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Abstract: We propose a novel diagnostic test to check the goodness-of-fit for generalized func-

tional regression models. The proposed test does not require a specification of the distribution,

and can be applied to commonly employed functional regression models. Because it is based

on independence in distribution, it includes mean-based and higher-order moment-based tests

as special cases. In particular, we overcome the problem of the infinite dimensionality of the

functional data by projecting functions along certain directions. Moreover, to avoid bias

caused by the subjective selection of these directions, we integrate over the directions along

which the functional variables project. As a result, the proposed test simultaneously enhances

the local power and overcomes the infinite-dimensionality problem. A simple implementa-

tion procedure is developed. The performance of the proposed test is evaluated theoretically

and using simulation studies. We apply the proposed procedure to analyze Canadian weather

data and Chinese air pollution data, resulting in several interesting models that achieve higher

interpretability and estimation accuracy than those of existing methods.

Key words and phrases: Distribution free; Generalized functional regression; Goodness-of-fit;

Local power; Projection-based distribution test.
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Projection-based Test for Functional Regression 1. INTRODUCTION2

1. Introduction

Functional data analysis (FDA) has attracted considerable attention since the sem-

inal work of Ramsay (1982). Linear, nonlinear, nonparametric, and semiparametric

models for analyzing functional data have been proposed, including those of Kokoszka

& Reimherr (2017), Horváth & Kokoszka (2012), Ramsay & Silverman (2002), Hsing

& Eubank (2015),and Ferraty & Vieu (2006), leading to the development of various

functional regression techniques (Yao et al. 2005, Li & Hsing 2010, Li et al. 2010),

and their applications (Horváth & Kokoszka 2012).

Checking the goodness of fit for a functional regression was first investigated by

Cardot et al. (2003), prompting further research on model checking for functional

regressions; for example, see Kokoszka et al. (2008), Chiou & Müller (2007), Garćıa-

Portugués et al. (2014), Cuesta-Albertos et al. (2019), Lei (2014), Patilea et al. (2016),

and Lee et al. (2020) for functional linear regression (FLR) models, and McLean et al.

(2015) for functional generalized additive models.

Although existing goodness-of-fit methods have certain useful properties, such

as computational efficiency for parametric functional regression models, or avoiding

imposing error distributions, they have limitations. For example, some methods may

inherit the “curse-of-dimensionality” problem, as in nonparametric regression, from

evaluating the difference between the conditional expectation under the null and al-

ternative hypotheses, and the expectation of the residual under the null hypothesis;
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for example, see Delsol et al. (2011) and Chiou & Müller (2007). Other methods

may produce intermittent quantities, causing the selection of user-chosen quantities,

such as bandwidths (Patilea et al. 2016, Lei 2014). To ensure freedom from the

curse of dimensionality, Patilea et al. (2016) propose a nonparametric test based on a

quadratic form, with univariate nearest-neighbor smoothing, for either multidimen-

sional or functional covariates. Their test statistics converge to a standard normal

distribution under the null hypothesis, and exhibit good finite-sample performance.

However, their test’s local power depends on the user-chosen parameter, namely, the

bandwidth of the kernel, and achieves only O((nh1/2)−1/2), with n and h being the

sample size and the bandwidth, respectively. In addition, with the exception of Chiou

& Müller (2007) and McLean et al. (2015), existing works focus on linear functional

regression models or specific error distributions. In particular, for Gaussian error

distributions, Lei (2014) propose an exponential scan test, that they show to be uni-

formly powerful over a certain class of smooth alternatives if the signal-to-noise ratio

exceeds the detection boundary.

In addition to the aforementioned limitations, a common problem with these

methods is that they focus on modeling/testing the conditional mean of the response

variable, given the covariates. Suppose Y = E(Y | X) + ε, where covariate X is

function-valued or vector-valued, and ε is the unpredictable part of Y given X. The
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following hypothesis is commonly considered in the literature:

H0 : E(ε | X) = 0 almost surely (a.s.), (1.1)

against the nonparametric alternative Prob {E(ε | X) = 0} < 1. To maintain the

local power with the classic parametric rate, O(n−1/2), and to avoid imposing an error

distribution assumption, Lee et al. (2020) propose a nonparametric test that uses the

functional martingale difference divergence to fully characterize the conditional mean

dependence of the response and the covariates, both of which can be function-valued

or vector-valued.

The mean-based test does not consider the higher-order conditional moment,

which is often of interest for functional data. Notably, the second-order covariance

function is an essential feature in FDA (Ramsay & Silverman 2002, Wang et al. 2016).

However, the test given in (1.1) cannot check the goodness of fit for a functional

regression model with a covariate-dependence second-order moment, as we observe

in Table 4 for the example of Chinese air pollution. Specifically, the mean-based

hypothesis (1.1) does not detect a relationship between the air quality index (Yi(t))

and PM2.5, whereas the proposed distribution-based test suggests that the variance

of the air quality index depends on PM2.5. On the other hand, our theoretical and

numerical results show that a moment-based test is more powerful than a distribution-

based test. Motivated by these issues, we consider a generalized functional regression

test (GFR-test) that includes moment-based tests and distribution-based tests as
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special cases, that is,

H0 : E(L(ε) | X) = E(L(ε)), (1.2)

against the nonparametric alternative Prob {E(L(ε) | X) = E(L(ε))} < 1, where L is

a certain prespecified function. For instance, the proposed test is a mean-based test

when L(ε) = ε, and is a variance-based test when L(ε) = ε2. For L(ε) = {I(ε < v) :

v ∈ R}, where I(·) is an indicator function, the proposed test becomes the following

distribution-based test:

H0 : Fε|X(v) = Fε(v) a.s. ∀v ∈ R, (1.3)

against the nonparametric alternative Prob
{
Fε|X(v) = Fε(v)

}
< 1, for some v ∈ R,

where Fε(·) and Fε|X(·) denote the distribution function of the random variable ε and

the conditional distribution function of ε given X, respectively.

Within the test framework (1.2), we start with the conditional mean test. Only

if the mean-based test is not rejected do we then apply the independence test to

test whether heterogeneous higher-order moments exist. Following this strategy, we

obtain more precise and insightful information about the model structure and avoid

calculating redundant test statistics. For example, as shown in Table 3 for the Cana-

dian weather data, both the mean-based test and the distribution-based test suggest a

correlation between rainfall and temperature. Furthermore, we find that none of the

heterogeneous variance models are rejected, whereas all regression models without
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an analysis of variance (ANOVA) or a heterogeneous variance structure are rejected.

This result implies heterogeneity in the rainfall of different climatic zones, and that

the variance depends on temperature. This finding is consistent with the conclusion

of Patilea et al. (2016), who use ANOVA models to take into account the variance

heterogeneity among climatic zones. Notably, heterogeneous variance models are

more insightful and efficient than ANOVA models in terms of interpretability and

accuracy, especially when the number of factor groups increases.

In this paper, we provide a unified test framework (1.2) for generalized functional

regression models that allows nonlinear functional regression models, and hence, in-

cludes numerous such models as special cases, as described in Section 2. Furthermore,

the framework accommodates not only the independence test, which is distribution

based, but also mean and higher-order moment-based tests, enabling us to compare

the mean-based tests and the independence tests. Specifically, the theoretical and

numerical results show that a moment-based test is more powerful than an indepen-

dence test. This finding is understandable, because a moment-based test will not be

rejected if the distribution-based test is not rejected, yielding a smaller alternative

space for moment-based testing than that of distribution-based testing.

Although some works exist on statistical independence tests for traditional re-

gression models with scalar or vector variables of finite dimension, for example,

Neumeyer (2009) and Dhar et al. (2018), to the best of our knowledge, there is no
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statistical independence test for functional regression models. For such models, the

challenge when testing (1.2) is that the conditional variable X(·), which determines

the conditional moment or distribution, is a function of infinite dimensionality. In

this paper, inspired by Escanciano (2006) and motivated by the established equiva-

lency between E(L(ε)I(X < u)) = E(L(ε))FX(u),∀u and E [L(ε)I(〈X,α〉m ≤ u)] =

E(L(ε))F〈X,α〉m(u) for any α and u, given in Proportion 1, we propose a Crámer-von

Mises-type test for (1.2), and overcome the infinite dimensionality problem of the

functional data by projecting the function along various directions. Moreover, to

avoid the bias from the subjective selection of the directions, we integrate over all

directions. The proposed approach is both robust and powerful, because it is con-

structed based on the distribution, but without prespecifying its form. In particular,

the proposed test is shown to achieve the parametric order O(n−1/2) for the local

power, which even tests based on the conditional moment approach do not attain

(Patilea et al. 2016). A simple implementation procedure is also developed.

The remainder of the paper is organized as follows. Section 2 presents the Crámer-

von Mises-type test for a general model with functional data. Section 3 presents the

asymptotic distributions of the proposed test statistics. An implementation proce-

dure is introduced in Section 4. The performance of the proposed statistics is assessed

using simulation studies in Section 5. In Section 6, we apply our proposed method to

data on Canadian weather and Chinese air pollution, resulting in several interesting
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models. We provide concluding remarks in Section 7. Technical details, including

notation, conditions, and all proofs are relegated to the Supplementary Material.

2. Model and method

Denote 〈X, β〉 =
∫
X(t)β(t)dt. We consider the following model:

Y = g (a,Z, 〈X1, β1〉, · · · , 〈Xd, βd〉, ε) , (2.1)

where g(·) is a known link function, Z is a vector of covariates, Xj are functional

covariates with mean zero, and both Z and {Xj}dj=1 are independent of the random

error ε. Here, Y is a scalar and the error ε has mean zero. Note that Y can also be

a function-valued response, Y (t), in which case, model (2.1) is then rewritten as

Y (t) = g (a(t),Z(t), 〈X1, β1(·, t)〉, · · · , 〈Xd, βd(·, t)〉, ε(t)) , (2.2)

where 〈Xj, βj(·, t)〉 =
∫
Xj(s)βj(s, t)ds, and ε(t) is a mean zero process.

Models (2.1) and (2.2) cover most functional regression models as special cases.

First, they include functional linear models (FLMs), including those with a scalar

response (FLMsR): Y = 〈X, β〉 + ε, a function-valued response (FLMfR): Y (t) =

〈X, β(·, t)〉+ε(t), and a concurrent response (FLMcR): Y (t) = X(t)β(t)+ε(t); see Cai

& Hall (2006), Fan & Zhang (2000), and Hall & Horowitz (2007). Second, they include

the partially functional linear varying-coefficient models of Feng & Xue (2016) and Li

et al. (2017): Y =
∑D

d=1 Zdβd(u)+〈X,α〉+ε and Y (t) =
∑D

d=1 Zdβd(t)+〈X,α〉+ε(t).
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Third, they include the generalized functional linear models of Muller & Stadtmuller

(2005) and McLean et al. (2014): Y = g (α + 〈X, β〉) + ε. Fourth, they include the

multiple index functional regression models (MiFRMs) of Chen et al. (2011), Ma

(2016), Ding et al. (2017), and Tang et al. (2017): Y =
∑D

d=1 gd(〈X, βd〉) + ε, and

Y = g1(〈X, β1〉 + ZTa1) + g2
(
〈X, β2〉+ZTa2

)
ε, which are special examples of our

models when the link functions are specified by their estimates.

For the test problem (1.2), we express the scalar residual ε(X;β) and the function-

valued residual εf (X;β)(t) based on models (2.1) and (2.2),respectively, as

ε(X;β)=̂m (Y, a,Z, 〈X1, β1〉, · · · , 〈Xd, βd〉) and

εf (X;β)(·)=̂m (Y (·), a(·),Z(·), 〈X1, β1(·)〉, · · · , 〈Xd, βd(·)〉) ,

where X = (X1, · · · , Xd)
T , β = (β1, · · · , βd)T , m(·) is a known function determined

by g(·), and the superscript f indicates that the variable is function-valued. For

example, for the FLMsR model, the residual ε(Xi; β) := Yi −
∫ 1

0
β(t)Xi(t)dt; for

the FLMfR model, the residual εf (Xi; β) := Yi(·) −
∫ 1

0
β(·, s)Xi(s)ds. Because the

purpose of this study is to determine the effect of functional covariates, henceforth,

we disregard the dependence of ε(X;β) and εf (X;β)(t) on (a,Z), for notational

simplicity.

Next, the GFR-test problem (1.2) for model (2.1) is rewritten as

H0 : Prob [E{L(ε(X;β)) |X = x} = E{L(ε(X;β))}] = 1, for some functions β(·),
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against the alternative hypothesis

H1 : Prob [E{L(ε(X;β)) |X = x} = E{L(ε(X;β))}] < 1, for any function β(·).

The test problem is defined for model (2.2), with ε(X;β) replaced with εf (X;β)(t).

The projection-based distribution-free test statistic

Here, we construct the projection-based distribution-free (PD) test statistic, and

show the associated theory mainly for a scalar ε. The test and theory for a function-

valued ε(t) are similar, and are discussed next. Throughout this paper, we assume

that all covariates {Xi,j(·)}dj=1 have mean zero. We use 〈·, ·〉 to denote the inner

product in L2[0, 1], that is, 〈W1,W2〉 =
∫ 1

0
W1(t)W2(t)dt, ∀ W1,W2 ∈ L2[0, 1].

We assume that the covariance function ofXi,j(·) is Σj(s, t) = cov(Xi,j(s), Xi,j(t)),

for j = 1, · · · , d. Mercer’s theorem implies that the spectral decomposition of Σj

leads to Σj(s, t) =
∑∞

k=1 θj,kφk(s)φk(t), with uniform convergence, where θj,k are

the eigenvalues and φk are the corresponding orthonormal eigenfunctions (Wang

et al. 2016). According to the Karhunen–Loève (KL) theorem, we have Xi,j(t) =∑∞
k=1〈Xi,j, φk〉φk(t) =

∑∞
k=1 ξij,kφk(t), where ξij,k ξij,k are pairwise, uncorrelated,

mean-zero functional principal component scores (FPCs) ofXi,j, with variance V ar(ξij,k)

= θj,k. Furthermore, for a nonrandom p-dimensional vector αj = {αj,k}pk=1 ∈ Rp,

we define the product of the covariate function Xi,j(t) and αj as the product of

Xi,j(t) and an element of L2[0, 1], for example, Mj(t) =
∑∞

k=1〈Mj, φk〉φk(t), with

coordinates 〈Mj, φk〉 = αj,k for k ≤ p and 〈Mj, φk〉 = 0 for k > p in the basis
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B = {φk(·), k ≥ 1}, that is, 〈Xi,j,αj〉m := 〈Xi,j,Mj〉 =
∑p

k=1 ξij,kαj,k. 〈·, ·〉m Us-

ing this definition, we overcome the problem of the infinite dimensionality of the

function Xi,j(t) by projecting function Xi,j(t) along the direction αj. As long as αj

includes all directions, from Proposition 1, all information about Xi,j(t) is captured

by 〈Xi,j,αj〉m,∀αj. Let Xi = {Xi,j(·)}dj=1, β = {βj(·)}dj=1 and α = {αj}dj=1. Denote

〈Xi,α〉m :=
∑d

j=1〈Xi,j,αj〉m and F〈X,α〉m(u) = Prob (〈Xi,α〉m ≤ u). The following

proposition plays a key role in motivating our methods.

Proposition 1. We use U,Xj ∈ L2[0, 1], for j = 1, · · · , d, as random functions. For

any p, and γ ∈ Rp, we denote F〈U,γ〉m(u) = Prob (〈Ui,γ〉m ≤ u), and F〈U,γ〉m|X(u) =

E [I (〈Ui,γ〉m ≤ u) |X] . Next, the following statements (a) and (b) are equivalent:

(a) F〈U,γ〉m|X(·) = F〈U,γ〉m(·) a.s., and (b) F〈U,γ〉m|〈X,α〉m(·) = F〈U,γ〉m(·) a.s. ∀p ≥

1, ∀αj ∈ Sp, for j = 1, · · · , d, where Sp = {α ∈ Rp : ‖α‖2 = 1} denotes the unit

hypersphere in Rp.

Proposition 1 indicates that the test problem (1.2), E [L(ε)I(X ≤ u)] = E(L(ε))FX(u),

for any u, is equal to the projected test problem E [L(ε)I(〈X,α〉m ≤ u)] = E(L(ε))F〈X,α〉m(u),

∀αj ∈ Sp, for j = 1, · · · , d and any u.

To explicitly express our proposed PD test statistics, we consider three special

formulae of L(ε). For L(ε) = {I(ε < v) : v ∈ R}, let the empirical version of

Fε(v) be Fn,ε(v) = n−1
∑n

i=1 I(ε(Xi;β) ≤ v). For a scalar ε(Xi;β), we define the

Statistica Sinica: Preprint 
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independence test statistic

Mn,F(β;α, u, v) = n−1/2
n∑
i=1

[I (ε(Xi;β) ≤ v)− Fn,ε(v)] I (〈Xi,α〉m ≤ u) .Mn,F.

To avoid a subjective selection of α, which may cause the test to be inconsistent

(Escanciano 2006), we consider integrating all possible α. In particular, we consider

the following PD independence test statistic

Tn,F(β) =

∫
Spd

∫∫
R2

(Mn,F(β;α, u, v))2 Fn,<X,α>m(du)× Fn,ε(dv)dα, Tn,F,

where Fn,〈X,α〉m(u) is the empirical version of F〈X,α〉m(u).

Remark 1. For a function-valued εf (X;β)(t), we induce another p-dimensional vec-

tor γ := {γj}pk=1 ∈ Rp to project εf (X;β)(t) along the direction γ. Specifically, using

the KL expression, we have εf (Xi;β)(·) =
∑∞

k=1 ei,kφk(·). For any fixed γ, the projec-

tion of the residual 〈εf (Xi;β),γ〉m is a scalar, with an empirical marginal distribution

of the form 〈εf ,γ〉m Fn,〈εf ,γ〉m(v) = n−1
∑n

i=1 I
(
〈εf (Xi;β),γ〉m ≤ v

)
= n−1

∑n
i=1

I (
∑p

k=1 ei,kγk ≤ v) . Consequently, the PD independence test for the function-valued

response model (2.2) is constructed similarly to the test for the scalar response

model (2.1), as shown in the Supplementary Material.

When L(ε) = ε, a conditional mean-based test for hypothesis (1.1) is

Tn,M(β) =

∫
Spd

∫
R

(Mn,M(β;α, u))2 Fn,〈X,α〉m(du)dα, Tn,M,
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withMn,M(β;α, u) = n−1/2
∑n

i=1 ε(Xi;β)×I (〈Xi,α〉m ≤ u) .Garćıa-Portugués et al.

(2014) also consider this conditional mean-based test, but without providing theo-

retical justifications. Note that if the null hypothesis (1.3) cannot be rejected based

on Tn,F(β), then the null hypothesis (1.1) cannot be rejected by Tn,M(β). Thus, a

conditional mean-based test is more powerful than a distribution-based test, which

is supported by our theoretical and numerical results.

When L(ε) = ε2, we useMn,V(β;α, u) = n−1/2
∑n

i=1 (ε2(Xi;β)− σ2
n) I (〈Xi,α〉m ≤ u),

Tn,V, with σ2
n = n−1

∑n
i=1 ε

2(Xi;β). Next, the variance-based test takes the form

Tn,V(β) =

∫
Spd

∫
R

(Mn,V(β;α, u))2Fn,〈X,α〉m(du)dα.

Note that for L(ε) = εr, r ≥ 2, that is, a higher-order moment-based test, the

calculation of higher-order moments of the residual is usually unstable.

The calculation of Tn,F, Tn,M, and Tn,V depends on the residual ε(Xi;β), which

involves unknown coefficient functions β. To make this feasible, we replace β with

its estimator β̂. As stated in Section 3, under some conditions, this substitution does

not affect the local power up to the order. For completeness, we briefly introduce the

estimation for β in model (2.1).

We define the loss functions as `(ε(X;β)), where `(x) is a nonnegative known

function of x, such as the least-squares solution `(x) = x2. We establish the covariance

of Xi,j(t) as E (Xi,j(t)Xi,j(s)) =
∑

k θj,kφk(s)φk(t), for j = 1, · · · , d, and Xi,j(t) has

the empirical expression X̂i,j(t) =
∑

k ξ̂ij,kφ̂k(t) ξ̂ij,k, with n−1
∑n

i=1 X̂i,j(t)X̂i,j(s) =

Statistica Sinica: Preprint 
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k θ̂j,kφ̂j(s)φ̂k(t), for j = 1, · · · , d. We assume that βj(t) =

∑
k bj,kφk(t), j =

1, · · · , d and denote θ = (a, bT1 , · · · , bTd )T , where bj = {bj,k}Kk=1, for j = 1, · · · , d.

Next, we estimate θ by solving the equation U(θ) :=
∑n

i=1
˙̀(m(Yi, η̂i))D̂i = 0,

with respect to θ, where ηi =
(
a, bT1 ξi1, · · · , bTd ξid

)
, η̂i =

(
a, bT1 ξ̂i1, · · · , bTd ξ̂id

)
,

˙̀(x) = d`(x)/dx is the first derivative of `(x), D̂i =
(
m0(Yi, η̂i), m1(Yi, η̂i)(ξ̂i1)

T ,

· · · ,md(Yi, η̂i)(ξ̂id)
T
)T

, m0(Yi,ηi) = ∂m(Yi,ηi)/∂a, mj(Yi,ηi) = ∂m(Yi,ηi)/∂(bTj ξij),

and ξij = {ξij,k}Kk=1, for j = 1, · · · , d, D̂i. We denote the solution to U (θ) = 0 as

θ̂. Next, we estimate βj(t) as β̂j(t) =
∑K

k=1 b̂j,kφ̂k(t), for j = 1, · · · , d, the validity of

which we justified in Section 3.

3. Theoretical property for the PD-test statistic

Here, we focus on the PD distribution-based test, and leave the mean-based test

to the Supplementary Material. Other specific formulae of L(·) may be obtained

similarly. Let q = Kd + 1. W denote $i$ = ($i)
n
i=1 :=

(
˙̀(m(Yi,ηi))

)n
i=1

,

V = Diag{$2
1, · · · , $2

n}, D = {Di}ni=1 and D̃ = {(῭(m(Yi,ηi)))
1/2Di}ni=1 as n × q-

dimensional matrices, Γ = limn→∞
DTV D

n
:= {Γk,l}1≤k,l≤qΓ̃, Γ̃ = limn→∞

(
D̃T D̃
n

)
=

(Γ̃k,l)1≤k,l≤q, Ξ = Γ̃−1 = (ζj,k)1≤j,k≤q, and
∑q

k=1 ζ
(1/2)
j,k ζ

(1/2)
k,l = ζj,l. The following

conditions are needed to establish the asymptotic properties for model (2.1).

(C1) {(Yi, {Xi,j}dj=1)}ni=1 are independent and identically distributed (i.i.d.) random

vectors with 0 < E|Yi| <∞.
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(C2) εi has a zero mean and is independent of {Xi,j(·)}dj=1, and Xi,j(·) ∈ L2[0, 1],

for j = 1, · · · , d. The covariance function of each Xi,j is positive definite

with a spectral decomposition Σj(s, t) =
∑∞

k=1 θj,kφk(s)φk(t), where θj,1 >

θj,2 > · · · and C−1k−α ≤ θj,k ≤ Ck−α, and θj,k − θj,k+1 ≥ C−1k−α−1, for

α > 1, j = 1, · · · , d, k ≥ 1. Furthermore, the true coefficient function βj(t) =∑∞
k=1 bj,kφk(t), with |bj,k| ≤ C1k

−κ, for k ≥ 1, κ ≥ α + 2.

(C3) E ($iDi |Xi) = 0. There exist constants c2, cl, and cu satisfying E ($2
i ) <

c2 <∞, and 0 < cl ≤ inf ῭(m(Yi,ηi)) ≤ sup ῭(m(Yi,ηi)) ≤ cu <∞.

(C4) m(·) has continuous bounded first-order derivatives, ‖D‖∞ ≤ c <∞, and Γ̃ is

positive definite and has a bounded maximum eigenvalue.

(C5) Kn−
1

(2κ+α−1) is bounded away from zero and infinity as n→∞. The following

equations hold:
∑q

k1,k2,k3,k4=1 E (Di,k1Di,k2Di,k3Di,k4ζk1,k2ζk3,k4) = o(n/q2),∑q
k1,··· ,k8=1 E (Di,k1Di,k3Di,k5Di,k7)E (Di,k2Di,k4Di,k6Di,k8) ζk1,k2ζk3,k4ζk5,k6ζk7,k8 =

o(n2q2), where q = K(d+ 1).

(C6) F(Xi(t)) is a measurable function of {Xi,j(t)}dj=1 satisfying 0 < sup0<t<1 E [F(Xi(t))] <

∞, and the link function gl defined in (3.1) under the alternative hypothesis

has continuous bounded first-order derivatives.

(C7) {%i, I = 1, · · · , n} are i.i.d. with mean zero and variance one. For all i, %i is

independent of (Yi,Xi). Furthermore, εi%i and εi have the same distribution
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function.

Conditions (C1)–(C4) are general conditions that are readily satisfied in practice.

Condition (C5) ensures that β̂ does not affect the convergence rate. In particular, un-

der conditions (C3)–(C5), we have n(θ̂−θ)>Γ̃(θ̂−θ) = Op(q). Furthermore, following

expression (17) and the last second expression on Page 2434 in Dou et al. (2012),

q=̂K(d + 1) � n1/(2κ+α−1) leads to the estimation error
∫ 1

0

(
β̂j(t)− βj(t)

)2
dt =

Op(n
− 2κ−2
α+2κ−1 ). Following expression (4.6) in Cai and Hall (2006), q � n1/(2κ+α−1)

leads to the prediction error E
(
〈x, β̂j〉−〈x, βj〉

)2

= O(n−
2κ+α−2
α+2κ−1 ), for any fixed func-

tion x(t) =
∑∞

k=1 xkφk(t), with |xk| ≤ Ck−α/2, for j = 1, · · · , d. When the prediction

error and estimation error have the above rate, substituting β0 with β̂ does not

change the convergence property of the proposed test statistics or the order of the

local power. Furthermore, with K � n
1

2κ+α−1 , the estimation rate of β̂j is not of the

optimal rate n−
2κ−1
α+2κ , which requires Kopt � n

1
α+2κ . Instead, we require K � n

1
2κ+α−1 ,

which is larger than Kopt. We require a larger K to ensure a parametric order for

the local power of the proposed statistics, which is standard in the semiparametric

literature, where a smaller bandwidth or a larger number of principal components is

required to reduce the bias and obtain the parametric convergence rate for the param-

eters. Moreover, when the proposed model (2.1) degenerates to the FLMsR, condition

(C5) is identical to the conditions in Muller & Stadtmuller (2005). Condition (C6)

is a general condition for the alternative hypothesis. Condition (C7) is imposed to
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ensure the validity of the bootstrap procedure. Specifically, if ε follows a symmetric

distribution, then a two-point distribution %i = −1/1 with probability 0.5 satisfies

condition (C7). For any r, P (εi%i < r) = 0.5P (εi < r) + 0.5P (εi > −r) = p(εi < r).

Remark 2. In the Supplementary Material, we list the conditions (C1f–C5f) for the

function-valued outcome model. By imposing a direction γ, we project the function

εf (X;β)(t) along γ, that is, 〈εf (X;β),γ〉m, which is a scalar. Because we allow

the dimension p to diverge to infinity for the scalar response model, the theoretical

results of the proposed statistics for the function-valued response model are similar

to those for the scalar response model. Therefore, conditions (C1f)–(C5f) are similar

to conditions (C1)–(C5), with the exception that the number of parameters in the

function-valued response is qf =̂K
2d + K, owing to the approximation of βj(s, t),

which is larger than q=̂Kd+K for β(t) in the scalar response model. To ensure that

the proposed statistics converge in distribution and have a parametric order of local

power, we require a stronger condition, κ ≥ α+ 3, for βj(s, t) in the function-valued

response model, instead of κ ≥ α + 2 required in condition (C2).

We define ∆(Xi;α, u) = I (〈Xi,α〉m ≤ u)−F〈X,α〉m(u) ∆(·; ·) andαr,• = {αr,j}dj=1,

with αr,j ∈ Rp. Next, we establish the asymptotic distribution of the proposed test

statistic if the true parameters are known for model (2.1).

Theorem 1. Under conditions (C1) and (C2) and the null hypothesis (1.3), if

p = o(n), for any m ∈ R, Prob(Tn,F(β0) < m) − Prob(T 0
∞,F < m) → 0, where
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T 0
∞,F :=

∫
Spd
∫∫
R2

(
M0
∞,F (α, u, v)

)2
Fε(dv)F〈X,α〉m(du)dα, and M0

∞,F (·, ·, ·) is a Gaus-

sian process with zero mean and covariance function K ((α1,•, u1, v1), (α2,•, u2, v2)) =

{E [I (εi ≤ v1) I (εi ≤ v2)]− Fε(v1)Fε(v2)} E (∆(Xi;α1,•, u1)∆(Xi;α2,•, u2)) .

Corollary S.2 in the Supplementary Material explores the asymptotic distribution

of the proposed mean test Tn,M(β0). Directly comparing T 0
∞,F and T 0

∞,M is not possi-

ble because the former depends on the distribution of ε, whereas the latter depends

on its moment. However, under certain situations, a strict inequality holds between

the two statistics. Specifically, the limiting distribution for the mean-based statistic

is described as follows: for any m ∈ R, Prob(Tn,M(β0) < m) − Prob(T 0
∞,M < m) →

0, where T 0
∞,M :=

∫
Spd
∫
R

(
M0
∞,M(α, u)

)2
F〈X,α〉m(du)dα, and E

[
(M0
∞,M(α, u))2

]
=

E(ε2i )F〈X,α〉m(u). From Theorem 1, we have E
[∫
R(M0

∞,F (α, u, v))2Fε(dv)
]

=
∫
R E

[
(M0
∞,F (α, u, v))2

]
Fε(dv)

=
∫
R Fε(v)(1 − Fε(v))Fε(dv)F〈X,α〉m(u)(1 − F〈X,α〉m(u)) ≤ 0.25F〈X,α〉m(u). When

E(ε2i ) ≥ 0.25, it is easy to determine that E(T 0
∞,F ) ≤ E(T 0

∞,M), which indicates

that the distribution-based statistic tends to generate smaller values and, as a result,

is less powerful than the mean-based statistic. Next, we establish the asymptotic

distribution of test statistics with estimated parameters.

Theorem 2. Under conditions (C1)–(C5) and under the null hypothesis (1.3), for

any m ∈ R, Prob(Tn,F(β̂) < m)−Prob(T 1
∞,F < m)→ 0, where T 1

∞,F :=
∫
Spd
∫∫
R2

(
M1
∞,F (α, u, v)

)2
×Fε(dv)F〈X,α〉m(du)dα, and M1

∞,F ≡M0
∞,F +M e

∞,F , M e
∞,F (·, ·, ·) is a Gaussian pro-

cess with mean 0 and covariance function K1 ((α1,•, u1, v1), (α2,•, u2, v2)) = σ2
F (α1,•, u1,α2,•, u2)
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×fε(v1)fε(v2), and cov
(
M0
∞,F (α1,•, u1, v1),M

e
∞,F (α2,•, u2, v2)

)
= σc,F (α1,•, u1, v1,α2,•, u2)fε(v2),

where σ2
F (α1,•, u1,α2,•, u2) and σc,F (α1,•, u1, v1,α2,•, u2) are defined in the Supple-

mentary Material.

Corollary S.3 in the Supplementary Material presents the asymptotic distribu-

tions of Tn,M(β̂). Comparing Corollary S.3 with Theorem 2, under certain situations,

Tn,F(β̂) has smaller asymptotic mean values, and hence is less powerful than Tn,M(β̂).

In addition, although substituting β0 with β̂ does not change the convergence prop-

erty of the proposed test statistics, it increases the variance of the test statistics

because of the additional terms M e
∞,F and M e

∞,m, as stated in Theorem 2 and Corol-

lary S.3.

Now, we analyze the asymptotic distribution of Tn,F using a sequence of local

alternatives converging to null at a parametric rate n−1/2. In particular, we consider

the local alternative

HA,n : Yi,n = gl
(
a, 〈Xi,1, β1〉, · · · , 〈Xi,d, βd〉, εi, n−1/2F(Xi)

)
, (3.1)

where gl (a, 〈Xi,1, β1〉, · · · , 〈Xi,d, βd〉, εi, 0) := g (a, 〈Xi,1, β1〉, · · · , 〈Xi,d, βd〉, εi), and F(Xi)

is a measurable function of {Xi,j(t)}dj=1.

Theorem 3. Under conditions of (C1)–(C6) and local alternative (3.1), for any m ∈

R, Prob(Tn,F(β̌) < m)−Prob(T a∞,F < m)→ 0, where T a∞,F :=
∫
Spd
∫∫
R2

(
Ma
∞,F (α, u, v)

)2
×Fε(dv)F〈X,α〉m(du)dα, and β̌ is the estimate obtained from model (2.1) using data
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{Yi,n,Xi}ni=1, M
a
∞,F (α, u, v) ≡M1

∞,F (α, u, v)−Da
F (α, u, v), and

Da
F (α, u, v) = E

{
∆(Xi;α, u)

(
my(Yi,ηi)ġl(ηi, εi, 0)F(Xi)−

q∑
j=1

Di,jυj

)}
fε(v),

where my(·, ·), ġl, υj are defined in the Supplementary Material.

Theorem 3 implies that the proposed test achieves the parametric order O(n−1/2)

for the local power. This order is not attainable for tests based on the local approach,

such as that of, Patilea et al. (2016), which is based on the conditional mean, and

hence has order O
(
(nh1/2)−1/2

)
, where h is the bandwidth.

Remark 3. The fast parametric order O(n−1/2) for the local power in Theorem 3

is attributed to two aspects. First, most mean-based test methods, such as that

of Patilea et al. (2016), require calculating a conditional expectation, leading to

the order O

(
(nh1/2)−1/2

)
, because only local data are involved. Instead, because

E(U | 〈X,α〉m) = E(U) holds if and only if E(UI(〈X,α〉m ≤ u)) = E(U)F〈X,α〉m(u)

holds, for any u and ∀α ∈ Sp, our constructed PD test induces the indicator function

I(〈X,α〉m ≤ u) as a weight function. Consequently, the proposed PD test calculates

the unconditional expectation E
(
UI(〈X,α〉m ≤ u)

)
, which is estimated based on

nonlocal data. Second, we integrate over all α to avoid any subjective choice on α.

This integration could improve the order toO(n−1/2), even if an integrand is estimated

at a nonparametric rate. In particular, we use a larger K � n
1

α+2κ−1 than the optimal

Kopt = O(n
1

α+2κ ) to control the bias of Tn,F (β̂), and reduce its variance using integra-

tion. As a result, the parametric order of the local power of Tn,F (β̂) is maintained.
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Similar conclusions are established in the literature. For example, the convergence

rate of the integration in Cai and Hall (2006) is E
(
〈x, β̂〉 − 〈x, β0〉

)2
= O(n−

2κ+α−2
α+2κ−1 ),

which is faster than the estimation rate
∫ 1

0
(β̂(t)−β(t))2dt = Op(n

− 2κ−2
α+2κ−1 ) established

in Dou et al. (2012) under the condition that κ ≥ α + 2, α > 1, and K � n
1

α+2κ−1 .

Notably, the necessity of undersmoothing the nonparametric function to obtain a

root-n-consistent estimation for the parameters using integration is standard in non-

parametric regression; see, Carroll et al. (1997) and Hastie (2017).

Corollary S.4 in the Supplementary Material gives the asymptotic distributions of

Tn,M(β̌), from which we determine that (Da
F (α, u, v))2 ≤ (Da

M(α, u))2f 2
ε (v). Accord-

ing to Theorem 3, we have
∫
R(Da

F (α, u, v))2Fε(dv) ≤ (Da
M(α, u))2

∫
R f

2
ε (v)Fε(dv).

When the term
∫
R f

2
ε (v)Fε(dv) ≤ 1, T a∞,F has a smaller asymptotic mean than T a∞,M ;

that is, the mean test is more powerful than the distribution test.

The following local alternative hypothetical models are considered:

HA,n : Yi,n = gl (a, 〈Xi,1, β1〉, · · · , 〈Xi,d, βd〉, εi, nνF(Xi)) . (3.2)

Corollary 1. Under the conditions of Theorem 3 and the alternatives (3.2) with

−1/2 < ν ≤ 0, we have Prob(Tn,F > η)→ 1, as n→∞, for any η > 0.

Corollary 1 shows that the statistics Tn,F diverge to infinity under the local al-

ternatives (3.2) for −1/2 < ν < 0 and the global alternative hypothesis for ν = 0,

indicating that the statistics have asymptotic power one. Theorem 3 and Corollary
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1 imply that our proposed tests Tn,F can detect the alternative models converging to

the null model with rate nν , for −1/2 ≤ ν ≤ 0.

4. Implementation

In this section, we describe how to calculate the test statistics. We use Aijl =∫
Spd I(〈Xi,α〉m ≤ 〈Xl,α〉m)I (〈Xj,α〉m ≤ 〈Xl,α〉m) dα, and Cijl(β) = I(ε(Xi;β) ≤

ε(Xl;β))I(ε(Xj;β) ≤ ε(Xl;β)). After calculations, we obtain that Tn,F(β) =

n−3
∑

i,j,k,lAijkCijl(β)−2n−4
∑

i,j,k,l

∑
sAijkCisl(β)+n−5

∑
i,j,k,l

∑
s1,s2

AijkCs1s2l(β),

and Tn,M(β) = n−2
∑

i,j,l ε(Xi;β)ε(Xj;β)Aijl. Note that Aijk involves pd-dimensional

integrals, which require intensive computation. Calculating Aijl follows a volume cal-

culation in a pd-ball. Following simple algebra (Theorem 4.41 on Page 183 of Folland

(2002)), the integral Aijl is proportional to the volume of a spherical wedge and

Aijl :=

∫
Spd
I
(
〈Xi,α〉m ≤ 〈Xl,α〉m

)
I
(
〈Xj,α〉m ≤ 〈Xl,α〉m

)
dα

=

∫
Spd
I

( d∑
q=1

〈Xi,q,αq〉m ≤
d∑
q=1

〈Xl,q,αq〉m
)
I

( d∑
q=1

〈Xj,q,αq〉m ≤ I(
d∑
q=1

〈Xl,q,αq〉m
)
dα

=

∫
Spd
I

( d∑
q=1

p∑
k=1

ξiq,kαq,k ≤
d∑
q=1

p∑
k=1

ξlq,kαq,k

)
I

( d∑
q=1

p∑
k=1

ξjq,kαq,k ≤
d∑
q=1

p∑
k=1

ξlq,kαq,k

)
dα

= A
(0)
ijl π

pd/2−1/Γ(pd/2 + 1),

where A
(0)
ijl is the complementary angle between the vectors (ξi − ξl) and (ξj − ξk),

with ξi = (ξ>i,1, · · · , ξ>i,d)>, A
(0)
ijl =

∣∣∣∣π− arccos

{ ∑d
k=1〈Xi,k−Xl,k,Xj,k−Xl,k〉p√∑d

k=1 ‖Xi,k−Xl,k‖2
√∑d

k=1 ‖Xj,k−Xl,k‖2

} ∣∣∣∣,
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Γ(·) is the gamma function, ‖Xi,k‖ =
√∑p

s=1 ξ
2
ik,s, and 〈Xi,k, Xj,k〉p =

∑p
s=1 ξik,sξjk,s.

Hence, the computation of these integrals is simple, regardless of the dimension p.

Because there is no explicit asymptotic null distribution for Tn,F(β), we imple-

ment the test using a bootstrap procedure. We approximate the asymptotic null

distribution of Mn,F by that of M∗
n,F = n−1/2

∑n
i=1

[
I
(
ε∗(Xi; β̂

∗) ≤ v
)
− F ∗n,ε(v)

]
×I(〈Xi,α〉m ≤ u), for v, u ∈ R,αj ∈ Sp, j = 1, · · · , d. Here, F ∗n,ε(v) = n−1

∑n
i=1 I(ε∗(Xi; β̂

∗) ≤

v), and the sequence {ε∗(Xi; β̂
∗)}ni=1 includes the residuals computed from ε∗(Xi; β̂

∗) =

m(Y ∗i , â
∗, 〈Xi,1, β̂

∗
1〉, · · · , 〈Xi,d, β̂

∗
d〉), where Y ∗i = g

(
Yi, â, 〈Xi,1, β̂1〉, · · · , 〈Xi,d, β̂d〉, ε(Xi; β̂)%i

)
,

{â∗, {β̂∗j }dj=1} is the bootstrap estimator calculated from the data {(Y ∗i ,Xi)}ni=1, and

{%i}ni=1 satisfies condition (C7). For example, %i uses values of −1 or 1 with a prob-

ability of 0.5, for i = 1, · · · , n.

For the bootstrap test statistic T ∗n,F , we have the following result.

Theorem 4. Under the null hypothesis (2.1) or the alternative hypothesis (3.2) with

ν ≤ 0, if conditions (C1)–(C7) are satisfied, then the conditional distribution of T ∗n,F

converges in distribution to the limiting null distribution of Tn,F, giving {Yi,Xi}ni=1.

Theorem 4 shows that the bootstrap distribution of the test statistic is equivalent

to the asymptotic distribution of the proposed test. The critical value determined

using this method approximates the theoretical value, regardless of whether the data

are derived from the null hypothetical model (2.1) or the alternative hypothetical

model (3.2). Corollary S.5 in the Supplementary Material shows similar results for
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the bootstrap mean test statistic T ∗n,M . The proposed bootstrap procedure also works

for the variance-based test statistic and other higher-order moment test statistics

under condition (C7), using derivations similar to those in Corollary S.5. However,

note that the finite-sample performance is poor due to the instability caused by

estimating the variance or other higher-order moments. Thus, we suggest using the

proposed distribution-based test and mean-based test in practice, rather than using

the higher-order moment test.

The entire procedure involves two tuning parameters, p and K, which denote the

dimension of the projection parameter α, and the number of principal component

functions, respectively. Because we use both projection parameters and principal

components to capture information from the covariates X, we set K = p, for sim-

plicity. Larger p and K indicate that more information is captured from the covariates

X, but with a larger variance and heavier computational burden. We choose K to

be the number of principal components such that at least 95% of the variability of

X is captured, which performs well in our numerical studies.

5. Numerical studies

In this section, we compare the performance of the proposed PD test statistics,

namely, the distribution-based statistic T fn,F and the mean-based statistic T fn,M, to

that of state-of-the-art tests, including the FMDD of Lee et al. (2020) and the fdapss
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proposed by Patilea et al. (2016), both of which are based on the conditional mean.

Example 1.1 (FLMfR) We consider a model in which the response, Yi, is a func-

tional response, and the predictor, Xi(t), is a univariate functional predictor. The

functional linear model is expressed as follows:

Yi(t) =

∫ 1

0

c1 · β(s, t)Xi(s)ds+

∫ 1

0

c2 · β(s, t)X2
i (s)ds+ {Xi(t)}c3εi(t), 1 ≤ i ≤ n,(5.1)

where {Xi(t)}ni=1 are generated independently from Brownian bridges, {εi(t)}ni=1 fol-

lows N(0, 0.12), β(s, t) = exp(s2 + t2)/2, and c1 = 0.25. Setting a homogeneous sce-

nario (c3 = 0), we consider c2 = 0 for the null hypothesis, and c2 = 0.05, n−1/2, n−2/5,

and 1 for the alternatives.

Table 1 shows the empirical sizes and power of our proposed test compared with

those of the FMDD and fdapss based on 500 repetitions. For each repetition, we use

500 bootstrap samples of the original sample to compute the critical value. Because

the FMDD and fdapss are both based on the true value of the coefficient function

β(·), for comparison, we demonstrate our proposed test using the true value β0(s, t)

and the estimated value β̂(s, t). The number of components K for each sample is

chosen so that the percentage of explained variance is larger than 95%, and p = K.

The upper block of Table 1 presents the percentages of rejections for nominal

levels at 10% and 5% when the sample size is n = 40, 100, which suggests that the

empirical size of T fn,F is slightly larger than the nominal level, because β0(s, t) with

replaced by its estimator. This result may be attributed to the small sample size.
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In addition, our proposed distribution-based statistic T fn,F and fdapss are slightly

conservative for small samples under the null hypothesis, whereas T fn,M and FMDD

are the opposite. For the power under the alternative with c3 = 0, T fn,M is more

powerful than T fn,F, which outperforms fdapss when the null hypothesis (1.1) does

not hold. These findings are consistent with the conclusion stated in Theorem 3,

and occur because the mean-based test is able to detect the relationship between the

functional covariate and the response when c3 = 0. In addition, when the alternative

part becomes more significant as c2 increases, T fn,F performs much better than FMDD

in terms of test power.

Furthermore, to consider the effect of the heterogeneous variance, we generate

data with c2 = 0, c3 = 0 for the null, and c2 = 0, c3 = 2 for the alternative. The

bottom-right block of Table 1 presents the results of the test statistics T fn,F and T fn,M

under heterogeneity compared with FMDD and fdapss. The results show that under

model (5.1), only the distribution-based test T fn,F detects the heterogeneity from the

variance; the mean-based tests T fn,M, FMDD, and fdapss, fail to achieve this detection.

We also conducted simulations on the same functional response setting, but with

{εi(t)}ni=1 following a non-Gaussian distribution, such as Pareto noise with a finite sec-

ond moment and Brownian bridges. Results similar to those in Table 1 are obtained,

and are relegated to the Supplementary Material. We also list the computation times

of the different methods in Table 2 of the Supplementary Material, which shows that
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the mean-based tests are much faster than the distribution-based test, and for the

mean-based tests, the proposed test T fn,M is faster than FMDD, but slower than fdapss.

We also conduct a simulation for the scalar response in the Supplementary Ma-

terial, Example 1.2, with conclusions similar to those for the obtained functional

response.

Example 2 (MiFRM) In this simulation example, we consider a type of MiFRM

model for t ∈ [0, 1], Yi(t) = g(c1β(t)Xi(t))+ c2g(β(t)X2
i (t))+Xc3

i (t)εi(t), where Xi(t)

and εi(t) are generated as shown in Example 1.1, β(t) = exp(−4(t − 0.3)2), g(t) =

exp(t)
1+exp(t)

, and c1 = 0.25, (c2, c3) = (0, 0) for the null, and (c2, c3) = (0, 2), (1, 0), (1, 2)

for the three alternative model scenarios. The results with β(t) given and based on

500 simulations are presented in Table 2 for the test statistics T fn,F, T
f
n,M, and fdapss.

Table 2 shows that the empirical sizes of T fn,F and T fn,M are closest to the nominal size,

which is less true for fdapss. The power of T fn,M and FMDD is almost zero for c2 = 0

and c3 = 2, because the link function for the mean part takes a logistic form, the

variation of which is weak. This problem is alleviated to some extent by fdapss by

the standardization process. As long as the null hypothesis of the conditional mean

does not hold, T fn,M performs best. When the null hypothesis of the conditional mean

cannot be rejected, but the model contains heterogeneous variance (corresponding to

c2 = 0 and c3 = 2), T fn,F and FMDD can detect the heterogeneity.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0083



Projection-based Test for Functional Regression6. REAL-DATA EXAMPLES28

Table 1: Simulation results for Example 1.1 based on the proposed test, FMDD,

and fdapss under model (5.1). The rows of β0 and β̂ show the results based on using

the true β0(s, t) and the estimated value β̂(s, t), respectively.

Level=10% Level=5% Level=10% Level=5%
test β n = 40 n = 100 n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

c2 = 0, c3 = 0 c2 = n−2/5, c3 = 0

T fn,F
β0 0.076 0.083 0.022 0.030 0.808 1.000 0.542 1.000

β̂ 0.106 0.086 0.060 0.049 0.992 1.000 0.956 1.000

T fn,M
β0 0.104 0.105 0.052 0.058 1.000 1.000 1.000 1.000

β̂ 0.106 0.094 0.060 0.046 1.000 1.000 1.000 1.000
FMDD β0 0.118 0.138 0.052 0.066 0.832 1.000 0.530 0.996
fdapss β0 0.080 0.100 0.028 0.049 0.502 0.969 0.366 0.952

c2 = 0.05, c3 = 0 c2 = 1, c3 = 0

T fn,F
β0 0.208 0.582 0.122 0.384 0.994 1.000 0.906 1.000

β̂ 0.418 0.510 0.274 0.294 0.998 1.000 0.988 1.000

T fn,M
β0 0.690 0.986 0.562 0.976 1.000 1.000 1.000 1.000

β̂ 0.754 0.998 0.624 0.990 1.000 1.000 1.000 1.000
FMDD β0 0.148 0.118 0.072 0.052 0.888 1.000 0.554 1.000
fdapss β0 0.065 0.132 0.022 0.079 0.823 1.000 0.691 1.000

c2 = n−1/2, c3 = 0 c2 = 0, c3 = 2

T fn,F
β0 0.638 0.970 0.386 0.920 0.988 1.000 0.948 1.000

β̂ 0.956 0.984 0.898 0.938 0.970 1.000 0.920 1.000

T fn,M
β0 1.000 1.000 1.000 1.000 0.028 0.044 0.008 0.014

β̂ 1.000 1.000 1.000 1.000 0 0 0 0
FMDD β0 0.748 0.986 0.486 0.960 0.298 0.969 0.064 0.952
fdapss β0 0.212 0.511 0.134 0.450 0.080 0.069 0 0.029

6. Real-data examples

In this section, we apply the proposed PD test to check the goodness of fit of several

models for two data sets: Canadian weather data, and Chinese air pollution data.
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Table 2: Simulation results for Example 2 based on the proposed test, fdapss, and

FMDD. The caption is the same as that of Table 1.

Level=10% Level=5% Level=10% Level=5%
test n = 40 n = 100 n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

c2 = 0, c3 = 0 c2 = 0, c3 = 2

T fn,F 0.088 0.090 0.027 0.040 0.234 0.240 0.132 0.180

T fn,M 0.098 0.096 0.062 0.042 0 0 0 0
FMDD 0.131 0.138 0.076 0.066 0.006 0.002 0.004 0.002
fdapss 0.065 0.086 0.022 0.030 0.021 0.095 0.011 0.040

c2 = 1, c3 = 0 c2 = 1, c3 = 2

T fn,F 0.495 0.980 0.127 0.900 0.639 1.000 0.408 0.980

T fn,M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FMDD 0.992 1.000 0.986 1.000 0.994 1.000 0.988 1.000
fdapss 0.541 1.000 0.405 1.000 0.843 1.000 0.746 1.000

6.1 Analysis of Canadian weather data

The Canadian weather data are obtained from the R package fda. The data consist of

the daily mean temperature and rainfall registered at 35 weather stations in Canada

from 1960 to 1994. For detailed explanations of the data, refer to Ramsay & Silverman

(2002). Specifically, in this data set, the stations are classified into four climatic zones,

namely, Atlantic, Pacific, Continental, and Arctic, leading to functional ANOVA

models. The aim of this analysis is to assess the validity of six models: FLMcR,

FLMfR, FLMcR coupled with ANOVA (FLMcR + ANOVA), FLMfR coupled with

ANOVA (FLMfR + ANOVA), FLMcR with heterogeneous variance (FLMcRw), and
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FLMfR with heterogeneous variance (FLMfRw). The first four types of models are

also analyzed in Patilea et al. (2016).

Table 3 contains the p-values for testing the goodness of fit of the models based on

the proposed tests T fn,F and T fn,M and the conditional mean tests fdapss and FMDD,

where the response Yij(t) and the covariate Xij(t) represent the logarithm of the

rainfall and temperature, respectively, at station i of climate zone j on day t. The

results are based on 500 bootstrap replicates, and both the response Yij(t) and the

covariates Xij(t) are centralized so that no models include the intercept term. From

Table 3, with the first four types of models, we draw the same conclusions presented

in Patilea et al. (2016). That is, there exists a varying correlation between rainfall

and temperature, with the correlation varying across climatic zones. Compared with

the conventional ANOVA models, one extra finding is that heterogeneous variance

models in which the heterogeneity depends on temperature also work well. For model

FLMfRw, Figure 1 shows the estimate of β(s, t) and its pointwise confidence inter-

vals. As suggested, β(s, t) is not statistically significant, resulting in the FLMfRw

degenerating to the no-effect heterogeneity model. In summary, the results of our

tests on the models suggest that heterogeneity in rainfall exists among different cli-

matic zones, can be expressed using simple and explicit heterogeneity models or using

an ANOVA, as in Patilea et al. (2016).
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Table 3: Canadian weather data: the p-values for testing the goodness of fit of various

models, and the results are based on using the estimated coefficient value.

Name of the model Formula p-value

T fn,M T fn,F fdapss FMDD
No-effect Yij(t) = εij(t) 0.009 0 0 0

Functional ANOVA Yij(t) = αj(t) + εij(t) 0.307 0.173 0.226 0
No-effect+heterogeneity Yij(t) = Xij(t)εij(t) 0.455 0.869 0.407 0.409

FLMcR Yij(t) = Xij(t)β(t) + εij(t) 0.046 0.023 0 0
FLMcR + ANOVA Yij(t) = αj(t) +Xij(t)β(t) + εij(t) 0.174 0.367 0.323 0.222

FLMcRw Yij(t) = Xij(t)β(t) +Xij(t)εij(t) 1.000 0.980 0.401 0.515

FLMfR Yij(t) =
∫ 1

0
β1(s, t)Xij(s)ds+ εij(t) 0 0 0 0

FLMfR+ANOVA Yij(t) = αj(t) +
∫ 1

0
β1(s, t)Xij(s)ds+ εij(t) 0.782 0.713 0.170 0.695

FLMfRw Yij(t) =
∫ 1

0
β1(s, t)Xij(s)ds+Xij(t)εij(t) 1.000 0.771 0.401 0.443

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

t

β
(.
)

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

t

β
(.
)

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

t

β
(.
)

Figure 1: The estimated β(s, t) in FLMfRw for Canada weather data: the estimated

surface (left), and the functions with the second coordinate fixed at t = 0.25, 0.5, and

0.75, respectively.
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6.2 Analysis of Chinese air pollution data

The data consist of the daily air quality index (AQI) and PM2.5 in Beijing, Chengdu,

and Guangzhou from 2014–2019. Higher AQI values indicate worse air quality. The

data are collected from the air quality monitoring website. Our purpose is to explore

the relationship between AQI(Y ) and PM2.5 (X), which are observed daily with

a data size of 16. We consider three models: the no-effect model, FLMcR, and

FLMcRw. Table 4 lists the p-values based on the proposed tests, T fn,F and T fn,M,

and the conditional mean tests, fdapss and FMDD. The results are based on 500

bootstrap replicates. Note that the performance of the fdapss test depends highly on

the selection of the bandwidth, which is rather sensitive in this example.

As shown in Table 4, the mean-based tests, T fn,M, fdapss, and FMDD all fail to

detect the heterogeneous variance expressed by the models of No-effect+heterogeneity

and FLMcRw. The null conditional mean zero assumption is not rejected, with p-

values of 0.898 and 0.489 by T fn,M and fdapss, respectively, under the no-effect model,

and with p-values of 1.00, 0.142, and 1.000 by T fn,M, fdapss, and FMDD, respectively,

under the model FLMcR. However, T fn,F rejects the null distributional independence

assumption, with p-values of 0.010 and 0.076 for the models of no-effect and FLMcR,

respectively. This leads to a no-effect + heterogeneity model and an FLMcRw with

the heterogeneous variance taking the form of f(Xi(t)) = X2
i (t), t ∈ [0, 1]. These

results indicate that the heterogeneous variance of AQI can be explained by PM2.5.
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Table 4: China air pollution data: the p-values for testing the goodness of fit of

various models, with the results based on the estimated coefficient value.

Name of the model Formula p-value

T fn,M T fn,F fdapss FMDD
No-effect Yi(t) = εi(t) 0.898 0.010 0.489 0

No-effect+heterogeneity Yi(t) = f(Xi(t))εi(t) 0.341 1.000 0.814 0.631
FLMcR Yi(t) = Xi(t)β(t) + εi(t) 1.000 0.076 0.142 1.000

FLMcRw Yi(t) = Xi(t)β(t) + f(Xi(t))εi(t) 1 0.606 0.408 0.535

Furthermore, Figure 2(b) shows the estimate of β(t) and its pointwise confidence

intervals for FLMcRw. As suggested in Figure 2(b), we find that the covariate PM2.5

positively affects the daily air quality index, that is, larger values of PM2.5 tend to

cause large values of the AQI, resulting in worse air quality.

7. Conclusion

We have developed a projection-based procedure for assessing the goodness of fit

of generalized functional regression models. The procedure offers several features.

First, it offers generality, because the proposed test can check the goodness of fit for

a large number of FLMs, such as the FLMcR, FLMsR, FLMfR, generalized FLM,

and functional index models. Secondly, it offers uniformity, because we provide a

unified test framework for functional regression models. Remarkably, the proposed

framework accommodates not only the distribution-based test, but also the mean-
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Figure 2: (a): The estimated β(·) and associated 95% confidence bands in

FLMcR+ANOVA for the Canadian weather data. (b): The estimated β(·) and asso-

ciated 95% confidence bands in FLMcRw for the Chinese air pollution data.

based and higher-order moment-based tests. Based on our theoretical and numerical

results, as long as the null mean hypothesis (1.1) does not hold, the mean-based test

is more powerful than the distribution-based test, which is attributed to the uni-

fied framework, under some mild conditions. By following this strategy, we obtain

greater insight into the model structure and avoid calculating redundant test statis-

tics, thus alleviating the computational burden. Third, it offers flexibility, because

the proposed test is free of any distribution assumptions, and is constructed based

on independence in distribution, which accounts for the mean-based independence

considered in the literature and any order moment-based independence. Fourth, it
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provides the parameter rate of the local alternative. The proposed test has out-

standing power performance under the alternatives, that is, O(n−1/2), in contrast to

the nonparametric order obtained in the literature. Fifth, it offers computational

convenience. The proposed test is free of user-chosen parameters, which enhances

computational expedience and avoids subjective selection.

There are several possible extensions of our method. First, we focus on general-

ized functional models with a known link function. Extending this to the generalized

FLM with an unknown link function requires extra effort, and deserves further explo-

ration. Second, our method requires that the covariates X are continuous functions.

Because there is no KL expansion for discrete covariates, especially for binary covari-

ates, accommodating discrete covariates is worthy of further investigation to address

specific scientific questions. Third, the asymptotic distribution of the proposed statis-

tics does not have an easily handled form. Thus, we use the bootstrap procedure,

which generates extra computational costs. Therefore, finding an alternative method

or developing more efficient algorithms is left for future work.

Supplementary Material

Supplementary Material contains additional notation, simulation results, and

technique details, including proofs of the theorems.
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