” We are interested in

six covariates: age, sex, resting blood pressure, serum cholesterol, fasting blood

sugar, and a resting electrocardiographic (ECG) result, which is a categorical vari-

able with three levels (0=normal, 1=having ST–T wave abnormality, 2=showing

probable or definite left ventricular hypertrophy by Estes’ criteria), and thus is

converted to two dummy variables. We use six additional variables to check heart

problems, namely chest pain type, exercise induced angina, ST depression induced

by exercise relative to rest, slope of the peak exercise ST segment, number of ma-

jor vessels colored by fluoroscopy, and heart status. Similar to the procedure in

Ma and Huang (2017), we first regress “thalach” on these six additional variables

The data are available at https://archive.ics.uci.edu/ml/datasets/Heart+Disease.
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Figure 6: The kernel density estimate of yi − (β̂ols)⊤xi’s in the Cleveland Heart
Disease data.

using a linear model, and then use the fitted value of “thalach” as the pseudo

response variable, denoted by y.

We regress y on the original set of seven covariates using the ordinary least

squares method. Figure 6 shows the KDE of yi − (β̂ols)⊤xi with the bandwidth

chosen using the method of Sheather and Jones (1991), which exhibits multiple

modes in the distribution, and thus indicates the existence of heterogeneity. We

apply Hard-GMM, SCAD-GMM, SubAna, and FlexMix to these data. The esti-

mated values ofK1, K2, µ, and (τ )−1/2, where the latter two are the distinct values

of the means and the standard deviations, respectively, are presented in Table 3.

We also show the sizes of the subgroups of means and precisions, denoted by |Ĝ(1)|

and |Ĝ(2)|, respectively. Our methods Hard-GMM and SCAD-GMM identify two

subgroups for both the means and the precisions. Table 4 shows the estimates

of β by various methods. We also report the standard errors and p-values of the

significance tests, obtained by refitting a weighted linear model, incorporating the
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indicator vector z(1)
[i·] as covariates, and using the estimated precisions as weights.

The result demonstrates that by recovering the group structure of the data, we

can identify variables that do have effects on the response. For example, ECG

(hypertrophy) is insignificant under the OLS method, but becomes significant

under the heterogeneous methods. Moreover, the adjusted R-square of the OLS

method is 0.103, indicating poor model fitting. After considering heterogeneity,

the adjusted R-square is 0.782, 0.778, 0.745, and 0.746 for Hard-GMM, SCAD-

GMM, SubAna, and FlexMix, respectively. By taking into account the group

structure, the model fitting can be greatly improved, and the proposed method

performs best.

Table 3: Estimated values of K1, K2, µ, and (τ )−1/2, and the sizes of the sub-
groups in means and precisions, denoted by |Ĝ(1)| and |Ĝ(2)|, respectively, for the
Cleveland Heart Disease data.

K̂1 K̂2 µ̂ |Ĝ(1)| (τ̂ )−1/2 |Ĝ(2)|

Hard-GMM 2 2 (193.21, 167.69) (183, 114) (7.65, 4.22) (223, 74)
SCAD-GMM 2 2 (198.56, 174.60) (183, 114) (8.80, 4.34) (150, 147 )
SubAna 2 – (193.26, 177.97) (183, 114) – –
FlexMix 2 2 (183.36, 164.84) (151, 146) (8.75, 5.92) (151, 146 )

7. Discussion

We propose a penalized approach enabling Gaussian mixture linear models to han-

dle heterogeneity. The concave hard and SCAD penalties are adopted to shrink

the pairwise differences of the means and precisions, respectively. By increasing

the value of the tuning parameter for the penalty term, our method automatically

35

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0092



Gaussian Mixture Models
Ta

bl
e

4:
Es

tim
at

ed
va

lu
es

(E
st

)
of

th
e

co
effi

ci
en

ts
w

ith
th

e
st

an
da

rd
er

ro
rs

(S
.E

.)
an

d
p-

va
lu

es
(p

)
fo

r
th

e
C

le
ve

la
nd

H
ea

rt
D

ise
as

e
da

ta
.

M
od

el
A

ge
Se

x
Bl

oo
d

Pr
es

s.
C

ho
le

st
er

ol
Su

ga
r

EC
G

(w
av

e)
EC

G
(h

y-
pe

rt
ro

ph
y)

O
LS

Es
t

-0
.3

33
-4

.6
17

-0
.0

26
-0

.0
08

-0
.0

94
-1

4.
07

6
-2

.7
00

S.
E.

0.
08

3
1.

53
1

0.
04

2
0.

01
4

2.
02

3
6.

14
0

1.
44

1
p

<
0.

00
1

0.
00

3
0.

53
1

0.
55

3
0.

96
3

0.
02

3
0.

06
2

H
ar

d-
G

M
M

Es
t

-0
.2

83
-3

.2
01

-0
.0

22
-0

.0
02

1.
92

4
-1

1.
83

1
-3

.6
76

S.
E.

0.
04

2
0.

76
2

0.
02

1
0.

00
7

1.
00

8
3.

05
5

0.
71

7
p

<
0.

00
1

<
0.

00
1

0.
30

0
0.

75
3

0.
05

7
<

0.
00

1
<

0.
00

1

SC
A

D
-G

M
M

Es
t

-0
.2

80
-3

.2
32

-0
.0

24
-0

.0
01

1.
91

6
-1

1.
59

7
-3

.8
24

S.
E.

0.
04

0
0.

74
6

0.
02

1
0.

00
7

0.
98

1
2.

97
4

0.
69

9
p

<
0.

00
1

<
0.

00
1

0.
24

5
0.

86
0

0.
05

2
<

0.
00

1
<

0.
00

1

Su
bA

na
Es

t
-0

.2
86

-3
.0

95
-0

.0
27

-0
.0

01
1.

76
0

-1
1.

56
4

-3
.5

99
S.

E.
0.

04
4

0.
81

9
0.

02
2

0.
00

8
1.

08
1

3.
27

7
0.

77
0

p
<

0.
00

1
<

0.
00

1
0.

22
8

0.
87

6
0.

10
5

<
0.

00
1

<
0.

00
1

Fl
ex

M
ix

Es
t

-0
.2

50
-1

.2
94

0.
03

0
0.

00
2

0.
98

9
-7

.3
01

-2
.9

44
S.

E.
0.

06
4

1.
21

7
0.

03
3

0.
01

1
1.

38
1

3.
95

2
1.

03
7

p
<

0.
00

1
0.

28
7

0.
35

1
0.

88
3

0.
47

4
0.

06
5

0.
00

5

36

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0092



Gaussian Mixture Models

clusters and merges similar instances. The theoretical properties show that under

mild conditions, there exists a local minimizer of the objective function that con-

verges to the true parameters. Our method can separately identify the structures

of different types of parameters and calculate pooled estimators, which are more

efficient. Simulation results corroborate the advantages of the proposed method

in terms of estimation accuracy.

Our method has several limitations. Although the initialization approach in

Section 5 performs well in numerical studies, it lacks theoretical support. As indi-

cated by the analysis in Section 3, the computational complexity of the proposed

method increases significantly with the sample size. In Section 4, we establish the-

oretical properties under the condition that p≪ n/ log n. In the high-dimensional

setting, an additional penalty term needs to be imposed on the regression pa-

rameter β to enforce sparsity, that is,
∑p

j=1 p(|βj|, λ, γ). The proposed ADMM

algorithm is still applicable, with minor modifications, where the updating equa-

tion (3.3) of β should be re-derived based on a penalized likelihood. However,

extra effort is needed to develop theoretical properties of the estimators in the

high-dimensional setting. Existing results (Yang et al., 2019) may provide ideas

for solving this technical problem. Recently, She et al. (2022) proposed a novel

clustered reduced-rank learning (CRL) framework that imposes two joint matrix

regularizations to automatically group the features in supervised multivariate

learning. They prove that the CRL rate always beats the rate using the pairwise-

difference penalization, and claim that the CRL method is computationally more
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efficient. Owing to its superiority, it is of interest, though challenging, to extend

the CRL framework to GMMs.

Supplementary Material

The online Supplementary Material contains the ADMM algorithm, detailed

derivations from Section 3, proofs of the theorems in Section 4, and additional

simulation and application results.
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